ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (67)
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (63)
  • ddc:551.49  (38)
  • black carbon
  • Elsevier Science Limited  (65)
  • Springer Berlin Heidelberg  (65)
  • Springer-Verlag  (22)
  • Blackwell Publishing Ltd  (6)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Public Library of Science
Collection
Publisher
Language
  • 1
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-13
    Description: Since 1999, Mount Etna’s (Italy) South-East crater system has been characterised by episodic lava fountaining. Each episode is characterised by initial strombolian activity followed by transition to sustained fountaining to feed higheffusion rate lava flow. Here, we use thermal infrared data recorded by a permanent radiometer station to characterise the transition to sustained fountaining fed by the New South-East crater that developed on the eastern flank of the South-East crater starting from January 2011. We cover eight fountaining episodes that occurred between 2012 and 2013. We first developed a routine to characterise event waveforms apparent in the precursory, strombolian phase. This allowed extraction of a database for thermal energy and waveform shape for 1934 events. We detected between 66 and 650 events per episode, with event durations being between 4 and 55 s. In total, 1508 (78 %) of the events had short waxing phases and dominant waning phases. Event frequency increased as climax was approached. Events had energies of between 3.0× 106 and 5.8× 109 J, with rank order analysis indicating the highest possible event energy of 8.1× 109 J. To visualise the temporal evolution of retrieved parameters during the precursory phase, we applied a dimensionality reduction technique. Results show that weaker events occur during an onset period that forms a low-energy Bsink^. The transition towards fountaining occurs at 107 J, where subsequent events have a temporal trend towards the highest energies, and where sustained fountaining occurs when energies exceed 109 J. Such an energy-based framework allows researchers to track the evolution of fountaining episodes and to predict the time at which sustained fountaining will begin.
    Description: Published
    Description: 15
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna . Strombolian events . Lava fountaining . Explosive regime transition . Radiometry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-20
    Description: In this paperwe trace the impact of the 1669 eruption and the 1693 earthquakes in eastern Sicily, their effects on the people living in the Etna region and, more particularly, in the city of Catania and its hinterland. The former event was the largest historic eruption of Etna, having a flow field with an area of ca. 40 km2 and a maximum flow length of ca. 17 km, whereas the latter – occurring only 24 years later – killed between 11,000 and 20,000 of Catania’s estimated 20–27,000 inhabitants, plus many more in smaller settlements. Using a combination of field-based research, contemporary accounts and archival sources, the authors are able to drawa number of conclusions. First, the 1669 eruption, although it did not kill or injure, was economically the most devastating of historical eruptions. Although it affected a limited area, inundation by lava meant that landwas effectively sterilized for centuries and, in a pre-industrial agriculturally-based economy, recovery could not occur quicklywithout outside assistance from the State. Indeed some of the worst affected municipalities (i.e. Comuni) were only able to support populations that were much reduced in size. Secondly, much of the damage caused to buildings by volcanic earthquakes was effectively masked, becausemost of the settlements affectedwere quickly covered by lava flows. The vulnerability to volcanic earthquakes of traditionally constructed buildings has, however, remained a serious example of un-ameliorated risk exposure through to the present day. A third conclusion is that the 1693 earthquakes, although more serious with respect to the number of people and the area they affected in terms of mortality, morbidity and their immediate economic impact, saw a rapid and sustained recovery. Thiswas due in part to the fact that, in contrast to lava flows, an earthquake does not sterilize land, but more significant was the reduction in population numberswhich served both to release and concentrate funds for investment in recovery. By the close of the eighteenth century Cataniawas knownthroughout Europe for the quality of its townscape and buildings, many of which were constructed in the then fashionable (and expensive) baroque style. Finally, the 1669 and 1693 disasters were seized on by the authorities as opportunities to plan new and re-build old settlementswith improved infrastructure to facilitate economic growth. By the nineteenth centurymany of the lessons had been largely forgotten and there were many examples of: poor seismic design of individual buildings; and the location of newresidential and commercial areas that placed more people at greater risk fromfuture extreme events. Indeed it is only recently have new regulations been enacted to prevent the construction of buildings in the vicinity of active faults and to control development in other hazardous zones.
