Skip to main content
Log in

Partial Assembly of the Yeast Mitochondrial ATP Synthase 1

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ackerman, S. H. and Tzagoloff, A. (1990a). J. Biol. Chem. 265, 9952–9959.

    Google Scholar 

  • Ackerman, S. H. and Tzagoloff, A. (1990b). Proc. Natl. Acad. Sci. USA 87, 4986–4990.

    Google Scholar 

  • Aggeler, R. and Capaldi, R. A. (1996). J. Biol. Chem. 271, 13888–13891.

    Google Scholar 

  • Aggeler, R., Chicas-Cruz, K., Cai, S.-X., Keana, J. F. W., and Capaldi, R. A. (1992). Biochemistry 31, 2956–2961.

    Google Scholar 

  • Aggeler, R., Ogilvie, I., and Capaldi, R. A. (1997). J. Biol. Chem. 272, 19621–19624.

    Google Scholar 

  • Altamura, N., Capitanio, N., Bonnefoy, N., Papa, S., and Dujardin, G. (1996). FEBS Lett. 382, 111–115.

    Google Scholar 

  • Arlt, H., Tauer, R., Feldmann, H., Neupert, W., and Langer, T. (1996). Cell 85, 875–885.

    Google Scholar 

  • Arnold, I., Bauer, M. F., Brunner, M., Neupert, W., and Stuart, R. A. (1997). FEBS Lett. 411, 195–200.

    Google Scholar 

  • Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1998). EMBO J. 17, 7170–7178.

    Google Scholar 

  • Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1999). J. Biol. Chem. 274, 36–40.

    Google Scholar 

  • Arselin, G., Gander, J.-C., Guerin, B., and Velours, J. (1991). J. Biol. Chem. 266, 723–727.

    Google Scholar 

  • Arselin, G., Vaillier, J., Graves, P. V., and Velours, J. (1996). J. Biol. Chem. 271, 20284–20290.

    Google Scholar 

  • Boss, O., Samec, S., Paoloni-Giacobino, A., Rossier, C., Dulloo, A., Seydoux, J., Muzzin, P., and Giacobino, J. P. (1997). FEBS Lett. 408, 39–42.

    Google Scholar 

  • Boyer, P. D. (1989). FASEB J. 3, 2164–2178.

    Google Scholar 

  • Boyer, P. D., Cross, R. L., and Momsen, W. (1973). Proc. Natl. Acad. Sci. USA 70, 2837–2839.

    Google Scholar 

  • Brusilow, W. S. (1987). J. Bacteriol. 169, 4984–4990.

    Google Scholar 

  • Bulygin, V. V., Duncan, T. M., and Cross, R. L. (1998). J. Biol. Chem. 273, 31765–31769.

    Google Scholar 

  • Capaldi, R. A., Aggeler, R., Gogol, E. P., and Wilkens, S. (1992). J. Bioenerg. Biomembr. 24, 435–439.

    Google Scholar 

  • Duncan, T. M., Bulygin, V.V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995). Proc. Natl. Acad. Sci. USA 92, 10964–10968.

    Google Scholar 

  • Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M. F., Surwit, R. S., Ricquier, D., and Warden, C. H. (1997). Nat. Genet. 15, 269–272.

    Google Scholar 

  • Gromet-Elhanan, Z. (1992). J. Bioenerg. Biomembr. 24, 447–452.

    Google Scholar 

  • Gromet-Elhanan, Z. and Avital, S. (1992). Biochim. Biophys. Acta Bio-Energetics 1102, 379–385.

    Google Scholar 

  • Hashimoto, T., Yoshida, Y., and Tagawa, K. (1984). J. Biochem. (Tokyo) 95, 131–136.

    Google Scholar 

  • Hashimoto, T., Yoshida, Y., and Tagawa, K. (1990). J. Bioenerg. Biomembr. 22, 27–38.

    Google Scholar 

  • Ichikawa, N., Yoshida, Y., Hashimoto, T., Ogasawara, N., Yoshi kawa, H., Imamoto, F., and Tagawa, K. (1990). J. Biol. Chem. 265, 6274–6278.

    Google Scholar 

  • Kagawa, Y., Ohta, S., and Otawara-Hamamoto, Y. (1989). FEBS Lett. 249, 67–69.

    Google Scholar 

  • Kanazawa, H., Hama, M., Rosen, B. P., and Futai, M. (1985). Arch. Biochem. Biophys. 241, 364–370.

    Google Scholar 

  • Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K., Jr., and Yoshida, M. (1998). J. Biol. Chem. 273, 19375–19377.

    Google Scholar 

  • Klionsky, D. J., Brusilow, W. S., and Simoni, R. D. (1984). J. Bacteriol. 160, 1055–1060.

    Google Scholar 

  • Lai-Zhang, J., Xiao, Y., and Mueller, D. M. (1999). EMBO. J. 18, 58–64.

    Google Scholar 

  • Lee, C. and Ernster, L. (1968). Eur. J. Biochem. 3, 391–400.

    Google Scholar 

  • Lee, C. P., Ernster, L., and Chance, B. (1969). Eur. J. Biochem. 8, 153–163.

