ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (24)
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (22)
  • American Geophysical Union  (43)
  • American Institute of Physics
  • American Physical Society
  • Elsevier B.V.
Collection
Years
  • 1
    Publication Date: 2020-12-14
    Description: Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks.
    Description: INGV-DPC “V2” and “Paroxysm”, FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks”, and FP7-PEOPLE-IEF-2008 – 235328 Projects
    Description: Published
    Description: L02301
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: strombolian ; ejection velocity ; explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-25
    Description: The largest events of the 1997 Umbria-Marche sesimic sequence were the two September 26 earthquakes of Mw=5.7 (00:33 GMT) and Mw=6.0 (09:40 GMT), which caused severe damage and ground cracks in a wide area around the epicenters. We created an ERS-SAR differenrtial interferogram, where nine fringes are visible in and around the Colfiorito basin, corresponding to 25 cm of coseismic surface dispalacements. GPS data show a maximum horizontal displacement...
    Description: Published
    Description: 883-886
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Colfiorito, SAR, GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-05
    Description: Destructive earthquakes are rare in France yet pose a sizable seismic hazard, especially when critical infrastructures are concerned. Only a few destructive events have occurred within the instrumental period, the most important being the 11 June 1909, Lambesc (Provence) earthquake. With a magnitude estimated at 6.2 [Rothé, 1942], the event was recorded by 30 observatories and produced intensity IX effects in the epicentral area, ~30 km north of Marseille. We collected 30 seismograms, leveling data and earthquake intensities to assess the magnitude and possibly the focal mechanism of this event. Following this multidisciplinary approach, we propose a source model where all relevant parameters are constrained by at least two of the input datasets. Our reappraisal of the seismological data yielded Mw 5.8-6.1 (6.0 preferred) and Ms 6.0, consistent with the magnitude from intensity data (Me 5.8) and with constraints derived from modeling of coseismic elevation changes. Hence, we found the Lambesc earthquake to have been somewhat smaller than previously reported. Our datasets also constrain the geometry and kinematics of faulting, suggesting that the earthquake was generated by reverse-right lateral slip on a WNW-striking, steeply north-dipping fault beneath the western part of the Trévaresse fold. This result suggests that the fold, located in front of the Lubéron thrust, plays a significant role in the region’s recent tectonic evolution. The sense of slip obtained for the 1909 rupture also agrees with the regional stress field obtained from earthquake focal mechanisms and microtectonic data as well as recent GPS data.
    Description: Published
    Description: 2454
    Description: partially_open
    Keywords: Lambesc earthquake ; France ; historical seismograms ; displacement modeling ; macroseismic data ; geodetic data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2978 bytes
    Format: 4419432 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-25
    Description: We present crustal deformation results from a geodetic experiment (Retreating-Trench, Extension, and Accretion Tectonics (RETREAT)) focused on the northern Apennines orogen in Italy. The experiment centers on 33 benchmarks measured with GPS annually or more frequently between 2003 and 2007, supplemented by data from an additional older set of 6 campaign observations from stations in northern Croatia, and 187 continuous GPS stations within and around northern Italy. In an attempt to achieve the best possible estimates for rates and their uncertainties, we estimate and filter common mode signals and noise components using the continuous stations and apply these corrections to the entire data set, including the more temporally limited campaign time series. The filtered coordinate time series data are used to estimate site velocity. We also estimate spatially variable seasonal site motions for stations with sufficient data. The RMS scatter of residual time series are generally near 1 mm and 4 mm, horizontal and vertical, respectively, for continuous and most of the new campaign stations, but scatter is slightly higher for some of the older campaign data. Velocity uncertainties are below 1 mm/yr for all but one of the stations. Maximum rates of site motion within the orogen exceed 3 mm/yr (directed NE) relative to stable Eurasia. This motion is accommodated by extension within the southwestern and central portions of the orogen, and shortening across the foreland thrust belt to the northeast of the range. The data set is consistent with contemporaneous extension and shortening at nearly equal rates. The northern Apennines block moves northeast faster than the Northern Adria microplate. Convergence between the Northern Apennines block and the Northern Adria microplate is accommodated across a narrow zone that coincides with the northeastern Apennines range front. Extension occurs directly above an intact vertically dipping slab inferred by previous authors from seismic tomography. The observed crustal deformation is consistent with a buried dislocation model for crustal faulting, but associations between crustal motion and seismically imaged mantle structure may also provide new insights on mantle dynamics.
