ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (72)
  • Saccharomyces cerevisiae
  • Springer  (41)
  • American Association for the Advancement of Science (AAAS)  (31)
  • PANGAEA
  • Chemistry and Pharmacology  (72)
Collection
  • Articles  (72)
Keywords
Publisher
  • 1
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; transport ; Saccharomyces cerevisiae ; fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Transport proteins of microorganisms may either belong to the ATP-binding cassette (ABC) superfamily or to the major facilitator (MFS)-superfamily. MFS transporters are single-polypeptide membrane transporters that transport small molecules via uniport, symport or antiport mechanisms in response to a chemiosmotic gradient. Although Saccharomyces cerevisiae is a non-siderophore producer, various bacterial and fungal siderophores can be utilized as an iron source. From yeast genome sequencing data six genes of the unknown major facilitator (UMF) family were known of which YEL065w Sce was recently identified as a transporter for the bacterial siderophore ferrioxamine B (Sit1p). The present investigation shows that another UMF gene, YHL047c Sce, encodes a transporter for the fungal siderophore triacetylfusarinine C. The gene YHL047c Sce (designated TAF1) was disrupted using the kanMX disruption module in a fet3 background (strain DEY 1394 Δfet3), possessing a defect in the high affinity ferrous iron transport. Growth promotion assays and transport experiments with 55Fe-labelled triacetylfusarinine C showed a complete loss of iron utilization and uptake in the disrupted strain, indicating that TAF1 is the gene for the fungal triacetylfusarinine transport in Saccharomyces cerevisiae and possibly in other siderophore producing fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: major facilitator superfamily ; iron transport ; siderophores ; enterobactin ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3Δ background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8773
    Keywords: Manganese ; Electron spin resonance ; Superoxide dismutase ; Saccharomyces cerevisiae ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Manganese accumulation was studied by room-temperature electron spin resonance (ESR) spectroscopy inSaccharomyces cerevisiae grown in the presence of increasing amounts of MnSO4. Mn2+ retention was nearly linear in intact cells for fractions related to both low-molecular-mass and macromolecular complexes (‘free’ and ‘bound’ Mn2+, respectively). A deviation from linearity was observed in cell extracts between the control value and 0.1 mM Mn2+, indicating more efficient accumulation at low Mn2+ concentrations. The difference in slopes between the two straight lines describing Mn2+ retention at concentrations lower and higher than 0.1 mM, respectively, was quite large for the free Mn2+ fraction. Furthermore it was unaffected by subsequent dialyses of the extracts, showing stable retention in the form of low-molecular-mass complexes. In contrast, the slope of the line describing retention of ‘bound’ Mn2+ at concentrations higher than 0.1 mM became less steep after subsequent dialyses of the cell extracts. This result indicates that the macromolecule-bound Mn2+ was essentially associated with particulate structures. In contrast to Cu2+, Mn2+ had no effect on the major enzyme activities involved in oxygen metabolism except for a slight increase of cyanide-resistant Mn-superoxide dismutase activity, due to dialyzable Mn2+ complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-8773
    Keywords: catalase ; copper resistance ; pH-dependent growth ; Saccharomyces cerevisiae ; superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A strain of Saccharomyces cerevisiae has been adapted to increasing concentrations of copper at two different pH values. The growth curve at pH 5.5 is characterized by a time generation increasing with the amount of added copper. A significant decrease of cell volume as compared with the control is also observed. At pH 3 the cells grow faster than at pH 5.5 and resist higher copper concentrations (3.8 against 1.2 mm). Experimental evidence indicates that, after copper treatment, the metal is not bound to the cell wall, but is localized intracellularly. A significant precipitation of copper salts in the medium was observed only at pH 5.5. Increased levels of superoxide dismutase (SOD) activity were observed in copper-treated cells and which persisted after 20 subsequent inocula in a medium without added metal. On the contrary, catalase activity was not stimulated by copper treatment and, hence, not correlated with SOD levels. The mechanism of copper resistance, therefore, probably involves a persistent induction of SOD, but not of catalase, and it is strongly pH-dependent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-8773
    Keywords: EPR ; Saccharomyces cerevisiae ; uptake ; vanadate ; vanadyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Vanadium uptake by whole cells and isolated cell walls of the yeast Saccharomyces cerevisiae was studied. When orthovanadate was added to wild-type S. cerevisiae cells growing in rich medium, growth was inhibited as a function of the VO4 3- concentration and the growth was completely arrested at a concentration of 20 mM of VO4 3- in YEPD. Electron paramagnetic resonance (EPR) spectroscopy was used to obtain structural and dynamic information about the cell-associated paramagnetic vanadyl ion. The presence of EPR signals indicated that vanadate was reduced by whole cells to the vanadyl ion. On the contrary, no EPR signals were detected after interaction of vanadate with isolated cell walls. A ‘mobile’ and an ‘immobile’ species associated in cells with small chelates and with macromolecular sites, respectively, were identified. The value of rotational correlation time τ r indicated the relative motional freedom at the macromolecular site. A strongly ‘immobilized’ vanadyl species bound to polar sites mainly through coulombic attractions was detected after interaction of VO2+ ions with isolated cell walls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    BioMetals 12 (1999), S. 289-294 
    ISSN: 1572-8773
    Keywords: accumulation ; gold ; proton efflux ; Saccharomyces cerevisiae ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract This paper examines the effects of ionic gold on Saccharomyces cerevisiae, as determined by long-term (growth in gold-containing media) and short-term interactions (H+ efflux activity). An increasing gold concentration inhibited growth and at 〈0.2 mM Au, growth was not observed. Transmission electron microscopy revealed no differences in ultrastructure but fine electron dense particles were observed in unstained preparations from gold-containing medium. After glucose addition (to 10mM) to starved suspensions of S. cerevisiae, glucose-dependent reduction of external pH occurred as the cells extruded protons. In the presence of increasing gold concentrations, the lag time before proton extrusion did not change but the rate and duration decreased significantly with a marked influence on proton efflux rate being observed at ≤ 10 μM. Extension of preincubation time of yeast cells in gold-containing medium resulted in a decreasing proton efflux rate and colloidal phase formation in the cell suspensions, the time between gold addition and the beginning of colloidal phase formation depending on the gold concentration used. Both Ca and Mg enhanced the inhibitory effect of gold on the yeast cells with Ca showing a stronger inhibitory effect than Mg.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 59 (2000), S. 643-648 
    ISSN: 1572-8943
    Keywords: drying ; intracellular water ; Saccharomyces cerevisiae ; TG
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The intracellular water content of a microorganism is an important parameter which is a determinant factor of its physiological properties. It is usually measured by complex and time consuming procedures. Thermogravimetry using infrared balance has been used for this purpose, through the identification of different drying steps occurring during the analysis. This work employs the same method with much smaller samples, using conventional thermogravimetric equipment in a simpler and faster way than other conventional procedures. Commercial yeast (Saccharomyces cerevisiae ) washed samples are analyzed in isothermal procedures which are run in about 30 min. The drying rate curve, when plotted as a function of the residual mass of the cells, allows the identification of the step where the intracellular water is lost and the determination of its content. The obtained values, on extracellular water free basis, are in the range of 65 to 69% and agree with those measured by other techniques.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 169 (1997), S. 95-106 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; N-glycosylation ; dolichol pathway ; ALG7 ; post-transcriptional regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The yeast ALG7 gene functions by initiating the synthesis of the dolichol-linked oligosaccharide precursor and plays an important role in the control of protein N-glycosylation. The levels of ALG7 multiple transcripts are modulated by the physiological status of the cell and environmental cues, and deregulation of their abundance is deleterious to several cellular functions. Since ALG7 mRNAs are unstable, we investigated the role of these transcripts' half-lives in determining their steady-state levels. Using a temperature-sensitive RNA polymerase II mutant, we demonstrate that increased stability was the primary determinant of higher ALG7 mRNA abundance in response to glucose limitation or treatment with tunicamycin. In contrast, at the G1/G0 transition point, changes in the decay rates were inversely related to ALG7 transcript accumulation: the decreased abundance of ALG7 mRNAs following exit from the mitotic cycle was associated with lengthening of the decay rates, while their increased accumulation after growth stimulation correlated with decreased stability. This suggests that, depending on the circumstance, mRNA half-lives can either directly determine the level of ALG7 transcript accumulation or oppose regulatory changes at other control levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 67-79 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; spheroplast ; permeabilization ; mitochondria ; oxidative phosphorylation ; porin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In this work, we first compared