ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: To identify planform characteristics which have promise for a highly maneuverable vehicle, an investigation was conducted in the Langley Subsonic Basic Research Tunnel to determine the low-speed longitudinal aerodynamics of 21 planform geometries. Concepts studied included twin bodies, double wings, cutout wings, and serrated forebodies. The planform models tested were all 1/4-in.-thick flat plates with beveled edges on the lower surface to ensure uniform flow separation at angle of attack. A 1.0-in.-diameter cylindrical metric body with a hemispherical nose was used to house the six-component strain gauge balance for each configuration. Aerodynamic force and moment data were obtained across an angle-of-attack range of 0 to 70 deg with zero sideslip at a free-stream dynamic pressure of 30 psf. Surface flow visualization studies were also conducted on selected configurations using fluorescent minitufts. Results from the investigation indicate that a cutout wing planform can improve lift characteristics; however, cutout size, shape, and position and wing leading-edge sweep will all influence the effectiveness of the cutout configuration. Tests of serrated forebodies identified this concept as an extremely effective means of improving configuration lift characteristics; increases of up to 25 percent in the value of maximum lift coefficient were obtained.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3503 , L-17301 , NAS 1.60:3503
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: To determine the flow field characteristics of 12 planform geometries, a flow visualization investigation was conducted in the Langley 16- by 24-Inch Water Tunnel. Concepts studied included flat plate representations of diamond wings, twin bodies, double wings, cutout wing configurations, and serrated forebodies. The off-surface flow patterns were identified by injecting colored dyes from the model surface into the free-stream flow. These dyes generally were injected so that the localized vortical flow patterns were visualized. Photographs were obtained for angles of attack ranging from 10' to 50', and all investigations were conducted at a test section speed of 0.25 ft per sec. Results from the investigation indicate that the formation of strong vortices on highly swept forebodies can improve poststall lift characteristics; however, the asymmetric bursting of these vortices could produce substantial control problems. A wing cutout was found to significantly alter the position of the forebody vortex on the wing by shifting the vortex inboard. Serrated forebodies were found to effectively generate multiple vortices over the configuration. Vortices from 65' swept forebody serrations tended to roll together, while vortices from 40' swept serrations were more effective in generating additional lift caused by their more independent nature.
    Keywords: Aerodynamics
    Type: NASA-TM-4663 , NAS 1.15:4663 , L-17418
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.
    Keywords: AERODYNAMICS
    Type: NASA-TM-109045 , NAS 1.15:109045
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A study was undertaken in the NASA Langley 14- by 22-foot subsonic tunnel to determine the low-speed aerodynamic characteristics of a powered, generic, hypersonic configuration in ground effect. The model was a simplified configuration consisting of a triangular wedge forebody, a rectangular mid-section which housed the flow through, an ejector type propulsion simulation system, and a rectangular wedge afterbody. Additional model components included a delta wing, a rectangular wedge forebody, inlet fences, exhaust flow deflectors, and afterbody fences. Aerodynamic force and moment data were obtaind over an angle of attack range from -4 to 18 degrees while model height above the tunnel floor was varied from 1/4 inch to 6 feet. Variations in freestream dynamic pressure, from 10 psf to 80 psf, and engine ejector pressure yielded a range of thrust coefficients from 0 to 0.8.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3092 , L-16861 , NAS 1.60:3092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).