    Description: Published
    Description: B04408
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: GPS, northern Apennines, retreat, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-04
    Description: We present a neotectonic model of ongoing lithosphere deformation and a corresponding estimate of long-term shallow seismicity across the Africa-Eurasia plate boundary, including the eastern Atlantic, Mediterranean region, and continental Europe. GPS and stress data are absent or inadequate for the part of the study area covered by water. Thus, we opt for a dynamic model based on the stress-equilibrium equation; this approach allows us to estimate the long-term behavior of the lithosphere (given certain assumptions about its structure and physics) for both land and sea areas. We first update the existing plate model by adding five quasi-rigid plates (the Ionian Sea, Adria, Northern Greece, Central Greece, and Marmara) to constrain the deformation pattern of the study area. We use the most recent datasets to estimate the lithospheric structure. The models are evaluated in comparison with updated datasets of geodetic velocities and the most compressive horizontal principal stress azimuths. We find that the side and basal strengths drive the present-day motion of the Adria and Aegean Sea plates, whereas lithostatic pressure plays a key role in driving Anatolia. These findings provide new insights into the neotectonics of the greater Mediterranean region. Finally, the preferred model is used to estimate long-term shallow seismicity, which we retrospectively test against historical seismicity. As an alternative to reliance on incomplete geologic data or historical seismic catalogs, these neotectonic models help to forecast long-term seismicity, although requiring additional tuning before seismicity rates are used for seismic hazard purposes.
    Description: Published
    Description: 5311–5342
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: open
    Keywords: Tectonics ; Earthquake rates ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Soil temperature and total dissolved gas pressure(TDGP) data were recorded by two continuous monitoring stations on the volcano of Stromboli (Italy) between March and October 2006. During this period several TDGP and soil temperature anomalies, unrelated to external causes and characterized by a similar shape and occurrence time, were recorded. These anomalies were interpreted as transients due to changes in the degassing regime of the volcano,which was in turn related to changes in the partition ratio of the volcanic fluidsbetweenthe conduitandthe soil. In thesame period Stromboli experienced an anomalous phase of volcanic and tectonic activity. The close correlation found between volcano-tectonic activity and variations in anomalousmonitored parameters suggests that their continuous monitoring may be a useful tool for the surveillance of volcanic activity on the island.
    Description: Published
    Description: L08301
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Dissolved gases ; Soil temperature ; Total dissolved gas pressure ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this work, we show the results of 12 years of continuous and survey-mode GPS measurements carried out along the western part of the Calabro-Peloritano Arc, from 1996 until the more recent acquisitions in 2008. The results highlight that a NW-SE-oriented ~0.15 microstrain/yr extension across the Messina Strait and the Aeolian-Tindari-Letojanni fault system is active. Moreover, a N-S compressive strain-rate (~0.65 microstrain/yr) is acting across Vulcano and Lipari Islands coupled with an extensional strain-rate of ~0.15 microstrain/yr in the E-W direction. Finally, taking into account the observed horizontal velocity field, an analytical inversion was performed to obtain a reliable model of deformation of the investigated area. The main results are consistent both with focal mechanism solutions and the current structural setting of the investigated area.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 528-537
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Strain-Rate ; Calabro-Peloritano Arc ; Modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Volcanic gas emissions from fumaroles on the rim of La Fossa crater, Vulcano Island, Italy, were measured simultaneously using direct sampling (for H2O, CO2, total sulfur, HCl and HF), filter packs (for SO2, HCl, HF) and short-path active-mode FTIR measurements (for H2O, CO2,SO2, HCl and HF) in an intercomparison study in May 2002. The results show that Cl/F ratios were in good agreement between all three methods, and that FTIR and direct sampling determined comparable proportions of CO2 and H2O. Amounts of total S observed in direct sampling data were approximately double the amounts of SO2 measured with filter packs and FTIR. This difference could be attributed either to the fact FTIR and filter packs do not measure reduced sulfur species (e.g., H2S) or to sublimation of elemental S upon exit from the fumarole, after collection by direct sampling but before detection with FTIR and filter packs.
    Description: Published
    Description: L02610
    Description: partially_open
    Keywords: volcanic gas techniques ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 434088 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: A new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.
    Description: - European Social Fund.
    Description: Published
    Description: Q09005
    Description: partially_open
    Keywords: dissolved gases ; helium isotope ; PTFE membrane ; Vulcano Island ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 446781 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Ground-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume’s cross section, and multiplying by the plume’s transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental design and introducing large flux (can be 〉100%) errors. Here we present the first report of a single instrument capable of (accurate) volcanic SO2 flux measurements. This device records integrated SO2 concentrations and plume heights during traverses. Between traverses, two in-plume SO2 time series are measured from underneath the plume with the instrument, corresponding to zenith and inclined (user-specified angle from vertical in the direction of the volcano) fields of view, respectively. The distance between the points of intersection of the two views with the plume is found on the basis of the determined plume height, and the two signals are cross-correlated to determine the lag between them, enabling accurate derivation of the wind speed. We present flux data (with errors ±12%) obtained in this way at Mt. Etna during July 2004.