yeast mitochondrial oxidative metabolism at different levels of organization: whole cells (C), spheroplasts (S), permeabilized spheroplasts (PS) or isolated mitochondria (M). At present, S are more suitable for use than C for biochemical techniques such as fast extraction of metabolises and permeabilization. We show here that respiratory rates of S with various substrates are similar to C, which demonstrate that they are adapted to yeast bioenergetic studies. It appeared from ethanol metabolism ± NAD++ or NADH respiratory rates on PS that ethanol metabolism was largely cytosolic; moreover, the activity of NADH dehydrogenase was lesser in the case of PS than in S. By comparing PS and M, the biggest difference concerned the respiratory rates of pyruvate and pyruvate-malate, which were much lower for M. Thus mitochondria preparation caused an unidentified loss involved directly in pyruvate metabolism. When the respiratory rate was lowered as a consequence of a high kinetic control of oxidative activity upstream from the respiratory chain, a similar correlation between the increase in ATP/O and decrease in respiratory rate was observed. So, the intrinsic uncoupling of proton pumps is not a particularity of M. Secondly, we demonstrate the existence of a mechanism of retarded diffusion in yeast similar to that already observed in permeabilized mammalian cells for ADP. Such a mechanism also occurs in yeast for several respiratory substrates: the K0.5 for each substrate toward the respiration rate in PS always exceeds that for M. It is proposed that such a discrepancy is due to a restriction of metabolite movement across the outer mitochondrial membrane in permeabilized cells, i.e. regulation of the substrate permeability through porin channels. In the porin-deficient yeast mutant, the K0.5 for NADH is not significantly different in either M or PS and is comparable to that of the parent strain PS. This result confirms that this retarded diffusion is essentially due to the opening-closing of the porin channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 190 (1999), S. 47-54 
    ISSN: 1573-4919
    Keywords: calmodulin ; yeast calmodulin ; Ca2+ binding ; Ca2+ binding protein ; Saccharomyces cerevisiae ; interdomain interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Calmodulin of Saccharomyces cerevisiae has different Ca2+ binding properties from other calmodulins. We previously reported that the maximum number of Ca2+ binding was 3 mol/mol and the fourth binding site was defective, which was different from 4 mol/mol for others. Their macroscopic dissociation constants suggested the cooperative three Ca2+ bindings rather than a pair of cooperative two Ca2+ bindings of ordinary calmodulin. Here we present evidence for yeast calmodulin showing the intramolecular close interaction between the N-terminal half domain and the C-terminal half domain, while the two domains of ordinary calmodulin are independent of each other. We will discuss the relationship of the shape and the shape change caused by the Ca2+ binding to the enzyme activation in yeast. The functional feature of calmodulin in yeast will also be considered, which might be different from the one of vertebrate calmodulin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 124 (1993), S. 131-140 
    ISSN: 1573-4919
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; H+-ATPase ; intracellular pH ; carboxy-seminaphthorhodafluor-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We examined cytoplasmic pH regulation inSchizosaccharomyces pombe andSaccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 fromS. pombe was much slower than leakage fromC. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 forS. pombe and 6.6 forS. cerevisiae. We found that internal pH inS. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater inS. cerevisiae than inS. pombe. The plasma membrane H+-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 μM in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 μM forS. cerevisiae and 490 μM forS. pombe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 202 (1999), S. 109-118 
    ISSN: 1573-4919
    Keywords: NF1 mutations ; IRA1 ; Saccharomyces cerevisiae ; RAS2 ; GAP activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The 2818 amino acids of neurofibromin, the product of the human NF1 gene, include a 230 amino acid Ras-GAP related domain (GRD). Functions which may be associated with the rest of the protein remain unknown. However, many NF1 mutations in neurofibromatosis 1 patients are found downstream of the GRD, suggesting that the C-terminal region of the protein is also functionally important. Since the C-terminal region of neurofibromin encompassing these mutations is homologous with the corresponding regions in the two Saccharomyces cerevisiae Ras-GAPs, Ira1p and Ira2p, we chose yeast as a model system for functional exploration of this region (Ira-C region). Three missense mutations that affect the Ira-C region of NF1 were used as a model for the mutagenesis of IRA1. The yeast phenotypes of heat shock sensitivity, iodine staining, sporulation efficiency, pseudohyphae formation, and GAP activity were scored. Even though none of the mutations directly affected the Ira1p-GRD, mutations at two of the three sites resulted in a decrease in the GAP activity present in ira1 cells. The third mutation appeared to disassociate the phenotypes of sporulation ability and GAP activity. This and other evidence suggest an effector function for Ira1p.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1573-4919
    Keywords: bovine heart fatty acid-binding protein ; H-FABPc ; heterologous gene expression ; Saccharomyces cerevisiae ; GALIO promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size to native protein as judged from SDS-polyacrylamide gel electrophoresis, was reached after approximately 16 hours of induction. Analysis of particulate and soluble subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind 14C-oleic acid in an in vitro assay. Growth of the transformants on galactose as the carbon source was significantly retarded at 37°C. Whereas the fatty acid pattern of total lipids was not altered in transformed cells, desaturation of exogenously added 14C-palmitic acid was significantly reduced both at 30 and 37°C. The lowest percentage of radioactively labeled unsaturated fatty acids was found in the phospholipid fraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 15 (1977), S. 1015-1021 
    ISSN: 1573-4927
    Keywords: Saccharomyces cerevisiae ; enzymes ; polymorphisms ; competition ; variable environments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Competition experiments were carried out under varying exogenic and endogenic conditions. The genotypes were marked by combinations of two esterase loci, each with two alleles. When genotypes of the line W7 were used, there was no demonstrable influence of the gene blocks marked by the Est-1 locus on the competitive ability at temperatures of 21 and 29 C. However, genotypes carrying the fast allele of the Est-2 locus were favored. At 38 C, the outcome of the competition was reversed. The defined gene blocks showed different effects when interacting with different genetic backgrounds (line M7). Genotypes marked by the slow allele of the Est-2 locus were now favored (21 and 29 C), and even the gene blocks marked by the alleles of the Est-1 locus influenced the genotypes' competitive abilities. Again, the results were partly reversed at 38 C. The results are discussed with regard to the importance of enzyme variants for the genotypic selection value.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; NAD(P)H ; calcium ions ; cells immobilization ; oxygen consumption ; biotransformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The biochemical behaviour of four commercial strains of Saccharomyces cerevisiae was studied in the presence of calcium ions, acrylamide and bisacrylamide. Calcium ions at a concentration of 300 µM induced an increase of NAD(P)+ reduction in commercial Turkish and American strains, while in Chilean and Brazilian commercial strains, it diminished NAD(P)+ reduction. On the other hand, polyacrylamide monomers (acrylamide and bisacrylamide) induced a decrease of NAD(P)+ reduction in all strains studied in this paper. When membrane potential (ΔΨ) and oxygen consumption were measured in the presence of polyacrylamide monomers, a decrease of both was observed in all strains studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 201 (1999), S. 17-24 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; atomic force microscope ; bioscope ; organic synthesis ; molecular biology ; oxidative stress ; pore enlargement ; cell wall ; baker's yeast ; biotechnology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm. This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1573-1561
    Keywords: Leptopilinaheterotoma ; Hymenoptera ; Eucoilidae ; Saccharomyces cerevisiae ; host-habitat searching ; chemoreception ; fermentation products ; ethanol ; ethyl acetate ; acetaldehyde
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Chemical stimuli play an important role in the process of searching for a host habitat by parasitic wasps. Volatile compounds originating from host habitats and/or hosts are the cues that enable such a location.Leptopilina heterotoma, a larval parasite ofDrosophila, is attracted to the food of its host, baker's yeast. Analysis of the fermentation products of baker's yeast, using a mass spectrometer, and olfactometer studies indicate that three fermentation products of this yeast, the main component of the host habitat in our laboratory, attractL. heterotoma: ethanol (5%), ethyl acetate (10−2, 10−3%), and acetaldehyde (1%). A combination of these three compounds, however, cannot compete with baker's yeast in attracting the parasites. Thus other factors, such as different compounds, concentrations, and/or combinations, also, play a role and remain to be tested.Leptopilina heterotoma does not use host-related olfactory cues in long-distance habitat location as it cannot distinguish between host habitat and host habitat with hosts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1573-4919