    Google Scholar 

  • Lemaire, C., Hamel, P., Velours, J., and Dujardin, G. (2000). J. Biol. Chem. 275, 23471–23475.

    Google Scholar 

  • Lin, C. S. and Klingenberg, M. (1980). FEBS Lett. 113, 299–303.

    Google Scholar 

  • Miki, J., Takeyama, M., Noumi, T., Kanazawa, H., Maeda, M., and Futai, M. (1986). Arch. Biochem. Biophys. 251, 458–464.

    Google Scholar 

  • Minkov, I. B., Fitin, A. F., Vasilyeva, E. A., and Vinogradov, A. D. (1979). Biochem. Biophys. Res. Commun. 89, 1300–1306.

    Google Scholar 

  • Miwa, K. and Yoshida, M. (1989). Proc. Natl. Acad. Sci. USA 86, 6484–6487.

    Google Scholar 

  • Neupert, W. (1997). Annu. Rev. Biochem. 66, 863–917.

    Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature (London) 386, 299–302.

    Google Scholar 

  • Norais, N., Prome, D., and Velours, J. (1991). J. Biol. Chem. 266, 16541–16549.

    Google Scholar 

  • Orriss, G. L., Runswick, M. J., Collinson, I. R., Miroux, B., Fearnley, I. M., Skehel, J. M., and Walker, J. E. (1996). Biochemistry J. 314, 695–700.

    Google Scholar 

  • Patrie, W. J. and McCarty, R. E. (1984). J. Biol. Chem. 259, 11121–11128.

    Google Scholar 

  • Paumard, P., Vaillier, J., Napias, C., Arselin, G., Brethes, D., Graves, P. V., and Velours, J. (2000). Biochemistry 39, 4199–4205.

    Google Scholar 

  • Penin, F., Deleage, G., Gagliardi, D., Roux, B., and Gautheron, D. C. (1990). Biochemistry 29, 9358–9364.

    Google Scholar 

  • Rep, M., van Dijl, J. M., Suda, K., Schatz, G., Grivell, L. A., and Suzuki, C. K. (1996). Science 274, 103–106.

    Google Scholar 

  • Rosen, B. P. (1973). J. Bacteriol. 116, 1124–1129.

    Google Scholar 

  • Roudeau, S., Spannagel, C., Vaillier, J., Arselin, G., Graves, P. V. and Velours, J. (1999). J. Bioenerg. Biomembr. 31, 85–94.

    Google Scholar 

  • Sabbert, D., Engelbrecht, S., and Junge, W. (1996). Nature (London) 381, 623–625.

    Google Scholar 

  • Schulenberg, B., Wellmer, F., Lill, H., Junge, W., and Engelbrecht, S. (1997). Eur. J. Biochem. 249, 134–141.

    Google Scholar 

  • Senior, A. E. (1988). Physiol. Rev. 68, 177–231.

    Google Scholar 

  • Spannagel, C., Vaillier, J., Arselin, G., Graves, P. V., and Velours, J. (1997). Eur. J. Biochem. 247, 1111–1117.

    Google Scholar 

  • Stock, D., Leslie, A. G., and Walker, J. E. (1999). Science 286, 1700–1705.

    Google Scholar 

  • Tang, C. L. and Capaldi, R. A. (1996). J. Biol. Chem. 271, 3018–3024.

    Google Scholar 

  • Tzagoloff, A., Yue, J., Jang, J., and Paul, M. F. (1994). J. Biol. Chem. 269, 26144–26151.

    Google Scholar 

  • Uh, M., Jones, D., and Mueller, D. M. (1990). J. Biol. Chem. 265, 19047–19052.

    Google Scholar 

  • Vaillier, J., Arselin, G., Graves, P. V., Camougrand, N., and Velours, J. (1999). J. Biol. Chem. 274, 543–548.

    Google Scholar 

  • Vasilyeva, E. A., Minkov, I. A., Fitin, A. F., and Vinogradov, A. D. (1982). Biochemistry J. 202, 15–23.

    Google Scholar 

  • Walker, J. E., Fearnley, I. M., Gay, N. J., Gibson, B. W., Northrop, F. D., Powell, S. J., Runswick, M. J., Saraste, M., and Tybulewicz, V. L. (1985). J. Molec. Biol. 184, 677–701.

    Google Scholar 

  • Walker, J. E., Lutter, R., Dupuis, A., and Runswick, M. J. (1991). Biochemistry 30, 5369–5378.

    Google Scholar 

  • Wang, Z. G. and Ackerman, S. H. (1996). J. Biol. Chem. 271, 4887–4894.

    Google Scholar 

  • Wang, Z. G. and Ackerman, S. H. (2000). J. Biol. Chem. 275, 5767–5772.

    Google Scholar 

  • Wilkens, S. and Capaldi, R. A. (1998). J. Biol. Chem. 273, 26645–26651.

    Google Scholar 

  • Xiao, Y., Metzl, M., and Mueller, D. M. (2000). J. Biol. Chem. 275, 6963–6968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, D.M. Partial Assembly of the Yeast Mitochondrial ATP Synthase 1 . J Bioenerg Biomembr 32, 391–400 (2000). https://doi.org/10.1023/A:1005532104617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005532104617

Navigation