ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (63)
  • Etna
  • Elsevier  (28)
  • American Geophysical Union  (22)
  • Springer  (11)
  • INGV  (2)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • 1
    Publication Date: 2024-05-29
    Description: Fault creep along the lower eastern flank of Mt. Etna volcano has been documented since the end of the 19th century and significantly contributes to the surface faulting hazard in the area. On 29 October 2002, during a seismic swarm related to dyke intrusions, two earthquakes caused extensive damage and surface faulting in an area between the Santa Venerina and Santa Tecla villages. On the same day after the two earthquakes, an episodic aseismic creep occurred along the Scalo Pennisi Fault close to the Santa Tecla coastline. On 8 February 2022, during another aseismic creep event along the Scalo Pennisi Fault, we observed the reopening of the pre existing 2002 ground ruptures mostly as pure dilational fractures. We mapped the 2002 and 2022 surface ruptures, and collected data on displacement, length, and pattern of ground breaks. Ground ruptures affected structures located along the activated fault segments, including roads, walls and buildings. The 2002 surface faulting propagation can be ascribed to a sliding of the Mt. Etna eastern flank toward the SE, as also suggested by the related shallow seismicity, and InSAR and geodetic data between 2002 and 2005. For the 2022 event, dif ferential InSAR data, acquired in both descending and ascending views, allowed us to decompose Line of Sight (LOS) displacement into horizontal and vertical components. We detect a ~ 700 m long and ~ 500 m wide deformation zone with a downward and eastward motion (max displacement ~1,5 cm) consistent with a normal fault. We inverted the InSAR–detected surface deformation using a uniform-slip fault model and obtained a shallow detachment for the causative fault, located at ~300 m depth, within the volcanic pile. This is the first in depth study along the Scalo Pennisi Fault to suggest a shallow faulting that accommodates Mt. Etna E flank gravitational sliding.
    Description: Published
    Description: 229829
    Description: JCR Journal
    Keywords: Etna ; Aseismic creep ; Earthquake ; Surface faulting ; Volcano-tectonic deformation ; InSAR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: We report on the geochemical and chronological characterization of a tephra layer, here called RdV-T1, recovered within a continental sequence at Riparo di Venere site in the Fucino Basin (central Italy). Textural, mineralogical, and detailed geochemical (major and trace elements on single glass shard) analyses indicate thatMt. Etna is the volcanic source. Radiocarbon dating of charred materials above and belowthis tephra layer result in 13,380±40 (16,260–15,920 cal yrs BP) and 13,620±40 (16,625–16,230 cal yrs BP) 14C years BP, respectively. This age points out that RdV-T1 tephra derives fromthe Late Pleistocene activity of the Ellittico caldera-forming phase of Mt. Etna that is significantly (up to 1750 yrs) younger than the Biancavilla Ignimbrites and upper Acireale fall, which are the last known events of this eruptive cycle. In addition, the RdV-T1 tephra geochemical signature is distinctwith respect to the Biancavilla Ignimbrites and upper Acireale fall. Therefore, the radiocarbon and geochemical data consistently indicate that the RdV-T1 tephra may represent an explosive event following the Biancavilla Ignimbritesand the upper Acireale fall not yet identified.
    Description: Published
    Description: 106992
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Etna ; Tephra ; Late Glacial
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-29
    Description: In this work, we propose a wavelet-based filtering for soil CO2 flux time series. The filter relies on the detection of the periodic components achieved by means of the long-term time-frequency characterization of the time series. For this purpose, we exploited the vast data set coming from the monitoring network installed at Mt. Etna volcano (Italy). The network provides hourly measure of CO2 flux together with the measure of the climatic variables. These data allow to investigate the relationships between CO2 time series and the potentially influencing meteorological factors. This has been assessed calculating the wavelet coherence between CO2 time series against air temperatures, atmospheric pressure, and relative humidity in all the sites where these information were available. Results highlight the occurrence of marked cycles at about ∼1 year for the most of the sites while shorter cycles occur only at some sites. From these cycles a periodic signal can be calculated, and therefore opportunely removed from the time CO2 series to enhance the volcano-related anomalies. We found also common cycles among CO2 and the climatic variables, which synchronicity is constant over time but it is site-specific. Starting from this consideration, we calculated a reference signal for CO2 combining analytically the temperature, the pressure, and the humidity cycles: this model of the climatic effect has been used to predict the seasonal trend of the CO2 output.
    Description: Published
    Description: 107421
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Soil CO2 ; Continuous wavelet transform ; Spectral analysis ; Etna
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The quantification of eruptive activity represents one major challenge in volcanology. Digital comparison of lidar-based elevation models of Etna (Italy) was made to quantify the volumes of volcanics emitted in 2007–2010. During this period, Etna produced several summit paroxysms followed by a flank eruption. We integrated the total volume difference resulting from the subtraction of the 2007 and 2010 digital elevation models with volumes of eruptive products based on field and aerial surveys to attribute volumes with hitherto unrealized precision to poorly constrained eruptions. The total erupted volume of 2007–2010 is 〉86 × 106m3, most (~74 × 106m3) of which is made up by the lava flows of the 2008–2009 flank eruption. The survey also reveals the high lava volume (5.73 × 106m3) and average eruption rate (~400m3 s 1) of the 10 May 2008 paroxysm, whose flow front stopped 6.2km from the vent, not far from the town of Zafferana Etnea.
    Description: Published
    Description: 4270–4278
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: LiDAR ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-13
    Description: Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activitymay occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplaymay exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements andmay hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing.
    Description: Published
    Description: 5356-5368
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: analogue models ; strain ; stress ; eruption ; flank dynamics ; GPS ; faults ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Data of local seismicity recorded in the Etna area during the time span 2005-2011 have been selected for sharing. Basically they are of three types. First, raw continuous signals from permanent digital stations, equipped with three-component broad band sensors 40s period, for the most part. The sample rate of the signals is 100 Hz. Taking into account criteria such as: signal quality, availability of at least 3 year of data for each station, and sufficient azimuthal coverage of the Etnean volcanic area, we obtained a network of about twenty stations. We also provide an earthquake catalogue, obtained from off-line analysis of the digital seismograms daily performed by expert personnel at Osservatorio Etneo (INGV). The data are in ASCII format, and concern parametric information (latitude, longitude, depth, magnitude, etc.) about the hypocenter of ca 800 earthquakes, which occurred in the area of Mount Etna between 2005 and 2011. This catalogue reports shocks with magnitude greater than or equal to 2.0 and error threshold not greater than fixed values (e.g., horizontal and vertical hypocentral errors less than or equal to 2.0 km, RMS travel-time residual less than or equal to 0.35s, etc.). The third type of data is the RMS amplitude value of the continuous background seismic signal. These values are calculated by an automatic tool which processes the on-line signal from remote seismic stations. The amplitude data are calculated both in the whole unfiltered continuous signal, and in frequency bands 1 Hz wide, between 0.5 and 15 Hz. The format of data is ASCII. For treatment and characterization of each type of data, appropriate metadata, concerning station position, instrumental and processing specifications and any other useful information, have been considered.