    Keywords: osmotic stress ; Saccharomyces cerevisiae ; glycerol ; K+/Na+ ions ; osmoregulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The intracellular level of Na+ and K+ of S. cerevisiae strain AB1375 revealed that under KCl as well as sorbitol stress, the cationic level was comparable to the level under no stress conditions. On the other hand, there was a sharp drop in the intracellular K+ content and increase in the Na+ content on addition of NaCl to the medium. However, the total cationic level was close to that under control conditions. In addition to changes in the cationic level, an enhanced production and accumulation of glycerol were also observed under osmotic stress. A regulatory mechanism co-ordinating the intracellular concentration of glycerol as well as Na+, K+ content under osmotic stress conditions has been proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-4919
    Keywords: glutathione reductase ; Saccharomyces cerevisiae ; redox interconversion ; metals ; cell-free extracts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary Redox inactivation of glutathione reductase involves metal cations, since chelators protected against NADPH-inactivation, 3 µM EDTA or 10 µM DETAPAC yielding full protection. Ag+, Zn2+ and Cd2+ potentiated the redox inactivation promoted by NADPH alone, while Cr3+, Fe2+, Fe3+, Cu+, and Cu2+ protected the enzyme. The Zn2+ and Cd2+ effect was time-dependent, unlike conventional inhibition. Glutathione reductase interconversion did not require dioxygen, excluding participation of active oxygen species produced by NADPH and metal cations. One Zn2+ ion was required per enzyme subunit to yield full NADPH-inactivation, the enzyme being reactivated by EDTA. Redox inactivation of glutathione reductase could arise from the blocking of the dithiol formed at the active site of the reduced enzyme by metal cations, like Zn2+ or Cd2+. The glutathione reductase activity of yeast cell-free extracts was rapidly inactivated by low NADPH or moderate NADH concentrations; NADP+ also promoted rapid inactivation in fresh extracts, probably after reduction to NADPH. Full inactivation was obtained in cell-free extracts incubated with glucose-6-phosphate or 6-phosphogluconate; the inactivating efficiency of several oxidizable substrates was directly proportional to the specific activities of the corresponding dehydrogenases, confirming that redox inactivation derives from NADPH formed in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; microorganisms ; dehydrogenases ; acetoacetate ; molecular modelling ; enantiomeric excess ; biotransformation ; baker's yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract This method gives a general ideal how to use crystallographic information of enzymes to understand reactions catalyzed by these biocatalysts, commonly used by biochemists to produce chiral products. The interactions of three acetoacetic esters with the enzymes L-lactate dehydrogenase and alcohol dehydrogenase were studied through molecular modelling computer program. These artificial substrates have been widely used to produce chiral synthons. Through this methodology it was possible to understand the conformational specificity of these enzymes with respect to the products and how these enzymes can be inhibited by modifying the structures of the artificial substrates. Also, it was possible to predict whether some type of artificial substrate will suffer reduction by cells that contain these dehydrogenases and what kind of configuration (R or S) the final product will have.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1573-4943
    Keywords: Saccharomyces cerevisiae ; phosphoenolpyruvate carboxykinase ; pyridoxal phosphate ; site-directed mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Mutant Arg76Gln and Lys290Gln Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases have been prepared and analyzed. No alteration in the apparent kinetic constants were detected for the Arg76Gln mutant enzyme, while the Lys290Gln mutant showed a 12-fold decrease in V max/K mADP. These results indicate that Arg76 is not involved in CO2 binding, but support the hypothesis that the binding of this substrate induces a conformational change that protects the region around Arg76 from trypsin action [Herrera et al. (1993) J. Protein Chem. 12, 413–418]. These findings also indicate that Lys290, a highly reactive residue against pyrydoxal phosphate [Bazaes et al. (1995), FEBS Lett. 360, 207–210], does not perform an essential function for the enzyme activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1573-4935
    Keywords: Candida utilis ; cellulase ; DNAse ; β-glucuronidase ; Hansenula jadinii ; protoplast ; Saccharomyces cerevisiae ; Schizosaccharomyces pombe ; spheroplast ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Efficient preparation of spheroplasts fromCandida utilis, Saccharomyces cerevisiae, andSchizosaccharomyces pombe, using a purified mixture of enzymes fromTrichoderma harzianum, is described. Limitations of other methods, and differences between yeasts are demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 1573-4943
    Keywords: Homology modeling ; rotational energy barrier ; simulated annealing ; pyridoxal 5′-diphosphoadenosine ; pyridoxal 5′-triphosphoadenosine ; Saccharomyces cerevisiae ; phosphoenolpyruvate carboxykinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Molecular mechanics calculations have been employed to obtain models of the complexes between Saccharomyces cerevisiae phosphoenolpyruvate (PEP) kinase and the ATP analogs pyridoxal 5′-diphosphoadenosine (PLP-AMP) and pyridoxal 5′-triphosphoadenosine (PLP-ADP), using the crystalline coordinates of the ATP-pyruvate-Mn2+-Mg2+ complex of Escherichia coli PEP carboxykinase [Tari et al. (1997), Nature Struct. Biol. 4, 990–994]. In these models, the preferred conformation of the pyridoxyl moiety of PLP-ADP and PLP-AMP was established through rotational barrier and simulated annealing procedures. Distances from the carbonyl-C of each analog to ε-N of active-site lysyl residues were calculated for the most stable enzyme-analog complex conformation, and it was found that the closest ε-N is that from Lys290, thus predicting Schiff base formation between the corresponding carbonyl and amino groups. This prediction was experimentally verified through chemical modification of S. cerevisiae PEP carboxykinase with PLP-ADP and PLP-AMP. The results here described demonstrate the use of molecular modeling procedures when planning chemical modification of enzyme-active sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1573-4943
    Keywords: Phosphoenolpyruvate carboxykinase ; oxaloacetate decarboxylase ; pyruvate kinase-like activity ; Anaerobiospirillum succiniciproducens ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Two members of the ATP-dependent class of phosphoenolpyruvate carboxykinases (PEPCKs) (Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens) have been comparatively studied with regard to their oxaloacetate (OAA) decarboxylase and pyruvate kinase-like activities. The pyruvate kinase-like activities were dependent on the presence of Mn2+; at the same concentrations Mg2+ was not effective. These activities were synergistically activated by a combination of both metal ions. V max for these activities in A. succiniciproducens and S. cerevisiae PEPCKs was 0.13% and 1.2% that of the principal reaction, respectively. The OAA decarboxylase activity was nucleotide independent and, with decreasing order of effectiveness, these activities were supported by Mn2+ and Mg2+. AMP is an activator of these reactions. V max for the OAA decarboxylase activities in A. succiniciproducens and S. cerevisiae PEPCKs was 4% and 0.2% that of the PEP-forming reaction, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-1424
    Keywords: electron probe X-ray microanalysis ; Saccharomyces cerevisiae ; ethidium ; brontophenol blue ; cationic dye ; cytolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary K+ efflux provoked by ethidium proceeds partially as an all-or-none effect by which the diffusion barrier for K+ is disrupted and partially from still intact cells, presumably by exchange against ethidium. This is shown by the application of an electron probe microanalysis X-ray technique by which the K+ content of a number of individual cells is analyzed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 116 (1990), S. 93-105 
    ISSN: 1432-1424
    Keywords: clathrin ; genetics ; Saccharomyces cerevisiae ; exocytosis ; endocytosis ; prohormone maturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1432-1424
    Keywords: vacuole ; lipid bilayer ; K-channel ; single channel ; DIDS ; yeast ; Saccharomyces cerevisiae ; Ca2+ activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A voltage-dependent and Ca2+-activated cation channel found in the vacuolar membrane of the yeast,Saccharomyces cerevisiae, was incorporated into planar lipid bilayer and its gating characteristics were studied at the macroscopic and single-channel levels. The open-channel probability at steady state, which was estimated by the macroscopic current measurement, gave a maximum value at −10 mV and decreased in a graded fashion as the voltage became more positive or more negative. The steady-state voltage dependence was explained by assuming two independent gates, which had different rate constants and opposite voltage dependence. The fast-responding gate opened when the voltage of thecis side (the side to which the vesicles were added) was made more negative and the slow-responding gate behaved in the opposite direction. Relatively high concentrations of Ca2+, about 1mm, were required on thecis side for opening the slow gate in a voltage-dependent manner. DIDS increased the open-channel probability of the fast gate when added to thecis side, but was ineffective on the slow gate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1573-4986
    Keywords: Saccharomyces cerevisiae ; oligosaccharide structure ; antigenic glycoprotein ; mannan ; allergens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Mannans of the yeast Saccharomyces cerevisiae have been implicated as containing the allergens to which bakers and brewers are sensitive and also the antigen recognized by patients with Crohn's disease. A fraction of S. cerevisiae mannan, Sc500, having high affinity for antibodies in Crohn's patients has been characterized by NMR spectroscopy followed by fragmentation using alkaline elimination, partial acid hydrolysis and acetolysis. The released oligosaccharides were separated by gel filtration on a Biogel P4 column and analyzed by fluorescence labeling, HPLC and methylation analysis. The relationship between structure and antigen activity was measured by competitive ELISA. The antigenic activity of the original high molecular weight mannan could be ascribed to terminal Manα1→3Manα1→2 sequences which are rarely found in human glycoproteins but were over-represented in Sc500 compared to other yeast mannans.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 1573-4986
