ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Currents  (36)
  • Coastal flows  (33)
  • Topographic effects  (33)
  • North Atlantic Ocean  (30)
  • American Meteorological Society  (120)
  • MDPI Publishing
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1075-1086, doi:10.1175/2009JPO4375.1.
    Description: A quasigeostrophic, two-layer model is used to study the baroclinic circulation around a thin, meridionally elongated island. The flow is driven by either buoyancy forcing or wind stress, each of whose structure would produce an antisymmetric double-gyre flow. The ocean bottom is flat. When the island partially straddles the intergyre boundary, fluid from one gyre is forced to flow into the other. The amount of the intergyre flow depends on the island constant, that is, the value of the geostrophic streamfunction on the island in each layer. That constant is calculated in a manner similar to earlier studies and is determined by the average, along the meridional length of the island, of the interior Sverdrup solution just to the east of the island. Explicit solutions are given for both buoyancy and wind-driven flows. The presence of an island of nonzero width requires the determination of the baroclinic streamfunction on the basin’s eastern boundary. The value of the boundary term is proportional to the island’s area. This adds a generally small additional baroclinic intergyre flow. In all cases, the intergyre flow produced by the island is not related to topographic steering of the flow but rather the pressure anomaly on the island as manifested by the barotropic and baroclinic island constants. The vertical structure of the flow around the island is a function of the parameterization of the vertical mixing in the problem and, in particular, the degree to which long baroclinic Rossby waves can traverse the basin before becoming thermally damped.
    Description: This research was supported in part by NSF Grant OCE 0451086.
    Keywords: Gyres ; Baroclinic flows ; Topographic effects ; Streamfunction ; Orographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1541-1550, doi:10.1175/2008JPO3999.1.
    Description: The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it evolves with time. The authors show that the plume evolution can be understood both conceptually and quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral element propagating at its own Rossby wave group velocity.
    Description: This work was completed at Woods Hole Oceanographic Institution while T.S. Durland was supported by the Ocean and Climate Change Institute. M.A. Spall was supported by NSF Grant OCE-0423975, and J. Pedlosky by NSF Grant OCE-0451086. T.S. Durland acknowledges additional report preparation support from NASA Grant NNG05GN98G.
    Keywords: Coastal flows ; Estuaries ; Currents ; Vorticity ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 148–161, doi:10.1175/JPO3003.1.
    Description: As part of a program aimed at developing a long-duration, subsurface mooring, known as Ultramoor, several modern acoustic current meters were tested. The instruments with which the authors have the most experience are the Aanderaa RCM11 and the Nortek Aquadopp, which measure currents using the Doppler shift of backscattered acoustic signals, and the Falmouth Scientific ACM, which measures changes in travel time of acoustic signals between pairs of transducers. Some results from the Doppler-based Sontek Argonaut and the travel-time-based Nobska MAVS are also reported. This paper concentrates on the fidelity of the speed measurement but also presents some results related to the accuracy of the direction measurement. Two procedures were used to compare the instruments. In one, different instruments were placed close to one another on three different deep-ocean moorings. These tests showed that the RCM11 measures consistently lower speeds than either a vector averaging current meter or a vector measuring current meter, both more traditional instruments with mechanical velocity sensors. The Aquadopp in use at the time, but since updated to address accuracy problems in low scattering environments, was biased high. A second means of testing involved comparing the appropriate velocity component of each instrument with the rate of change of pressure when they were lowered from a ship. Results from this procedure revealed no depth dependence or measurable bias in the RCM11 data, but did show biases in both the Aquadopp and Argonaut Doppler-based instruments that resulted from low signal-to-noise ratios in the clear, low scattering conditions beneath the thermocline. Improvements in the design of the latest Aquadopp have reduced this bias to a level that is not significant.
    Description: This material is based upon work supported by the National Science Foundation under Grant 9810641.
    Keywords: Currents ; Acoustic measurements ; In situ sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 889–910, doi:10.1175/2010JPO4496.1.
    Description: This paper examines interaction between a barotropic point vortex and a steplike topography with a bay-shaped shelf. The interaction is governed by two mechanisms: propagation of topographic Rossby waves and advection by the forcing vortex. Topographic waves are supported by the potential vorticity (PV) jump across the topography and propagate along the step only in one direction, having higher PV on the right. Near one side boundary of the bay, which is in the wave propagation direction and has a narrow shelf, waves are blocked by the boundary, inducing strong out-of-bay transport in the form of detached crests. The wave–boundary interaction as well as out-of-bay transport is strengthened as the minimum shelf width is decreased. The two control mechanisms are related differently in anticyclone- and cyclone-induced interactions. In anticyclone-induced interactions, the PV front deformations are moved in opposite directions by the point vortex and topographic waves; a topographic cyclone forms out of the balance between the two opposing mechanisms and is advected by the forcing vortex into the deep ocean. In cyclone-induced interactions, the PV front deformations are moved in the same direction by the two mechanisms; a topographic cyclone forms out of the wave–boundary interaction but is confined to the coast. Therefore, anticyclonic vortices are more capable of driving water off the topography. The anticyclone-induced transport is enhanced for smaller vortex–step distance or smaller topography when the vortex advection is relatively strong compared to the wave propagation mechanism.
    Description: Y. Zhang acknowledges the support of theMIT-WHOI Joint Programin Physical Oceanography, NSF OCE-9901654 and OCE-0451086. J. Pedlosky acknowledges the support of NSF OCE- 9901654 and OCE-0451086.
    Keywords: Transport ; Eddies ; Barotropic flow ; Topographic effects ; Vortices ; Currents ; Potential vorticity ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 4844–4858, doi:10.1175/2011JCLI4130.1.
    Description: The factors that determine the heat transport and overturning circulation in marginal seas subject to wind forcing and heat loss to the atmosphere are explored using a combination of a high-resolution ocean circulation model and a simple conceptual model. The study is motivated by the exchange between the subpolar North Atlantic Ocean and the Nordic Seas, a region that is of central importance to the oceanic thermohaline circulation. It is shown that mesoscale eddies formed in the marginal sea play a major role in determining the mean meridional heat transport and meridional overturning circulation across the sill. The balance between the oceanic eddy heat flux and atmospheric cooling, as characterized by a nondimensional number, is shown to be the primary factor in determining the properties of the exchange. Results from a series of eddy-resolving primitive equation model calculations for the meridional heat transport, overturning circulation, density of convective waters, and density of exported waters compare well with predictions from the conceptual model over a wide range of parameter space. Scaling and model results indicate that wind effects are small and the mean exchange is primarily buoyancy forced. These results imply that one must accurately resolve or parameterize eddy fluxes in order to properly represent the mean exchange between the North Atlantic and the Nordic Seas, and thus between the Nordic Seas and the atmosphere, in climate models.
    Description: This study was supported by the National Science Foundation under Grants OCE-0726339 and OCE-0850416.
    Keywords: Eddies ; Forcing ; Meridional overturning circulation ; Transport ; North Atlantic Ocean ; Seas/gulfs/bays
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 28 (2011): 1539–1553, doi:10.1175/JTECH-D-11-00001.1.
    Description: Turbulent Reynolds stresses are now routinely estimated from acoustic Doppler current profiler (ADCP) measurements in estuaries and tidal channels using the variance method, yet biases due to surface gravity waves limit its use in the coastal ocean. Recent modifications to this method, including spatially filtering velocities to isolate the turbulence from wave velocities and fitting a cospectral model to the below-wave band cospectra, have been used to remove this bias. Individually, each modification performed well for the published test datasets, but a comparative analysis over the range of conditions in the coastal ocean has not yet been performed. This work uses ADCP velocity measurements from five previously published coastal ocean and estuarine datasets, which span a range of wave and current conditions as well as instrument configurations, to directly compare methods for estimating stresses in the presence of waves. The computed stresses from each were compared to bottom stress estimates from a quadratic drag law and, where available, estimates of wind stress. These comparisons, along with an analysis of the cospectra, indicated that spectral fitting performs well when the wave climate is wide-banded and/or multidirectional as well as when instrument noise is high. In contrast, spatial filtering performs better when waves are narrow-banded, low frequency, and when wave orbital velocities are strong relative to currents. However, as spatial filtering uses vertically separated velocity bins to remove the wave bias, spectral fitting is able to resolve stresses over a larger fraction of the water column.
    Description: J. Rosman acknowledges funding from the National Science Foundation (OCE-1061108).
    Keywords: Coastal flows ; Momentum ; Ocean circulation ; Waves, oceanic ; In situ observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 29 (2012): 1377–1390, doi:10.1175/JTECH-D-11-00160.1.
    Description: Estimates of surface currents over the continental shelf are now regularly made using high-frequency radar (HFR) systems along much of the U.S. coastline. The recently deployed HFR system at the Martha’s Vineyard Coastal Observatory (MVCO) is a unique addition to these systems, focusing on high spatial resolution over a relatively small coastal ocean domain with high accuracy. However, initial results from the system showed sizable errors and biased estimates of M2 tidal currents, prompting an examination of new methods to improve the quality of radar-based velocity data. The analysis described here utilizes the radial metric output of CODAR Ocean Systems’ version 7 release of the SeaSonde Radial Site Software Suite to examine both the characteristics of the received signal and the output of the direction-finding algorithm to provide data quality controls on the estimated radial currents that are independent of the estimated velocity. Additionally, the effect of weighting spatial averages of radials falling within the same range and azimuthal bin is examined to account for differences in signal quality. Applied to two month-long datasets from the MVCO high-resolution system, these new methods are found to improve the rms difference comparisons with in situ current measurements by up to 2 cm s−1, as well as reduce or eliminate observed biases of tidal ellipses estimated using standard methods.
    Description: 2013-03-01
    Keywords: Coastal flows ; Currents ; Data processing ; Data quality control ; In situ atmospheric observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 418–431, doi:10.1175/JPO-D-12-087.1.
    Description: The overflow of the dense water mass across the Greenland–Scotland Ridge (GSR) from the Nordic Seas drives the Atlantic meridional overturning circulation (AMOC). The Nordic Seas is a large basin with an enormous reservoir capacity. The volume of the dense water above the GSR sill depth in the Nordic Seas, according to previous estimates, is sufficient to supply decades of overflow transport. This large capacity buffers overflow’s responses to atmospheric variations and prevents an abrupt shutdown of the AMOC. In this study, the authors use a numerical and an analytical model to show that the effective reservoir capacity of the Nordic Seas is actually much smaller than what was estimated previously. Basin-scale oceanic circulation is nearly geostrophic and its streamlines are basically the same as the isobaths. The vast majority of the dense water is stored inside closed geostrophic contours in the deep basin and thus is not freely available to the overflow. The positive wind stress curl in the Nordic Seas forces a convergence of the dense water toward the deep basin and makes the interior water even more removed from the overflow-feeding boundary current. Eddies generated by the baroclinic instability help transport the interior water mass to the boundary current. But in absence of a robust renewal of deep water, the boundary current weakens rapidly and the eddy-generating mechanism becomes less effective. This study indicates that the Nordic Seas has a relatively small capacity as a dense water reservoir and thus the overflow transport is sensitive to climate changes.
    Description: This study has been supported by National Science Foundation (OCE0927017,ARC1107412).
    Description: 2013-08-01
    Keywords: Bottom currents ; Drainage flow ; Meridional overturning circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2453–2466, doi:10.1175/JCLI-D-12-00023.1.
    Description: The North Atlantic Oscillation (NAO) is one of the most important modes of variability in the global climate system and is characterized by a meridional dipole in the sea level pressure field, with centers of action near Iceland and the Azores. It has a profound influence on the weather, climate, ecosystems, and economies of Europe, Greenland, eastern North America, and North Africa. It has been proposed that around 1980, there was an eastward secular shift in the NAO’s northern center of action that impacted sea ice export through Fram Strait. Independently, it has also been suggested that the location of its southern center of action is tied to the phase of the NAO. Both of these attributes of the NAO have been linked to anthropogenic climate change. Here the authors use both the one-point correlation map technique as well as empirical orthogonal function (EOF) analysis to show that the meridional dipole that is often seen in the sea level pressure field over the North Atlantic is not purely the result of the NAO (as traditionally defined) but rather arises through an interplay among the NAO and two other leading modes of variability in the North Atlantic region: the East Atlantic (EA) and the Scandinavian (SCA) patterns. This interplay has resulted in multidecadal mobility in the two centers of action of the meridional dipole since the late nineteenth century. In particular, an eastward movement of the dipole has occurred during the 1930s to 1950s as well as more recently. This mobility is not seen in the leading EOF of the sea level pressure field in the region.
    Description: GWKM was supported by the Natural Sciences and Engineering Research Council of Canada. IAR was supported in part by NE/C003365/1. RSP was supported by Grant OCE-0959381 from the U.S. National Science Foundation.