    Description: Published
    Description: Nicolosi (Catania, Italy)
    Description: 4IT. Banche dati
    Description: open
    Keywords: Etna ; Seismological data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The statistical analysis of volcanic activity at Mt Etna was conducted with the twofold aim of (1) constructing a probability map for vent opening of future flank eruptions and (2) forecasting the expected number of eruptive events at the summit craters. The spatiotemporal map of new vent opening at Etna volcano is based on the analysis of spatial locations and frequency of flank eruptions starting from 1610. Thanks to the completeness and accuracy of historical data over the last four centuries, we examined in detail the spatial and temporal distribution of flank eruptions showing that effusive events follow a nonhomogenous Poisson process with space-time varying intensities. After demonstrating the spatial nonhomogeneity and the temporal nonstationarity of flank eruptions at Etna, we calculated the recurrence rates (events expected per unit area per unit time) and produced different spatiotemporal probability maps of new vent opening in the next 1, 10 and 50 years. These probabilistic maps have an immediate use in evaluating the future timing and areas of Etna prone to volcanic hazards. Finally, the results of the analysis of the persistent summit activity during the last 110 years indicate that the hazard rate for eruptive events is not constant with time, differs for each summit crater of Mt Etna, highlighting a general increase in the eruptive frequency starting from the middle of last century and particularly from 1971, when the SE crater was formed.
    Description: This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 1925-1935
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; probabilistic modeling ; eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Global positioning system (GPS) and differential interferometric synthetic aperture radar (DInSAR) data, collected from July 2007 to July 2008 on Mt. Etna, are analyzed to define the dynamics preceding and accompanying the onset of the eruption on 13 May 2008. Short- and long-term comparisons have been made on both GPS and radar data, covering similar time windows. Thanks to the availability of three GPS surveys the year before the eruption onset, an increase in the seaward movement of the NE flank of the volcano has been detected in the few months before the dike intrusion. The GPS ground deformation pattern also shows a slight inflation centered on the western side of the volcano in the preeruptive long-term comparison (from July 2007 to May 2008). The GPS has been integrated with DInSAR data by the SISTEM approach, to take advantage of the different methodologies and provide high spatial sampling of the 3-D ground displacement pattern. We inverted the SISTEM results to model the pressure source causing the observed preeruptive inflation. The subsequent emplacement of the eruptive dike was imaged by two GPS surveys carried out on a dense network over the uppermost part of the volcano on 6 and 13 May, i.e., a few days before and a few hours after the beginning of the eruption. We inverted this comparison to define the position, geometry, and kinematics of the dike. The dike intrusion was also imaged by DInSAR data with temporal baselines of 2-3 months, which confirm strong displacements localized on the summit area, rapidly decreasing toward the middle flanks of the volcano, as detected by very short-term GPS data; furthermore, the comparison between DInSAR and GPS data highlighted the presence of a depressurizing source localized beneath the upper southwestern area, acting just after the dike intrusion. Finally, the long-period (1 year) GPS and DInSAR data were integrated by SISTEM to finely depict the 3-D ground deformation pattern with the highest spatial resolution. The long-period data allowed the complex kinematics of the volcano to be finely imaged and highlighting the interaction between flank dynamics and magma injection.
    Description: Published
    Description: 2818-2835
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: flank dynamics ; eruption ; volcano-tectonics ; GPS ; DInSAR ; data integration ; Etna ; deformation ; volcano ; fault ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We present results from the first crustal seismic tomography for the southern Tyrrhenian area, which includes ocean bottom seismometer (OBS) data and a bathymetry correction. This area comprises Mt. Etna, the Aeolian Islands, and many volcanic seamounts, including the Marsili Seamount. The seismicity distribution in the area depends on the complex interaction between tectonics and volcanism. The 3-D velocity model presented in this study is obtained by the inversion of P wave arrival times from crustal earthquakes. We integrate travel time data recorded by an OBS network (Tyrrhenian Deep Sea Experiment), the SN-1 seafloor observatory, and the land network. Our model shows a high correlation between the P wave anomaly distribution and seismic and volcanic structures. Two main low-velocity anomalies underlie the central Aeolian Islands and Mt. Etna. The two volumes, which are related to the well-known active volcanism, are separated and located at different depths. This finding, in agreement with structural, petrography, and GPS data from literature, confirms the independence of the two systems. The strongest negative anomaly is found below Mt. Etna at the base of the crust, and we associate it with the deep feeding system of the volcano. We infer that most of the seismicity is generated in brittle rock volumes that are affected by the action of hot fluids under high pressure due to the active volcanism in the area. Lateral changes of velocity are related to a transition from the western to the central Aeolian Islands and to the passage from continental crust to the Tyrrhenian oceanic uppermost mantle.
    Description: Published
    Description: 3703–3719
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: ocean bottom seismometers ; southern Tyrrhenian Sea ; seismic tomography ; Aeolian Islands ; Etna ; oceanic continental crust ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-24
    Description: During effusive eruptions, thermal satellite monitoring has proved well suited to map the thermal flux from lava flows. However, during lava fountaining events, thermal contributions from active flows and from the fountain itself cannot be separated in low resolution satellite data. Here using photogrammetry and atmospheric modeling techniques, we compare radiance estimates from long-range ground-based thermal camera data (from which the fountain can be excluded) with those from SEVIRI satellite images for a fountaining event at Mount Etna (12 August 2011). The radiant heat flux determined from the ground-based camera showed similar behavior to values retrieved from Spinning Enhanced Visible and Infrared Imager (SEVIRI); thus the SEVIRI signal is interpreted to be dominated by the lava flows, with minimal contribution from the fountain. Furthermore, by modeling the cooling phase of each pixel inundated by lava, the mean thickness and lava volume (~2.4 × 106 m3) derived from camera images are comparable with those calculated from SEVIRI (~2.8 × 106 m3).
    Description: Published
    Description: 5058–5063
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; satellite ; thermal monitoring ; SEVIRI ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Repeating volcano-tectonic (VT) earthquakes, taking place at Mt. Etna during 1999–2009,were detected and analyzed to investigate their behavior. We found 735 families amounting to 2479 VT earthquakes, representing ~38% of all the analyzed VT earthquakes. The number of VT earthquakes making up the families ranges from 2 to 23. Over 70% of the families comprise 2 or 3 VT earthquakes and only 20 families by more than 10 events. The occurrence lifetime is also highly variable ranging from some minutes to ten years. In particular, more than half of the families have a lifetime shorter than 0.5 day and only ~10% longer than 1 year. On the basis of these results, most of the detected families were considered “burst-type”, i.e., show swarm-like occurrence, and hence their origin cannot be explained by a temporally constant tectonic loading. Indeed, since the analyzed earthquakes take place in a volcanic area, the rocks are affected not only by tectonic stresses related to the fairly steady regional stress field but also by local stresses, caused by the volcano, such as magma batch intrusions/ movements and gravitational loading.We focused on the five groups of families characterized by the longest repeatability over time, namely high number of events and long lifetime, located in the north-eastern, eastern and southern flanks of the volcano. Unlike the first four groups, which similarly to most of the detected families show swarm-like VT occurrences, group “v”, located in the north-eastern sector, exhibits a more “tectonic” behavior with the events making up such a group spread over almost the entire analyzed period. It is clear how both occurrence and slip rates do not remain constant but vary over time, and such changes are time-related to the occurrence of the 2002–2003 eruption. Finally, by FPFIT algorithm a good agreement between directions identified by nodal planes and the earthquake epicentral distribution was generally found.