    Keywords: glycosylation ; Saccharomyces cerevisiae ; heterologous ; glucanase ; thermostability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract High level biosynthesis and secretion of the thermostable hybrid (1-3,1-4)-β-glucanase H(A16-M) has been achieved inSaccharomyces cerevisiae by means of the yeast vacuolar endoprotease B promoter (PRB1p) and theBacillus macerans (1-3,1-4)-β-glucanase signal peptide. The N-glycans present on the yeast-secreted H(A16-M), denoted H(A16-M)-Y, were released by endoglycosidase H, and identified by proton NMR spectroscopy to be a homologous series of Man8-13GlcNAc2, although only traces of Man9GlcNAc2 were found. Therefore, processing of N-glycans on H(A16-M)-Y is similar to that on homologous proteins. Most of the N-glycans (88%) were neutral while the remainder were charged due to phosphorylation. Site-directed mutagenesis of Asn to Gln in two of the N-glycosylation sequons, and subsequent analysis of the N-glycans on the yeast-secreted proteins together with analysis of the N-glycans from the individual sites of H(A16-M)-Y suggest the presence of steric hindrance to glycan modification by the glycans themselves. H(A16-M)-Y produced under control of either the yeast protease B or the yeast 3′-phosphoglycerate kinase promoter, each in two differentSaccharomyces strains revealed a dependence of N-glycan profile on both strain and culture conditions. The extent of O-glycosylation was found to be nine mannose units per H(A16-M)-Y molecule. An attempt to identify the linkage-sites for the O-glycans by amino acid sequencing failed, suggesting non-stoichiometric or heterogeneous O-glycosylation. The possible modes in which N-glycans might contribute to resistance of H(A16-M)-Y to irreversible thermal denaturation are discussed with respect to structural information available for H(A16-M)-Y.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1573-4943
    Keywords: Screening protein structures ; electroblotting ; glucose-6-phosphate dehydrogenase ; Saccharomyces cerevisiae ; Pichia jadinii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Rapid assessment of structural relationships between yeast glucose-6-phosphate dehydrogenases and other eukaryotic types of this enzyme is described. Separation and size estimation of large fragments by sodium dodecylsulfate/polyacrylamide gel electrophoresis, electroblotting onto disks, and sequencer analysis provide data that permit alignment of the segments thus characterized with the related proteins, and utilize existing structural knowledge to assess new enzyme structures. Affinity labeling allows further correlations. The results establish the overall structural arrangements of the new proteins, including the location of the active-site lysine residue, even though the yeast enzyme structures are found to differ markedly from the few previously characterized glucose-6-phosphate dehydrogenases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 21 (1989), S. 589-603 
    ISSN: 1573-6881
    Keywords: Vacuolar membrane H+ATPase ; vacuoles ; Saccharomyces cerevisiae ; catalytic cooperativity of ATP hydrolysis ; VMA genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Our current work on a vacuolar membrane proton ATPase in the yeastSaccharomyces cerevisiae has revealed that it is a third type of H+-translocating ATPase in the organism. A three-subunit ATPase, which has been purified to near homogeneity from vacuolar membrane vesicles, shares with the native, membrane-bound enzyme common enzymological properties of substrate specificities and inhibitor sensitivities and are clearly distinct from two established types of proton ATPase, the mitochondrial F0F1-type ATP synthase and the plasma membrane E1E2-type H+-ATPase. The vacuolar membrane H+-ATPase is composed of three major subunits, subunita (M r =67 kDa),b (57kDa), andc (20 kDa). Subunita is the catalytic site and subunitc functions as a channel for proton translocation in the enzyme complex. The function of subunitb has not yet been identified. The functional molecular masses of the H+-ATPase under two kinetic conditions have been determined to be 0.9–1.1×105 daltons for single-cycle hydrolysis of ATP and 4.1–5.3×105 daltons for multicycle hydrolysis of ATP, respectively.N,N′-Dicyclohexylcarbodiimide does not inhibit the former reaction but strongly inhibits the latter reaction. The kinetics of single-cycle hydrolysis of ATP indicates the formation of an enzyme-ATP complex and subsequent hydrolysis of the bound ATP to ADP and Pi at a 7-chloro-4-nitrobenzo-2-oxa-1,3-diazolesensitive catalytic site. Cloning of structural genes for the three subunits of the H+-ATPase (VMA1, VMA2, andVMA3) and their nucleotide sequence determination have been accomplished, which provide greater advantages for molecular biological studies on the structure-function relationship and biogenesis of the enzyme complex. Bioenergetic aspects of the vacuole as a main, acidic compartment ensuring ionic homeostasis in the cytosol have been described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-6881
    Keywords: Respiratory chain ; ATP synthesis ; mitochondria ; ubiquinone ; Saccharomyces cerevisiae ; cytochrome oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Mitochondria, isolated from the ubiquinone-deficient nuclear mutant ofSaccharomyces cerevisiae E3-24, are practically unable to oxidize exogenous substrates. Respiratory activity, coupled to ATP synthesis, can, however, be reconstituted by the simple addition of ethanolic solutions of ubiquinones. A minimal length of the isoprenoid side chain (≥3) was required for the restoration. Saturation of the reconstitution required a large amount of exogeneous ubiquinone, in excess over the normal content present in the mitochondria of the wild type strain. A similar pattern of reconstituted activities could be also obtained using sonicated inverted particles. Mitochondria and sonicated particles are also able to carry out a dye-mediated electron flow coupled to ATP synthesis in the absence of added ubiquinone, using ascorbate or succinate as electron donor. This demonstrates that the energy conserving mechanism at the third coupling site of the respiratory chain is fully independent of the presence of the large mobile pool of ubiquinone in the membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-6881
    Keywords: Rieske iron-sulfur protein, RIP1 ; Saccharomyces cerevisiae ; mitochondria ; bc 1 complex ; QCR9 ; iron-sulfur cluster, mitochondrial targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 24 (1992), S. 395-405 
    ISSN: 1573-6881
    Keywords: Vacuolar H+-ATPase ; VMA genes ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The yeast vacuolar proton-translocating ATPase is a member of the third class of H+-pumping ATPase. A family of this type of H+-ATPase is now known to be ubiquitously distributed in eukaryotic vacuo-lysosomal organelles and archaebacteria. NineVMA genes that are indispensable for expression of the enzyme activity have been cloned and characterized in the yeastSaccharomyces cerevisiae. This review summarizes currently available information on theVMA genes and cell biological functions of theVMA gene products.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 31 (1999), S. 95-104 
    ISSN: 1573-6881
    Keywords: F1-ATPase ; β-barrel domain ; mitochondria ; assembly ; yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The crystal structure of mitochondrial F1-ATPase indicatesthat the α and β subunits fold into a structure defined by threedomains: the top β-barrel domain, the middle nucleotide-binding domain,and the C-terminal α-helix bundle domain (Abraham et al.1994); Bianchet et al., 1998). The β-barrel domains of theα and β subunits form a crown structure at the top ofF1, which was suggested to stabilize it (Abraham et al.1994). In this study. the role of the β-barrel domain in the α andβ subunits of the yeast Saccharomyces cerevisiae F1,with regard to its folding and assembly, was investigated. The β-barreldomains of yeast F1 α and β subunits were expressedindividually and together in Escherichia coli. When expressedseperately, the β-barrel domain of the β subunit formed a largeaggregate structure, while the domain of the α subunit waspredominately a monomer or dimer. However, coexpression of the β-barreldomain of α subunit domain. Furthermore, the two domains copurified incomplexes with the major portion of the complex found in a small molecularweight form. These results indicate that the β-barrel domain of theα and β subunits interact specifically with each other and thatthese interactions prevent the aggregation of the β-barrel domain of theβ subunit. These results mimic in vivo results and suggest thatthe interactions of the β-barrel domains may be critical during thefolding and assembly of F1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 32 (2000), S. 391-400 
    ISSN: 1573-6881
    Keywords: ATP synthase ; F1-ATPase ; Saccharomyces cerevisiae ; petite mutants ; epistasis ; mitochondrion ; pet mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-6881
    Keywords: H+-ATPase complex ; assembly defect ; Saccharomyces cerevisiae ; mitochondrial biogenesis ; membrane association
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract We have investigated the extent to which the assembly of the cytoplasmically synthesized subunits of the H+-ATPase can proceed in a mtDNA-less (rho°) strain of yeast, which is not capable of mitochondrial protein synthesis. Three of the membrane sector proteins of the yeast H+-ATPase are synthesized in the mitochondria, and it is important to determine whether the presence of these subunits is essential for the assembly of the imported subunits to the inner mitochondrial membrane. A monoclonal antibody against the cytoplasmically synthesized β-subunit of the H+-ATPase was used to immunoprecipitate the assembled subunits of the enzyme complex. Our results indicate that the imported subunits of the H+-ATPase can be assembled in this mutant, into a defective complex which could be shown to be associated with the mitochondrial membrane by the analysis of the Arrhenius kinetics of the mutant mitochondrial ATPase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 21 (1989), S. 621-632 
    ISSN: 1573-6881