    Description: 2013-10-15
    Keywords: North Atlantic Ocean ; North Atlantic Oscillation ; Climate variability ; Climatology ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1555-1566, doi:10.1175/JPO-D-17-0231.1.
    Description: A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1Hz for 4–5min. Depth-average current fluctuations U0 within each burst are dominated by wave orbital velocities uw that account for 80%–90%of the burst variance and have a magnitude of order 10 cm s21, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (rCdaUavgjUavgj, where r is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw 5 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [rCda(Uavg 1 U0)jUavg 1 U0j)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST. S. Lentz was supported for the analysis by NSF Award OCE-1558343.
    Description: 2019-01-13
    Keywords: Coastal flows ; Currents ; Dynamics ; Gravity waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Description: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Description: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Description: 2019-03-11
    Keywords: Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1258-1271, doi:10.1175/2008JPO4028.1.
    Description: This paper presents a set of laboratory experiments focused on how a buoyant coastal current flowing over a sloping bottom interacts with a canyon and what controls the separation, if any, of the current from the upstream canyon bend. The results show that the separation of a buoyant coastal current depends on the current width W relative to the radius of curvature of the bathymetry ρc. The flow moved across the mouth of the canyon (i.e., separated) for W/ρc 〉 1, in agreement with previous results. The present study extends previous work by examining both slope-controlled and surface-trapped currents, and using a geometry specific to investigating buoyant current–canyon interaction. The authors find that, although bottom friction is important in setting the position of the buoyant front, the separation process driven by the inertia of the flow could overcome even the strongest bathymetric influence. Application of the laboratory results to the East Greenland Current (EGC), an Arctic-origin buoyant current that is observed to flow in two branches south of Denmark Strait, suggests that the path of the EGC is influenced by the large canyons cutting across the shelf, as the range of W/ρc in the ocean spans those observed in the laboratory. What causes the formation of a two-branched EGC structure downstream of the Kangerdlugssuaq Canyon (68°N, 32°W) is still unclear, but potential mechanisms are discussed.
    Description: This work was partially funded by NSF Grant OCE-0450658. DS also received support from the Academic Programs Office of the Woods Hole Oceanographic Institution, while CC had partial support from NSF OCE-0350891.
    Keywords: Coastal flows ; Buoyancy ; Currents ; Experimental design ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 104–120, doi:10.1175/2007JPO3686.1.
    Description: Recent studies have indicated that the North Atlantic Ocean subpolar gyre circulation undergoes significant interannual-to-decadal changes in response to variability in atmospheric forcing. There are also observations, however, suggesting that the southern limb of the subpolar gyre, namely, the eastward-flowing North Atlantic Current (NAC), may be quasi-locked to particular latitudes in the central North Atlantic by fracture zones (gaps) in the Mid-Atlantic Ridge. This could constrain the current’s ability to respond to variability in forcing. In the present study, subsurface float trajectories at 100–1000 m collected during 1997–99 and satellite-derived surface geostrophic velocities from 1992 to 2006 are used to provide an improved description of the detailed pathways of the NAC over the ridge and their relationship to bathymetry. Both the float and satellite observations indicate that in 1997–99, the northern branch of the NAC was split into two branches as it crossed the ridge, one quasi-locked to the Charlie–Gibbs Fracture Zone (CGFZ; 52°–53°N) and the other to the Faraday Fracture Zone (50°–51°N). The longer satellite time series shows, however, that this pattern did not persist outside the float sampling period and that other branching modes persisted for one or more years, including an approximately 12-month time period in 2002–03 when the strongest eastward flow over the ridge was at 49°N. Schott et al. showed how northward excursions of the NAC can temporarily block the westward flow of the Iceland–Scotland Overflow Water through the CGFZ. From the 13-yr time series of surface geostrophic velocity, it is estimated that such blocking may occur on average 6% of the time, although estimates for any given 12-month period range from 0% to 35%.
    Description: This research was supported by National Science Foundation Grants OCE-9531877 to the Woods Hole Oceanographic Institution (WHOI) and OCE-9906775 to the University of Rhode Island, by the WHOI Summer Student Fellowship Program, and by the Lawrence J. Pratt and Melinda M. Hall Endowed Fund for Interdisciplinary Research at the Woods Hole Oceanographic Institution.
    Keywords: Currents ; Topographic effects ; Interannual variability ; Forcing ; Gyres
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 880–895, doi:10.1175/2007JPO3750.1.
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows enter the open ocean as dense gravity currents that flow along and down the continental slope. While descending the slope, overflows typically double their volume transport by entraining upper oceanic water. The upper oceanic layer must balance this loss of mass, and the resulting convergent flow produces significant vortex stretching. Overflows thus represent an intense and localized mass and vorticity forcing for the upper ocean. In this study, simulations show that the upper ocean responds to the overflow-induced forcing by establishing topographic β plumes that are aligned more or less along isobaths and that have a transport that is typically a few times larger than that of the overflows. For the topographic β plume driven by the Mediterranean overflow, the occurrence of eddies near Cape St. Vincent, Portugal, allows the topographic β plume to flow across isobaths. The modeled topographic β-plume circulation forms two transatlantic zonal jets that are analogous to the Azores Current and the Azores Countercurrent. In other cases (e.g., the Denmark Strait overflow), the same kind of circulation remains trapped along the western boundary and hence would not be readily detected.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530.
    Keywords: North Atlantic Ocean ; Mediterranean region ; Ocean models ; Mass fluxes/transport ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 380-399, doi:10.1175/2007JPO3728.1.
    Description: Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.
    Description: This work was funded by the National Science Foundation as a component of the Hawaii Ocean Mixing Program. Added support for FLIP was provided by the Office of Naval Research.
    Keywords: Pacific Ocean ; Topographic effects ; Internal waves ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2341-2357, doi:10.1175/2008JPO3986.1.
    Description: Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth. During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
    Description: This research was funded by the Ocean Sciences Division of the National Science Foundation under Grants OCE-0241292 and OCE-0548961.
    Keywords: Continental shelf ; Transport ; Shear structure/flows ; Coastal flows ; Gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1203–1221, doi:10.1175/2007JPO3768.1.
    Description: Analyses of current time series longer than 200 days from 33 sites over the Middle Atlantic Bight continental shelf reveal a consistent mean circulation pattern. The mean depth-averaged flow is equatorward, alongshelf, and increases with increasing water depth from 3 cm s−1 at the 15-m isobath to 10 cm s−1 at the 100-m isobath. The mean cross-shelf circulation exhibits a consistent cross-shelf and vertical structure. The near-surface flow is typically offshore (positive, range −3 to 6 cm s−1). The interior flow is onshore and remarkably constant (−0.2 to −1.4 cm s−1). The near-bottom flow increases linearly with increasing water depth from −1 cm s−1 (onshore) in shallow water to 4 cm s−1 (offshore) at the 250-m isobath over the slope, with the direction reversal near the 50-m isobath. A steady, two-dimensional model (no along-isobath variations in the flow) reproduces the main features of the observed circulation pattern. The depth-averaged alongshelf flow is primarily driven by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an opposing mean wind stress that also drives the near-surface offshore flow. The alongshelf pressure gradient accounts for both the increase in the alongshelf flow with water depth and the geostrophic balance onshore flow in the interior. The increase in the near-bottom offshore flow with water depth is due to the change in the relative magnitude of the contributions from the geostrophic onshore flow that dominates in shallow water and the offshore flow driven by the bottom stress that dominates in deeper water.
    Description: This research was funded by Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE-848961.
    Keywords: Ocean models ; Ocean circulation ; Continental shelf ; Currents ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1644-1668, doi:10.1175/2007JPO3829.1.
    Description: The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.
    Description: This study was supported by the National Science Foundation Office of Polar Programs under Grants 0421904 and 035268 (MS), and by the Office of Naval Research Grant N00014-02-1-0317 (RP and PF). Analysis by AJP was supported by the Office of Naval Research under Grant N00014-97-1-0135 and by the National Science Foundation under Grant OPP-9815303.
    Keywords: Arctic ; Eddies ; Transport ; Currents ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2776-2784, doi:10.1175/2007JPO3710.1.
    Description: The bottom boundary layer of a stratified flow on a coastal continental shelf is examined using the model of Chapman and Lentz. The flow is driven by a surface stress, uniform in the alongshore coordinate, in a downwelling-favorable direction. The stress diminishes in the offshore direction and produces an Ekman pumping, as well as an onshore Ekman flux. The model yields an interior flow, sandwiched between an upper Ekman layer and a bottom boundary layer. The interior has a horizontal density gradient produced by a balance between horizontal diffusion of density and vertical advection of a background vertical density gradient. The interior flow is vertically sheared and in thermal wind balance. Whereas the original model of Chapman and Lentz considered an alongshore flow that is freely evolving, the present note focuses on the equilibrium structure of a flow driven by stress and discusses the vertical and lateral structure of the flow and, in particular, the boundary layer thickness. The vertical diffusivity of density in the bottom boundary layer is considered so strong, locally, as to render the bottom boundary layer’s density a function of only offshore position. Boundary layer budgets of mass, momentum, and buoyancy determine the barotropic component of the interior flow as well as the boundary layer thickness, which is a function of the offshore coordinate. The alongshore flow has enhanced vertical shear in the boundary layer that reduces the alongshore flow in the boundary layer; however, the velocity at the bottom is generally not zero but produces a stress that locally balances the applied surface stress. The offshore transport in the bottom boundary layer therefore balances the onshore surface Ekman flux. The model predicts the thickness of the bottom boundary layer, which is a complicated function of several parameters, including the strength of the forcing stress, the vertical and horizontal diffusion coefficients in the interior, and the horizontal diffusion in the boundary layer. The model yields a boundary layer over only a finite portion of the bottom slope if the interior diffusion coefficients are too large; otherwise, the layer extends over the full lateral extent of the domain.
    Description: This research was supported in part by NSF Grant OCE-851086.00.
    Keywords: Boundary layer ; Continental shelf ; Coastal flows ; Ekman pumping ; Forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2509-2533, doi:10.1175/JPO3123.1.
    Description: Twelve years of historical hydrographic data, spanning the period 1990–2001, are analyzed to examine the along-stream evolution of the western North Atlantic Ocean shelfbreak front and current, following its path between the west coast of Greenland and the Middle Atlantic Bight. Over 700 synoptic sections are used to construct a mean three-dimensional description of the summer shelfbreak front and to quantify the along-stream evolution in properties, including frontal strength and grounding position. Results show that there are actually two fronts in the northern part of the domain—a shallow front located near the shelf break and a deeper front centered in the core of Irminger Water over the upper slope. The properties of the deeper Irminger front erode gradually to the south, and the front disappears entirely near the Grand Banks of Newfoundland. The shallow shelfbreak front is identifiable throughout the domain, and its properties exhibit large variations from north to south, with the largest changes occurring near the Tail of the Grand Banks. Despite these structural changes, and large variations in topography, the foot of the shelfbreak front remains within 20 km of the shelf break. The hydrographic sections are also used to examine the evolution of the baroclinic velocity field and its associated volume transport. The baroclinic velocity structure consists of a single velocity core that is stronger and penetrates deeper where the Irminger front is present. The baroclinic volume transport decreases by equal amounts at the southern end of the Labrador Shelf and at the Tail of the Grand Banks. Overall, the results suggest that the Grand Banks is a geographically critical location in the North Atlantic shelfbreak system.
    Description: This work was supported by the National Science Foundation under Grants OCE00- 95261 (PF) and OCE-0450658 (RP).
    Keywords: Continental shelf ; Currents ; Atlantic Ocean ; Fronts ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1874–1893, doi:10.1175/2011JPO4604.1.
    Description: A two-dimensional cross-shelf model of the New England continental shelf and slope is used to investigate the mean cross-shelf and vertical circulation at the shelf break and their seasonal variation. The model temperature and salinity fields are nudged toward climatology. Annual and seasonal mean wind stresses are applied on the surface in separate equilibrium simulations. The along-shelf pressure gradient force associated with the along-shelf sea level tilt is tuned to match the modeled and observed depth-averaged along-shelf velocity. Steady-state model solutions show strong seasonal variation in along-shelf and cross-shelf velocity, with the strongest along-shelf jet and interior onshore flow in winter, consistent with observations. Along-shelf sea level tilt associated with the tuned along-shelf pressure gradient increases shoreward because of decreasing water depth. The along-shelf sea level tilt varies seasonally with the wind and is the strongest in winter and weakest in summer. A persistent upwelling is generated at the shelf break with a maximum strength of 2 m day−1 at 50-m depth in winter. The modeled shelfbreak upwelling differs from the traditional view in that most of the upwelled water is from the upper continental slope instead of from the shelf in the form of a detached bottom boundary layer.