    Description: Published
    Description: Q02003
    Description: partially_open
    Keywords: DOAS ; volcanic SO2 emissions. ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 185006 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from Plio-Pleistocene sedimentary units from Corinth and Megara basins (Peloponnesus, Greece). Paleomagnetic results show that Megara basin has undergone vertical axis CW rotation since the Pliocene, while Corinth has rotated CCW during the same period of time. These results indicate that the overall deformation in central Greece has been achieved by complex interactions of mostly rigid, rotating, fault bounded crustal blocks. The comparison of paleomagnetic results and existing GPS data shows that the boundaries of the rigid blocks in central Greece have changed over time, with faulting migrating into the hanging walls, sometimes changing in orientation. The Megara basin belonged to the Beotia-Locris block in the past but has now been incorporated into the Peloponnesus block, possibly because the faulting in the Gulf of Corinth has propagated both north and east. Paleomagnetic and GPS data from Megara and Corinth basins have significant implications for the deformation style of the continental lithosphere. In areas of distributed deformation the continental lithosphere behaves instantaneously like a small number of rigid blocks with well-defined boundaries. This means that these boundaries could be detected with only few years of observations with GPS. However, on a larger time interval the block boundaries change with time as the active fault moves. Paleomagnetic studies distinguishing differential rotational domains provide a useful tool to map how block boundaries change with time.
    Description: Published
    Description: 1-15
    Description: reserved
    Keywords: Paleomagnetism ; Greece, block rotations ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1167012 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We conducted geophysical–geochemical measurements on a ∼2 kmN–S profile cutting across the Pernicana Fault, one of the most active tectonic features on the NE flank of Mt. Etna. The profile passes from the unstable E flank of the volcano (to the south) to the stable N flank and significant fluctuations in electrical resistivity, self-potential, and soil gas emissions (CO2, Rn and Th) are found. The detailed multidisciplinary analysis reveals a complex interplay between the structural setting, uprising hydrothermal fluids, meteoric fluids percolating downwards, ground permeability, and surface topography. In particular, the recovered fluid circulation model highlights that the southern sector is heavily fractured and faulted, allowing the formation of convective hydrothermal cells. Although the existence of a hydrothermal system in a volcanic area does not surprise, these results have great implications in terms of flank dynamics at Mt. Etna. Indeed, the hydrothermal activity, interacting with the Pernicana Fault activity, could enhance the flank instability. Our approach should be further extended along the full extent of the boundary between the stable and unstable sectors of Etna for a better evaluation of the geohazard in this active tectonic area.
    Description: This work was partly financed by the DPC-INGV FLANK and LAVA Projects.
    Description: Published
    Description: 137–142
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Pernicana Fault ; fluid circulation ; structural geology ; Etna ; magnetic ; electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Assessment of the hazard from lava flow inundation at the active volcano of Mount Etna, Italy, was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a digital-elevation-model-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈1500 m elevation) and that flank eruptions at elevations 〉2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Description: Published
    Description: F01019
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazard ; lava flow ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-02-03
    Description: A simple linear relation can be used to link time averaged discharge rate (TADR) and lava flow area (A). The relation applies to given insulation conditions, as described by the characteristic flow surface temperature (Te), and will vary from case-to-case depending on rheological and topographic influences on flow spreading. Most flows have insulation conditions that change through time, modifying the relationship between TADR and area as insulation conditions evolve. Using lidar data we can define TADR, the flow area that the discharge feeds and Te, allowing generation of a case-specific relation to convert satellite-data-derived flow areas to TADR. For Etna's 2006 lava flow field we obtain a relation whereby TADR = 5.6 × 10−6 A for well insulated conditions (Te = 100°C) and TADR = 1.5 × 10−4 A for poorly insulated conditions (Te = 600°C).
    Description: Published
    Description: L20308
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: lava flow ; discharge rate ; area ; surface temperature ; lidar ; Etna. ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: In this paper we present the first geochemical data set regarding long-term monitoring of dissolved gases in thermal waters from a seismic area. Three sites in Umbria (Central Apennines, Italy) were studied both for the chemical and for the helium isotopic composition of the dissolved gases. Data were collected during and after the seismic crisis that struck the region in 1997â 1998. The chemical composition of the dissolved gases revealed that a CO2-rich gas phase was always mixed with an atmospheric-derived component dominated by N2. A normal faulting marked the beginning of the seismic activity enhancing the release of CO2 on a regional scale. Variations in both the chemical and isotopic compositions of the dissolved gases were also observed as preseismic, synseismic, and postseismic phenomena related to the seismic shock of March 1998. Those geochemical modifications were interpreted as being the consequence of a drop in the CO2 degassing rate, in good agreement with the compressive focal mechanism of that seismic event. Furthermore, this interpretation was also consistent with the geologic and tectonic setting of the study area and induced us to postulate that changes in the local rock permeability, due to crustal deformations (i.e., coseismic deformation and postseismic release), were responsible for the geochemical modifications observed. On the basis of the foregoing, we have concluded that the geochemistry of dissolved gases in groundwaters represents a useful tool for the investigation of the relationships between circulating fluids and seismic activity.