    Description: Published
    Description: 25-40
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, 1669 eruption, 1693 earthquake, Resilience ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-09
    Description: In the paper by Gouhier, M., Harris, A., Calvari, S., Labazuy, P., Guéhenneux, Y., Donnadieu, F., Valade, S, entitled “Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI” (Bull Volcanol (2012) 74:787–793, DOI 10.1007/s00445-011-0572-y), we present data from a Doppler radar (VOLDORAD 2B). This ground-based Lband radar has been monitoring the eruptive activity of the summit craters of Mt. Etna in real-time since July 2009 from a site about 3.5 km SSE of the craters. Examples of applications of this type of radar are reviewed by Donnadieu (2012) and shown on the VOLDORAD website (http://wwwobs. univbpclermont.fr/SO/televolc/voldorad/). Although designed and owned by the Observatoire de Physique du Globe in Clermont-Ferrand (OPGC), France, VOLDORAD 2B is operated jointly with the INGV-Catania (Italy) in the framework of a technical and scientific collaboration agreement between the INGV of Catania, the French CNRS and the OPGC-Université Blaise Pascal in Clermont- Ferrand. The system also utilizes a dedicated micropatch antenna designed at the University of Calabria (Boccia et al. 2010) and owned by INGV. The objective of the joint acquisition of the radar data by INGV-Catania and the OPGC is twofold: (1) to mitigate volcanic risks at Etna by better assessing the hazards arising from ash plumes and (2) to allow detailed study of volcanic activity and its environmental impact. In the paper by Gouhier et al. (2012), we failed to highlight this important collaboration between the INGV Catania and the OPGC; a cooperation essential for the past, current and future generation of such valuable data sets. Specifically we wish to acknowledge the roles of Mauro Coltelli, Michele Prestifilippo and Simona Scollo for their important input into this project, and pivotal role in setting up, and maintaining, this collaborative deployment.
    Description: Published
    Description: 1261
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna volcano ; lava fountain ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-14
    Description: We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 × 1 m digital elevation model, and a 15 × 15m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m−3, with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m−3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and N64) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. © 2014 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 58–69
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli, Gravity, Inversion, Geophysics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-17
    Description: The Agnano–Monte Spina tephra AMST , dated at 4100 years BP by Arr Ar and C AMS techniques, is the product of the highest-magnitude eruption in the Campi Flegrei caldera CFc. during its last epoch of activity 4800–3800 years BP.. The sequence alternates magmatic and phreatomagmatic pyroclastic-fallout, -flow and -surge beds and bedsets. Two main pumice-fallout deposits with variable easterly-to-northeasterly dispersal axes are about 10 cm thick at 42 km from the vent area. High particle concentration pyroclastic currents were confined to the caldera depression; lower concentration flows overtopped the morphological boundary of the caldera and traveled at least 15 km over the surrounding plain. The unit is subdivided into six members, named A through F in stratigraphic sequence, based upon their sedimentological characteristics. Isopachs and isopleths maps suggest a vent location in the Agnano plain. A volcano-tectonic collapse begun during the course of the eruption, took place along the faults of the northeastern sector of the resurgent block within the CFc, and generated the Agnano plain. The early erupted trachytic magma had a homogeneous alkali–trachytic composition, whereas later-erupted magma shows small-scale hetereogeneities. Trace elements and Sr-isotope compositions, indicate that two isotopically distinct magmas, one alkali–trachytic and the other trachytic, were tapped and partially mixed during the eruption. The small volume 1.2 km3 DRE. of erupted magma and the structural position of the vent suggest that the eruption was fed by a dyke intruded along a normal fault in the sector of the resurgent block under a tensional stress regime. q1999 Elsevier Science B.V. All rights reserved
    Description: Published
    Description: 269–301
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Agnano–Monte Spina tephra ; Campi Flegrei caldera ; magma ; pyroclastic-fallout; pumice ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-01
    Description: Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a ‘viscous plug’, which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
    Description: European Union’s Seventh Framework Programme (FP7/2007–2013) project NEMOH, REA grant agreement No. 289976
    Description: Published
    Description: 210-218
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: analogue modeling ; strombolian explosions ; plugged vents ; volcano acoustic ; volcano infrasonic ; slug bursting ; Taylor bubble ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-12
    Description: Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈0.1 to ≈14 kg per event, with corresponding total gas masses of ≈0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measurement data. If we assume that gas transport within the magma can be represented by a train of rising gas pockets or slugs, then the high frequency of events indicates that these slugs must have been in close proximity. In this case the longer repose durations associated with the larger slugs would be consistent with interactions between adjacent slugs leading to coalescence, a process expedited close to the surface by rapid slug expansion. We apply basic modelling considerations to the measured gas masses in order to investigate potential slug characteristics governing the observed activity.We also cross correlated the acquired gas fluxes with contemporaneously obtained seismic data but found no relationship between the series in line with the mild form of manifest explosivity.
