Surface wave effects on the translation of wind stress across the air–sea interface in a fetch-limited, coastal embayment

Thumbnail Image
Date
2017-07-13
Authors
Fisher, Alexander W.
Sanford, Lawrence P.
Scully, Malcolm E.
Suttles, Steven E.
Alternative Title
Date Created
Location
DOI
10.1175/JPO-D-16-0146.1
Related Materials
Replaces
Replaced By
Keywords
Atmosphere-ocean interaction
Coastal flows
Mixing
Momentum
Wind stress
Wind waves
Abstract
The role of surface gravity waves in structuring the air–sea momentum flux is examined in the middle reaches of Chesapeake Bay. Observed wave spectra showed that wave direction in Chesapeake Bay is strongly correlated with basin geometry. Waves preferentially developed in the direction of maximum fetch, suggesting that dominant wave frequencies may be commonly and persistently misaligned with local wind forcing. Direct observations from an ultrasonic anemometer and vertical array of ADVs show that the magnitude and direction of stress changed across the air–sea interface, suggesting that a stress divergence occurred at or near the water surface. Using a numerical wave model in combination with direct flux measurements, the air–sea momentum flux was partitioned between the surface wave field and the mean flow. Results indicate that the surface wave field can store or release a significant fraction of the total momentum flux depending on the direction of the wind. When wind blew across dominant fetch axes, the generation of short gravity waves stored as much as 40% of the total wind stress. Accounting for the storage of momentum in the surface wave field closed the air–sea momentum budget. Agreement between the direction of Lagrangian shear and the direction of the stress vector in the mixed surface layer suggests that the observed directional difference was due to the combined effect of breaking waves producing downward sweeps of momentum in the direction of wave propagation and the straining of that vorticity field in a manner similar to Langmuir turbulence.
Description
Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1921-1939, doi:10.1175/JPO-D-16-0146.1.
Embargo Date
Citation
Journal of Physical Oceanography 47 (2017): 1921-1939
Cruises
Cruise ID
Cruise DOI
Vessel Name