    Description: Published
    Description: partially_open
    Keywords: dissolved gases ; geochemistry ; seismic areas ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337669 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The performance of a newly-developed portable gas analyzer, capable of real-time measurement of CO2, SO2 and H2S concentrations in volcanic gases, was tested at La Fossa Crater, Vulcano Island. The gas analyzer was used to acquire about 3000 determinations over the fumarolic field, allowing the definition of its chemical structure and heterogeneity. Our high-resolution analysis reveals that, in December 2004, the La Fossa fumarolic field was characterized by an oxidized inner core (SO2/H2S ratios of 3), and by more reducing conditions on its northern edge (SO2/H2S ratios of 1; range: 0.2–3.3). CO2/(SO2+H2S) molar ratios averaged 35 ± 21, with overlapping compositions for rim and inner crater fumaroles. S-poor compositions (CO2/(SO2+H2S) 50) characterized the field margins, probably due to deposition of native sulfur. Based on the above data and an SO2 flux of 18 ± 3 t.d-1, we estimate CO2 and H2S output rates from the volcano of 420 ± 250 and 4 ± 2 t.d-1, respectively.
    Description: Published
    Description: L13309
    Description: partially_open
    Keywords: electrochemical sensors ; fumarolic gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 253439 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: We integrate geologic, structural, leveling and Differential SAR Interferometry data to show that Vesuvius began to spread onto its sedimentary substratum about 3,600 years ago. Moreover, we model the detected deformation with a solution of the lubrication approximation of the Navier-Stokes equations to show that spreading may continue for about 7,200 years more. Correlation of volcanic spreading with phases of the eruptive activity suggests that Plinian eruptions, which are thought to pose the major hazard, are less likely to occur in the near future.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Vesuvius ; volcanic activity ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 292488 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability.We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003.We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts.We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d.We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
    Description: This work was supported financially by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, project INGV-DPC V4/02.
    Description: Published
    Description: Q04022
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: rockfalls ; seismicity ; volcanoes ; volcano collapses ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d 1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d 1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.
    Description: Published
    Description: L06303
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Plume measurements ; carbon dioxide fluxes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: Seismic, deformation, and volcanic gas observations offer independent and complementary information on the activity state and dynamics of quiescent and eruptive volcanoes and thus all contribute to volcanic risk assessment. In spite of their wide use, there have been only a few efforts to systematically integrate and compare the results of these different monitoring techniques. Here we combine seismic (volcanic tremor and long‐period seismicity), deformation (GPS), and geochemical (volcanic gas plume CO2/SO2 ratios) measurements in an attempt to interpret trends in the recent (2007–2008) activity of Etna volcano. We show that each eruptive episode occurring at the Southeast Crater (SEC) was preceded by a cyclic phase of increase‐decrease of plume CO2/SO2 ratios and by inflation of the volcano’s summit captured by the GPS network. These observations are interpreted as reflecting the persistent supply of CO2‐rich gas bubbles (and eventually more primitive magmas) to a shallow (depth of 1–2.8 km asl) magma storage zone below the volcano’s central craters (CCs). Overpressuring of the resident magma stored in the upper CCs’ conduit triggers further magma ascent and finally eruption at SEC, a process which we capture as an abrupt increase in tremor amplitude, an upward (〉2800 m asl) and eastward migration of the source location of seismic tremor, and a rapid contraction of the volcano’s summit. Resumption of volcanic activity at SEC was also systematically anticipated by declining plume CO2/SO2 ratios, consistent with magma degassing being diverted from the central conduit area (toward SEC).