    Description: WGZ was supported by the Woods Hole Oceanographic Institution postdoctoral scholarship program. GGGandDJMwere supported byONRGrant N-00014- 06-1-0739.
    Keywords: Ocean circulation ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1083–1098, doi:10.1175/JPO-D-11-015.1.
    Description: Here, the response of a coastally trapped buoyant plume to downwelling-favorable wind forcing is explored using a simplified two-dimensional numerical model and a prognostic theory for the resulting width, depth, and density anomaly and along-shelf transport of the plume. Consistent with the numerical simulations, the analytical model shows that the wind causes mixing of the plume water and that the forced cross-shelf circulation can also generate significant deepening and surface narrowing, as well as increased along-shelf transport. The response is due to a combination of the purely advective process that leads to the steepening of the isopycnals and the entrainment of ambient water into the plume. The advective component depends on the initial plume geometry: plumes that have a large fraction of their total width in contact with the bottom (“bottom trapped”) suffer relatively small depth and width changes compared to plumes that have a large fraction of their total width detached from the bottom (“surface trapped”). Key theoretical parameters are Wγ/Wα, the ratio of the width of the plume detached from the bottom to the width of the plume in contact with it, and the ratio of the wind-generated mixed layer δe to the initial plume depth hp, which determines the amount of water initially entrained into the plume. The model results also show that the cross-shelf circulation can be strongly influenced by the wind-driven response in combination with the geostrophic shear of the plume. The continuous entrainment into the plume, as well as transient events, is also discussed.
    Description: This work has been supported by FONDECYT Grant 1070501. S. Lentz received support by theNational Science Foundation GrantOCE-0751554. C. Moffat had additional support from the National Science Foundation Office of Polar Programs through U.S. Southern Ocean GLOBEC Grants OPP 99-10092 and 06- 23223.
    Description: 2013-01-01
    Keywords: Baroclinic flows ; Boundary currents ; Coastal flows ; Upwelling/downwelling ; Wind ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2206–2228, doi:10.1175/JPO-D-11-0191.1.
    Description: This study investigates the anisotropic properties of the eddy-induced material transport in the near-surface North Atlantic from two independent datasets, one simulated from the sea surface height altimetry and one derived from real-ocean surface drifters, and systematically examines the interactions between the mean- and eddy-induced material transport in the region. The Lagrangian particle dispersion, which is widely used to characterize the eddy-induced tracer fluxes, is quantified by constructing the “spreading ellipses.” The analysis consistently demonstrates that this dispersion is spatially inhomogeneous and strongly anisotropic. The spreading is larger and more anisotropic in the subtropical than in the subpolar gyre, and the largest ellipses occur in the Gulf Stream vicinity. Even at times longer than half a year, the spreading exhibits significant nondiffusive behavior in some parts of the domain. The eddies in this study are defined as deviations from the long-term time-mean. The contributions from the climatological annual cycle, interannual, and subannual (shorter than one year) variability are investigated, and the latter is shown to have the strongest effect on the anisotropy of particle spreading. The influence of the mean advection on the eddy-induced particle spreading is investigated using the “eddy-following-full-trajectories” technique and is found to be significant. The role of the Ekman advection is, however, secondary. The pronounced anisotropy of particle dispersion is expected to have important implications for distributing oceanic tracers, and for parameterizing eddy-induced tracer transfer in non-eddy-resolving models.
    Description: IR was supported by Grant NSF-OCE-0725796. IK would like to acknowledge support by the National Science foundation Grant OCE-0842834.
    Description: 2013-06-01
    Keywords: North Atlantic Ocean ; Diffusion ; Dispersion ; Eddies ; Lagrangian circulation/transport ; Trajectories
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2405–2416, doi:10.1175/JCLI-D-13-00359.1.
    Description: Several recent studies utilizing global climate models predict that the Pacific Equatorial Undercurrent (EUC) will strengthen over the twenty-first century. Here, historical changes in the tropical Pacific are investigated using the Simple Ocean Data Assimilation (SODA) reanalysis toward understanding the dynamics and mechanisms that may dictate such a change. Although SODA does not assimilate velocity observations, the seasonal-to-interannual variability of the EUC estimated by SODA corresponds well with moored observations over a ~20-yr common period. Long-term trends in SODA indicate that the EUC core velocity has increased by 16% century−1 and as much as 47% century−1 at fixed locations since the mid-1800s. Diagnosis of the zonal momentum budget in the equatorial Pacific reveals two distinct seasonal mechanisms that explain the EUC strengthening. The first is characterized by strengthening of the western Pacific trade winds and hence oceanic zonal pressure gradient during boreal spring. The second entails weakening of eastern Pacific trade winds during boreal summer, which weakens the surface current and reduces EUC deceleration through vertical friction. EUC strengthening has important ecological implications as upwelling affects the thermal and biogeochemical environment. Furthermore, given the potential large-scale influence of EUC strength and depth on the heat budget in the eastern Pacific, the seasonal strengthening of the EUC may help reconcile paradoxical observations of Walker circulation slowdown and zonal SST gradient strengthening. Such a process would represent a new dynamical “thermostat” on CO2-forced warming of the tropical Pacific Ocean, emphasizing the importance of ocean dynamics and seasonality in understanding climate change projections.
    Description: EJDis supported by NSFGrantsOCE-1031971 and OCE-1233282. KBK is supported by NSF Grant OCE-1233282.
    Description: 2014-09-15
    Keywords: Tropics ; Currents ; Ocean dynamics ; Atmosphere-ocean interaction ; Climate variability ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2014): 2015–2025, doi:10.1175/JTECH-D-13-00262.1.
    Description: The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.
    Description: The authors thank the NSF Physical Oceanography program (OCE-1233282) and the WHOI Academic Programs Office for funding.
    Description: 2015-03-01
    Keywords: Pacific Ocean ; Tropics ; Currents ; Ocean dynamics ; Buoy observations ; Sampling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 546–561, doi:10.1175/JPO-D-14-0082.1.
    Description: Model studies and observations in the Hudson River estuary indicate that frontogenesis occurs as a result of topographic forcing. Bottom fronts form just downstream of lateral constrictions, where the width of the estuary increases in the down-estuary (i.e., seaward) direction. The front forms during the last several hours of the ebb, when the combination of adverse pressure gradient in the expansion and baroclinicity cause a stagnation of near-bottom velocity. Frontogenesis is observed in two dynamical regimes: one in which the front develops at a transition from subcritical to supercritical flow and the other in which the flow is everywhere supercritical. The supercritical front formation appears to be associated with lateral flow separation. Both types of fronts are three-dimensional, with strong lateral gradients along the flanks of the channel. During spring tide conditions, the fronts dissipate during the flood, whereas during neap tides the fronts are advected landward during the flood. The zone of enhanced density gradient initiates frontogenesis at multiple constrictions along the estuary as it propagates landward more than 60 km during several days of neap tides. Frontogenesis and frontal propagation may thus be essential elements of the spring-to-neap transition to stratified conditions in partially mixed estuaries.
    Description: Support for this research was provided by NSF Grant OCE 0926427.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Frontogenesis/frontolysis ; Fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.
    Description: A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
    Description: AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.
    Description: 2015-10-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Fronts ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2598–2620, doi:10.1175/JPO-D-14-0249.1.
    Description: Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
    Description: WGZ and GGG were supported by the National Science Foundation through Grant OCE-1129125.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Instability ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Fronts ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Description: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Description: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Description: 2016-06-01
    Keywords: Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3139-3154, doi:10.1175/JPO-D-16-0042.1.
    Description: Downfront, or downwelling favorable, winds are commonly found over buoyant coastal plumes. It is known that these winds can result in mixing of the plume with the ambient water and that the winds influence the transport, spatial extent, and stability of the plumes. In the present study, the interaction of the Ekman velocity in the surface layer and baroclinic instability supported by the strong horizontal density gradient of the plume is explored with the objective of understanding the potential vorticity and buoyancy budgets. The approach makes use of an idealized numerical model and scaling theory. It is shown that when winds are present the weak stratification resulting from vertical mixing and the strong baroclinicity of the front results in near-zero average potential vorticity q. For weak to moderate winds, the reduction of q by diapycnal mixing is balanced by the generation of q through the geostrophic stress term in the regions of strong horizontal density gradients and stable stratification. However, for very strong winds the wind stress overwhelms the geostrophic stress and leads to a reduction in q, which is balanced by the vertical mixing term. In the absence of winds, the geostrophic stress dominates mixing and the flow rapidly restratifies. Nonlinearity, extremes of relative vorticity and vertical velocity, and mixing are all enhanced by the presence of a coast. Scaling estimates developed for the eddy buoyancy flux, the surface potential vorticity flux, and the diapycnal mixing rate compare well with results diagnosed from a series of numerical model calculations.
    Description: This study was supported by NSF Grants OCE-1433170 (MAS) and OCE-1459677 (LNT).
    Description: 2017-04-07
    Keywords: Coastal flows ; Ekman pumping/transport ; Mesoscale processes ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 309-333, doi:10.1175/JTECH-D-16-0156.1.
    Description: Doppler current profilers on autonomous underwater gliders measure water velocity relative to the moving glider over vertical ranges of O(10) m. Measurements obtained with 1-MHz Nortek acoustic Doppler dual current profilers (AD2CPs) on Spray gliders deployed off Southern California, west of the Galápagos Archipelago, and in the Gulf Stream are used to demonstrate methods of estimating absolute horizontal velocities in the upper 1000 m of the ocean. Relative velocity measurements nearest to a glider are used to infer dive-dependent flight parameters, which are then used to correct estimates of absolute vertically averaged currents to account for the accumulation of biofouling during months-long glider missions. The inverse method for combining Doppler profiler measurements of relative velocity with absolute references to estimate profiles of absolute horizontal velocity is reviewed and expanded to include additional constraints on the velocity solutions. Errors arising from both instrumental bias and decreased abundance of acoustic scatterers at depth are considered. Though demonstrated with measurements from a particular combination of platform and instrument, these techniques should be applicable to other combinations of gliders and Doppler current profilers.
    Description: Spray glider missions were supported by the National Science Foundation (OCE-1232971, OCE-1233282), the National Oceanic and Atmospheric Administration (NA10OAR4320156, NA15OAR4320071), Eastman Chemical Company, the Oceans and Climate Change Institute at WHOI, and the W. Van Alan Clark Jr. Chair for Excellence in Oceanography at WHOI. RET acknowledges additional support for analysis and publication from the National Science Foundation (OCE-1633911).
    Description: 2017-07-31
    Keywords: Currents ; Acoustic measurements/effects ; Data processing ; Data quality control ; Profilers ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.
    Description: Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.
    Description: DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G.
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Ekman pumping/transport ; Ocean circulation ; Water masses ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2735-2768, doi:10.1175/JPO-D-15-0134.1.
    Description: In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.
    Description: The data collection and analysis was funded by NSF Grants ARC-0909373, OCE-113008, and OCE-1434041.
    Keywords: Geographic location/entity ; Estuaries ; Glaciers ; Circulation/ Dynamics ; Coastal flows ; Atm/Ocean Structure/ Phenomena ; Freshwater ; Snowmelt/icemelt ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2645-2662, doi:10.1175/JPO-D-15-0191.1.
    Description: The occurrence, drivers, and implications of small-scale O(2–5) km diameter coherent vortices, referred to as submesoscale eddies, over the inner shelf south of Martha’s Vineyard, Massachusetts, are examined using high-frequency (HF), radar-based, high-resolution (400 m) observations of surface currents. Within the 300 km2 study area, eddies occurred at rates of 1 and 4 day−1 in winter and summer, respectively. Most were less than 5 h in duration, smaller than 4 km in diameter, and rotated less than once over their lifespan; 60% of the eddies formed along the eastern edge of study area, adjacent to Wasque Shoal, and moved westward into the interior, often with relative vorticity greater than f. Eddy generation was linked to vortex stretching on the ebb and flood tide as well as the interaction of the spatially variable tide and the wind-driven currents; however, these features had complex patterns of surface divergence and stretching. Eddies located away from Wasque Shoal were related to the movement of wind-driven surface currents, as wind direction controlled where eddies formed as well as density effects. Using an analysis of particles advected within the radar-based surface currents, the observed eddies were found to be generally leaky, losing 60%–80% of particles over their lifespan, but still more retentive than the background flow. As a result, the combined translation and rotational effects of the observed eddies were an important source of lateral exchange for surface waters over the inner shelf.
    Description: The HF radar data utilized here were obtained using internal funding from the Woods Hole Oceanographic Institution. The analysis was supported by NSF OCE Grant 1332646.
    Description: 2017-02-19
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Currents ; Eddies ; Observational techniques and algorithms ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1291-1305, doi:10.1175/JPO-D-16-0160.1.