    Description: Published
    Description: 1223 – 1236
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: repeating earthquakes ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-06-09
    Description: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Description: We are grateful to EUMETSAT for SEVIRI data.
    Description: Published
    Description: L06305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-02-03
    Description: The 2001 Etna eruption occurred from July 17th to August 9th, 2001 and was preceded by several days of intense seismicity and ground deformation. We investigated the seismic activity recorded during November 2000 - June 2001 interval time preceding the eruption, to understand the meaning of the seismicity connected to the dike intrusion, that locally modified the stress field acting in the area. The earthquakes were recorded by the permanent local networks operating during that time and run by the Istituto Internazionale di Vulcanologia (IIV-CNR) and the Sistema POSEIDON. During the analyzed period, 683 earthquakes have been firstly localized by means of a 1D velocity model derived from Hirn et al., 1991 using the software HypoEllipse [Lahr, U. S. Geol. Survey, Open-File Report, 89/116, 81 pp., 1989]. In order to further improve the quality of the seismic dataset, we extracted 522 earthquakes with Gap less than 200°, Erh 〈 1.5 km, Erz 〈 2 km, RMS less than 0.5 sec, and a minimum number of S phases equal to 2. This latter seismic dataset was relocated using TomoDD code [Zhang and Thurber, BSSA, 93, 1875-1889. 2003] and a 3D velocity model [Patanè et al., Science, 313, 821- 823, 2006 after modified]. Using first motion polarity data, 3D fault plane solutions were computed by means of the software FPFIT [Reasenberg and Oppenheimer, U.S. Geological Survey Open File Report, 85/739, 109 pp, 1985]. Then, adopting restricted selection criteria (Npol more than 12; focal plane uncertainties less than 20°; number of solutions 〈 2; number of discrepancies less than 15%), we selected 116 FPSs. This dataset represented the input file for the stress and strain tensors computation using the inversion codes developed by Gephart and Forsyth,[ JGR 89: 9305-9320, 1984] and by Kostrov [Izv Acad Sci USSR Phys Solid Earth, 1, 23-40], respectively. On the basis of P and T axes distribution and the orientation of the main seismogenic stress and strain axes, we put some seismological constraints on the recharging phase leading to the 2001 Etna eruption.
    Description: Published
    Description: Salina
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Etna ; stress ; strain ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: In this work, waveform variations in repeating volcanotectonic earthquakes occurring from 2001–2009 in the northeastern flank of Mt. Etna were studied. Changes in waveform were found mainly during 2002–2003; and consisted of a decreasing similarity in the coda of events in earthquake families, as revealed by cross-correlation analysis, and delays, increasing proportionally to the lapse time, detected by coda wave interferometry. Such variations, mainly evident at stations located in the north-eastern flank of the volcano, were likely due to medium changes taking place within this region. Localized medium velocity decreases were inferred to occur in 2002–2003, followed by successive increases. The velocity decrease was interpreted as being caused by the opening or enlargement of cracks, produced by intruding magma bodies, intense ground deformation, and/ or VT earthquake activity that accompanied the 2002–2003 Mt. Etna eruption. On the other hand, subsequent velocity increases were interpreted as resulting from healing processes.
    Description: Published
    Description: L18311
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: coda wave interferometry ; Etna ; VT earthquakes ; Pernicana fault ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: No abstract
    Description: Published
    Description: 306-308
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Stromboli ; volatiles ; melt inclusions ; magma mixing ; magma degassing ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: Published
    Description: B03216
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; magnetotelluric ; flank instability ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We investigated the relationship between the occurrence of earthquakes along the main volcano-tectonic structures and periods of volcanic unrest at Mt Etna. We focused our study on the Pernicana Fault System (PFS), one of the most outstanding tectonic structures delineating the northern border of the sliding eastern flank of Etna volcano. During recent decades several flank eruptions have occurred at Mt Etna and sometimes PFS released seismicity before the eruptive events, while in other cases there have been earthquakes that did not precede any eruption. To highlight a possible relation between PFS ruptures and volcanic unrest, we took into account the most energetic earthquakes (M ≥ 3.5) occurring in the last three decades (1980-2010), and considered the volcano deformation sources previously inferred by inverting geodetic data recorded during the several flank eruptions in this time interval. The estimates of stress redistribution on the PFS due to different volcano sources, such as the magma storage, the dike intrusions and the sliding eastern flank, were studied by implementing 3D numerical models that also consider the presence of topography and medium heterogeneity. Our results show that the pressurization of an intermediate storage and the traction exerted by the eastern flank sliding contribute to the seismicity along the PFS even without preceding an immediate eruption. Instead, the seismicity along the PFS related to the intrusions inside the northern sector of the volcano would represent a potential early-warning for an impending eruption at Mt Etna.
    Description: Published
    Description: 127-136
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; volcano-tectonic faults ; volcano sources and stress ; stress field change ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Using Etna as a case study location, we examine the balance between the volume of magma supplied to the shallow volcanic system (using ground-based SO2 data) and the volume erupted (using satellite thermal data). We do this for three eruptions of Mt. Etna (Italy) during 2002 to 2006. We find that, during the three eruptions, 2.3×107 m3 or 24% of the degassed volume remained unerupted. However, variations in the degree of partitioning between supplied (Vsupply) and erupted (Verupt) magma occur within individual eruptions over the time scales of days. Consequently, we define and quantify three types of partitioning. In the first case, VsupplybVerupt, i.e. more lava is erupted than is supplied. In such a case previously degassed magma is erupted or magma can rise faster than it is able to degas, as occurred during the open phases of the 2002–2003 and 2004–2005 eruptions, respectively. In the second case, VsupplyNVerupt, i.e. less lava is erupted than is supplied. In such a case, magma can erupt in an explosive manner, as occurred during Phase II of the 2002–2003 eruption, or remain within or below the edifice. In the third case, Vsupply=Verupt, i.e. all supplied magma is erupted. During 2002–2006, over a total of 280 days of eruptive activity, this balancing case applied to 50% of the time.
    Description: Published
    Description: 47-53
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; thermal remote sensing ; SO2 flux ; Effusive eruption ; mass balance ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Infrared satellite images measured with the MODIS instrument of the volcanic plume produced during the 2006 eruption of Mt. Etna were analysed to produce maps of SO2 amount. We used these maps to reconstruct time series of SO2 fluxes by integrating profiles of SO2 orthogonal to the plume advection direction and multiplying with wind speeds from a meteorological model. These data were then compared with a reconstructed time series of SO2 fluxes measured with the FLAME ground-based network of ultraviolet DOAS systems surrounding the volcano. We found weak agreement on 3rd December when little ash was emitted, but this agreement improved when a 0.3 m s−1 wind speed correction factor was used. FLAME and MODIS results were in good agreement on the 6th December, and improved when a –0.3 m s−1 offset was applied. The corrected data revealed that the only period of time when FLAME and MODIS did not track together was coincident with the presence of ash, which interferes with the IR imagery and retrieval of SO2. We highlight that combining two independent time series of SO2 flux allows a precise determination of wind speed, if there is sufficient time-dependent structure in the SO2 signal. The observed increase in SO2 flux prior to the ash emission is interpreted as a quiescent release of an accumulated gas phase that drive eruptive activity, as previously suggested for the southeast crater system of Etna. In this case the SO2 flux signal therefore acted as a precursor to the eruptive ash events. This work demonstrates that quantitative reconstruction of SO2 flux time series is feasible using MODIS data, opening a new frontier in the use of satellite data to interpret volcanic processes, in particular in poorly monitored remote locations.