    Description: Published
    Description: Q09008
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano monitoring ; Mt. Etna volcano ; geochemistry and geophysics ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-03
    Description: We investigate crustal deformation along the Eurasia-Nubia plate boundary in Calabria and Sicily revealed by the GPS velocity field obtained by the combination of continuous site velocities with previous results from episodic campaigns. We recognize two distinct crustal domains characterized by different motions and styles of deformation. Convergence in Sicily is taken up by crustal shortening along the former Tyrrhenian back arc passive margin, in agreement with seismological data and geological evidence of recent cessation of deformation along the Plio-Pleistocene subduction front. The analysis of the GPS data and the consistency between earthquake slip vectors and convergence direction suggest that Eu-Nu convergence in Sicily does not require intermediate crustal blocks. Significant Eurasia ( 3 mm/yr to NNE) and Nubia-fixed ( 5 mm/yr to ESE) residual velocities in Calabria suggest instead the presence of an intermediate crustal block which can be interpreted as a forearc sliver or as an independent Ionian block. According to the first hypothesis, subduction is still active in the Ionian wedge, although we find no evidence for active back arc spreading in the Tyrrhenian Sea. The N115 E oriented Sicily-Calabria GPS relative motion is consistent with the extension observed during the 1908 Mw 7.1 Messina earthquake. We suggest that up to 3 mm/yr ( 80%) of this estimated relative motion between Sicily and the Calabrian Arc may be taken up in the Messina Straits.
    Description: Published
    Description: 1-16
    Description: reserved
    Keywords: GPS ; Calabria, Sicily, Active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1237090 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994–1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18×10−6 yr−1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.
    Description: Published
    Description: 2121-2124
    Description: reserved
    Keywords: GPS ; Apennines, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 211231 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: An application of light detection and ranging (lidar) intensity for the identification and mapping of different lava flows from the Mount Etna (Italy) active volcano is described. In September 2004 an airborne lidar survey was flown over summit sectors of Mount Etna. The information derived from lidar intensity values was used to compare the lava flows with respect to their age of emplacement. Analyzed lava flows vary in age between those dating prior to A.D. 1610 and those active during the survey (2004–2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the lidar footprint scale, is the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: (1) initially, from the time of emplacement, the lidar intensity of lava flow surfaces decreases and (2) about 6 years after emplacement the lidar intensity of lava surfaces starts to increase with the age of flows. Lidar capability in terms of geometric (accuracy of ∼1 m in plan position and less than 1 m in elevation) and spectral (lidar intensity depends on surface reflection at λ = 1.064 μm) information can thus be effectively used to map lava flows and to define a relative chronology of lava emplacement.
    Description: Published
    Description: B02201
    Description: 3.6. Fisica del vulcanismo
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: lava flows ; mapping ; lidar ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: We study the coseismic and postseismic displacements related with the 1997 Umbria-Marche earthquake sequence by means of leveling lines along a deformed aqueduct located in the epicentral area. Comparing the 1960 and 10/1997 measurements we obtain 0.49 0.10 m of coseismic displacement distributed along 3 km across the normal fault zone. Modeling of the coseismic surface dislocation is obtained from a combination of low angle (38°) faults at depth and high angle (80°) upper fault branches. The best fit model indicates that the upper branches stop at 0.4 km below the ground surface and have 60% of slip with respect to the lower faults. The postseismic displacement measured during 1998 is 0.18 m and represents 36% of the apparent coseismic deformation. Moderate earthquakes in the Apennines and related surface deformation may thus result from curved faults that reflect the brittle-elastic properties of the uppermost crustal structures.
    Description: Data collection was made while both authors were at Istituto di Ricerca per la Tettonica Recente – CNR (GNDT Project), Roma, Italy. M. Copparoni (ASM, Foligno) and M. Raponi and S. Pacico (Studio Topografico s.n.c., Foligno) provided data about aqueduct and leveling lines. Analysis of data and modeling were done while RB was visiting EOST-IPG, Strasbourg, France. Preparation of the paper benefited from discussion with R. Armijo, S. Barba, P. Gomez and G. Valensise. A. Amato and an anonymous reviewer are thanked for their constructive remarks.
    Description: Published
    Description: 2695–2698
    Description: JCR Journal
    Description: open
    Keywords: Coseismic displacement ; postseismic displacement ; earthquake fault ; Colfiorito, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Two-dimensional cross sections of the sulphur dioxide (SO2) distribution in the volcanic gas plume of Mt. Etna were reconstructed using tomographic techniques. The data for these projections were generated by a network of five automated scanning spectrometers, positioned on the flanks of the volcano. These measure slant-column amounts of SO2 at 105 different angles, every four minutes. Stable wind conditions allow the plume to be monitored on 82% of days. A time-series of plume cross sections was computed, revealing the potential of this method to track variations in plume position and structure on timescales of minutes to hours, a result of potential importance for air traffic and civil defence in case of eruption, when copious amounts of fine ash can be transported.