    Description: Along-stream variations in the dynamics of the Antarctic Circumpolar Current (ACC) impact heat and tracer transport, regulate interbasin exchange, and influence closure of the overturning circulation. Topography is primarily responsible for generating deviations from zonal-mean properties, mainly through standing meanders associated with regions of high eddy kinetic energy. Here, an idealized channel model is used to explore the spatial distribution of energy exchange and its relationship to eddy geometry, as characterized by both eddy momentum and eddy buoyancy fluxes. Variations in energy exchange properties occur not only between standing meander and quasi-zonal jet regions, but throughout the meander itself. Both barotropic and baroclinic stability properties, as well as the magnitude of energy exchange terms, undergo abrupt changes along the path of the ACC. These transitions are captured by diagnosing eddy fluxes of energy and by adopting the eddy geometry framework. The latter, typically applied to barotropic stability properties, is applied here in the depth–along-stream plane to include information about both barotropic and baroclinic stability properties of the flow. These simulations reveal that eddy momentum fluxes, and thus barotropic instability, play a leading role in the energy budget within a standing meander. This result suggests that baroclinic instability alone cannot capture the dynamics of ACC standing meanders, a challenge for models where eddy fluxes are parameterized.
    Description: The authors all acknowledge support from NSF OCE-1235488. MKY also acknowledges support from the AMS Graduate Student Fellowship.
    Description: 2017-10-12
    Keywords: Southern Ocean ; Channel flows ; Stability ; Topographic effects ; Eddies ; Mesoscale models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1831-1848, doi:10.1175/JPO-D-18-0068.1.
    Description: We present a simplified theory using reduced-gravity equations for North Atlantic Deep Water (NADW) and its variation driven by high-latitude deep-water formation. The theory approximates layer thickness on the eastern boundary with domain-averaged layer thickness and, in tandem with a mass conservation argument, retains fundamental physics for cross-equatorial flows on interannual and longer forcing time scales. Layer thickness anomalies are driven by a time-dependent northern boundary condition that imposes a southward volume flux representative of a variable source of NADW and damped by diapycnal mixing throughout the basin. Moreover, an outflowing southern boundary condition imposes a southward volume flux that generally differs from the volume flux at the northern boundary, giving rise to temporal storage of NADW within the Atlantic basin. Closed form analytic solutions for the amplitude and phase are provided when the variable source of NADW is sinusoidal. We provide a nondimensional analysis that demonstrates that solution behavior is primarily controlled by two parameters that characterize the meridional extent of the southern basin and the width of the basin relative to the equatorial deformation radius. Similar scaling applied to the time-lagged equations of Johnson and Marshall provides a clear connection to their results. Numerical simulations of reduced-gravity equations agree with analytic predictions in linear, turbulent, and diabatic regimes. The theory introduces a simple analytic framework for studying idealized buoyancy- and wind-driven cross-equatorial flows on interannual and longer time scales.
    Description: This research was supported by the National Science Foundation under Grant OCE- 1634468.
    Description: 2019-02-15
    Keywords: North Atlantic Ocean ; Tropics ; Meridional overturning circulation ; Ocean circulation ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2799-2827, doi:10.1175/JPO-D-18-0057.1.
    Description: The fjords that connect Greenland’s glaciers to the ocean are gateways for importing heat to melt ice and for exporting meltwater into the ocean. The transport of heat and meltwater can be modulated by various drivers of fjord circulation, including freshwater, local winds, and shelf variability. Shelf-forced flows (also known as the intermediary circulation) are the dominant mode of variability in two major fjords of east Greenland, but we lack a dynamical understanding of the fjord’s response to shelf forcing. Building on observations from east Greenland, we use numerical simulations and analytical models to explore the dynamics of shelf-driven flows. For the parameter space of Greenlandic fjords, we find that the fjord’s response is primarily a function of three nondimensional parameters: the fjord width over the deformation radius (W/Rd), the forcing time scale over the fjord adjustment time scale, and the forcing amplitude (shelf pycnocline displacements) over the upper-layer thickness. The shelf-forced flows in both the numerical simulations and the observations can largely be explained by a simple analytical model for Kelvin waves propagating around the fjord. For fjords with W/Rd 〉 0.5 (most Greenlandic fjords), 3D dynamics are integral to understanding shelf forcing—the fjord dynamics cannot be approximated with 2D models that neglect cross-fjord structure. The volume flux exchanged between the fjord and shelf increases for narrow fjords and peaks around the resonant forcing frequency, dropping off significantly at higher- and lower-frequency forcing.
    Description: This work was funded by NSF Grant OCE-1536856 and by the NOAA Climate and Global Change Postdoctoral Fellowship.
    Keywords: Estuaries ; Glaciers ; Baroclinic flows ; Coastal flows ; Kelvin waves ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 387-403, doi:10.1175/2008JPO3934.1.
    Description: Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530. JY has also been supported by NSF Grant OCE-0351055.
    Keywords: Baroclinic flows ; Mass fluxes/transport ; Entrainment ; Topographic effects ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1035-1049, doi:10.1175/2008JPO3920.1.
    Description: Seasonal variability of near-inertial horizontal kinetic energy is examined using observations from a series of McLane Moored Profiler moorings located at 39°N, 69°W in the western North Atlantic Ocean in combination with a one-dimensional, depth-integrated kinetic energy model. The time-mean kinetic energy and shear vertical wavenumber spectra of the high-frequency motions at the mooring site are in reasonable agreement with the Garrett–Munk internal wave description. Time series of depth-dependent and depth-integrated near-inertial kinetic energy are calculated from available mooring data after filtering to isolate near-inertial-frequency motions. These data document a pronounced seasonal cycle featuring a wintertime maximum in the depth-integrated near-inertial kinetic energy deriving chiefly from the variability in the upper 500 m of the water column. The seasonal signal in the near-inertial kinetic energy is most prominent for motions with vertical wavelengths greater than 100 m but observable wintertime enhancement is seen down to wavelengths of the order of 10 m. Rotary vertical wavenumber spectra exhibit a dominance of clockwise-with-depth energy, indicative of downward energy propagation and implying a surface energy source. A simple depth-integrated near-inertial kinetic energy model consisting of a wind forcing term and a dissipation term captures the order of magnitude of the observed near-inertial kinetic energy as well as its seasonal cycle.
    Description: Funding to initiate the McLane Moored Profiler observations at Line W were provided by grants from the G. Unger Vetlesen Foundation and the Comer Charitable Fund to the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute. Ongoing moored observations at Line W are supported by the National Science Foundation (NSF Grant OCE-0241354).
    Keywords: Kinetic energy ; Internal waves ; Intraseasonal variability ; North Atlantic Ocean ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2768–2777, doi:10.1175/2010JPO4461.1.
    Description: Although sustained observations yield a description of the mean equatorial current system from the western Pacific to the eastern terminus of the Tropical Atmosphere Ocean (TAO) array, a comprehensive observational dataset suitable for describing the structure and pathways of the Equatorial Undercurrent (EUC) east of 95°W does not exist and therefore climate models are unconstrained in a region that plays a critical role in ocean–atmosphere coupling. Furthermore, ocean models suggest that the interaction between the EUC and the Galápagos Islands (92°W) has a striking effect on the basic state and coupled variability of the tropical Pacific. To this end, the authors interpret historical measurements beginning with those made in conjunction with the discovery of the Pacific EUC in the 1950s, analyze velocity measurements from an equatorial TAO mooring at 85°W, and analyze a new dataset from archived shipboard ADCP measurements. Together, the observations yield a possible composite description of the EUC structure and pathways in the eastern equatorial Pacific that may be useful for model validation and guiding future observation.
    Description: Karnauskas acknowledges the WHOI Penzance Endowed Fund in Support of Assistant Scientists.
    Keywords: Atmosphere-ocean interaction ; Currents ; In situ observations ; Model evaluation/performance ; Pacific Ocean ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 748–763, doi:10.1175/JPO-D-11-086.1.
    Description: Isohaline coordinate analysis is used to compare the exchange flow in two contrasting estuaries, the long (with respect to tidal excursion) Hudson River and the short Merrimack River, using validated numerical models. The isohaline analysis averages fluxes in salinity space rather than in physical space, yielding the isohaline exchange flow that incorporates both subtidal and tidal fluxes and precisely satisfies the Knudsen relation. The isohaline analysis can be consistently applied to both subtidally and tidally dominated estuaries. In the Hudson, the isohaline exchange flow is similar to results from the Eulerian analysis, and the conventional estuarine theory can be used to quantify the salt transport based on scaling with the baroclinic pressure gradient. In the Merrimack, the isohaline exchange flow is much larger than the Eulerian quantity, indicating the dominance of tidal salt flux. The exchange flow does not scale with the baroclinic pressure gradient but rather with tidal volume flux. This tidal exchange is driven by tidal pumping due to the jet–sink flow at the mouth constriction, leading to a linear dependence of exchange flow on tidal volume flux. Finally, a tidal conversion parameter Qin/Qprism, measuring the fraction of tidal inflow Qprism that is converted into net exchange Qin, is proposed to characterize the exchange processes among different systems. It is found that the length scale ratio between tidal excursion and salinity intrusion provides a characteristic to distinguish estuarine regimes.
    Description: SNC is supported by a WHOI postdoctoral scholarship, a NSF Grant OCE-0926427, and a Taiwan National Science Council Grant NSC 100- 2199-M-002-028.WRGis supported byNSFGrantOCE- 0926427. JAL is supported by NSF Grant OCE-0452054.
    Description: 2012-11-01
    Keywords: Coastal flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 766–789, doi:10.1175/JPO-D-12-0141.1.
    Description: Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-10-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1028–1041, doi:10.1175/JPO-D-12-0159.1.
    Description: The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite boundary, namely downwelling (upwelling) in narrow boundary layers and deformation-scale baroclinic boundary layers with associated strong geostrophic flows. The presence of the island boundary, however, allows the pressure signal to propagate around the island so that the regions of upwelling and downwelling are dynamically connected. In the absence of stratification the island acts as an effective barrier to the Ekman transport. The presence of stratification supports baroclinic boundary currents that provide an advective pathway from one side of the island to the other. The resulting steady circulation is quite complex. Near the island, both geostrophic and ageostrophic velocity components are typically large. The density anomaly is maximum below the surface and, for positive wind stress, exhibits an anticyclonic phase rotation with depth (direction of Kelvin wave propagation) such that anomalously warm water can lie below regions of Ekman upwelling. The horizontal and vertical velocities exhibit similar phase changes with depth. The addition of a sloping bottom can act to shield the deep return flow from interacting with the island and providing mass transport into/out of the surface Ekman layer. In these cases, the required transport is provided by a pair of recirculation gyres that connect the narrow upwelling/downwelling boundary layers on the eastern and western sides of the island, thus directly connecting the Ekman transport across the island.
    Description: This study was supported by the National Science Foundation under Grants OCE-0826656 and OCE-0959381 (MAS), and OCE-0925061 (JP).
    Description: 2013-11-01
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 222–230, doi:10.1175/JPO-D-12-099.1.
    Description: Observations with fine horizontal resolution are used to identify the horizontal scales of variability over the Middle Atlantic Bight (MAB) shelf break and continental rise. Spray gliders collected observations along two alongshelf transects over the continental rise in March–April 2006 and along 16 cross-shelf transects over the shelf break and continental rise during July–October 2007. Horizontal resolution varied from 1 km or finer over the shelf to 6 km in deep water. These observations allow horizontal thermohaline variability offshore of the MAB shelf break to be examined for the first time. Structure functions of temperature and salinity, the mean square difference between observations separated by specified distances, reveal the horizontal spatial scales in the region. Exponential (e-folding) scales of temperature and salinity increase from 8–13 km near the shelf break to about 30 km over the continental rise. Just offshore of the shelf break, alongshelf structure functions exhibit periodicity with a 40–50-km wavelength that matches the wavelength of shelfbreak frontal meanders. Farther offshore, alongshelf structure functions suggest a dominant wavelength of 175–250 km, but these scales are only marginally resolved by the available observations. Examination of structure functions of along-isopycnal salinity (i.e., spice) suggests that interleaving of shelf and slope water masses contributes most of the horizontal variability near the MAB shelf break, but heaving of isopycnals is the primary source of horizontal variability over the continental rise.
    Description: Glider observations in March–April 2006 were supported by the National Science Foundation through Grant OCE-0220769. Glider observations in July–October 2007 were supported by a grant from Raytheon. RET was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region. GGG was supported by the National Science Foundation under Grant OCE-1129125.
    Description: 2013-07-01
    Keywords: Continental shelf/slope ; North Atlantic Ocean ; Fronts ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 427–444, doi:10.1175/JPO-D-13-070.1.
