ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Climate
  • Nature Publishing Group (NPG)  (11)
  • Annual Reviews  (1)
  • Nature Publishing Group
  • 2005-2009  (12)
  • 2000-2004
  • 1990-1994
  • 1980-1984
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Annual Reviews, 2003. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Environment and Resources 28 (2003): 521-558, doi:10.1146/annurev.energy.28.011503.163443.
    Beschreibung: Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere and may lead to changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These are summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement in the scientific capabilities available for measurement as well as for policy needs. The specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This review focuses on the current knowledge of the carbon cycle, carbon measurement capabilities (with an emphasis on the continental scale) and the relevance of carbon cycle science to carbon sequestration goals.
    Beschreibung: The National Center for Atmospheric Research is supported by the National Science Foundation.
    Schlagwort(e): Carbon sequestration ; Measurement techniques ; Climate ; Kyoto protocol
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: 406392 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2008-08-30
    Beschreibung: It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Nino state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunt, Daniel J -- Foster, Gavin L -- Haywood, Alan M -- Stone, Emma J -- England -- Nature. 2008 Aug 28;454(7208):1102-5. doi: 10.1038/nature07223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BRIDGE, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK. d.j.lunt@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18756254" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Atmosphere/*chemistry ; Carbon Dioxide/analysis/*metabolism ; Climate ; Greenland ; History, Ancient ; *Ice Cover ; North America ; Rain ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2008-12-19
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Billings, Sharon A -- England -- Nature. 2008 Dec 18;456(7224):888-9. doi: 10.1038/456888a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092923" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Atmosphere/chemistry ; Climate ; Droughts ; Europe ; Humidity ; Nitrous Oxide/*metabolism ; Picea/metabolism ; Rain ; Soil/*analysis ; Trees/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2008-09-12
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2008 Sep 11;455(7210):142-3. doi: 10.1038/455142b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18784680" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Air Pollution/*statistics & numerical data ; Cities/*statistics & numerical data ; City Planning/trends ; Climate ; Data Collection/economics ; Databases, Factual ; Europe ; Models, Theoretical ; Population Density
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2009-02-06
    Beschreibung: The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity ( approximately 3.5 degrees C and approximately 1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thornalley, David J R -- Elderfield, Harry -- McCave, I Nick -- England -- Nature. 2009 Feb 5;457(7230):711-4. doi: 10.1038/nature07717.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. d.thornalley@cantab.net〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194447" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Atlantic Ocean ; Calcium Carbonate/analysis ; Climate ; Feedback ; Fresh Water/analysis/chemistry ; History, Ancient ; Oxygen Isotopes ; Plankton/metabolism ; *Salinity ; Seawater/*chemistry ; *Temperature ; *Water Movements
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2009-09-26
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diamond, Jared -- England -- Nature. 2009 Sep 24;461(7263):479-80. doi: 10.1038/461479a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779438" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Agriculture/history ; Animals ; Archaeology ; Cambodia ; Central America ; Civilization/*history ; Climate ; Droughts ; Forestry/*history ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, Medieval ; Population Density ; South America ; Trees/growth & development ; Wood/history
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2009-09-04
    Beschreibung: Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheffer, Marten -- Bascompte, Jordi -- Brock, William A -- Brovkin, Victor -- Carpenter, Stephen R -- Dakos, Vasilis -- Held, Hermann -- van Nes, Egbert H -- Rietkerk, Max -- Sugihara, George -- England -- Nature. 2009 Sep 3;461(7260):53-9. doi: 10.1038/nature08227.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. marten.scheffer@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727193" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Asthma/physiopathology ; Climate ; *Ecosystem ; Eutrophication ; Extinction, Biological ; Humans ; *Models, Biological ; *Models, Economic ; Seizures/physiopathology ; Stochastic Processes
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2009-09-26