    Description: Published
    Description: L17811
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: tomography ; SO2 ; DOAS ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: To investigate the kinematics of the Adriatic region we integrate continuous and episodic GPS measurements and ${M_w} 〉 4.5$ earthquake slip vectors selected from the Regional Centroid Moment Tensor (RCMT) catalogue. Coherent motion of GPS sites in the Po Valley, in Apulia and in the Hyblean Plateau allows us to estimate geodetically constrained angular velocities for these regions. The predictions of the GPS-inferred angular velocities are compared with the earthquake slip vectors, showing that the seismically-expressed deformation at the microplate boundaries is consistent with the observed geodetic motion. The remarkable consistency between geodetic, seismological and geological evidence of active tectonics, suggests that active deformation in the Central Adriatic is controlled by the relative motion between the Adria and Apulia microplates. The microplates angular rotation rates are then compared with the rotation rates calculated with a simple block model supporting the hypotheses (1) that Apulia forms a single microplate with the Ionian Sea and possibly with the Hyblean region and (2) that Adria and Apulia rotate in such a way as to accommodate the Eurasia-Nubia relative motion. We suggest that the present-day microplate configuration follows a recent fragmentation of the Adriatic promontory that during the Neogene rigidly transferred the Africa motion to the orogenic belts that now surround the Adriatic region.
    Description: Published
    Description: B12413
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Adria ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: We present an improved rendition of the geodetic velocity and strain fields in Sicily and southern Calabria obtained through the analysis of 18 years of GPS observations from continuous and survey station networks. The dense spatial coverage of geodetic data provides precise quantitative estimates of previously established first-order active kinematic features, including: i) a narrow east-west-elongated belt of contraction (~1-1.5 mm/yr) extending offshore northern Sicily from Ustica to Stromboli across the Aeolian Islands; ii) a narrow east-west-trending contractional belt located along the northern rim of the Hyblean Plateau in southern Sicily, with shortening at up to 4.4 mm/yr; iii) right motion (~3.6 mm/yr) on the Aeolian-Tindari-Letojanni fault (ATLF) system, a main shear zone extending from the Aeolian Islands to the Ionian coast of Sicily, with significant transpression and transtension partitioned between discrete sectors of the fault; iv) transtension (~1 mm/yr) across the Sicily Channel between Sicily and North Africa. We use geodetic observations coupled to geological constraints to better elucidate the interplay of crustal blocks revealed in the investigated area. In particular, we focus on the ATLF, which forms the primary boundary between the Sicilian and Calabrian blocks. The ATLF juxtaposes north-south contraction between Sicily and the Tyrrhenian block with northwest-southeast extension in north-eastern Sicily and Calabria. Contraction between Sicily and Tyrrhenian blocks probably arises from the main Europe-Nubia convergence, although Sicily has a component of lateral motion away from Nubia. We found that convergence is not restricted to the northern offshore, as commonly believed, but is widely accommodated between the frontal belt and the northern rim of the Hyblean foreland in southern Sicily. Geodetic data also indicate that active right shear on the ATLF occurs to the southeast of the mapped fault array in northern Sicily, suggesting the fault cuts through till the Ionian coast of the island. The small geodetic divergence between the Hyblean and Apulian blocks rimming on both sides the Calabria block and subjacent Ionian slab, coupled with marine geophysical evidences in the Ionian Sea lends credit to the proposed deep root of the ATLF and to a fragmentation of the Ionian domain.
    Description: Published
    Description: B07401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Calabro Peloritan Arc ; Geodesy ; plate tectonic ; Strain-rate ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Here we describe the horizontal velocities of continuous GPS stations in the Calabrian Arc (CA) and surrounding regions. The appropriate reference frame to evaluate the crustal motion of the CA is considered by assessing the internal deformation and the relative motion of the crustal blocks in the foreland of the Apennines␣Ionian␣Maghrebides subduction system. We propose that the motion of CA rela- tive to the subducting Ionian lower plate is most properly assessed by minimizing the GPS velocities in Apulia. In this reference frame the significant ␣2 mm/yr southeast- ward motion of the stations on the Ionian flank of the CA shows that the arc is still moving towards the trench in agreement with the observations of active shortening in the Ioanian wedge. This southeastward migration is associated to 1.4 ± 0.3 mm/yr E␣W extension of the forearc in northern Calabria, comparable with the seismic strain averaged in the last 500 years. The limited subaerial exposure decreases the resolution on locking of the subduction interface but the distribution and direction of crustal extension along the CA impose important constraints on geodynamic interpreta- tions of the area.