    Keywords: ATPase ; [H+]-ATPase ; proton transport ; Neurospora crassa ; Saccharomyces cerevisiae ; Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The fungal plasma membrane contains a proton-translocating ATPase that is closely related, both structurally and functionally, to the [Na+, K+]-, [H+, K+]-, and [Ca2+]-ATPases of animal cells, the plasma-membrane [H+]-ATPase of higher plants, and several bacterial cation-transporting ATPases. This review summarizes currently available information on the molecular genetics, protein structure, and reaction cycle of the fungal enzyme. Recent efforts to dissect structure-function relationships are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 5 (1979), S. 909-918 
    ISSN: 1573-1561
    Keywords: Attractants ; nematodes ; Panagrellus redivivus ; Rhabditis oxycerca ; Saccharomyces cerevisiae ; predacious fungi ; methyl acetate ; ethyl acetate ; propyl acetate ; butyl acetate ; amyl acetate ; ethyl formate ; propyl formate ; amyl formate ; ethyl propionate ; sodium methyl dithiocarbamate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The free-living nematodesPanagrellus redivivus andRhabditis oxycerca are strongly attracted to methyl, ethyl, propyl, butyl, and amyl acetate, to ethyl, propyl, and amyl formate and to ethyl propionate, but all the respective alcohols and acids are without effect. No loss of attraction is observed when the attractants are combined with lethal concentrations of the commercial nematicide sodium methyl dithiocarbamate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 16 (1990), S. 1399-1408 
    ISSN: 1573-1561
    Keywords: Allelopathy ; emulsions ; monoterpenes ; Saccharomyces cerevisiae ; yeast ; suspensions ; droplet size ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The toxic effects of the allelopathic nonsubstituted monoterpenes β-pinene and limonene on yeast,Saccharomyces cerevisiae, were proportional to the size of the monoterpene droplets in suspension. Both the toxic effects and the size of the droplets in suspension were decreased by adding different solvents with the monoterpene as follows: dimethylsulfoxide – dimethylformamide ≫ ethanol 〉 dioxane. Oxygen consumption was inhibited about 80% by 1 mM β-pinene added in dimethylsulfoxide but less than 10% when β-pinene was added in dioxane. Parallel decreases in droplet size and toxic effects of either monoterpene were also induced by hydrating the monoterpene-dimethylformamide or monoterpene-dimethylsulfoxide before addition to yeast. Molecular aggregation may be a mechanism to potentiate the allelopathic properties of monoterpenes when these associate with diverse soil components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Chemistry of natural compounds 36 (2000), S. 88-89 
    ISSN: 1573-8388
    Keywords: Saccharomyces cerevisiae ; yeast invertase ; active enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The substrate specificity of purified yeast invertase isolated fromSaccharomyces cerevisiae in transglycosylation reactions was determined. The enzyme is specific for primary alcohols. The yeast activity is a function of the alkyl length and substrate hydrophobicity (n-butyl, isobutyl, isoamyl alcohols).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-31
    Description: Protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus involves specific uptake into coat protein complex II (COPII)-coated vesicles of secretory and of vesicle targeting (v-SNARE) proteins. Here, two ER to Golgi v-SNAREs, Bet1p and Bos1p, were shown to interact specifically with Sar1p, Sec23p, and Sec24p, components of the COPII coat, in a guanine nucleotide-dependent fashion. Other v-SNAREs, Sec22p and Ykt6p, might interact more weakly with the COPII coat or interact indirectly by binding to Bet1p or Bos1p. The data suggest that transmembrane proteins can be taken up into COPII vesicles by direct interactions with the coat proteins and may play a structural role in the assembly of the COPII coat complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, S -- Schekman, R -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):698-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685263" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; COP-Coated Vesicles ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/*metabolism ; Fungal Proteins/*metabolism ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/*metabolism ; GTPase-Activating Proteins ; Golgi Apparatus/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism/pharmacology ; Membrane Proteins/*metabolism ; *Membrane Transport Proteins ; *Monomeric GTP-Binding Proteins ; Qb-SNARE Proteins ; Qc-SNARE Proteins ; R-SNARE Proteins ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1868.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10515792" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Genetic Techniques ; Protein Binding ; Proteins/*isolation & purification/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribonucleoproteins, Small Nuclear/metabolism ; Saccharomyces cerevisiae ; Sequence Analysis/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-25
    Description: Real-time fluorescence microscopy has emerged as a powerful tool for examining chromatin dynamics. The initial lesson is that much of the genome, particularly in yeast, is highly dynamic. Its movement within the interphase nucleus is correlated with metabolic activity. Nonetheless, the nucleus is an organelle with conserved rules of organization. Determining the distribution and regulation of mobile domains in interphase chromosomes, and characterizing sites of anchorage, will undoubtedly shed new light on the function of nuclear order.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gasser, Susan M -- New York, N.Y. -- Science. 2002 May 24;296(5572):1412-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland. susan.gasser@molbio.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/physiology/*ultrastructure ; Centromere/physiology/ultrastructure ; Chromatin/*physiology/*ultrastructure ; Chromosomes/*physiology/ultrastructure ; DNA/genetics/metabolism ; Drosophila ; Gene Expression Regulation ; *Interphase ; Microscopy, Confocal ; Microscopy, Fluorescence ; Nuclear Envelope/metabolism/ultrastructure ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae ; Telomere/physiology/ultrastructure ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1999-02-12
    Description: The ETR1 receptor from Arabidopsis binds the gaseous hormone ethylene. A copper ion associated with the ethylene-binding domain is required for high-affinity ethylene-binding activity. A missense mutation in the domain that renders the plant insensitive to ethylene eliminates both ethylene binding and the interaction of copper with the receptor. A sequence from the genome of the cyanobacterium Synechocystis sp. strain 6803 that shows homology to the ethylene-binding domain of ETR1 encodes a functional ethylene-binding protein. On the basis of sequence conservation between the Arabidopsis and the cyanobacterial ethylene-binding domains and on in vitro mutagenesis of ETR1, a structural model for this copper-based ethylene sensor domain is presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, F I -- Esch, J J -- Hall, A E -- Binder, B M -- Schaller, G E -- Bleecker, A B -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):996-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Arabidopsis/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics ; Binding Sites ; Conserved Sequence ; Copper/analysis/*metabolism ; Copper Sulfate/pharmacology ; Cyanobacteria/genetics/metabolism ; Dimerization ; Ethylenes/*metabolism ; Models, Molecular ; Mutagenesis ; Open Reading Frames ; Plant Proteins/chemistry/genetics/isolation & purification/*metabolism ; Receptors, Cell Surface/chemistry/genetics/isolation & purification/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae ; Silver/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Important human pathogens invade and harm simple organisms. What's more, these infections require many of the same bacterial genes needed to make mammals sick. These observations suggest that even though simple organisms aren't perfect models for complex hosts such as mammals, the basic mechanisms by which bacteria establish infections in the various organisms may be similar. As a result, the work may help microbiologists identify the host proteins involved in infections, thereby providing potential new targets for antibacterial drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2245-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11188717" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/*microbiology ; Bacteria/genetics/*pathogenicity ; Bacterial Infections/microbiology ; Bacterial Physiological Phenomena ; Bacterial Proteins/genetics/metabolism ; Caenorhabditis elegans/*microbiology ; Dictyostelium/*microbiology ; Drosophila/genetics/immunology/*microbiology ; Genes, Bacterial ; Immunity, Innate ; Plant Diseases/microbiology ; Proteins/*physiology ; Saccharomyces cerevisiae ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2001-09-05
    Description: The seven-subunit Arp2/3 complex choreographs the formation of branched actin networks at the leading edge of migrating cells. When activated by Wiskott-Aldrich Syndrome protein (WASp), the Arp2/3 complex initiates actin filament branches from the sides of existing filaments. Electron cryomicroscopy and three-dimensional reconstruction of Acanthamoeba castellanii and Saccharomyces cerevisiae Arp2/3 complexes bound to the WASp carboxy-terminal domain reveal asymmetric, oblate ellipsoids. Image analysis of actin branches indicates that the complex binds the side of the mother filament, and Arp2 and Arp3 (for actin-related protein) are the first two subunits of the daughter filament. Comparison to the actin-free, WASp-activated complexes suggests that branch initiation involves large-scale structural rearrangements within Arp2/3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkmann, N -- Amann, K J -- Stoilova-McPhie, S -- Egile, C -- Winter, D C -- Hazelwood, L -- Heuser, J E -- Li, R -- Pollard, T D -- Hanein, D -- New York, N.Y. -- Science. 2001 Sep 28;293(5539):2456-9. Epub 2001 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533442" target="_blank"〉PubMed〈/a〉
    Keywords: Acanthamoeba ; Actin Cytoskeleton/*metabolism/ultrastructure ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*chemistry/*metabolism ; Animals ; Cryoelectron Microscopy ; *Cytoskeletal Proteins ; Fourier Analysis ; Image Processing, Computer-Assisted ; Microscopy, Electron ; Models, Molecular ; Proteins/metabolism ; Saccharomyces cerevisiae ; Wiskott-Aldrich Syndrome Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1988-09-16