    Description: European Space Agency's Earth Observation Envelope Programme (EOEP) – Data User Element (project SAVAA).
    Description: Published
    Description: 80-87
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: SO2 flux ; Modis ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-01-27
    Description: Our ability to monitor volcanoes (using seismic signals, ground deformation, gas fluxes, or other ground and satellite based observations) as well as our understanding of melt reservoirs that feed eruptions have evolved tremendously in recent years. The complex plumbing systems that are thought to feed eruptions are, however, difficult to relate to the monitoring signals. Here we show that the record preserved in compositional zoning of erupted minerals may be used to reconstruct sections of the plumbing system. Kinetic modeling of such zoning can yield information on the residence time of magma in different segments of the plumbing systems. This allows a more nuanced evaluation of the link between observed monitoring signals or eruption styles and the magmatic processes and movement of batches of melts at depth. The approach is illustrated through a study of the compositional zoning recorded in olivine crystals from the 1991–1993 SE-flank eruption products of Mt. Etna (Sicily). The zoning patterns in crystals reveal that the plumbing system of the volcano consisted of at least three different magmatic environments between which magma was transported and mixed in the year or two preceding the start of eruption. Quantification of this history indicates that two main pathways of melt migration and three timescales dominated the dynamics of the system. Combination of this information with the timing of observation of various monitoring signals allows a reconstruction of the dynamic evolution of this section of the plumbing system during the early stages of the 1991–1993 eruption. It is seen, for example, how the migration of melt through the same sections of the plumbing system can cause pre-eruptive triggering, enhance Strombolian activity, and through the ensuing eruption cleanse and flush the plumbing system. Different kinds of mixing occur simultaneously at different sections of the plumbing system on different timescales (a few days up to two years).
    Description: Published
    Description: 11-22
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; plumbing system ; olivine ; zoning ; timescales ; monitoring ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-06-09
    Description: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Description: Published
    Description: B11207
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-24
    Description: We present a 30 year long data set of satellite‐derived time‐averaged lava discharge rates (TADR) for Mount Etna volcano (Sicily, Italy), spanning 1980–2010 and comprising 1792 measurements during 23 eruptions. We use this to classify eruptions on the basis of magnitude and intensity, as well as the shape of the TADR time series which characterizes each effusive event. We find that while 1983–1993 was characterized by less frequent but longer‐duration effusive eruptions at lower TADRs, 2000–2010 was characterized by more frequent eruptions of shorter duration and higher TADRs. However, roughly the same lava volume was erupted during both of these 11 year long periods, so that the volumetric output was linear over the entire 30 year period, increasing at a rate of 0.8 m3 s−1 between 1980 and 2010. The cumulative volume record can be extended back in time using data available in the literature. This allows us to assess Etna’s output history over 5 centuries and to place the current trend in historical context. We find that output has been stable at this rate since 1971. At this time, the output rate changed from a low discharge rate phase, which had characterized the period 1759 to 1970, to a high discharge rate phase. This new phase had the same output rate as the high discharge rate phase that characterized the period 1610–1669. The 1610–1669 phase ended with the most voluminous eruption of historic times.
    Description: This contribution is in support of the LMV‐based (PI: Franck Donnadieu) TerMex‐MYSTRALS project “Contribution à l’évaluation des risques associés aux activités éruptives majeures de l’Etna: approche multidisciplinaire des processus et précurseurs.”
    Description: Published
    Description: B08204
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; time averaged effusion rate ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9±0.27‰ and −1.41± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work values of Etna CO2 from~ −4‰, in the 1970’s and the 1980’s, to~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: Published
    Description: 531-542
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: On 16 November 2006, a 1 day long paroxysmal eruption occurred at the summit craters of Mt. Etna volcano. A multiparametric approach, consisting of analyzing infrasonic, seismic, and video camera recordings, was carried out to follow its evolution. Volcanological and geophysical observations identified three eruptive phases. In the first phase, infrasonic and seismic characteristics reflected the highly explosive nature of the activity. Waveform characterization of infrasound events confirmed the activity of the several explosive vents at the summit of Southeast Crater (SEC). During the second phase, results highlighted the decoupling between seismic and infrasonic sources, which was due to the decrease in explosive activity and the reactivation of effusive vents located south of Bocca Nuova and on the saddle between Bocca Nuova and SEC. The third phase was the most intense and was characterized by various volcanic phenomena (pyroclastic flows, jets of dark ash, and white steam). The very high radiated infrasonic energy, together with infrasound event features, led us to infer a gas enrichment of the shallow magma column, preceding by a few minutes and likely related to the pyroclastic flows in the SEC area. After the eruption at SEC, variations in infrasound events related to the activity of Northeast Crater (NEC) were found. The observed spectral changes and the source mechanism modeling of the NEC infrasound events suggest the existence of a link in the plumbing system feeding the two craters.
    Description: Published
    Description: B09301
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Infrasound ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: On 13 May 2008 an eruptive fissure opened on Mount Etna's eastern flank feeding both explosive activity and lava effusion from multiple vents for about 14 months. During the investigated May-September 2008 eruptive period, infrasound recordings from a 4 station-sparse network allowed tracking of the explosive activity in terms of location and dynamics. In order to focus on activity from the eruptive fissure, the infrasonic events generated by the summit craters were selected by using both spectral features and time delays between pairs of stations and excluded from our analysis. Then, to accurately locate events from the fissure, we used a composite method, based on the semblance and brightness functions. This enabled the study of the co-existence of more than one infrasound source and/or its migration along the eruptive fissure. Hence, results permitted us to discriminate the number of active vents and their location along the fissure even when, due to poor weather conditions, it was not possible to access the vents or carry out direct observations. The eruptive activity was characterised by variations in the number of active vents according to the overall intensity of the eruptive event. Variability of the infrasound waveforms highlighted either that distinct vents produced signals with different waveforms, or that single vents generated different events during distinct periods of time, or finally both the previous phenomena. We applied the strombolian bubble vibration model to model waveform differences and attributed the signal variations to bubble radius changes.
    Description: Published
    Description: 1-11
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Infrasound ; Infrasonic source location ; explosive activity ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5–50 lg m 3). Minor and trace element concentrations ranged from about 0.001 to 1 lg m 3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a 1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a 1 (Al, Fe, Si) to 0.01–0.1 t a 1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.