    Description: Published
    Description: 103–111
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Mild strombolian activity ; Ultra-violet imaging ; Volcanic gas measurements ; Slug dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-22
    Description: The rocks of Alban Hills and Monti Sabatini volcanoes (Central Italy) and their associated epiclastic deposits have been extensively used as building material in ancient Rome from about VIIIth century BCE to IVth century CE. However, the identification of the source areas of these rocks is difficult due to the lack of an integrated stratigraphic and geochemical analysis of the relationships between the two volcanic districts, and to the alteration affecting the primary products as consequence of weathering and pedogenetic processes. Here, a comprehensive, upgraded stratigraphic and geochronological review of the two volcanic districts, corroborated by new geochronological data for several eruptive units and altered deposits is presented, coupled to a complete geochemical background, achieved by means of newly determined major and trace element analyses for all the main eruptive units. A study of the alteration processes of the primary products is also presented, and the age of the main weathering and pedogenetic phases, associated to Quaternary climatic changes, are also investigated. The results are integrated with those from literature in order to construct discriminant diagrams based on selected trace elements, and allow us to characterize the primary and altered volcanic deposits in the Rome area, distinguish products of different volcanic districts, discuss the effects of different weathering processes on the mobility of some elements, and provide a reference frame for the provenance of the volcanic materials employed in ancient Roman masonry. The interdisciplinary data set and results presented here provide groundwork for volcanological, climate, pedological and archaeological provenance studies.
    Description: Published
    Description: 115–136
    Description: JCR Journal
    Description: restricted
    Keywords: Quaternary volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-09
    Description: Etna's January 2011 eruption provided an excellent opportunity to test the ability of Meteosat Second Generation satellite's Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor to track a short-lived effusive event. The presence of lava fountaining, the rapid expansion of lava flows, and the complexity of the resulting flow field make such events difficult to track from the ground. During the Etna's January 2011 eruption, we were able to use thermal data collected by SEVIRI every 15 min to generate a time series of the syn-eruptive heat flux. Lava discharge waxed over a ~1-h period to reach a peak that was first masked from the satellite view by a cold tephra plume and then was of sufficient intensity to saturate the 3.9-μm channel. Both problems made it impossible to estimate time-averaged lava discharge rates using the syn-eruptive heat flux curve. Therefore, through integration of data obtained by ground-based Doppler radar and thermal cameras, as well as ancillary satellite data (from Moderate Resolution Imaging Spectrometer and Advanced Very High Resolution Radiometer), we developed a method that allowed us to identify the point at which effusion stagnated, to allow definition of a lava cooling curve. This allowed retrieval of a lava volume of ~1.2×106 m3, which, if emitted for 5 h, was erupted at a mean output rate of ~70 m3 s−1. The lava volume estimated using the cooling curve method is found to be similar to the values inferred from field measurements.
    Description: This work was supported by the Centre National d’Etudes Spatiales (CNES-France) and CNRS-INSU.
    Description: Published
    Description: 787–793
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna volcano ; lava flux ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-22
    Description: Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli vol- cano, investigated by means of a monitoring network com- prising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network re- vealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse oc- curred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlarge- ment of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.
    Description: Published
    Description: 39
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; Remote sensing ; Visible and infrared webcam monitoring ; Ground-based radar interferometry ; Crater-wall collapse ; Volcano instability ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-06-30
    Description: Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer).
    Description: Published
    Description: 261–271
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-07-13
    Description: We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1–200 Ω m. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches we obtain the permeability of the shallow layer below Fangaia which ranges between (2–4) × 10− 14 m2.