    Description: In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parraga, G -- Horvath, S J -- Eisen, A -- Taylor, W E -- Hood, L -- Young, E T -- Klevit, R E -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047872" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; DNA Mutational Analysis ; *DNA-Binding Proteins ; Magnetic Resonance Spectroscopy ; Metalloproteins ; Protein Conformation ; Saccharomyces cerevisiae ; Structure-Activity Relationship ; *Transcription Factors ; Zinc/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-09-22
    Description: Yeast mutants deficient in the clathrin heavy chain secrete a precursor form of the alpha-factor, a peptide-mating pheromone. Analysis of this defect indicates that the endoprotease Kex2p, which is responsible for initiating proteolytic maturation of the alpha-factor precursor in the Golgi apparatus, is unexpectedly present at the plasma membrane in mutant cells. This result suggest that clathrin is required for the retention of Kex2p in the Golgi apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, G S -- Schekman, R -- GM 36881/GM/NIGMS NIH HHS/ -- GM 39040/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 22;245(4924):1358-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, UCLA School of Medicine 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2675311" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Compartmentation ; Clathrin/*physiology ; Golgi Apparatus/*physiology ; Intracellular Membranes/*physiology ; Membrane Proteins/*physiology ; Peptide Hydrolases/metabolism ; Peptides/metabolism ; Protein Precursors/metabolism ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-02-28
    Description: Transcription factor IID (TFIID) recognizes the TATA element of promoters transcribed by RNA polymerase II (RNAPII) and serves as the base for subsequent association by other general transcription factors and RNAPII. The carboxyl-terminal domain of TFIID is highly conserved and contains an imperfect repetition of a 60-amino acid sequence. These repeats are separated by a region rich in basic amino acids. Mutagenesis of the lysines in this region resulted in a conditioned phenotype in vivo, and the mutant proteins were defective for interactions with transcription factor IIA in vitro. Binding of TFIID to DNA was unaffected. These results suggest that the basic domain of TFIID is important for protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buratowski, S -- Zhou, H -- R29-GM46498/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 28;255(5048):1130-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Fungal Proteins/genetics/metabolism ; Humans ; In Vitro Techniques ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA Polymerase II/metabolism ; Saccharomyces cerevisiae ; Transcription Factor TFIIA ; Transcription Factor TFIID ; Transcription Factors/*genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-03-12
    Description: DNA topoisomerase II completely removes DNA intertwining, or catenation, between sister chromatids before they are segregated during cell division. How this occurs throughout the genome is poorly understood. We demonstrate that in yeast, centromeric plasmids undergo a dramatic change in their topology as the cells pass through mitosis. This change is characterized by positive supercoiling of the DNA and requires mitotic spindles and the condensin factor Smc2. When mitotic positive supercoiling occurs on decatenated DNA, it is rapidly relaxed by topoisomerase II. However, when positive supercoiling takes place in catenated plasmid, topoisomerase II activity is directed toward decatenation of the molecules before relaxation. Thus, a topological change on DNA drives topoisomerase II to decatenate molecules during mitosis, potentially driving the full decatenation of the genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, J -- Sen, N -- Martinez, V Lopez -- De Carandini, M E Monturus -- Schvartzman, J B -- Diffley, J F X -- Aragon, L -- MC_U120074328/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1328-32. doi: 10.1126/science.1201538.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK. Jon.Baxter@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393545" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Chromosome Segregation ; DNA Replication ; DNA Topoisomerases, Type II/*metabolism ; DNA, Catenated/*chemistry/metabolism ; DNA, Fungal/*chemistry/metabolism ; DNA, Superhelical/*chemistry/metabolism ; Dimerization ; *Mitosis ; Nucleic Acid Conformation ; Plasmids ; Saccharomyces cerevisiae ; Spindle Apparatus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-06-30
    Description: In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer, Andreas -- Heidemann, Martin -- Lidschreiber, Michael -- Schreieck, Amelie -- Sun, Mai -- Hintermair, Corinna -- Kremmer, Elisabeth -- Eick, Dirk -- Cramer, Patrick -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1723-5. doi: 10.1126/science.1219651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745433" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Chromatin Immunoprecipitation ; HeLa Cells ; Humans ; Peptide Termination Factors/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Transcriptional Elongation Factors/metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-18
    Description: Splicing of nuclear precursor messenger RNA (pre-mRNA) occurs on a large ribonucleoprotein complex, the spliceosome. Several small nuclear ribonucleoproteins (snRNP's) are subunits of this complex that assembles on the pre-mRNA. Although the U1 snRNP is known to recognize the 5' splice site, its roles in spliceosome formation and splice site alignment have been unclear. A new affinity purification method for the spliceosome is described which has provided insight into the very early stages of spliceosome formation in a yeast in vitro splicing system. Surprisingly, the U1 snRNP initially recognizes sequences at or near both splice junctions in the intron. This interaction must occur before the other snRNP's (U2, U4, U5, and U6) can join the complex. The results suggest that interaction of the two splice site regions occurs at an early stage of spliceosome formation and is probably mediated by U1 snRNP and perhaps other factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruby, S W -- Abelson, J -- GM32637/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 18;242(4881):1028-35.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2973660" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics ; Adenosine Triphosphate/metabolism ; Cell-Free System ; DNA Mutational Analysis ; Macromolecular Substances ; Protein Binding ; *RNA Splicing ; RNA, Messenger/*physiology ; Ribonucleoproteins/*physiology ; Ribonucleoproteins, Small Nuclear ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-01
    Description: The neurotransmitter functions of nitric oxide are dependent on dynamic regulation of its biosynthetic enzyme, neuronal nitric oxide synthase (nNOS). By means of a yeast two-hybrid screen, a 10-kilodalton protein was identified that physically interacts with and inhibits the activity of nNOS. This inhibitor, designated PIN, appears to be one of the most conserved proteins in nature, showing 92 percent amino acid identity with the nematode and rat homologs. Binding of PIN destabilizes the nNOS dimer, a conformation necessary for activity. These results suggest that PIN may regulate numerous biological processes through its effects on nitric oxide synthase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaffrey, S R -- Snyder, S H -- DA00074/DA/NIDA NIH HHS/ -- GM-07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):774-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864115" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism/pharmacology ; Cell Line ; Cyclic GMP/metabolism ; Dimerization ; *Drosophila Proteins ; Dyneins ; Enzyme Inhibitors/chemistry/*metabolism/pharmacology ; Humans ; Molecular Sequence Data ; Molecular Weight ; Neurons/enzymology ; Nitric Oxide Synthase/*antagonists & inhibitors/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism/pharmacology ; Saccharomyces cerevisiae ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-12-15
    Description: Mutations in the ETR1 gene of Arabidopsis thaliana confer insensitivity to ethylene, which indicates a role for the gene product in ethylene signal transduction. Saturable binding sites for [14C]ethylene were detected in transgenic yeast expressing the ETR1 protein, whereas control yeast lacking ETR1 showed no detectable ethylene binding. Yeast expressing a mutant form of ETR1 (etr1-1) also showed no detectable ethylene binding, which provides an explanation for the ethylene-insensitive phenotype observed in plants carrying this mutation. Expression of truncated forms of ETR1 in yeast provided evidence that the amino-terminal hydrophobic domain of the protein is the site of ethylene binding. It was concluded from these results that ETR1 acts as an ethylene receptor in Arabidopsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaller, G E -- Bleecker, A B -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1809-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Wisconsin, Madison 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525372" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Binding Sites ; Cloning, Molecular ; Ethylenes/*metabolism ; Genes, Plant ; Mutagenesis, Site-Directed ; Peptide Fragments/genetics/metabolism ; Plant Proteins/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Proteins/genetics/metabolism ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1996-04-19
    Description: Trapoxin is a microbially derived cyclotetrapeptide that inhibits histone deacetylation in vivo and causes mammalian cells to arrest in the cell cycle. A trapoxin affinity matrix was used to isolate two nuclear proteins that copurified with histone deacetylase activity. Both proteins were identified by peptide microsequencing, and a complementary DNA encoding the histone deacetylase catalytic subunit (HD1) was cloned from a human Jurkat T cell library. As the predicted protein is very similar to the yeast transcriptional regulator Rpd3p, these results support a role for histone deacetylase as a key regulator of eukaryotic transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taunton, J -- Hassig, C A -- Schreiber, S L -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602529" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/metabolism/pharmacology ; Cattle ; Cell Cycle/drug effects ; Cloning, Molecular ; Enzyme Inhibitors/metabolism/pharmacology ; Fungal Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; Histone Deacetylase Inhibitors ; Histone Deacetylases/chemistry/genetics/isolation & purification/*metabolism ; Humans ; Hydroxamic Acids/metabolism/pharmacology ; Molecular Sequence Data ; Molecular Weight ; *Peptides ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins ; T-Lymphocytes/enzymology ; Transcription Factors/chemistry/genetics/isolation & purification/*metabolism ; *Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1994-06-03