    Description: Published
    Description: 7401-7425
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: trace elements ; volcanic plume chemistry ; bulk deposition ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Between 2007 and early 2008, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) monitoring networks on Etna volcano recorded a recharging phase that climaxed with a new effusive eruption on 13 May 2008 and lasted about 14 months. A dike‐forming intrusion was accompanied by a violent seismic swarm, with more than 230 events recorded in the first 6 h, the largest being ML = 3.9. In the meanwhile, marked ground deformation was recorded by the permanent tilt and GPS networks, and sudden changes in the summit area were detected by five continuously recording magnetic stations. Poor weather conditions did not allow direct observation of the eruptive events, but important information was provided by infrared satellite images that detected the start of lava fountains from the eruptive fissure, feeding a lava flow. This flow spread within the Valle del Bove depression, covering 6.4 km on the southeastern flank of the volcano in a few hours. The seismicity and deformation pattern indicated that the dike‐forming intrusion was propagating northward. It produced a dry fracture field, which generated concern for the possibility that the eruptive fissures could expand downslope toward populated areas. Monitoring and modeling of the multidisciplinary data, together with the simulations of ash dispersal and lava flows, allowed us both to infer the eruptive mechanisms and to provide correct interpretation of the ongoing phenomena, furnishing useful information for civil defense purposes. We describe how this approach of feedback between monitoring and research provides critical support to risk evaluation.
    Description: We wish to thank all our colleagues from INGV Sezione di Catania for data collection, for the maintenance of the monitoring networks during the whole eruption, and for the many discussions about the interpretation of the eruptive events; the Etna Guides, the Funivia dell’Etna, and especially Alfio Mazzaglia and Nino Mazzaglia for the prompt information pertaining any news about the summit eruptive activity at Mount Etna; the Italian Civil Defense (DPC) for the close and efficient collaboration built up during the last height years of activity at Etna and other Sicilian volcanoes. We obtained MODIS data from NASA and SEVIRI data from EUMETSAT. We are indebted to Paul Davis for his B03203 BONACCORSO ET AL.: ETNA MULTIDISCIPLINARY HAZARD ASSESSMENT B03203 17 of 19 positive and encouraging comments. We thank the Associate Editor Michael P. Ryan, who helped greatly in improving the form of the manuscript. This study was undertaken with partial financial support from the INGV‐DPC 2007–2009 Agreement. Scientific papers funded by DPC do not represent its official opinion and politics. We thank Stephen Conway for revising the English language of this manuscript.
    Description: Published
    Description: B03203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; effusive eruption ; hazard evaluation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: We studied the stress effects of the topography load on dike propagation by considering the results from analogue experiments; in addition, we refined the results by applying numerical simulations using the finite element method (FEM) in order to also consider the medium rheology and real topography. We investigated the dike deflection observed during the final dike emplacement accompanying Etna’s 2001 eruption. We cross-related the information on the position of the dike from ground deformation modelling with the numerical simulation results with the aim of estimating the final excess pressure of the dike when it started to deflect, which proved to be about 4-8 MPa. Assuming that the pressure decreases linearly with the volume of magma moving from the chamber into the dike, we estimated 7-15 MPa as the initial overpressure accumulated at the intermediate magma chamber before its breakout. Although the previous modelling overestimated the stress, the approach presented here leads to infer a compatible stress with the strength of the rocks.
    Description: Published
    Description: 121-129
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike mechanisms ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Etna’s 2001 basaltic lava flow provided a good example of the distal flow segment between the flow front and stable channel, across which the flow evolves from channel-contained to dispersed. This zone was mapped with meter precision using LIDAR data collected during 2004 and 2005. These data, supported by field mapping, show that the flow front comprised eight lobes each 10 to 20 m high. The flow front appears to have advanced not as a single unit, but as a series of lobes moving forward one lobe at a time. Primary lobes were centered on the channel axis and marginal lobes were off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow core of the stalled flow front. Marginal lobes were abandoned and contributed to marginal levees flanking the transitional channel. For Etna’s 2001 flow, the transitional channel is 140 m wide, 700 m long and fed a 240-m-long zone of dispersed flow; the change from stable to transitional channel occurred at a major reduction in slope. Above this, the stable channel is 5.2 km long, 55 to 105 m wide and bounded by 15- to 25-m-high levees, and the stable channel is located over a previous channel. In a final stage of activity, lava ponding at the break-in-slope that marks the terminus of the stable channel put pressure on the eastern levee, causing it to fail. Liberated lava then fed a final break-out to the east. Similar flow front-features occur at other volcanoes, indicating that similar processes are characteristic of dispersed flow zones.
    Description: Published
    Description: 119-127
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Basalt lava ; Channelised lava flow ; Flow front ; Zone of dispersed flow ; Flow dynamics ; LIDAR ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: Published
    Description: 110-122
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: By using new high-resolution (2 m) digital elevation model derived from the 2005 LiDAR survey of Mt. Etna volcano (Italy), our study measured the classical morphometrical parameters for scoria cones, i.e. Wco (cone width), Wcr (crater diameter), H (cone height) as well as volume, inclination of cone slope and substrate, and a number of other parameters for 135 scoria cones of Mt. Etna. Volume and age distribution of cones shows that there is no direct structural control on their emplacement in terms of Etna's rift zones. The cones are progressively smaller in size toward summit, which can be explained by the large volcano's feeding system and progressively frequent lava burial toward top. A careful analysis of H/Wco ratio (determined as 0.18 for other volcanic fields worldwide) shows that this ratio strongly depends on (1) the calculation method of H and (2) lava burial of cone. For Etnean cones, applying an improved method for calculating H relative to the dipping substrate results in a significantly lowered standard H/Wco ratio (0.137), which in turn questions the validity of the classical value of 0.18 in the case of large central volcanoes. The reduction of the ratio is not only due to methodology but also to the common lava burial. This can be expressed even better if Hmean is used instead of Hmax (Hmean/Wco = 0.098). Using this measure, at Etna, well formed cones have higher ratios than structurally deformed (e. g. double or rifted) cones. Furthermore, although the sampled scoria cones at Etna have formed in a relatively narrow time interval (〈 6500 yrs BP), there is a slight decrease in H/Wco corresponding to erosional changes detected globally (H/Wco = 0.143, 0.135 and 0.115 for three age classes of Etna's scoria cones, corresponding to average slopes of 26.6, 23.9 and 23.7°). Because the morphometrical effect of position on a dipping substrate as well as lava burial exceeds the effect of erosion, we call attention to use caution in simply using the H/Wco ratio of scoria cones for detecting age, especially on large active volcanoes.
    Description: Published
    Description: 320-330
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: scoria cone ; morphometry ; Etna ; H/Wco ratio ; DEM analysis ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units, when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of 〈 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.
    Description: The work was funded by NERC studentship NER/S/A2005/13681 and grant NE/F018010/1.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Etna ; flow unit ; compound flow ; superposition ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: DEMs derived from LIDAR data are nowadays largely used for quantitative analyses and modelling in geology and geomorphology. High-quality DEMs are required for the accurate morphometric and volumetric measurement of land features. We propose a rigorous automatic algorithm for correcting systematic errors in LIDAR data in order to assess sub-metric variations in surface morphology over wide areas, such as those associated with landslide, slump, and volcanic deposits. Our procedure does not require a priori knowledge of the surface, such as the presence of known ground control points. Systematic errors are detected on the basis of distortions in the areas of overlap among different strips. Discrepancies between overlapping strips are assessed at a number of chosen computational tie points. At each tie point a local surface is constructed for each strip containing the point. Displacements between different strips are then calculated at each tie point, and minimization of these discrepancies allows the identification of major systematic errors. These errors are identified as a function of the variables that describe the data acquisition system. Significant errors mainly caused by a non-constant misestimation of the roll angle are highlighted and corrected. Comparison of DEMs constructed using first uncorrected and then corrected LIDAR data from different Mt. Etna surveys shows a meaningful improvement in quality: most of the systematic errors are removed and the accuracy of morphometric and volumetric measurements of volcanic features increases. These corrections are particularly important for the following studies of Mt. Etna: calculation of lava flow volume; calculation of erosion and deposition volume of pyroclastic cones; mapping of areas newly covered by volcanic ash; and morphological evolution of a portion of an active lava field over a short time span.