    Description: Between 25 September 2007 and 28 September 2009, a heavily instrumented mooring was deployed in the Labrador Sea, offshore of the location where warm-core, anticyclonic Irminger rings are formed. The 2-year time series offers insight into the vertical and horizontal structure of newly formed Irminger rings and their heat and salt transport into the interior basin. In 2 years, 12 Irminger rings passed by the mooring. Of these, 11 had distinct properties, while 1 anticyclone likely passed the mooring twice. Eddy radii (11–35 km) were estimated using the dynamic height signal of the anticyclones (8–18 cm) together with the observed velocities. The anticyclones show a seasonal cycle in core properties when observed (1.9°C in temperature and 0.07 in salinity at middepth) that has not been described before. The temperature and salinity are highest in fall and lowest in spring. Cold, fresh caps, suggested to be an important source of freshwater, were seen in spring but were almost nonexistent in fall. The heat and freshwater contributions by the Irminger rings show a large spread (from 12 to 108 MJ m−2 and from −0.5 to −4.7 cm, respectively) for two reasons. First, the large range of radii leads to large differences in transported volume. Second, the seasonal cycle leads to changes in heat and salt content per unit volume. This implies that estimates of heat and freshwater transport by eddies should take the distribution of eddy properties into account in order to accurately assess their contribution to the restratification.
    Description: This work was supported by the U.S. National Science Foundation and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Anticyclones ; Boundary currents ; Observational techniques and algorithms ; In situ oceanic observations ; Variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 327–348, doi:10.1175/JPO-D-15-0112.1.
    Description: Potential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.
    Description: Glider operations in the Gulf Stream were supported by the National Science Foundation under Grant OCE-0220769. Glider operations in the Gulf of Mexico were supported by BP. R.E.T. was supported by the Penzance Endowed Fund in Support of Assistant Scientists and the Independent Research and Development Program at WHOI.
    Description: 2016-07-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Boundary currents ; Potential vorticity ; Atm/Ocean Structure/ Phenomena ; Boundary currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2201-2218, doi:10.1175/JPO-D-16-0020.1.
    Description: This paper aims to test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha’s Vineyard, Massachusetts. Specifically, this study investigates how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and underresolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading.
    Description: IR, AK, and SL were supported by the NSF OCE Grant 1332646. IR was also supported by NASA Grant NNX14AH29G.
    Description: 2016-12-29
    Keywords: Circulation/ Dynamics ; Coastal flows ; Diffusion ; Lagrangian circulation/transport ; Observational techniques and algorithms ; Radars/Radar observations ; Models and modeling ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather and Forecasting 32 (2017): 1659-1666, doi:10.1175/WAF-D-17-0076.1.
    Description: Although rip currents are a major hazard for beachgoers, the relationship between the danger to swimmers and the physical properties of rip current circulation is not well understood. Here, the relationship between statistical model estimates of hazardous rip current likelihood and in situ velocity observations is assessed. The statistical model is part of a forecasting system that is being made operational by the National Weather Service to predict rip current hazard likelihood as a function of wave conditions and water level. The temporal variability of rip current speeds (offshore-directed currents) observed on an energetic sandy beach is correlated with the hindcasted hazard likelihood for a wide range of conditions. High likelihoods and rip current speeds occurred for low water levels, nearly shore-normal wave angles, and moderate or larger wave heights. The relationship between modeled hazard likelihood and the frequency with which rip current speeds exceeded a threshold was assessed for a range of threshold speeds. The frequency of occurrence of high (threshold exceeding) rip current speeds is consistent with the modeled probability of hazard, with a maximum Brier skill score of 0.65 for a threshold speed of 0.23 m s−1, and skill scores greater than 0.60 for threshold speeds between 0.15 and 0.30 m s−1. The results suggest that rip current speed may be an effective proxy for hazard level and that speeds greater than ~0.2 m s−1 may be hazardous to swimmers.
    Description: Funding was provided by the National Science Foundation (1232910, 1332705, and 1536365), and by National Security Science and Engineering and Vannevar Bush Faculty Fellowships funded by the assistant secretary of Defense for Research and Engineering.
    Description: 2018-02-28
    Keywords: Coastlines ; Coastal flows ; Waves, oceanic ; Forecast verification/skill ; Probability forecasts/models/distribution ; Statistical forecasting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 163-174, doi:10.1175/JPO-D-17-0161.1.
    Description: The general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1533170.
    Description: 2018-07-18
    Keywords: Coastal flows ; Downslope winds ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 3162-3175, doi:10.1175/2009JPO4239.1.
    Description: This study analyzes anisotropic properties of the material transport by eddies and eddy-driven zonal jets in a general circulation model of the North Atlantic through the analysis of Lagrangian particle trajectories. Spreading rates—defined here as half the rate of change in the particle dispersion—in the zonal direction systematically exceed the meridional rates by an order of magnitude. Area-averaged values for the upper-ocean zonal and meridional spreading rates are approximately 8100 and 1400 m2 s−1, respectively, and in the deep ocean they are 2400 and 200 m2 s−1. The results demonstrate that this anisotropy is mainly due to the action of the transient eddies and not to the shear dispersion associated with the time-mean jets. This property is consistent with the fact that eddies in this study have zonally elongated shapes. With the exception of the upper-ocean subpolar gyre, eddies also cause the superdiffusive zonal spreading, significant variations in the spreading rate in the vertical and meridional directions, and the difference between the westward and eastward spreading.
    Description: Funding for IK was provided by NSF Grants OCE 0346178, 0749722, and 0842834. Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. For JP the acknowledgement is to NSF OCE-0451086.
    Keywords: Eddies ; Transport ; Currents ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1361-1379, doi:10.1175/2008JPO4096.1.
    Description: Multiple zonal jets are observed in satellite data–based estimates of oceanic velocities, float measurements, and high-resolution numerical simulations of the ocean circulation. This study makes a step toward understanding the dynamics of these jets in the real ocean by analyzing the vertical structure and dynamical balances within multiple zonal jets simulated in an eddy-resolving primitive equation model of the North Atlantic. In particular, the authors focus on the role of eddy flux convergences (“eddy forcing”) in supporting the buoyancy and relative/potential vorticity (PV) anomalies associated with the jets. The results suggest a central role of baroclinic eddies in the barotropic and baroclinic dynamics of the jets, and significant differences in the effects of eddy forcing between the subtropical and subpolar gyres. Additionally, diabatic potential vorticity sources and sinks, associated with vertical diffusion, are shown to play an important role in supporting the potential vorticity anomalies. The resulting potential vorticity profile does not resemble a “PV staircase”—a distinct meridional structure observed in some idealized studies of geostrophic turbulence.
    Description: Funding for IK was provided by NSF Grants OCE 0346178 and 0749722. Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. For JP the acknowledgement is to NSF OCE-0451086.
    Keywords: Eddies ; Forcing ; Dynamics ; Jets ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2563-2569, doi:10.1175/JPO3134.1.
    Description: Along the Taiwan Strait (〈100 m in depth) a northeastward flow persists in all seasons despite the annually averaged wind stress that is strongly southwestward. The forcing mechanism of this countercurrent is examined by using a simple ocean model. The results from a suite of experiments demonstrate that it is the Kuroshio that plays the deciding role for setting the flow direction along the Taiwan Strait. The momentum balance along the strait is mainly between the wind stress, friction, and pressure gradient. Since both wind stress and friction act against the northward flow, it is most likely the pressure gradient that forces the northward flow, as noted in some previous studies. What remains unknown is why there is a considerable pressure difference between the southern and northern strait. The Kuroshio flows along the east coast of Taiwan, and thus the western boundary current layer dynamics applies there. Integrating the momentum equation along Taiwan’s east coast shows that there must be a pressure difference between the southern and the northern tip of Taiwan to counter a considerable friction exerted by the mighty Kuroshio. This same pressure difference is also felt on the other side of the island where it forces the northward flow through Taiwan Strait. The model shows that the local wind stress acts to dampen this northward flow. This mechanism can be illustrated by an integral constraint for flow around an island.
    Description: This study has been supported by National Science Foundation through Grant OCE-0351055.
    Keywords: Ocean circulation ; Wind ; Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2679–2695, doi:10.1175/2010JPO4395.1.
    Description: Observations of stratification and currents between June 2007 and March 2009 reveal a strong overflow between 400- and 570-m depth from the Panay Strait into the Sulu Sea. The overflow water is derived from approximately 400 m deep in the South China Sea. Temporal mean velocity is greater than 0.75 m s−1 at 50 m above the 570-m Panay Sill. Empirical orthogonal function analysis of a mooring time series shows that the flow is dominated by the bottom overflow current with little seasonal variance. The overflow does not descend below 1250 m in the Sulu Sea but rather settles above high-salinity deep water derived from the Sulawesi Sea. The mean observed overflow transport at the sill is 0.32 × 106 m3 s−1. The observed transport was used to calculate a bulk diapycnal diffusivity of 4.4 × 10−4 m2 s−1 within the Sulu Sea slab (575–1250 m) ventilated from Panay Strait. Analysis of Froude number variation across the sill shows that the flow is hydraulically controlled. A suitable hydraulic control model shows overflow transport equivalent to the observed overflow. Thorpe-scale estimates show turbulent dissipation rates up to 5 × 10−7 W kg−1 just downstream of the supercritical to subcritical flow transition, suggesting a hydraulic jump downstream of the sill.
    Description: This work was supported by the Office of Naval Research Grant N00014-09-1-0582 to Lamont-Doherty Earth Observatory of Columbia University; Grants ONR-13759000 and N00014-09-1-0582 to the Woods Hole Oceanographic Institution; Grant ONR-N00014-06-1-0690 to Scripps Institute of Oceanography; and a National Defense Science and Engineering Graduate Fellowship.
    Keywords: Transport ; Dynamics ; Topographic effects ; Currents ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 911–925, doi:10.1175/2011JPO4498.1.
    Description: Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
    Description: This work was supported by the National Science Foundation Grants CMG-82469600 and CMG-82579600 and by the Office of Naval Research Grant ONR-13108700.
    Keywords: Atlantic Ocean ; Transport ; Gyres ; Lagrangian circulation/transport ; Tracers ; Currents ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2307–2327, doi:10.1175/JPO-D-10-05004.1.
    Description: Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km. The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term. The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.
    Description: The research is supported by the National Science Foundation Grants OCE-0726393 and OCI-0904640 (MGM and TWNH) and OCE-0726640 (RSP).
    Description: 2012-06-01
    Keywords: North Atlantic Ocean ; In situ observations ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2938–2950, doi:10.1175/JPO-D-13-0201.1.
    Description: Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a kilometer-thick layer above rough bottom topography collocated with the deep-reaching fronts of the Antarctic Circumpolar Current. Linear theory, corrected for finite-amplitude topography based on idealized, two-dimensional numerical simulations, has been recently used to estimate the global distribution of internal wave generation by oceanic currents and eddies. The global estimate shows that the topographic wave generation is a significant sink of energy for geostrophic flows and a source of energy for turbulent mixing in the deep ocean. However, comparison with recent observations from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean shows that the linear theory predictions and idealized two-dimensional simulations grossly overestimate the observed levels of turbulent energy dissipation. This study presents two- and three-dimensional, realistic topography simulations of internal lee-wave generation from a steady flow interacting with topography with parameters typical of Drake Passage. The results demonstrate that internal wave generation at three-dimensional, finite bottom topography is reduced compared to the two-dimensional case. The reduction is primarily associated with finite-amplitude bottom topography effects that suppress vertical motions and thus reduce the amplitude of the internal waves radiated from topography. The implication of these results for the global lee-wave generation is discussed.
    Description: This research was supported by the National Science Foundation under Award CMG-1024198.
    Description: 2015-05-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Mixing ; Mountain waves ; Topographic effects ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 3033–3053, doi:10.1175/JPO-D-13-0227.1.
    Description: The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.
    Description: This study has been supported by National Science Foundation (OCE0927017 and ARC1107412).
    Description: 2015-06-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Channel flows ; Meridional overturning circulation ; Ocean circulation ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1061-1075, doi:10.1175/JPO-D-16-0248.1.
    Description: A major challenge in modeling the circulation over coral reefs is uncertainty in the drag coefficient because existing estimates span two orders of magnitude. Current and pressure measurements from five coral reefs are used to estimate drag coefficients based on depth-average flow, assuming a balance between the cross-reef pressure gradient and the bottom stress. At two sites wind stress is a significant term in the cross-reef momentum balance and is included in estimating the drag coefficient. For the five coral reef sites and a previous laboratory study, estimated drag coefficients increase as the water depth decreases consistent with open channel flow theory. For example, for a typical coral reef hydrodynamic roughness of 5 cm, observational estimates, and the theory indicate that the drag coefficient decreases from 0.4 in 20 cm of water to 0.005 in 10 m of water. Synthesis of results from the new field observations with estimates from previous field and laboratory studies indicate that coral reef drag coefficients range from 0.2 to 0.005 and hydrodynamic roughnesses generally range from 2 to 8 cm. While coral reef drag coefficients depend on factors such as physical roughness and surface waves, a substantial fraction of the scatter in estimates of coral reef drag coefficients is due to variations in water depth.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST to S. Lentz and J. Churchill. The Palau field program was funded by NSF Award OCE-1220529.