    Description: Published
    Description: L17304
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Calabrian Arc ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-02-24
    Description: We present unprecedented data of real-time measurements of the concentration and isotope composition of CO2 in air and in fumarole-plume gases collected in 2013 during two campaigns at Mount Etna volcano, which were made using a laser-based isotope ratio infrared spectrometer. We performed approximately 360 measurements/h, which allowed calculation of the δ13C values of volcanic CO2. The fumarole gases of Torre del Filosofo (2900mabove sea level) range from 3.24 ± 0.06‰to 3.71 ± 0.09‰, comparable to isotope ratio mass spectrometry (IRMS) measurements of discrete samples collected on the same dates. Plume gases sampled more than 1 km from the craters show a δ13C= 2.2 ± 0.4‰, in agreement with the crater fumarole gases analyzed by IRMS. Measurements performed along ~17km driving track from Catania to Mount Etna show more negative δ13C values when passing through populated centers due to anthropogenic-derived CO2 inputs (e.g., car exhaust). The reported results demonstrate that this technique may represent an important advancement for volcanic and environmental monitoring.
    Description: Published
    Description: 2382–2389
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Real-time data of CO2 content and δ13C in atmospheric/volcanic gases ; This study opens new perspective for the community for volcanic surveillance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: The inversion of multitemporal DInSAR and GPS measurements unravels the coseismic and postseismic (afterslip) slip distributions associated with the 2009 MW 6.3 L’Aquila earthquake and provides insights into the rheological properties and long-term behavior of the responsible structure, the Paganica fault. Well-resolved patches of high postseismic slip (10–20 cm) appear to surround the main coseismic patch (maximum slip ≈1 m) through the entire seismogenic layer above the hypocenter without any obvious depth-dependent control. Time series of postseismic displacement are well reproduced by an exponential function with best-fit decay constants in the range of 20–40 days. A sudden discontinuity in the evolution of released postseismic moment at ≈130 days after the main shock does not correlate with independent seismological and geodetic data and is attributed to residual noise in the InSAR time series. The data are unable to resolve migration of afterslip along the fault probably because of the time interval (six days) between the main shock and the first radar acquisition. Surface fractures observed along the Paganica fault follow the steepest gradients of postseismic line-of-sight satellite displacements and are consistent with a sudden and delayed failure of the shallow layer in response to upward tapering of slip. The occurrence of afterslip at various levels through the entire seismogenic layer argues against exclusive depth-dependent variations of frictional properties on the fault, supporting the hypothesis of significant horizontal frictional heterogeneities and/or geometrical complexities. We support the hypothesis that such heterogeneities and complexities may be at the origin of the long-term variable behavior suggested by the paleoseismological studies. Rupture of fault patches with dimensions similar to that activated in 2009 appears to have a ≈500 year recurrence time interval documented by paleoseismic and historical studies. In addition to that, paleoseismological evidence of large (〉0.5 m) coseismic offsets seems to require seismic events, recurring every 1000–2000 years, characterized by (1) multisegment linkage, (2) surface ruptures larger than in 2009, and (3) complete failure of the 2009 coseismic and postseismic patches.
    Description: Published
    Description: B02402
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Afterslip ; L'Aquila ; Apennines ; postseismic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: We analyze the kinematic and crustal deformations of Mt. Etna from 2003 to 2008 as imaged by the Mt. Etna continuous GPS (CGPS) network (Etna@net). Through a careful analysis of GPS time series, six coherent phases of crustal deformations have been identified, three inflation phases and three deflation phases, superimposed on a major inflation of the volcanic edifice since 2001. The inversions of GPS velocities have enabled: 1) a better understanding of the evolution of the volcanic sources acting beneath the volcano; 2) analysis of the strain rate patterns; and 3) a delineation of potential coupling between volcanic sources and the observed ground deformations. The modelling of the pressure sources has shown a separation between inflation and deflation sources. The deflation sources show an upward migration, from 5.5 toward 2.0 km (b.s.l.), while the inflation sources are located within 5.5 and 4.0 km (b.s.l.). Our results indicate that the kinematic and ground deformations of the mid-upper eastern flank are driven by the interplay between the effect of the magmatic sources and a south-eastward motion. Furthermore, clockwise rotations have been detected that prevailed over the eastern motion of the flank during the inflation phase preceding the 2004-2005 and 2006 eruptions. Finally, the accordance between the higher geodetic shear strain rates and the area with the highest seismic energy release shows that measured geodetic shear strain rates can provide useful information on the potential occurrence of seismic activity.
    Description: Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia,Catania, Italy. Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA.
    Description: Published
    Description: B07208
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ground deformations ; Volcano monitoring ; Strain rate analysis ; Volcanic source modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Here I compare estimates of tectonic strain rates from dense Global Positioning System measurements with the seismicity released in the last ~500 years in the Apennines (Italy). The rates of seismic moment accumulation from geodesy and of historical seismic release by earthquakes agree within the uncertainties, ruling out significant aseismic deformation. Within the considered 400 km long section of the Apennines, this balance yields an average recurrence interval of 30–75 years for MW≥6.5 events without requiring a future earthquake larger than those observed historically (MW~7). A minimum estimate of unreleased strain allows MW≥6.5 and MW≥6.9 events to be released in ~35% and ~10% of the central-southern Apennines, respectively. The definition of the seismic potential for smaller events is more uncertain, and their occurrence remains a significant threat throughout the Apennines.