    Description: Multi-wavelength anomalous diffraction (MAD) has been used to determine the structure of the regulatory enzyme of de novo synthesis of purine nucleotides, glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase, from Bacillus subtilis. This allosteric enzyme, a 200-kilodalton tetramer, is subject to end product regulation by purine nucleotides. The metalloenzyme from B. subtilis is a paradigm for the higher eukaryotic enzymes, which have been refractory to isolation in stable form. The two folding domains of the polypeptide are correlated with functional domains for glutamine binding and for transfer of ammonia to the substrate PRPP. Eight molecules of the feedback inhibitor adenosine monophosphate (AMP) are bound to the tetrameric enzyme in two types of binding sites: the PRPP catalytic site of each subunit and an unusual regulatory site that is immediately adjacent to each active site but is between subunits. An oxygen-sensitive [4Fe-4S] cluster in each subunit is proposed to regulate protein turnover in vivo and is distant from the catalytic site. Oxygen sensitivity of the cluster is diminished by AMP, which blocks a channel through the protein to the cluster. The structure is representative of both glutamine amidotransferases and phosphoribosyltransferases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J L -- Zaluzec, E J -- Wery, J P -- Niu, L -- Switzer, R L -- Zalkin, H -- Satow, Y -- DK-42303/DK/NIDDK NIH HHS/ -- GM-24658/GM/NIGMS NIH HHS/ -- R37 DK042303/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1427-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197456" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Allosteric Regulation ; Amidophosphoribosyltransferase/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Bacillus subtilis/*enzymology ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Oxygen/pharmacology ; Protein Folding ; Protein Structure, Secondary ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1994-07-29
    Description: Transforming growth factor-beta (TGF-beta) family members bind to receptors that consist of heteromeric serine-threonine kinase subunits (type I and type II). In a yeast genetic screen, the immunophilin FKBP-12, a target of the macrolides FK506 and rapamycin, interacted with the type I receptor for TGF-beta and with other type I receptors. Deletion, point mutation, and co-immunoprecipitation studies further demonstrated the specificity of the interaction. Excess FK506 competed with type I receptors for binding to FKBP-12, which suggests that these receptors share or overlap the macrolide binding site on FKBP-12, and therefore they may represent its natural ligand. The specific interaction between the type I receptors and FKBP-12 suggests that FKBP-12 may play a role in type I receptor-mediated signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, T -- Donahoe, P K -- Zervos, A S -- CA17393/CA/NCI NIH HHS/ -- NICHD P-30 HD28138/HD/NICHD NIH HHS/ -- NICHD P-32 HD07396/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1994 Jul 29;265(5172):674-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7518616" target="_blank"〉PubMed〈/a〉
    Keywords: Binding, Competitive ; Carrier Proteins/*metabolism ; Heat-Shock Proteins/*metabolism ; Point Mutation ; Precipitin Tests ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae ; Tacrolimus/metabolism ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1994-09-16
    Description: Intracellular signaling from receptor tyrosine kinases in mammalian cells results in activation of a signal cascade that includes the guanine nucleotide-binding protein Ras and the protein kinases Raf, MEK [mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) kinase], and MAPK. MAPK activation that is dependent on the coupling of Ras and Raf was reconstituted in yeast. Yeast genes were isolated that, when overexpressed, enhanced the function of Raf. One of them is identical to BMH1, which encodes a protein similar to members of the mammalian 14-3-3 family. Bacterially synthesized mammalian 14-3-3 protein stimulated the activity of Raf prepared from yeast cells expressing c-Raf-1. Thus, the 14-3-3 protein may participate in or be required for activation of Raf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irie, K -- Gotoh, Y -- Yashar, B M -- Errede, B -- Nishida, E -- Matsumoto, K -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1716-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Faculty of Science, Nagoya University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085159" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Enzyme Activation ; Fungal Proteins/genetics/*metabolism ; GTP-Binding Proteins/genetics/metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins/genetics/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-raf ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; *Tyrosine 3-Monooxygenase ; *ras Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-26
    Description: The RAD51 gene of Saccharomyces cerevisiae is required for genetic recombination and DNA double-strand break repair. Here it is demonstrated that RAD51 protein pairs circular viral single-stranded DNA from phi X 174 or M13 with its respective homologous linear double-stranded form. The product of synapsis between these DNA partners is further processed by RAD51 to yield nicked circular duplex DNA, which indicates that RAD51 can catalyze strand exchange. The pairing and strand exchange reaction requires adenosine triphosphate, a result consistent with the presence of a DNA-dependent adenosine triphosphatase activity in RAD51 protein. Thus, RAD51 is a eukaryotic recombination protein that can catalyze the strand exchange reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sung, P -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1241-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston 77555-1061.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066464" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Bacteriophage M13 ; Bacteriophage phi X 174 ; Base Composition ; Catalysis ; DNA, Circular/*metabolism ; DNA, Single-Stranded/*metabolism ; DNA, Viral/*metabolism ; DNA-Binding Proteins/*metabolism ; Fungal Proteins/*metabolism ; Rad51 Recombinase ; Replication Protein A ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2006-06-10
    Description: Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meinecke, Michael -- Wagner, Richard -- Kovermann, Peter -- Guiard, Bernard -- Mick, David U -- Hutu, Dana P -- Voos, Wolfgang -- Truscott, Kaye N -- Chacinska, Agnieszka -- Pfanner, Nikolaus -- Rehling, Peter -- New York, N.Y. -- Science. 2006 Jun 9;312(5779):1523-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysik, Universitat Osnabruck, FB Biologie/Chemie, D-49034 Osnabruck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763150" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane Permeability ; Liposomes ; Membrane Transport Proteins/metabolism ; Mitochondrial Membrane Transport Proteins/*metabolism ; Mitochondrial Membranes/*metabolism ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2008-05-31
    Description: Ferritins are the main iron storage proteins found in animals, plants, and bacteria. The capacity to store iron in ferritin is essential for life in mammals, but the mechanism by which cytosolic iron is delivered to ferritin is unknown. Human ferritins expressed in yeast contain little iron. Human poly (rC)-binding protein 1 (PCBP1) increased the amount of iron loaded into ferritin when expressed in yeast. PCBP1 bound to ferritin in vivo and bound iron and facilitated iron loading into ferritin in vitro. Depletion of PCBP1 in human cells inhibited ferritin iron loading and increased cytosolic iron pools. Thus, PCBP1 can function as a cytosolic iron chaperone in the delivery of iron to ferritin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2505357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2505357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Haifeng -- Bencze, Krisztina Z -- Stemmler, Timothy L -- Philpott, Caroline C -- R01 DK068139/DK/NIDDK NIH HHS/ -- R01 DK068139-01A1/DK/NIDDK NIH HHS/ -- Z01 DK054510-03/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 May 30;320(5880):1207-10. doi: 10.1126/science.1157643.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18511687" target="_blank"〉PubMed〈/a〉
    Keywords: Cytosol/metabolism ; Ferritins/metabolism ; Heterogeneous-Nuclear Ribonucleoproteins/genetics/*metabolism ; Humans ; Iron/metabolism ; Molecular Chaperones/genetics/*metabolism ; Protein Binding ; Recombinant Fusion Proteins/genetics/metabolism ; Saccharomyces cerevisiae ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2009-06-27
    Description: Communication between organelles is an important feature of all eukaryotic cells. To uncover components involved in mitochondria/endoplasmic reticulum (ER) junctions, we screened for mutants that could be complemented by a synthetic protein designed to artificially tether the two organelles. We identified the Mmm1/Mdm10/Mdm12/Mdm34 complex as a molecular tether between ER and mitochondria. The tethering complex was composed of proteins resident of both ER and mitochondria. With the use of genome-wide mapping of genetic interactions, we showed that the components of the tethering complex were functionally connected to phospholipid biosynthesis and calcium-signaling genes. In mutant cells, phospholipid biosynthesis was impaired. The tethering complex localized to discrete foci, suggesting that discrete sites of close apposition between ER and mitochondria facilitate interorganelle calcium and phospholipid exchange.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornmann, Benoit -- Currie, Erin -- Collins, Sean R -- Schuldiner, Maya -- Nunnari, Jodi -- Weissman, Jonathan S -- Walter, Peter -- R01 GM032384/GM/NIGMS NIH HHS/ -- R01 GM032384-27/GM/NIGMS NIH HHS/ -- R01 GM062942/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):477-81. doi: 10.1126/science.1175088. Epub 2009 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA. benoit.kornmann@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19556461" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Signaling/genetics ; Endoplasmic Reticulum/*physiology ; Membrane Proteins/*metabolism ; Mice ; Mitochondria/*physiology ; Mitochondrial Proteins/*metabolism ; Phospholipids/biosynthesis ; Recombinant Fusion Proteins/genetics/metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-06-11