    Keywords: Ocean ; Currents ; Wind stress ; Boundary layer ; Sea level ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Description: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Description: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Keywords: Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2703-2719, doi:10.1175/JPO-D-17-0245.1.
    Description: A new set of deep float trajectory data collected in the Gulf of Mexico from 2011 to 2015 at 1500- and 2500-m depths is analyzed to describe mesoscale processes, with particular attention paid to the western Gulf. Wavelet analysis is used to identify coherent eddies in the float trajectories, leading to a census of the basinwide coherent eddy population and statistics of the eddies’ kinematic properties. The eddy census reveals a new formation region for anticyclones off the Campeche Escarpment, located northwest of the Yucatan Peninsula. These eddies appear to form locally, with no apparent direct connection to the upper layer. Once formed, the eddies drift westward along the northern edge of the Sigsbee Abyssal Gyre, located in the southwestern Gulf of Mexico over the abyssal plain. The formation mechanism and upstream sources for the Campeche Escarpment eddies are explored: the observational data suggest that eddy formation may be linked to the collision of a Loop Current eddy with the western boundary of the Gulf. Specifically, the disintegration of a deep dipole traveling under the Loop Current eddy Kraken, caused by the interaction with the northwestern continental slope, may lead to the acceleration of the abyssal gyre and the boundary current in the Bay of Campeche region.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M10PC00112 to Leidos, Inc., Raleigh, North Carolina.
    Description: 2019-05-07
    Keywords: Abyssal circulation ; Currents ; Eddies ; Mesoscale processes ; Trajectories ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. Importance of Orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), (2020): 4187-4206, doi:10.1175/JCLI-D-19-0527.1.
    Description: More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
    Description: This research was supported by the Woods Hole Oceanographic Institution Summer Student Fellow program, by the U.S. National Science Foundation under AGS-1355339 to C.C.U., and by the European Research Council through Grant 758005.
    Keywords: Ice sheets ; Blocking ; Cloud cover ; Topographic effects ; Climate change ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2020-03-16
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(4), (2020): 1535-1545, doi:10.1175/JCLI-D-19-0547.1.
    Description: In a transient warming scenario, the North Atlantic is influenced by a complex pattern of surface buoyancy flux changes that ultimately weaken the Atlantic meridional overturning circulation (AMOC). Here we study the AMOC response in the CMIP5 experiment, using the near-geostrophic balance of the AMOC on interannual time scales to identify the role of temperature and salinity changes in altering the circulation. The thermal wind relationship is used to quantify changes in the zonal density gradients that control the strength of the flow. At 40°N, where the overturning cell is at its strongest, weakening of the AMOC is largely driven by warming between 1000- and 2000-m depth along the western margin. Despite significant subpolar surface freshening, salinity changes are small in the deep branch of the circulation. This is likely due to the influence of anomalously salty water in the subpolar intermediate layers, which is carried northward from the subtropics in the upper limb of the AMOC. In the upper 1000 m at 40°N, salty anomalies due to increased evaporation largely cancel the buoyancy increase due to warming. Therefore, in CMIP5, temperature dynamics are responsible for AMOC weakening, while freshwater forcing instead acts to strengthen the circulation in the net. These results indicate that past modeling studies of AMOC weakening, which rely on freshwater hosing in the subpolar gyre, may not be directly applicable to a more complex warming scenario.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank John Marshall for helpful discussions on the driving mechanisms of the AMOC, and three anonymous reviewers whose comments greatly improved the manuscript. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Thermohaline circulation ; Water masses/storage ; Climate change ; Climate prediction ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 762-777, doi:10.1175/2010JCLI3731.1.
    Description: The meridional shifts of the Oyashio Extension (OE) and of the Kuroshio Extension (KE), as derived from high-resolution monthly sea surface temperature (SST) anomalies in 1982–2008 and historical temperature profiles in 1979–2007, respectively, are shown based on lagged regression analysis to significantly influence the large-scale atmospheric circulation. The signals are independent from the ENSO teleconnections, which were removed by seasonally varying, asymmetric regression onto the first three principal components of the tropical Pacific SST anomalies. The response to the meridional shifts of the OE front is equivalent barotropic and broadly resembles the North Pacific Oscillation/western Pacific pattern in a positive phase for a northward frontal displacement. The response may reach 35 m at 250 hPa for a typical OE shift, a strong sensitivity since the associated SST anomaly is 0.5 K. However, the amplitude, but not the pattern or statistical significance, strongly depends on the lag and an assumed 2-month atmospheric response time. The response is stronger during fall and winter and when the front is displaced southward. The response to the northward KE shifts primarily consists of a high centered in the northwestern North Pacific and hemispheric teleconnections. The response is also equivalent barotropic, except near Kamchatka, where it tilts slightly westward with height. The typical amplitude is half as large as that associated with OE shifts.
    Description: This work was supported in part by the L’Institut universitaire de France (CF), the WHOI Heyman fellowship, and the NASAGrant withAwardNNX09AF35G(Y.-O. K), and grants through NOAA’s Climate Variability and Predictability Program (MAA).
    Keywords: Atmospheric circulation ; Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1841–1861, doi:10.1175/JPO-D-12-0231.1.
    Description: In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.
    Description: Project funding was provided by the German Research Foundation (DFG) in the framework of the Project ECOWS (Role of Estuarine Circulation for Transport of Suspended Particulate Matter in the Wadden Sea, BU 1199/11) and by the German Federal Ministry of Research and Education in the framework of the Project PACE [The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise? (FKZ 03F0634A)].
    Description: 2014-03-01
    Keywords: Channel flows ; Coastal flows ; Mixing ; Transport ; Turbulence ; Single column models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1940–1958, doi:10.1175/JPO-D-13-020.1.
    Description: The spatial structure of the tidal and background circulation over the inner shelf south of Martha's Vineyard, Massachusetts, was investigated using observations from a high-resolution, high-frequency coastal radar system, paired with satellite SSTs and in situ ADCP velocities. Maximum tidal velocities for the dominant semidiurnal constituent increased from 5 to 35 cm s−1 over the 20-km-wide domain with phase variations up to 60°. A northeastward jet along the eastern edge and a recirculation region inshore dominated the annually averaged surface currents, along with a separate along-shelf jet offshore. Owing in part to this variable circulation, the spatial structure of seasonal SST anomalies had implications for the local heat balance. Cooling owing to the advective heat flux divergence was large enough to offset more than half of the seasonal heat gain owing to surface heat flux. Tidal stresses were the largest terms in the mean along- and across-shelf momentum equations in the area of the recirculation, with residual wind stress and the Coriolis term dominating to the west and south, respectively. The recirculation was strongest in summer, with mean winds and tidal stresses accounting for much of the differences between summer and winter mean circulation. Despite the complex bathymetry and short along-shelf spatial scales, a simple model of tidal rectification was able to recreate the features of the northeastward jet and match an estimate of the across-shelf structure of sea surface height inferred from the residual of the momentum analysis.
    Description: 2014-03-01
    Keywords: Coastal flows ; Momentum ; Sea surface temperature ; Tides ; Surface observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 2465–2477, doi:10.1175/JTECH-D-13-00032.1.
    Description: Seven current meters representing four models on a stiffly buoyed mooring were placed for an 11-month deployment to intercompare their velocity measurements: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) 11s, two Aanderaa SEAGUARDs, and a Nortek Aquadopp. The current meters were placed 6-m apart from each other at about 4000-m depth in an area of Drake Passage expected to have strong currents, nearly independent of depth near the bottom. Two high-current events occurred in bursts of semidiurnal pulses lasting several days, one with peak speeds up to 67 cm s−1 and the other above 35 cm s−1. The current-speed measurements all agreed within 7% of the median value when vector averaged over simultaneous time intervals. The VMCMs, chosen as the reference measurements, were found to measure the median of the mean-current magnitudes. The RCM11 and SEAGUARD current speeds agreed within 2% of the median at higher speeds (35–67 cm s−1), whereas in lower speed ranges (0–35 cm s−1) the vector-averaged speeds for the RCM11 and SEAGUARD were 4%–5% lower and 3%–5% higher than the median, respectively. The shorter-record Aquadopp current speeds were about 6% higher than the VMCMs over the range (0–40 cm s−1) encountered.
    Description: This work was supported by U.S. National Science Foundation Grants ANT-0635437 and ANT-0636493.
    Description: 2014-04-01
    Keywords: Currents ; Acoustic measurements/effects ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 945–966, doi:10.1175/JTECH-D-13-00146.1.
    Description: This study investigated the correspondence between the near-surface drifters from a mass drifter deployment near Martha’s Vineyard, Massachusetts, and the surface current observations from a network of three high-resolution, high-frequency radars to understand the effects of the radar temporal and spatial resolution on the resulting Eulerian current velocities and Lagrangian trajectories and their predictability. The radar-based surface currents were found to be unbiased in direction but biased in magnitude with respect to drifter velocities. The radar systematically underestimated velocities by approximately 2 cm s−1 due to the smoothing effects of spatial and temporal averaging. The radar accuracy, quantified by the domain-averaged rms difference between instantaneous radar and drifter velocities, was found to be about 3.8 cm s−1. A Lagrangian comparison between the real and simulated drifters resulted in the separation distances of roughly 1 km over the course of 10 h, or an equivalent separation speed of approximately 2.8 cm s−1. The effects of the temporal and spatial radar resolution were examined by degrading the radar fields to coarser resolutions, revealing the existence of critical scales (1.5–2 km and 3 h) beyond which the ability of the radar to reproduce drifter trajectories decreased more rapidly. Finally, the importance of the different flow components present during the experiment—mean, tidal, locally wind-driven currents, and the residual velocities—was analyzed, finding that, during the study period, a combination of tidal, locally wind-driven, and mean currents were insufficient to reliably reproduce, with minimal degradation, the trajectories of real drifters. Instead, a minimum combination of the tidal and residual currents was required.
    Description: I.R. was supported by the WHOI Coastal Ocean Institute Project 27040148 and by the WHOI Access to the Sea Program 27500036. I.R. and A.K. acknowledge support fromthe NSF project 83264600. A.K. acknowledges support from the Massachusetts Clean Energy Center (MassCEC) via the New England Marine Renewable Energy Center (MREC).
    Description: 2014-10-01
    Keywords: Coastal flows ; Currents ; Lagrangian circulation/transport ; Trajectories ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kwon, Y., Seo, H., Ummenhofer, C. C., & Joyce, T. M. Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking. Journal of Climate, 33(3), (2020): 867-892, doi: 10.1175/JCLI-D-19-0324.1.
    Description: Recent studies have suggested that coherent multidecadal variability exists between North Atlantic atmospheric blocking frequency and the Atlantic multidecadal variability (AMV). However, the role of AMV in modulating blocking variability on multidecadal times scales is not fully understood. This study examines this issue primarily using the NOAA Twentieth Century Reanalysis for 1901–2010. The second mode of the empirical orthogonal function for winter (December–March) atmospheric blocking variability in the North Atlantic exhibits oppositely signed anomalies of blocking frequency over Greenland and the Azores. Furthermore, its principal component time series shows a dominant multidecadal variability lagging AMV by several years. Composite analyses show that this lag is due to the slow evolution of the AMV sea surface temperature (SST) anomalies, which is likely driven by the ocean circulation. Following the warm phase of AMV, the warm SST anomalies emerge in the western subpolar gyre over 3–7 years. The ocean–atmosphere interaction over these 3–7-yr periods is characterized by the damping of the warm SST anomalies by the surface heat flux anomalies, which in turn reduce the overall meridional gradient of the air temperature and thus weaken the meridional transient eddy heat flux in the lower troposphere. The anomalous transient eddy forcing then shifts the eddy-driven jet equatorward, resulting in enhanced Rossby wave breaking and blocking on the northern flank of the jet over Greenland. The opposite is true with the AMV cold phases but with much shorter lags, as the evolution of SST anomalies differs in the warm and cold phases.