    Description: Published
    Description: 123-135
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; Calibration ; DEM ; Etna ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation.
    Description: Published
    Description: 265-269
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; fire-fountains ; vesicle textures ; volcanic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project n° RBAU01RMZ4 “Lava flow simulations by Cellular Automata”, and by the National Civil Defence Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna”.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; Etna ; hazard evaluation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: Mt. Etna is one of the most studied and extensively monitored volcanoes on earth (Bonaccorso et al., 2004). One of the most frequent hazards are due to the eruption of lava flows, more specifically those flows produced during flank eruptions. These eruptions potentially can produce extensive flows that can inundate densely populated communities of the lower slopes (Guest and Murray, 1979; Behncke et al., 2005). Satellite remote sensing can be used during effusive eruptions to help monitoring the volcano, by determining effusion rates of the flows, aiding in hazard management. The degassing that takes place when magma is rising to the surface can be regularly monitored using ultraviolet spectroscopic methods (e.g. Andres et al., 2001, Sutton et al., 2001). Sulfur Dioxide (SO2) fluxes have been derived from correlation spectrometer (COSPEC) measurements at Mt. Etna (Italy) on a regular basis since 1987 (e.g. Caltabiano et al., 1994; Allard, 1997; Andronico et al., 2005; Burton et al., 2005; Burton et al., in press). Previous studies have compared field-based effusion rates with the measured SO2 fluxes to determine how much of the degassed magma is erupted onto Etna’s flanks in the form of lava flows (Allard, 1997; Harris et al., 2000). However, most of these studies examine bulk volumes erupted over an eruption rather than examining the short-term variations during eruptions. Determining the amount of lava erupted and/or the balance between the amount supplied and the amount erupted remains an unresolved issue. The main objectives of this paper are to examine such short-term variations using satellite-based effusion rates along with regularly measured SO2 fluxes. Using these measurements we determine how and when the volume of supplied magma is balanced by the volume of erupted lava during individual effusive eruptions.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; Thermal Remote Sensing ; SO2 ; Mass Balance ; Effusive Eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: One of the best-studied volcanoes of the world, Mt. previous termEtnanext term in Sicily, repeatedly exhibits eruptive scenarios that depart from the behavior commonly considered typical for this volcano. Episodes of intense explosive activity, pyroclastic flows, dome growth and cone collapse pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as “normal” eruptions, yet combined in an unexpected, probably unique, way. To cope with such unexpected consequences, we involve an approach of artificial intelligence developed specially for needs of the geosciences, the event bush. Scenarios inferred from the event bush fit the observed ones and allow to foresee other low-probability events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between expert knowledge and numerical assessment, e.g., by means of Bayesian Belief Networks.
    Description: Published
    Description: 157-171
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Event bush method ; artificial intelligence ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Morphostructural data derived from Lidar (Light detection and ranging) surveys carried out on Mount Etna in 2005 and 2007 are compared with earlier aerophotogrammetric surveys in 1986 and 1998. These data render an unprecedentedly clear and quantitative image of morphostructural and volumetric changes that have affected the summit area of the volcano in the past two decades and permit the production of a new topographic map. The computed volume gain during the 1986–2007 period amounts to 112 ± 12 106 m3, at a mean annual rate of 5.3 106 m3. The comparison of the various surveys furthermore emphasizes the levels of accuracy and resolution of the different techniques applied. The Lidar technology used in 2007 allows production of high-precision maps in near-real-time, facilitating work concerning environmental hazards such as numerical simulations of, e.g., lava flows.
    Description: Published
    Description: L09305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: Lidar ; Etna ; morphostructural changes ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: The 26 October 2002–28 January 2003 eruption of Mt. Etna volcano was characterised by lava effusion and by an uncommon explosivity along a 1 km-long-eruptive fissure on the southern, upper flank of the volcano. The intense activity promoted rapid growth of cinder cones and several effusive vents. Analysis of thermal images, recorded throughout the eruption, allowed investigation of the distribution of vents along the eruptive fissure, and of the nature of explosive activity. The spatial and temporal distribution of active vents revealed phases of dike intrusion, expansion, geometric stabilization and drainage. These phases were characterised by different styles of explosive activity, with a gradual transition from fire fountaining through transitional phases to mild strombolian activity, and ending with non-explosive lava effusion. Here we interpret the mechanisms of the dike emplacement and the eruptive dynamics, according to changes in the eruptive style, vent morphology and apparent temperature variations at vents, detected through thermal imaging. This is the first time that dike emplacement and eruptive activity have been tracked using a handheld thermal camera and we believe that its use was crucial to gain a detailed understanding of the eruptive event
    Description: Published
    Description: 301-312
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: thermal imaging ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: The 1224 Mt. Etna eruption is a significant event both in terms of the mass of erupted materials and because it involved the lower eastern slope of the volcano, reaching down to the sea. Nevertheless, it is unknown to current historical catalogues. According to the historical sources, only two other lava flows actually reached as far as the sea: in 396 BC, just north of the present-day inhabited area of Acireale, according to the geological data alone, and in 1669, when the lava covered the south-eastern flank of Mt. Etna and damaged Catania. We present and discuss the two medieval sources that attest to the eruption of 1224 and make available the original texts. Furthermore, through the close analysis of the historical and topographic context of the Etna area, taking account of the roads and ports in the early 13th century, we have tried to single out the possible area of the lava's outlet into the sea in 1224 on historical grounds. A repeat of an eruption similar to that of 1224 would have a serious impact to day as the coast is densely populated.
    Description: Published
    Description: 693-700
    Description: 3.10. Sismologia storica e archeosismologia
    Description: JCR Journal
    Description: open
    Keywords: historical volcanology ; Etna ; medieval eruptions ; historical catalogues ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: Combined GPS measurements and radar interferometry (InSAR) have been applied at Mt. Etna to study the ground deformation affecting the volcano both over the long (1993-2000) and short term (1997-2000) in order to better understand the dynamics of the volcano during the magma recharging phase following the 1991-93 eruption. Since 1993, InSAR and GPS data indicate that Mt. Etna has undergone an inflation. A deeper intrusion was detected by InSAR, on the western flank of the volcano, between March and May 1997. In the following months this intrusion rose up leading to a seismic swarm occurring in January 1998 in the western sector. The shallow intrusion is confirmed by GPS data. From 1998 to 2000, a general deflation affecting the upper part of the volcano was detected. Over the whole study period, a continuous eastward to south-eastward motion of the eastern sector of the volcano was also evidenced. The analytical inversions of GPS data inferred a plane dipping about 12°ESE, located beneath the eastern flank of the volcano at a depth of 1.5 km b.s.l.. The movement along this plane is able to reproduce the observed south-eastward motion of a sector bounded northward by the Pernicana fault, westward by the North-East Rift and the South Rift, and southward by the Mascalucia-Tremestieri-Trecastagni fault system. InSAR data have validated this model.