    Description: Published
    Description: 1155–1162
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal deformation ; Earthquakes ; GPS ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
    Description: INGV-DPC “V2” and “Paroxysm,” FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks,” and FP7-PEOPLE-IEF-2008–235328 “NEMOH” ITN projects
    Description: Published
    Description: 3096–3102
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: jet noise ; volcano acoustics ; Stromboli ; Yasur ; Fuego ; strombolian eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is ∼460±160 tons/day (mean±SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumaroles + soil) CO2 output of ∼1560 tons/day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (〉7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized (∼0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of ∼100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.
    Description: Published
    Description: 4153–4169
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; calderas ; gas output ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: The interpretation of dynamic processes that occur in volcanic calderas is not simple. The ground deformations and the local seismicity, which in other volcanic contexts are usually regarded as precursors to eruption, in caldera environment in many cases are not followed by any eruption. We formulate a general hypothesis that can explain these behaviors. Our hypothesis is that the intrusion of a sill can be responsible for the dynamics observed during unrest at calderas. In order to investigate the reliability of this hypothesis, we developed a dynamic model of sill intrusion in a shallow volcanic environment. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks, and expands with axisymmetric geometry. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating the dynamics of the sill intrusion. We performed a number of simulations, with the objective of showing the main features of the model. In the experiments, when the feeding process stops, the vertical movement reverses its trend and the area of maximum uplift undergoes subsidence. Under certain conditions the subsidence can occur even during the intrusion of the sill. The stress field produced by the intrusion is mainly concentrated in a circular zone that follows the sill intrusion front. The features predicted by the model are consistent with many observations carried out on different calderas as reported in the scientific literature.
    Description: Published
    Description: 3986–4000
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: sill intrusion ; caldera ; volcano geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: We use 2.5 to 14 years long position time series from 〉800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ 0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.
    Description: Published
    Description: 6003–6024
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: GPS ; Geodynamics ; Mediterranean ; Vertical deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: We report a 25 year-long data set (1990–2014) of combined continuous tilt and GPS vertical displacement series recorded at Etna volcano. To our knowledge, this is the first time that such a data set on an active volcano has been presented. We show the coherence of the two series, which help draw new insights on how the volcano, characterized by frequent flank eruptions, works in the long-term (tens of years). This data set provides evidence that after the 1992–1993 flank eruption (the biggest in the last three centuries) and the following major recharging phase (1994–2001), all the ensuing eruptions fall within a single long-term reequilibrium phase (2001–2014).
    Description: Published
    Description: 10222–10229
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: tilt ; gps ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.
    Description: The work has been funded by project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali,” by the Italian Ministry of Education and Research (MIUR), and by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: B12404
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Molise-Gondola shear zone ; Vizzini-Scicli shear zone ; Gargano Promontory ; Hyblean Plateau ; slip reversal ; 1627 earthquake ; 1693 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-01-16
    Description: The April–May 2010 eruption of the Eyjafjallajökull volcano (Iceland) was characterized by a nearly continuous injection of tephra into the atmosphere that affected various economic sectors in Iceland and caused a global interruption of air traffic. Eruptive activity during 4–8 May 2010 was characterized based on short-duration physical parameters in order to capture transient eruptive behavior of a long-lasting eruption (i.e., total grain-size distribution, erupted mass, and mass eruption rate averaged over 30 min activity). The resulting 30 min total grain-size distribution based on both ground and Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) satellite measurements is characterized by Mdphi of about 2 and a fine-ash content of about 30 wt %. The accumulation rate varied by 2 orders of magnitude with an exponential decay away from the vent, whereas Mdphi shows a linear increase until about 18 km from the vent, reaching a plateau of about 4.5 between 20 and 56 km. The associated mass eruption rate is between 0.6 and 1.2 × 105 kg s−1. In situ sampling showed how fine ash mainly fell as aggregates of various typologies. About 5 to 9 wt % of the erupted mass remained in the cloud up to 1000 km from the vent, suggesting that nearly half of the ash 〉7 settled as aggregates within the first 60 km. Particle sphericity and shape factor varied between 0.4 and 1 with no clear correlation to the size and distance from vent. Our experiments also demonstrate how satellite retrievals and Doppler radar grain-size detection can provide a real-time description of the source term but for a limited particle-size range.
    Description: Published
    Description: B12202
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: MSG-SEVIRI, PLUDIX ; particle aggregation ; settling velocity ; tephra deposits ; weak plumes ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...