    Description: We gratefully acknowledge support from the NSF Climate and Large-scale Dynamics Program (AGS-1355339) to Y-OK, HS, CCU, and TMJ, the NASA Physical Oceanography Program (NNX13AM59G) to Y-OK, HS, and TMJ, NOAA CPO Climate Variability and Predictability Program (NA13OAR4310139) and DOE CESD Regional and Global Model Analysis Program (DE-SC0019492) to Y-OK, and NSF Physical Oceanography Program (OCE-1419235) to HS. We are very grateful to the three anonymous reviewers and editor Dr. Mingfang Ting, for their thorough and insightful suggestions. The NOAA 20CR dataset was downloaded from the NOAA Earth System Research Laboratory Physical Science Division webpage (https://www.esrl.noaa.gov/psd/data/20thC_Rean/). Support for the 20CR Project version 2c dataset is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. The HadISST dataset was downloaded from the U.K. Met Office Hadley Centre webpage (https://www.metoffice.gov.uk/hadobs/hadisst/). The ERA-20C dataset was downloaded from the ECMWF webpage (https://apps.ecmwf.int/datasets/data/era20c-daily/). The ERSST5 dataset was provided by the NOAA Earth System Research Laboratory Physical Science Division (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html).
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Blocking ; Climate variability ; Multidecadal variability ; North Atlantic Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Description: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Description: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Keywords: Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2431-2444, https://doi.org/10.1175/jpo-d-22-0024.1.
    Description: A three-dimensional inertial model that conserves quasigeostrophic potential vorticity is proposed for wind-driven coastal upwelling along western boundaries. The dominant response to upwelling favorable winds is a surface-intensified baroclinic meridional boundary current with a subsurface countercurrent. The width of the current is not the baroclinic deformation radius but instead scales with the inertial boundary layer thickness while the depth scales as the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. Thus, the boundary current scales depend on the stratification, wind stress, Coriolis parameter, and its meridional variation. In contrast to two-dimensional wind-driven coastal upwelling, the source waters that feed the Ekman upwelling are provided over the depth scale of this baroclinic current through a combination of onshore barotropic flow and from alongshore in the narrow boundary current. Topography forces an additional current whose characteristics depend on the topographic slope and width. For topography wider than the inertial boundary layer thickness the current is bottom intensified, while for narrow topography the current is wave-like in the vertical and trapped over the topography within the inertial boundary layer. An idealized primitive equation numerical model produces a similar baroclinic boundary current whose vertical length scale agrees with the theoretical scaling for both upwelling and downwelling favorable winds.
    Description: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M.S. is supported by the National Science Foundation Grant OCE-1922538. Z. C. is supported by the ‘Taishan/Aoshan’ Talents program (2017ASTCPES05) the Fundamental Research Funds for the Central Universities (202072001).
    Description: 2023-03-30
    Keywords: Ekman pumping/transport ; Upwelling/downwelling ; Coastal flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1),(2021): 3-17, https://doi.org/10.1175/JPO-D-20-0064.1.
    Description: The strong El Niño of 2014–16 was observed west of the Galápagos Islands through sustained deployment of underwater gliders. Three years of observations began in October 2013 and ended in October 2016, with observations at longitudes 93° and 95°W between latitudes 2°N and 2°S. In total, there were over 3000 glider-days of data, covering over 50 000 km with over 12 000 profiles. Coverage was superior closer to the Galápagos on 93°W, where gliders were equipped with sensors to measure velocity as well as temperature, salinity, and pressure. The repeated glider transects are analyzed to produce highly resolved mean sections and maps of observed variables as functions of time, latitude, and depth. The mean sections reveal the structure of the Equatorial Undercurrent (EUC), the South Equatorial Current, and the equatorial front. The mean fields are used to calculate potential vorticity Q and Richardson number Ri. Gradients in the mean are strong enough to make the sign of Q opposite to that of planetary vorticity and to have Ri near unity, suggestive of mixing. Temporal variability is dominated by the 2014–16 El Niño, with the arrival of depressed isopycnals documented in 2014 and 2015. Increases in eastward velocity advect anomalously salty water and are uncorrelated with warm temperatures and deep isopycnals. Thus, vertical advection is important to changes in heat, and horizontal advection is relevant to changes in salt. Implications of this work include possibilities for future research, model assessment and improvement, and sustained observations across the equatorial Pacific.
    Description: We gratefully acknowledge the support of the National Science Foundation (OCE-1232971, OCE-1233282) and the Ocean Observing and Monitoring Division of the National Oceanographic and Atmospheric Administration (NA13OAR4830216).
    Keywords: Ocean ; Tropics ; Currents ; El Nino ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3267–3294, https://doi.org/10.1175/JPO-D-19-0310.1.
    Description: As part of the Flow Encountering Abrupt Topography (FLEAT) program, an array of pressure-sensor equipped inverted echo sounders (PIESs) was deployed north of Palau where the westward-flowing North Equatorial Current encounters the southern end of the Kyushu–Palau Ridge in the tropical North Pacific. Capitalizing on concurrent observations from satellite altimetry, FLEAT Spray gliders, and shipboard hydrography, the PIESs’ 10-month duration hourly bottom pressure p and round-trip acoustic travel time τ records are used to examine the magnitude and predictability of sea level and pycnocline depth changes and to track signal propagations through the array. Sea level and pycnocline depth are found to vary in response to a range of ocean processes, with their magnitude and predictability strongly process dependent. Signals characterized here comprise the barotropic tides, semidiurnal and diurnal internal tides, southeastward-propagating superinertial waves, westward-propagating mesoscale eddies, and a strong signature of sea level increase and pycnocline deepening associated with the region’s relaxation from El Niño to La Niña conditions. The presence of a broad band of superinertial waves just above the inertial frequency was unexpected and the FLEAT observations and output from a numerical model suggest that these waves detected near Palau are forced by remote winds east of the Philippines. The PIES-based estimates of pycnocline displacement are found to have large uncertainties relative to overall variability in pycnocline depth, as localized deep current variations arising from interactions of the large-scale currents with the abrupt topography around Palau have significant travel time variability.
    Description: Support for this research was provided by Office of Naval Research Grants N00014-16-1-2668, N00014-18-1-2406, N00014-15-1-2488, and N00014-15-1-2622. R.C.M. was additionally supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Tropics ; Currents ; Eddies ; ENSO ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
    Description: The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
    Description: Funding for the study was provided by National Science Foundation (NSF) Grants OCE-1259618, OCE-1756361, and OCE-1558742. The German research cruises were financially supported through various EU Projects (e.g. THOR, NACLIM) and national projects (most recently TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the German Research Foundation and RACE II “Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research). GWKM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada. LP was supported by NSF Grant OCE-1657870.
    Keywords: Currents ; Instability ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 247-266, https://doi.org/10.1175/JPO-D-20-0098.1.
    Description: This study focuses on mechanisms of shelf valley bathymetry affecting the spread of riverine freshwater in the nearshore region. In the context of Changjiang River, a numerical model is used with different no-tide idealized configurations to simulate development of unforced river plumes over a sloping bottom, with and without a shelf valley off the estuary mouth. All simulated freshwater plumes are surface-trapped with continuously growing bulges near the estuary mouth and narrow coastal currents downstream. The simulations indicate that a shelf valley tends to compress the bulge along the direction of the valley long axis and modify the incident angle of the bulge flow impinging toward the coast, which then affects the strength of the coastal current. The bulge compression results from geostrophic adjustment and isobath-following tendency of the depth-averaged flow in the bulge region. Generally, the resulting change in the direction of the bulge impinging flow enhances down-shelf momentum advection and freshwater delivery into the coastal current. Sensitivity simulations with altered river discharges Q, Coriolis parameter, shelf bottom slope, valley geometry, and ambient stratification show that enhancement of down-shelf freshwater transport in the coastal current, ΔQc, increases with increasing valley depth within the bulge region and decreasing slope Burger number of the ambient shelf. Assuming potential vorticity conservation, a scaling formula of ΔQc/Q is developed, and it agrees well with results of the sensitivity simulations. Mechanisms of valley influences on unforced river plumes revealed here will help future studies of topographic influence on river plumes under more realistic conditions.
    Description: This work is conducted by Canbo Xiao and Weifeng (Gordon) Zhang during CX’s one-year visit at Woods Hole Oceanographic Institution (WHOI) in 2018–19. CX was supported by China Scholarship Council.
    Keywords: Continental shelf/slope ; Buoyancy ; Coastal flows ; Topographic effects ; Runoff ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(3), (2021): 955–973, https://doi.org/10.1175/JPO-D-20-0240.1.
    Description: Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of freshwater enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much freshwater is mixed into the overturning circulation’s deep limb in the present day. To constrain these freshwater pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Freshwater sources are split into oceanic Polar Waters from the Arctic and surface freshwater fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv (1 Sv ≡ 106 m3 s−1) of the total 110 mSv of surface freshwater fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic freshwater outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.
    Description: We gratefully acknowledge the U.S. National Science Foundation: this work was supported by Grants OCE-1258823, OCE-1756272, OCE-1948335, and OCE-2038481. L.H.S. thanks the U.S. Norway Fulbright Foundation for the Norwegian Arctic Chair Grant 2019-20 that made the visit to Scripps Institution of Oceanography possible. N.P.H. acknowledges support by the U.K. Natural Environment Research Council (NERC) National Capability program CLASS (NE/R015953/1), and Grants U.K.-OSNAP (NE/K010875/1, NE/K010875/2) and U.K.-OSNAP Decade (NE/T00858X/1). We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6.
    Keywords: Arctic ; North Atlantic Ocean ; Conservation equations ; Meridional overturning circulation ; Ocean circulation ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3249-3281, doi:10.1175/2010JCLI3343.1.
    Description: Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.
    Description: Funding for LT was provided by the NASA-sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. HN was supported in part by the Grant-in-Aid 18204044 by the Japan Society for Promotion for Science (JSPS) and the Global Environment Research Fund (S-5) of the Japanese Ministry of Environment. YK was supported by the Kerr Endowed Fund and Penzance Endowed Fund.
    Keywords: Currents ; Sea surface temperature ; Anomalies ; Large-scale motions ; Oceanic mixed layer ; Northern Hemisphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 241-246, doi:10.1175/2010JPO4557.1.
    Description: The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.
    Description: This material is based upon work supported by the National Science Foundation Grants OCE-0622825,OCE-0622670, OCE-0622630, and OCE-0623177.
    Keywords: Diapycnal mixing ; Currents ; Antarctica ; Ocean circulation ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1717-1734, doi:10.1175/JPO-D-15-0124.1.
    Description: The contribution of warm-core anticyclones shed by the Irminger Current off West Greenland, known as Irminger rings, to the restratification of the upper layers of the Labrador Sea is investigated in the 1/12° Family of Linked Atlantic Models Experiment (FLAME) model. The model output, covering the 1990–2004 period, shows strong similarities to observations of the Irminger Current as well as ring observations at a mooring located offshore of the eddy formation region in 2007–09. An analysis of fluxes in the model shows that while the majority of heat exchange with the interior indeed occurs at the site of the Irminger Current instability, the contribution of the coherent Irminger rings is modest (18%). Heat is provided to the convective region mainly through noncoherent anomalies and enhanced local mixing by the rings facilitating further exchange between the boundary and interior. The time variability of the eddy kinetic energy and the boundary to interior heat flux in the model are strongly correlated to the density gradient between the dense convective region and the more buoyant boundary current. In FLAME, the density variations of the boundary current are larger than those of the convective region, thereby largely controlling changes in lateral fluxes. Synchronous long-term trends in temperature in the boundary and the interior over the 15-yr simulation suggest that the heat flux relative to the temperature of the interior is largely steady on these time scales.
    Description: The authors were supported in this work by the U.S. National Science Foundation.
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Anticyclones ; Boundary currents ; Convection ; Eddies ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 319–342, doi:10.1175/JPO-D-13-095.1.
    Description: The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.
    Description: This work was supported by grants to B. Hickey from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA17OP2789 and NA09NOS4780180) and the National Science Foundation (NSF) (OCE0234587 and OCE0942675) as part of the Ecology of Harmful Algal Blooms Pacific Northwest (ECOHAB PNW) and Pacific Northwest Toxin (PNWTOX) projects. I. Shulman was supported by the Naval Research Laboratory.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Models and modeling ; Model evaluation/performance ; Variability ; Intraseasonal variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 86–103, doi:10.1175/JPO-D-13-075.1.
    Description: This study investigates the effects of horizontal and vertical density gradients on the inner-shelf response to cross-shelf wind stress by using an idealized numerical model and observations from a moored array deployed south of Martha’s Vineyard, Massachusetts. In two-dimensional (no along-shelf variation) numerical model runs of an initially stratified shelf, a cross-shelf wind stress drives vertical mixing that results in a nearly well-mixed inner shelf with a cross-shelf density gradient because of the sloping bottom. The cross-shelf density gradient causes an asymmetric response to on- and offshore wind stresses. For density increasing offshore, an offshore wind stress drives a near-surface offshore flow and near-bottom onshore flow that slightly enhances the vertical stratification and the cross-shelf circulation. An onshore wind stress drives the reverse cross-shelf circulation reducing the vertical stratification and the cross-shelf circulation. A horizontal Richardson number is shown to be the nondimensional parameter that controls the dependence of the wind-driven nondimensional cross-shelf transport on the cross-shelf density gradient. Field observations show the same empirical relationship between the horizontal Richardson number and transport fraction as the model predicts. These results show that it is the cross-shelf rather than vertical density gradient that is critical to predicting the inner-shelf cross-shelf transport driven by a cross-shelf wind stress.