    Description: M. Palano was supported by University of Catania PhD grants
    Description: Published
    Description: 99 - 120
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; InSAR ; Etna ; Ground deformations ; Modelling ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: In this paper we integrate stratigraphic and sedimentological analyses of the volcaniclastic deposits, emplaced during initial opening and later widening of the Valle del Bove depression, with the available stratigraphy of the inner walls, and marine offshore data, structural data, and magnetic surveys to develop a comprehensive model for the opening of the Valle del Bove depression. The resulting model adds new insight into the triggering mechanisms of the flank collapse. Additionally, it suggests a three-stage evolution of the eastern flank of Etna. (1) About 10 Kyr ago, the extinct Ellittico volcano (60 80 (per uniformità anche con Acireale) to 15 Kyr) collapsed, forming the early Valle del Bove. The collapse produced an avalanche deposit that spread ESE and formed the base of the Milo Lahar and the Chiancone deposits. (2) The second stage involved instability-related minor collapses within the valley, causing southward and westward enlargement of the depression and the emplacement of the debris flow sequence that comprises the upper part of the Milo Lahar deposit. (3) Available debris that accumulated within the Valle del Bove from smaller subsequent collapses was deposited at the mouth of the Valle del Bove in the fluvial sequence that forms most of the exposed part of the Chiancone deposit. The emplacement of the whole volcaniclastic sequence occurred between 10 and 2 Kyr ago. Since then, the Valle del Bove has acted as a basin protecting the lower eastern flank of Etna from lava flows or inundations of volcaniclastic debris.
    Description: Published
    Description: 65-75
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: open
    Keywords: Etna ; flank collapse ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: The Etna 122 BC basaltic eruption had two Plinian phases, each preceded and followed by weak phreatic and phreatomagmatic activity. This study infers changing eruption dynamics from density, grain size, and microtextural data from the erupted pyroclasts. The Plinian clasts show no evidence for quenching by external water; instead, all clasts are microvesicular and have high bubble number densities relative to the products of weaker basaltic explosive eruptions, suggesting that the 122 BC magma underwent coupled degassing linked to rapid ascent and decompression. This coupled degassing was probably enhanced by crystallization of abundant microlites, which increased the magma's effective viscosity during conduit ascent. Detailed measurements of vesicles and microlites show wide variations in number densities, size distributions, and shapes among clasts collected over narrow stratigraphic intervals. For such a diversity of clasts to be expelled together, portions of melt with contrasting ascent and degassing histories must have arrived at the fragmentation surface at essentially the same time. We suggest that a parabolic velocity profile across the conduit ensured that magma near the conduit walls ascended more slowly than magma along the axis, leading to a longer residence time and more advanced degrees of outgassing and crystallization in the marginal magma. In our model, accumulation of this outgassed, viscous magma along conduit walls reduced the effective radius of the shallow conduit and led to blockages that ended the Plinian phases.
    Description: Published
    Description: 333-354
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: basaltic Plinian ; Etna ; vesicles ; microlites ; conduit dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: The seismic activity of Mt. Etna from April 1988 until the December 1991 eruption was monitored by means of permanent and temporary seismic network. Volcanic activity that occurred during this period was preceded and accompanied by the occurrence of deep (Z 〉/- 15 km) seismicity. This deep seismic activity, occurring a few days up to some weeks before the volcanic phases, was characterized by typical mainshock-aftershocks sequences. Both the observation of deep seismicity occurrence also before or during previous eruptions and the role played by tectonics as controller of the magma uprise suggest the hypothesis of a relation between the seismic energy released in the volcanic basement and the recharge mechanisms of the volcanic system.
    Description: Published
    Description: 277-289
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: deep earthquakes ; volcano ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: In this paper we discuss the data collected by a large aperture array of broadband seismometers and a continuously recording gravity station during the 2002–2003 eruption of Etna volcano (Italy). Seismic signals recorded during the eruption are dominated by volcanic tremor whose energy spans the 0.5–5 Hz frequency band. On three different occasions (12 November, 19–20 November and 8–9 December 2002), we observed marked increases of the tremor amplitude (up to a factor of 4), which occurred simultaneously with gravity decreases (up to 30 μGal). The three concurrent gravity/tremor anomalies last 6 to 12 hours and terminate with rapid (up to 2 hours) changes, after which the signals return back to their original levels. Based on volcanological observations encompassing the simultaneous anomalies, we infer that the accumulation of a gas cloud at some level in the conduit plexus feeding a new eruptive vent could have acted as a joint source. This study highlights the potential of joint gravity–seismological analyses to both investigate the internal dynamic of a volcano and to improve the confidence of volcanic hazard assessment.
    Description: Published
    Description: 616-629
    Description: reserved
    Keywords: Etna ; volcanic tremor ; gravity changes ; foam layer ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1036216 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Analysis of the historical records of Etnas eruptive activity for the past three centuries shows that, after the large 1669 eruption, a period of about 60 years of low-level activity followed. Starting from 1727, explosive activity (strombolian, lava fountaining and subplinian) at the summit crater increased exponentially to the present day. Since 1763, the frequency of flank eruptions also increased and this value remained high until 1960; afterward it further increased sharply. In fact, the number of summit and flank eruptions between 1961 and 2003 was four times greater than that of the pre-1960 period. This long-term trend of escalating activity rules out a pattern of cyclic behaviour of the volcano. We propose instead that the 16702003 period most likely characterises a single eruptive cycle which began after the large 1669 eruption and which is still continuing. On the basis of the eruptive style, two distinct types of flank eruptions are recognised: Class A and Class B. Class A eruptions are mostly effusive with associated weak strombolian activity; Class B eruptions are characterised by effusive activity accompanied by intense, long-lasting, strombolian and lava fountaining activity that produces copious tephra fallouts, as during the 2001 and 20022003 eruptions. Over the past three centuries, seven Class B eruptions have taken place with vents located mainly on the south-eastern flank, indicating that this sector of the volcano is a preferential zone for the intrusion of volatile-rich magma rising from the deeper region of the Etna plumbing system.
    Description: Published
    Description: 732-742
    Description: partially_open
    Keywords: Etna ; Historical record ; Summit activity ; Flank eruptions ; Eruptive behaviour ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 592166 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.