    Beschreibung: Reconstructions of atmospheric CO(2) concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO(2) concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO(2) fluxes between those reservoirs. Here we present a highly resolved atmospheric delta(13)C record for the past 11,000 years from measurements on atmospheric CO(2) trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO(2) of about 5 parts per million by volume (p.p.m.v.). The increase in delta(13)C of about 0.25 per thousand during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO(2) and the small decrease in delta(13)C of about 0.05 per thousand during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsig, Joachim -- Schmitt, Jochen -- Leuenberger, Daiana -- Schneider, Robert -- Eyer, Marc -- Leuenberger, Markus -- Joos, Fortunat -- Fischer, Hubertus -- Stocker, Thomas F -- England -- Nature. 2009 Sep 24;461(7263):507-10. doi: 10.1038/nature08393.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779448" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Air/analysis ; Animals ; Antarctic Regions ; Anthozoa/growth & development/metabolism ; Atmosphere/chemistry ; Carbon/*analysis/*metabolism ; Carbon Dioxide/analysis/*metabolism ; Carbon Isotopes ; Climate ; Ecosystem ; History, Ancient ; Ice Cover/*chemistry ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2009-08-08
    Beschreibung: The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lefevre, Franck -- Forget, Francois -- England -- Nature. 2009 Aug 6;460(7256):720-3. doi: 10.1038/nature08228.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LATMOS, UPMC Universite Paris 06, CNRS, Paris 75005, France. franck.lefevre@upmc.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661912" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Atmosphere/chemistry ; Carbon Dioxide/analysis ; Climate ; Electrochemistry ; Exobiology ; Extraterrestrial Environment/*chemistry ; *Mars ; Methane/*analysis ; Models, Chemical ; Photochemistry ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2009-07-03
    Beschreibung: Environmental conditions during the past 24 million years are thought to have been favourable for enhanced rates of atmospheric carbon dioxide drawdown by silicate chemical weathering. Proxy records indicate, however, that the Earth's atmospheric carbon dioxide concentrations did not fall below about 200-250 parts per million during this period. The stabilization of atmospheric carbon dioxide concentrations near this minimum value suggests that strong negative feedback mechanisms inhibited further drawdown of atmospheric carbon dioxide by high rates of global silicate rock weathering. Here we investigate one possible negative feedback mechanism, occurring under relatively low carbon dioxide concentrations and in warm climates, that is related to terrestrial plant productivity and its role in the decomposition of silicate minerals. We use simulations of terrestrial and geochemical carbon cycles and available experimental evidence to show that vegetation activity in upland regions of active orogens was severely limited by near-starvation of carbon dioxide in combination with global warmth over this period. These conditions diminished biotic-driven silicate rock weathering and thereby attenuated an important long-term carbon dioxide sink. Although our modelling results are semi-quantitative and do not capture the full range of biogeochemical feedbacks that could influence the climate, our analysis indicates that the dynamic equilibrium between plants, climate and the geosphere probably buffered the minimum atmospheric carbon dioxide concentrations over the past 24 million years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagani, Mark -- Caldeira, Ken -- Berner, Robert -- Beerling, David J -- England -- Nature. 2009 Jul 2;460(7251):85-8. doi: 10.1038/nature08133.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA. mark.pagani@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571882" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Atmosphere/*chemistry ; Biomass ; Carbon Dioxide/*analysis ; Climate ; Eukaryota ; Geologic Sediments/*chemistry ; Geology ; History, Ancient ; Ice Cover ; Models, Biological ; Plant Leaves/metabolism ; Plant Roots/growth & development ; Plant Transpiration ; Plants/*metabolism ; Silicates/*chemistry
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2009-10-09
    Beschreibung: Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bijl, Peter K -- Schouten, Stefan -- Sluijs, Appy -- Reichart, Gert-Jan -- Zachos, James C -- Brinkhuis, Henk -- England -- Nature. 2009 Oct 8;461(7265):776-9. doi: 10.1038/nature08399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Palaeoecology, Institute of Environmental Biology, Faculty of Science, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands. p.k.bijl@uu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812670" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Antarctic Regions ; Biological Evolution ; Climate ; Geologic Sediments/analysis/chemistry ; History, Ancient ; Ice Cover ; Oxygen Isotopes ; Pacific Ocean ; Plankton/metabolism ; Seawater/*analysis ; *Temperature ; Water Movements
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2009-07-03
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godderis, Yves -- Donnadieu, Yannick -- England -- Nature. 2009 Jul 2;460(7251):40-1. doi: 10.1038/460040a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571871" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Atmosphere/*chemistry ; Carbon Dioxide/*analysis/chemistry ; Climate ; Geologic Sediments/*chemistry ; History, Ancient ; Plants/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...