    Description: It is not known whether evolution will usually be rapid enough to allow a species to adapt and persist in a deteriorating environment. We tracked the eco-evolutionary dynamics of metapopulations with a laboratory model system of yeast exposed to salt stress. Metapopulations experienced environmental deterioration at three different rates and their component populations were either unconnected or connected by local dispersal or by global dispersal. We found that adaptation was favored by gradual deterioration and local dispersal. After further abrupt deterioration, the frequency of evolutionary rescue depended on both the prior rate of deterioration and the rate of dispersal. Adaptation was surprisingly frequent and rapid in small peripheral populations. Thus, evolutionary dynamics affect both the persistence and the range of a species after environmental deterioration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Graham -- Gonzalez, Andrew -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1327-30. doi: 10.1126/science.1203105.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec H3A 1B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659606" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Biological Evolution ; Directed Molecular Evolution ; *Environment ; Models, Biological ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-11-10
    Description: The last step in eukaryotic translational initiation involves the joining of the large and small subunits of the ribosome, with initiator transfer RNA (Met-tRNA(i)(Met)) positioned over the start codon of messenger RNA in the P site. This step is catalyzed by initiation factor eIF5B. We used recent advances in cryo-electron microscopy (cryo-EM) to determine a structure of the eIF5B initiation complex to 6.6 angstrom resolution from 〈3% of the population, comprising just 5143 particles. The structure reveals conformational changes in eIF5B, initiator tRNA, and the ribosome that provide insights into the role of eIF5B in translational initiation. The relatively high resolution obtained from such a small fraction of a heterogeneous sample suggests a general approach for characterizing the structure of other dynamic or transient biological complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Israel S -- Bai, Xiao-Chen -- Hussain, Tanweer -- Kelley, Ann C -- Lorsch, Jon R -- Ramakrishnan, V -- Scheres, Sjors H W -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):1240585. doi: 10.1126/science.1240585. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200810" target="_blank"〉PubMed〈/a〉
    Keywords: Analytic Sample Preparation Methods ; Cryoelectron Microscopy/methods ; Eukaryotic Initiation Factors/*chemistry ; Humans ; *Peptide Chain Initiation, Translational ; Protein Conformation ; RNA, Transfer, Met/chemistry ; Ribosomes/*chemistry ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-09-05
    Description: Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727825/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727825/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Richard W -- Jeffrey, Philip D -- Zick, Michael -- Phillips, Ben P -- Wickner, William T -- Hughson, Frederick M -- GM071574/GM/NIGMS NIH HHS/ -- GM23377/GM/NIGMS NIH HHS/ -- R01 GM071574/GM/NIGMS NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1111-4. doi: 10.1126/science.aac7906.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. hughson@princeton.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339030" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Membrane Proteins/chemistry/metabolism ; Munc18 Proteins/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Qa-SNARE Proteins/*metabolism ; R-SNARE Proteins/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism/ultrastructure ; Synaptosomal-Associated Protein 25/chemistry/metabolism ; Vesicular Transport Proteins/chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1982-07-02
    Description: Liposomes were used to deliver ribosomal RNA's from the different organisms into cultivated mouse plasmacytoma cells. Ribosomal RNA from Escherichia coli was degraded intracellularly within 1 hour, whereas mouse and yeast ribosomal RNA's were degraded more slowly. This indicates that cells can discriminated between different ribosomal RNA's.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lavelle, D -- Ostro, M J -- Giacomoni, D -- GM 27935/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1982 Jul 2;217(4554):59-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6178157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Escherichia coli ; Kinetics ; *Liposomes ; Mice ; Molecular Weight ; Neoplasms, Experimental/metabolism ; Plasmacytoma/*metabolism ; RNA, Bacterial/metabolism ; RNA, Ribosomal/*metabolism ; Saccharomyces cerevisiae ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-08-28
    Description: Tandem mass spectrometry can be used to solve a number of protein structural problems that are not amenable to conventional methods for amino acid sequencing. Typical problems that use this approach involve characterization of peptides with blocked amino termini or peptides that have been otherwise posttranslationally processed, such as, by phosphorylation or sulfation. The structure and homogeneity of synthetic peptides can also be evaluated. Since peptides can be selectively characterized in the presence of other peptides or contaminants, the need for extensive purification is reduced or eliminated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biemann, K -- Scoble, H A -- GM05472/GM/NIGMS NIH HHS/ -- RR00317/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1987 Aug 28;237(4818):992-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3303336" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Amino Acyl-tRNA Synthetases ; Escherichia coli ; Humans ; *Mass Spectrometry ; Phosphorylation ; Protein Processing, Post-Translational ; Proteins ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-05-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, F -- New York, N.Y. -- Science. 1987 May 29;236(4805):1043-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3554513" target="_blank"〉PubMed〈/a〉
    Keywords: Dictyostelium/genetics ; Muscles/physiology ; Mutation ; Myosins/genetics/*physiology ; Phenotype ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1985-10-04
    Description: A model was developed for the structure of p21, the protein with a molecular weight of 21,000 that is produced by the ras genes. This model predicts that p21 consists of a central core of beta-sheet structure, connected by loops and alpha helices. Four of these loops comprise the guanine nucleotide binding site. The phosphoryl binding region is made up of amino acid sequences from 10 to 16 and from 57 to 63 of p21. The latter sequence may contain a site for magnesium binding. Amino acids defining guanine specificity are Asn-116 and Asp-119, and sequences around amino acid 145 may contribute to guanine binding. The model makes it possible to visualize how oncogenic mutations of p21 affect interaction with guanine nucleotides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCormick, F -- Clark, B F -- la Cour, T F -- Kjeldgaard, M -- Norskov-Lauritsen, L -- Nyborg, J -- New York, N.Y. -- Science. 1985 Oct 4;230(4721):78-82.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3898366" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/analysis ; Animals ; *Aspartate Carbamoyltransferase ; Base Sequence ; Binding Sites ; *Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) ; Cattle ; *Dihydroorotase ; Escherichia coli ; Guanine Nucleotides/metabolism ; Humans ; Macromolecular Substances ; Magnesium/metabolism ; Membrane Proteins/analysis ; Models, Chemical ; *Multienzyme Complexes ; Mutation ; *Oncogenes ; Peptide Elongation Factor Tu ; Peptide Elongation Factors/analysis ; Protein Conformation ; Proteins/*analysis ; RNA, Transfer, Amino Acyl/metabolism ; Saccharomyces cerevisiae ; Transducin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-10-10
    Description: When a chimeric gene encoding a ubiquitin-beta-galactosidase fusion protein is expressed in the yeast Saccharomyces cerevisiae, ubiquitin is cleaved off the nascent fusion protein, yielding a deubiquitinated beta-galactosidase (beta gal). With one exception, this cleavage takes place regardless of the nature of the amino acid residue of beta gal at the ubiquitin-beta gal junction, thereby making it possible to expose different residues at the amino-termini of the otherwise identical beta gal proteins. The beta gal proteins thus designed have strikingly different half-lives in vivo, from more than 20 hours to less than 3 minutes, depending on the nature of the amino acid at the amino-terminus of beta gal. The set of individual amino acids can thus be ordered with respect to the half-lives that they confer on beta gal when present at its amino-terminus (the "N-end rule"). The currently known amino-terminal residues in long-lived, noncompartmentalized intracellular proteins from both prokaryotes and eukaryotes belong exclusively to the stabilizing class as predicted by the N-end rule. The function of the previously described posttranslational addition of single amino acids to protein amino-termini may also be accounted for by the N-end rule. Thus the recognition of an amino-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bachmair, A -- Finley, D -- Varshavsky, A -- GM31530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1986 Oct 10;234(4773):179-86.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3018930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Escherichia coli ; Half-Life ; Methionine/metabolism ; Models, Biological ; Protein Processing, Post-Translational ; Proteins/*metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae ; Ubiquitins/metabolism ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...