    Keywords: AERODYNAMICS
    Type: NASA-TM-4351 , L-16921 , NAS 1.15:4351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Langley 14- by 22-foot Subsonic Tunnel is a closed circuit, single-return atmospheric wind tunnel with a test section that can be operated in a variety of configurations (closed, slotted, partially open, and open). The closed test section configuration is 14.5 ft high by 21.75 ft wide and 50 ft long with a maximum speed of about 338 ft/sec. The open test section configuration has a maximum speed of about 270 ft/sec, and is formed by raising the ceiling and walls, to form a floor-only configuration. The tunnel may be configured with a moving-belt ground plane and a floor boundary-layer removal system at the entrance to the test section for ground effect testing. In addition, the tunnel had a two-component laser velocimeter, a frequency modulated (FM) tape system for dynamic data acquisition, flow visualization equipment, and acoustic testing capabilities. Users of the 14- by 22-foot Subsonic Tunnel are provided with information required for planning of experimental investigations including test hardware and model support systems.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3008 , L-16731 , NAS 1.60:3008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: An investigation was conducted in the NASA Langley 14 x 22 foot Subsonic Tunnel to study the effects of engine thrust reversing on an aft-mounted twin-engine transport and to develop effective testing techniques. Testing was done over a fixed and a moving-belt ground plane and over a pressure instrumented ground board. Free-stream dynamic pressure was set at values up to 12.2 psf, which corresponded to a maximum Reynolds number based on the mean aerodynamic chord of 765,000. The thrust reversers examined included cascade, target and four-door configurations. The investigation focused on the range of free-stream velocities and engine thrust-reverser flow rates that would be typical for landing ground-roll conditions. Flow visualization techniques were investigated, and the use of water or smoke injected into the reverser flow proved effective to determine the forward progression of the reversed flow and reingestion limits. When testing over a moving-belt ground plane, as opposed to a fixed ground plane, forward penetration of the reversed flow was reduced. The use of a pressure-instrumented ground board enabled reversed flow ground velocities to be obtained, and it provided a means by which to identify the reversed flow impingement point on the ground.
    Keywords: AERODYNAMICS
    Type: NASA-TP-2856 , L-16426 , NAS 1.60:2856
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Results are presented on the low-speed aerodynamic characteristics of a simplified NASP (for National Aerospace Plane Program)-like configuration, obtained in the NASA-Langley 14-by-22-foot subsonic tunnel. The model consisted of a triangular wedge forebody, a rectangular midsection housing the propulsion simulation system, and a rectangular wedge aftbody; it also included a delta wing, exhaust flow deflectors, and aftbody fences. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow. It was found that power-on ground effects for NASP-like configuration can be substantial; these effects can be reduced by increasing the angle-of-attack to the value of the aftbody ramp angle. Power-on lift losses in ground effect increased with increasing thrust, but could be reduced by the addition of a delta wing to the configuration. Power-on lift losses also increased with use of aftbody fences.
    Keywords: AERODYNAMICS
    Type: SAE PAPER 892312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Data on stability characteristics of a conical aerospace plane concept were collected for a number of model geometry variations and test conditions, using several NASA-Langley wind tunnels spanning Mach range 0.1-6. The baseline configuration of this plane concept incorporated a 5-deg cone forebody, a 75.96-deg delta wing, a 16-deg leading-edge sweep deployable canard, and a centerline vertical tail. The key results pertinent to stability considerations about all three axes of the model are presented together with data on the effect of the canard on pitch stability, the effect of vertical tail on lateral-directional stability, and the effect of forebody geometry on yaw asymmetries. The experimental stability data are compared with the results from an engineering predictive code.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: SAE PAPER 892313
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: An extensive research program has been underway at the NASA Langley Research Center to define and develop the technologies required for low-speed flight of high-performance aircraft. This 10-year program has placed emphasis on both short takeoff and landing (STOL) and short takeoff and vertical landing (STOVL) operations rather than on regular up and away flight. A series of NASA in-house as well as joint projects have studied various technologies including high lift, vectored thrust, thrust-induced lift, reversed thrust, an alternate method of providing trim and control, and ground effects. These technologies have been investigated on a number of configurations ranging from industry designs for advanced fighter aircraft to generic wing-canard research models. Test conditions have ranged from hover (or static) through transition to wing-borne flight at angles of attack from -5 to 40 deg at representative thrust coefficients.
    Keywords: AERODYNAMICS
    Type: NASA-TP-2796 , L-16364 , NAS 1.60:2796
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...