    Description: Published
    Description: 172-182
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal System ; Carbon dioxide flux ; Gas saturation ; Solfatara ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-01-27
    Description: We describe a new type of secondary rootless phreatomagmatic explosions observed at active lava flows at volcanoes Klyuchevskoy (Russia) and Etna (Italy). The explosions occurred at considerable (up to 5 km) distances from primary volcanic vents, generally at steep (15–35°) slopes, and in places where incandescent basaltic or basaltic-andesitic lava propagated over ice/water-saturated substrate. The explosions produced high (up to 7 km) vertical ash/steam-laden clouds as well as pyroclastic flows that traveled up to 2 km downslope. Individual lobes of the pyroclastic flow deposits were up to 2 m thick, had steep lateral margins, and were composed of angular to subrounded bomb-size clasts in a poorly sorted ash–lapilli matrix. Character of the juvenile rock clasts in the pyroclastic flows (poorly vesiculated with chilled and fractured cauliflower outer surfaces) indicated their origin by explosive fragmentation of lava due to contact with external water. Non-juvenile rocks derived from the substrate of the lava flows comprised up to 75% in some of the pyroclastic flow deposits. We suggest a model where gradual heating of a water-saturated substrate under the advancing lava flow elevates pore pressure and thus reduces basal friction (in the case of frozen substrate water is initially formed by thawing of the substrate along the contact with lava). On steep slope this leads to gravitational instability and sliding of a part of the active lava flow and water-saturated substrate. The sliding lava and substrate disintegrate and intermix, triggering explosive “fuel–coolant” type interaction that produces large volume of fine-grained clastic material. Relatively cold steam-laden cloud of the phreatomagmatic explosion has limited capacity to transport upward the produced clastic material, thus part of it descends downslope in the form of pyroclastic flow. Similar explosive events were described for active lava flows of Llaima (Chile), Pavlof (Alaska), and Hekla (Iceland) indicating that this type of explosions and related hazard is common at snow/ice-clad volcanoes and sometimes happens also on fluid-saturated hydrothermally altered slopes.
    Description: Published
    Description: 60–72
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow; pyroclastic flow; secondary explosion; phreatomagmatic explosion; Klyuchevskoy; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-05-12
    Description: An accelerating process of ground deformation that began 10 years ago is currently affecting the Campi Flegrei caldera. The deformation pattern is here explained with the overlapping of two processes: short time pulses that are caused by injection of magmatic fluids into the hydrothermal system; and a long time process of heating of the rock. The short pulses are highlighted by comparison of the residuals of ground deformation (fitted with an accelerating polynomial function) with the fumarolic CO2/CH4 and He/CH4 ratios (which are good geochemical indicators of the arrival of magmatic gases). The two independent datasets show the same sequence of five peaks, with a delay of ∼200 days of the geochemical signal with respect to the geodetic signal. The heating of the hydrothermal system, which parallels the long-period accelerating curve, is inferred by temperature–pressure gas geoindicators. Referring to a recent interpretation that relates variations in the fumarolic inert gas species to open system magma degassing, we infer that the heating is caused by enrichment in water of the magmatic fluids and by an increment in their flux. Heating of the rock caused by magmatic fluids can be a central factor in triggering unrest at calderas.
    Description: Published
    Description: 58-67
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei Caldera ; hydrothermal system ; ground deformation ; magmatic fluids ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-06-25
    Description: Monogenetic volcanic fields, such as the Auckland Volcanic Field (AVF), New Zealand, are common on the Earth’s surface and are typically dominated by basaltic lava flows up to 10 s of km long. In monogenetic volcanic fields located in close proximity to human population and infrastructure, lava flows are a significant threat. In this study, lava flow emplacement conditions for some basaltic eruptions of the AVF were reconstructed using the thermo-rheological MAGFLOW model. Eight existing lava flows in the AVF were simulated using MAGFLOW and eruptive volumes measured from Light Detection and Ranging (LiDAR)-derived digital terrain models (DTMs). Fitting the simulations to the dimensions of actual lava flows provides insight into their emplacement mechanisms and conditions, such as effusion rate, and probable eruption durations. By looking at emplacement in different settings, the likely magma ascent rate for studied AVF eruptions is calculated to have been on the order of 0.1 m/s. In the AVF, the typical estimated duration of past lava flows was from a minimum of 2 days for small volume flows, such as Little Rangitoto (0.0015 km3), up to 83 days for large volume flows, such as Three Kings (0.078 km3). The three best-fitting simulations were used to establish eruption scenarios for future volcanic hazard mapping for the AVF. Inferences of eruption duration that will be useful for developing realistic emergency management plans and recovery scenarios for this densely populated volcanic field are also provided.
    Description: Published
    Description: 879
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow ; Effusion rate ; Magma flux ; Ascent velocity ; MAGFLOW ; Numerical simulation ; Feeder dyke ; Scoria cone ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997 - September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.