    Description: This work was funded by Ocean Sciences Division of the National Science Foundation Grant OCE-0548961 and by the Woods Hole Oceanographic Institution through the Academic Programs Office and the Coastal Ocean Institute. Data central to this study were provided by the Martha’s Vineyard Coastal Observatory, which is funded by WHOI and the Jewett/EDUC/Harrison Foundation.
    Description: 2014-07-01
    Keywords: Circulation/ Dynamics ; Coastal flows ; Circulation/ Dynamics ; Upwelling/downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.
    Description: Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.
    Description: OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.
    Description: 2016-08-19
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Fronts ; Mathematical and statistical techniques ; Inverse methods ; Kalman filters ; Variability ; Climate variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(10), (2021): 3235–3252, https://doi.org/10.1175/JPO-D-20-0288.1.
    Description: Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f 〉 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.
    Description: OOI mooring data are based upon work supported by the National Science Foundation under Cooperative Agreement 1743430. S. Zou, A. Bower, and H. Furey gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation Grant OCE-1756361. R.S. Pickart acknowledges support from National Science Foundation Grants OCE-1259618 and OCE-1756361. N. P. Holliday and L. Houpert were supported by NERC programs U.K. OSNAP (NE/K010875) and U.K. OSNAP-Decade (NE/T00858X/1).
    Keywords: North Atlantic Ocean ; Cyclogenesis/cyclolysis ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3651–3662, https://doi.org/10.1175/JPO-D-21-0076.1.
    Description: Ocean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents can be found in all the world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z coordinate and σ coordinate based on 10-yr averaged Simple Ocean Data Assimilation version 3 (SODA3) data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional–vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.
    Description: This work is supported by the National Natural Science Foundation of China (42076025, 41676021), the Key Special Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), the National Basic Research Program (973 Program) of China (2013CB956201). The numerical simulation is supported by the High Performance Computing Division in the South China Sea Institute of Oceanography. The authors thank Tingjin Guan for the help in enhancing drawing quality.
    Keywords: Currents ; Jets ; Mesoscale processes ; Potential vorticity ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1.
    Description: The impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.
    Description: D. S. Dukhovskoy and E. P. Chassignet were funded by the DOE (Award DE-SC0014378) and HYCOM NOPP (Award N00014-19-1-2674). The HYCOM-CICE simulations were supported by a grant of computer time from the DoD High-Performance Computing Modernization Program at NRL SSC. G. Platov was funded by the RSF N19-17-00154. P. G. Myers was funded by an NSERC Discovery Grant (Grant RGPIN 04357). A. Proshutinsky was funded by FAMOS project (NSF Grant NSF 14-584).
    Keywords: North Atlantic Ocean ; Lagrangian circulation/transport ; Ocean circulation ; Differential equations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3663–3678, https://doi.org/10.1175/JPO-D-21-0058.1.
    Description: The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean.
    Description: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M. A. S. is supported by the National Science Foundation Grant OCE-1922538.
    Keywords: Ekman pumping/transport ; Ocean circulation ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8), (2020): 2251-2270, doi:10.1175/JPO-D-19-0303.1.
    Description: The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water.
    Description: We gratefully acknowledge funding from the Office of Naval Research (N000141713040), the National Science Foundation (OCE-0220769, OCE-1633911, OCE-1923362), NOAA’s Global Ocean Monitoring and Observing Program (NA14OAR4320158, NA19OAR4320074), WHOI’s Oceans and Climate Change Institute, Eastman Chemical Company, and the W. Van Alan Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck Owens).
    Keywords: Continental shelf/slope ; North Atlantic Ocean ; Boundary currents ; Transport ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9),(2020): 2797-2814, https://doi.org/10.1175/JPO-D-19-0326.1.
    Description: Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.
    Description: This study is supported by NSFC (91858204), the CAS Strategic Priority Research Program (XDB42000000), NSFC(41720104008, 41421005, 41876025), QMSNL (2018SDKJ0104-02), and the Shandong Provincial projects (U1606402). L. Pratt was supported by the U.S. NSF Grant OCE-1657870.
    Keywords: Diapycnal mixing ; Entrainment ; Internal waves ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(13), (2019): 3883-3898, doi:10.1175/JCLI-D-18-0735.1.
    Description: While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
    Description: FL and MSL are thankful for the financial support from the National Science Foundation (NSF) Physical Oceanography Program (NSF-OCE-12-59102, NSF-OCE-12-59103). The NCAR contribution was supported by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) under Climate Variability and Predictability Program (CVP) Grant NA13OAR4310138 and by the NSF Collaborative Research EaSM2 Grant OCE-1243015. NCAR is sponsored by the NSF. NPH is supported by NERC programs U.K. OSNAP (NE/K010875) and ACSIS (National Capability, NE/N018044/1). Y-OK is supported by NOAA CPO CVP (NA17OAR4310111) and NSF EaSM2 grant (OCE-1242989). AR is supported by NASA-ROSES Modeling, Analysis and Prediction 2016 NNX16AC93G-MAP. RZ is supported by NOAA/OAR. Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). Data from the RAPID-MOCHA-WBTS array funded by NERC, NSF and NOAA are freely available from www.rapid.ac.uk/rapidmoc. We thank Stephen Griffies for providing access to the GFDL-MOM025 COREII simulation output and Matthew Harrison and Xiaoqin Yan for their comments on the manuscript. We also thank the anonymous reviewers for their valuable comments.
    Description: 2020-06-11
    Keywords: North Atlantic Ocean ; Deep convection ; Meridional overturning circulation ; Model comparison
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 36(10), (2019): 1997-2014, doi: 10.1175/JTECH-D-19-0029.1.
    Description: While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.
    Description: This analysis was supported by NSF Grants OCE-1657896 and OCE-1736930 to Kirincich, OCE-1658475 to Emery and Washburn and OCE-1736709 to Flament. Flament is also supported by NOAA’s Integrated Ocean Observing System through Award NA11NOS0120039. The authors thank Lindsey Benjamin, Alma Castillo, Ken Constantine, Benedicte Dousset, Ian Fernandez, Mael Flament, Dave Harris, Garrett Hebert, Ben Hodges, Victoria Futch, Matt Guanci, and Philip Moravcik for assistance in building, deploying, and operating the radars.
    Description: 2020-04-11
    Keywords: Ocean ; Coastal flows ; Algorithms ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2781-2797, doi: 10.1175/JPO-D-19-0111.1.
    Description: To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.
    Description: We thank Alonso Hernández-Guerra, M. Dolores Pérez-Hernández, and María Casanova-Masjoan for providing the inverse model results from Casanova-Masjoan et al. (2018). The A22 section is part of the WOCE/CLIVAR observing effort, with all data available at http://cchdo.ucsd.edu/. We thank Carl Wunsch, Patrick Heimbach, Chris Hill, and Diana Lees Spiegel for their assistance with the ECCO fields. The state estimates were provided by the ECCO Consortium for Estimating the Circulation and Climate of the Ocean funded by the National Oceanographic Partnership Program (NOPP) and can be downloaded at http://www.ecco-group.org/products.htm. The citable URL for the ECCO version 4 release 2 product is http://hdl.handle.net/1721.1/102062. We are grateful to Joseph Pedlosky and Glenn Flierl for their comments on an earlier version of this work. IALB and JMT were supported financially by U.S. NSF Grants OCE-0726720, 1332667, and 1332834. MS was supported by the U.S. NASA Sea Level Change Team (Contract NNX14AJ51G) and through the ECCO Consortium funding via the Jet Propulsion Laboratory. We thank two anonymous reviewers, whose thoughtful comments led to improvements.
    Description: 2020-04-17
    Keywords: North Atlantic Ocean ; Barotropic flows ; Boundary currents ; Ocean circulation ; Gyres ; Vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3061-3068, doi: 10.1175/JPO-D-18-0172.1.
    Description: The calculation of energy flux in coastal trapped wave modes is reviewed in the context of tidal energy pathways near the coast. The significant barotropic pressures and currents associated with coastal trapped wave modes mean that large errors in estimating the wave flux are incurred if only the baroclinic component is considered. A specific example is given showing that baroclinic flux constitutes only 10% of the flux in a mode-1 wave for a reasonable choice of stratification and bathymetry. The interpretation of baroclinic energy flux and barotropic-to-baroclinic conversion at the coast is discussed: in contrast to the open ocean, estimates of baroclinic energy flux do not represent a wave energy flux; neither does conversion represent the scattering of energy from the tidal Kelvin wave to higher modes.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship, and by NSF under Grant OCE-1756781. I am grateful to K. Brink for the many useful conversations that contributed to this work and to J. Toole for providing detailed comments on an early version of this paper. The comments of three anonymous reviewers were very helpful in improving this paper.
    Description: 2020-06-03
    Keywords: Diapycnal mixing ; Internal waves ; Kelvin waves ; Topographic effects ; Waves, oceanic ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(6),(2020): 1717-1732, doi:10.1175/JPO-D-19-0273.1.
    Description: Recent measurements and modeling indicate that roughly half of the Pacific-origin water exiting the Chukchi Sea shelf through Barrow Canyon forms a westward-flowing current known as the Chukchi Slope Current (CSC), yet the trajectory and fate of this current is presently unknown. In this study, through the combined use of shipboard velocity data and information from five profiling floats deployed as quasi-Lagrangian particles, we delve further into the trajectory and the fate of the CSC. During the period of observation, from early September to early October 2018, the CSC progressed far to the north into the Chukchi Borderland. The northward excursion is believed to result from the current negotiating Hanna Canyon on the Chukchi slope, consistent with potential vorticity dynamics. The volume transport of the CSC, calculated using a set of shipboard transects, decreased from approximately 2 Sv (1 Sv ≡ 106 m3 s−1) to near zero over a period of 4 days. This variation can be explained by a concomitant change in the wind stress curl over the Chukchi shelf from positive to negative. After turning northward, the CSC was disrupted and four of the five floats veered offshore, with one of the floats permanently leaving the current. It is hypothesized that the observed disruption was due to an anticyclonic eddy interacting with the CSC, which has been observed previously. These results demonstrate that, at times, the CSC can get entrained into the Beaufort Gyre.
    Description: This work was principally supported by the Stratified Ocean Dynamics of the Arctic (SODA) program under ONR Grant N000141612450. S.B. wants to thank Labex iMust for supporting his research. R.S.P. acknowledges U.S. National Science Foundation Grants OPP-1702371, OPP-1733564, and PLR-1303617. P.L. acknowledges National Oceanic and Atmospheric Administration Grant NA14-OAR4320158. M.L. acknowledges National Natural Science Foundation of China Grants 41706025 and 41506018. T.P. thanks ENS de Lyon for travel support funding. The authors gratefully acknowledge the support of Steve Jayne, Pelle Robins, and Alex Ekholm at the Woods Hole Oceanographic Institution for preparation, deployment, and data provision for the ALTO floats. Chanhyung Jeon assisted in preparing and deploying the floats. The invaluable support of the crew of the R/V Sikuliaq is also gratefully acknowledged.
    Keywords: Arctic ; Continental shelf/slope ; Currents ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1921-1939, doi:10.1175/JPO-D-16-0146.1.
    Description: The role of surface gravity waves in structuring the air–sea momentum flux is examined in the middle reaches of Chesapeake Bay. Observed wave spectra showed that wave direction in Chesapeake Bay is strongly correlated with basin geometry. Waves preferentially developed in the direction of maximum fetch, suggesting that dominant wave frequencies may be commonly and persistently misaligned with local wind forcing. Direct observations from an ultrasonic anemometer and vertical array of ADVs show that the magnitude and direction of stress changed across the air–sea interface, suggesting that a stress divergence occurred at or near the water surface. Using a numerical wave model in combination with direct flux measurements, the air–sea momentum flux was partitioned between the surface wave field and the mean flow. Results indicate that the surface wave field can store or release a significant fraction of the total momentum flux depending on the direction of the wind. When wind blew across dominant fetch axes, the generation of short gravity waves stored as much as 40% of the total wind stress. Accounting for the storage of momentum in the surface wave field closed the air–sea momentum budget. Agreement between the direction of Lagrangian shear and the direction of the stress vector in the mixed surface layer suggests that the observed directional difference was due to the combined effect of breaking waves producing downward sweeps of momentum in the direction of wave propagation and the straining of that vorticity field in a manner similar to Langmuir turbulence.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-01-13
    Keywords: Atmosphere-ocean interaction ; Coastal flows ; Mixing ; Momentum ; Wind stress ; Wind waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...