    Description: Published
    Description: 1-14
    Description: partially_open
    Keywords: basaltic Plinian eruption ; Etna ; Tarawera and explosive volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 743033 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 21 (2000), S. 361-379 
    ISSN: 1573-0840
    Keywords: volcanic risk assessment ; GIS ; digital cartography ; volcanic hazard ; Etna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract Volcanic catastrophes constitute a majorproblem in many developing and developed countries. Inrecent years population growth and the expansion ofsettlements and basic supply lines (e.g., water, gas,etc.) have greatly increased the impact of volcanicdisasters. Correct land-use planning is fundamental inminimising both loss of life and damage to property.In this contribution Geographical Information Systems(GIS), linked with remote sensing technology andtelecommunications/warning systems, have emerged asone of the most promising tools to support thedecision-making process. Some GIS are presented fortwo volcanic areas in Italy, Mt. Etna and Vesuvius.GIS role in risk management is then discussed, keepingin mind the different volcanic scenarios of effusiveand explosive phenomena. Mt. Etna system covers alarge area (more than 1,000 km2) potentiallyaffected by effusive phenomena (lava flows) whichcause damage to both houses and properties in general.No risk to life is expected. The time-scales of lavaflows allow, at least in principle, modification ofthe lava path by the building of artificial barriers.Vesuvius shows typically an explosive behaviour. Inthe case of a medium size explosive eruption, 600,000people would potentially have to be evacuated from anarea of about 200 km2 around the Volcano, sincethey are exposed to ruinous, very fast phenomena likepyroclastic surges and flows, lahars, ash fallout,etc. Ash fallout and floods/lahars are also expectedin distal areas, between Vesuvius and Avellino,downwind of the volcano. GIS include digital elevationmodels, satellite images, volcanic hazard maps andvector data on natural and artificial features (energysupply lines, strategic buildings, roads, railways,etc.). The nature and the level of detail in the twodata bases are different, on the basis of thedifferent expected volcanic phenomena. The GIS havebeen planned: (a) for volcanic risk mitigation (hazard,value, vulnerability and risk map assessing), (b) toprovide suitable tools during an impending crisis, (c)to provide a basis for emergency plans.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 58 (1997), S. 449-454 
    ISSN: 1432-0819
    Keywords: Key words 1991 ; 1993 eruption ; Etna ; Volume ; Shape ; Topographic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The 1991–1993 lava flow is the most voluminous flow erupted at Mount Etna, Sicily, in over 300 years. Estimates of the volume obtained by various methods range from 205×106 m3 (Tanguy 1996) to over 500×106 m3 (Barberi et al. 1993). This paper describes the results of an electronic distance measurement (EDM)-based field survey of the upper surface of the 1991–1993 flow field undertaken in 1995. The results were digitised, interpolated and converted into a digital elevation model and then compared with a pre-eruption digital elevation model, constructed from a 1 : 25 000 contour map of the area, based on 1989 aerial photographs. Our measurements are the most accurate to date and show that the 1991–1993 lava flow occupies a volume of 231±29×106 m3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0819
    Keywords: Etna ; Carbon dioxide ; Soil degassing ; Seasonal influences ; Volcanic activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Wide variations were measured in the diffuse CO2 flux through the soils in three selected areas of Mt Etna between August 1989 and March 1993. Degassing of CO2 from the area of Zafferana Etnea-S. Venerina, on the eastern slope of the volcano, has been determined to be more strongly influenced by meteorological parameters than the other areas. The seasonal component found in the data from this area has been excluded using a filtering algorithm based on the best fitting equation calculated from the correlation between CO2 flux values and those of air temperature. The filtered data appear to have variations temporally coincident with those from the other areas, thus suggesting a common and probably deep source of gas. The highest fluxes measured in the two most peripheral areas may correlate well with other geophysical and volcanological anomalous signals that preceded the strong eruption of 1991–1993 and that were interpreted as deep pressure increases. Anomalous decreases in CO2 fluxes accompanied the onset and the evolution of that eruption and have been interpreted as a sign of upward migration of the gas source. The variations of CO2 flux at the 1989 SE fracture have also given interesting information on the timing of the magmatic intrusion that has then fed the 1991–1993 eruption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1432-0819
    Keywords: Key words Microgravity ; Ground deformation ; Etna ; Eruption precursors ; Dyke injection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107  m3 of magma has solidified within the southeastern flank of the volcano.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-0819
    Keywords: Etna ; Volcanic seismology ; Volcanic tremor ; Echo-resonance theory ; Volcanic eruptions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A study is presented of spectral features of volcanic tremor recorded at Mount Etna (Sicily, Italy) following the methods of analysis suggested by the resonant scattering formalism of Gaunaurd and Überall (1978, 1979a, 1979b) and the model for hydraulic origin of Seidl et al. (1981). The periods investigated include summit and flank eruptions that occurred between 1984 and 1993. Recordings from a permanent station located near the top of the volcano were used, and the temporal patterns associated with (a) the average spacing ( $$\bar \Delta $$ ) between consecutive spectral peaks in the frequency range 1–6 Hz, (b) the spectral shape and (c) the overall spectral amplitude were analyzed. $$\bar \Delta $$ values are thought to depend on the physical properties of magma, such as its density, which, in turn, is controlled by the degree of gas exsolution. Variations in the spectral shape are tentatively attributed to changes in the geometrical scattering from the boundary of resonant conduits and magma batches. Finally, the overall amplitude at the station should essentially reflect the state of turbulence of magma within the superficial ascending path. A limit in the application of the resonant scattering formalism to the study of volcanic tremor is given by the fact that the fundamental modes and integer harmonics are difficult to identify in the frequency spectra, as tremor sources are likely within cavities of very complex geometry, rather than in spherical or cylindrical chambers, as expected by theory. This study gives evidence of some correlations between the analyzed temporal patterns and the major events in the volcanic activity, related to both lava flow and explosions at the summit vents. In particular, relatively high values of $$\bar \Delta $$ have been attained during the SE crater eruption of 1984, the complex eruptive phases of September–October 1989 and the 1991–1993 flank eruption, suggesting the presence of a relatively dense magma for all of these events. Conversely, very low values have been recorded in coincidence with the December 1985 activity and the paroxysmal explosions at the summit craters of early 1990, which are interpreted here as fed by fluid-vesiculated magma. Appreciable modifications in the spectral shape have been observed in relation to changes of the volcanic activity that probably preceded the opening and disactivation of shallow dykes or magma batches. Finally, the overall amplitude seems to be a sensitive indicator of the state of gas turbulence within the shallow conduits, as is suggested by the high values attained during phases of intense volcanic activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-0819
    Keywords: Microgravity ; Ground deformation ; Etna ; Eruption precursors ; Dyke injection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107 m3 of magma has solidified within the southeastern flank of the volcano.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-0819
    Keywords: Statistics ; Precursors ; Earthquakes ; Eruptions ; Tremor ; Volcanoes ; Etna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Seismic data from the MVT-SLN sesmic station located 7 km from the summit area of Mt Etna volcano, which has been operating steadily for the last two decades, have been analysed together with the volcanic activity during the same period. Cross-correlation techniques are used to investigate possible relationships between seismic and volcanic data and to evaluate the statistical significance of the results. A number of significant correlations have been identified, showing that there is an evident relation between seismic events and flank eruptions, and a less clear relation with summit activity, which appears more linked to tremor rather than to the low-frequency events. Particularly interesting are the low-frequency events whose rate of occurrence increases, starting from 17 to 108 days, prior to the onset of the flank activity and are candidates for a useful precursor. On the other hand, a tendency towards the increase in both the duration and the occurrence rate of transients in the volcanic tremor was observed before the onset of summit eruptions. As a result of this study different stages in the volcanic activity of Mt Etna, represented by changes in the characteristics of the recorded seismic phenomena, are identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...