    Description: Consiglio Nazionale delle Ricerche of Italy (C.N.R.)Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 80-89
    Description: partially_open
    Keywords: Mt. Etna ; Soil CO2 emissions ; Plume SO2 flux ; COSPEC ; Continuous geochemical monitoring ; Eruptive activity ; Degassing model ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 1644622 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Measurements of CO2 flux from the ground were periodically carried out on the island of Vulcano (Aeolian Islands, Italy) between 1984 and 1994. Three high-flux areas were identified at the foot of the volcanic cone (La Fossa), either inside or very close to the main village. Effect of the choice of the sampling grid was evaluated. A different sampling grid resulted in similar distribution patterns, but with different CO2 fluxes. Therefore, the absolute estimate of the total flux from the investigated area includes a large degree of uncertainty, but repeated measurements with permanent sampling sites are accurate and can detect small changes. No correlation of the flux with atmospheric parameters was found at sites with high fluxes. Some periods characterized by high CO2 fluxes were observed, and a close correlation was found between the gas emissions from the ground and other geochemical and geophysical parameters such as temperature, chemical composition, steam, and SO2 flux from fumaroles, seismic energy release, and ground deformations. The results show that major temporal variations of diffuse CO2 flux are related to variations in volcanic activity.
    Description: Gruppo Nazionale per la Vulcanologia CNR Italy.
    Description: Published
    Description: 219–228
    Description: partially_open
    Keywords: CO2 ; Flux measurements ; Gas emissions ; Soil gas ; Volcanic activity ; Vulcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 368780 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002–January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (Q4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and shortand midterm eruption forecasting of explosive activity.
    Description: Published
    Description: 821-823
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727523 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Springer-Verlag
    Publication Date: 2017-04-04
    Description: The July-August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3050 and 2100 m altitude, and two on the NE flank between 3080 and 2600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore one of the eccentric vents, at 2570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, both during the intial and closing stages of the eruption. For six days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25 x 106 m3 of lava and 5-10 x 106 m3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14-16 m3 s-1 while the average effusion rate at all fissures was about 11 m3 s-1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid 17th century.
    Description: Published
    Description: 461-476
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; 2001 eruption ; Lava flow-field evolution ; Central-lateral vs. eccentric activity ; Phreatomagmatism ; Eruption dynamics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.
    Description: Published
    Description: 103-118
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon dioxide ; Soil diffuse degassing ; Monitoring ; Vesuvio . Campi Flegrei ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: We report the first results of the field operation of a novel, portable diode-laser spectrometer for gasconcentration measurements in volcanic areas. Remote detection of direct absorption line shapes was possible thanks to a telecomsingle-mode optical fiber that delivered radiation from a room-temperature distributed-feedback diode laser, emitting at 1.997 µm, to an open-path multiple-reflection cell, placed on gas effluxes. The system was deployed on two different active volcanoes in Italy, where simultaneous and continuous monitoring of CO2 and H2O concentrations has been demonstrated.
    Description: Published
    Description: 235-240
    Description: partially_open
    Keywords: spectrometer ; volcanic gases ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 436 bytes
    Format: 309243 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (〈3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.
    Description: Published
    Description: 517-529
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Central volcanoes ; Summit and flank eruptions ; Dikes ; Tectonics ; Volcano load ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: We use a kinematic GPS and laser range findersurvey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel– levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ~2 m deep and ~11 m wide channel became centred. This is capped by a second package of thin (〈45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ~10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely shortlived. During a dominant period of below-bank flow, flow depth was ~2 m with an effusion rate of ~35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ~10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using highresolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.
    Description: In press
    Description: on line first
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Lava channel ; Levees ; Effusion rates ; Flow dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: High precision aerial photogrammetry has been used in addition to other geophysical techniques such as bathymetric surveys, geodetic measurements, microseismicity recording, etc., for monitoring slope deformations and the volcanic activity of Stromboli Island (Aeolian Arc, Italy), during the last effusive eruption, which started on December 28, 2002 and soon after the major landslide/ tsunami event of December 30. Qualitative and quantitative description of topographic and morphological changes of the Sciara del Fuoco were possible thanks to a recent preeruption photogrammetric survey performed in 2001; the comparisons of 12 multi-temporal digital terrain models carried out during the period January–June 2003 were used to evaluate the displaced mass by the landslide, the lava accumulation and the erosion processes of the Sciara del Fuoco. After the end of the eruption, four additional photogrammetric surveys were performed between July 2003 and October 2005 to monitor the evolution of the slope and detect potential instability phenomena. The slope appeared significantly modified and continued to evolve, showing marked erosion both on the lower part and toward the craters terrace. Over the same period, the new lava flows showed progressive contraction of the thicker part of the lava pile caused by its cooling and compaction and the possible sliding along the shear surface of the December 2002 deep-seated movement. The present morphology seems to be far from equilibrium and the deformation processes are still ongoing, justifying a continuous monitoring activity to understand the evolution of these instability phenomena.
    Description: Dipartimento della Protezione Civile (DPC) and Istituto Nazionale di Geofisica e Vulcanologia (INGV), Project V1_2
    Description: Published
    Description: 703–715
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Sciara del Fuoco ; Digital photogrammetry ; Digital terrain models ; Morphology ; Landslide ; Slope deformation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection– diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA reanalysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.
    Description: Published
    Description: 259–273
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Tephra fallout hazard ; Tephra loading ; Campi Flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: Significant changes in the helium and carbon isotopic composition of shallow thermal waters vs. gas and a crater fumarolic gas have been recorded at Stromboli prior and during the 2002–2003 eruption. The 3He/4He ratios corrected for air contamination (Rc/Ra), and δ13C of fumarolic gases gradually increased from May to November 2002 before the eruption onset. These variations imply early degassing of a gas-rich magma at depth that likely fed both the intense Strombolian activity and small lava overflows recorded during that period. The lava effusion of late December 2002 was shortly preceded by a marked Rc/Ra decrease both in water and fumarolic gases. Comparison of He/CO2 and CH4/CO2 ratios in dissolved gas and with δ13CCO2 values rules out the Rc/Ra decrease due to an increasing input of radiogenic 4He. The Rc/Ra decrease is attributed to the He isotope fractionation during rapid magma ascent and degassing. A new uprising of 3He-rich magma probably occurred in January to February 2003, when Rc/Ra ratios displayed the highest values in dissolved gases ever measured before (4.56 Rc/Ra). The increase in He/CO2 and CH4/CO2 ratios and decrease in δ13C of dissolved CO2 was recorded after the 5 April 2003 explosive paroxysm, likely caused by enhanced gas-water interaction inducing CO2 dissolution. No anomalous Rc/Ra values were recorded in the same period, when usual Strombolian activity gradually resumed.
    Description: Published
    Description: 118–134
    Description: partially_open
    Keywords: Stromboli ; Eruption ; Geochemistry ; Helium ; Isotopes ; Magma ascent ; Dissolved gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 482068 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971– 2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.
    Description: Published
    Description: 149-173
    Description: reserved
    Keywords: Mount Etna ; Lava fountaining ; Microplinian ; Remote video monitoring ; Volume calculations ; Cone growth ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1912898 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Abstract After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma– water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.
    Description: A part of this research was funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 1249–1268
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Mount Etna ; Pyroclastic density currents ; Lava–water interaction ; Hydrothermal alteration ; Hazards ; Volcano instability ; 2006 eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Dikes within stratovolcanoes are commonly expected to have radial patterns. However, other patterns may also be found, due to regional stresses, magmatic reservoirs and topographic variations. Here, we investigate dike patterns within volcanic edifices by studying dike and fissure complexes at Somma-Vesuvius and Etna (Italy) using analogue models. At the surface, the dikes and fissures show a radial configuration. At depths of tens to several hundreds of metres, in areas exposed by erosion, tangential and oblique dikes are also present. Analogue models indicate that dikes approaching the flanks of cones, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress). This re-orientation is a significant process in shallow magma migration and may also control the emplacement of dikefed fissures reaching the lower slopes of the volcano.
    Description: This work was partly financed with DPC-INGV LAVA Project.
    Description: Published
    Description: 219-223
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Dike propagation ; Central volcanic edifices ; Stress ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Accurate and precisely located self-potential (SP), temperature (T) and CO2 measurements were carried out in the summit area of Stromboli along 72 straight profiles. SP data were acquired every metre and T data every 2.5 m. CO2 concentrations were acquired with the same density as T, but only along seven profiles. The high density of data and the diversity of the measured parameters allows us to study structures and phenomena at a scale rarely investigated. The shallow summit hydrothermal activity (Pizzoâ Fossa area) is indicated by large positive SP, T and CO2 anomalies. These anomalies are focused on crater faults, suggesting that the fracture zones are more permeable than surrounding rocks at Stromboli. The analysis of the distribution of these linear anomalies, coupled with the examination of the geologic, photographic and topographic data, has led us to propose a new structural interpretation of the summit of Stromboli. This newly defined structural framework comprises (1) a large Pizzo circular crater, about 350 m in diameter; (2) a complex of two concealed craters nested within the Pizzo crater (the Large and the Small Fossa craters), thought to have formed during the eruption of the Pizzo pyroclastites unit; the Small Fossa crater is filled with highly impermeable material that totally impedes the upward flow of hydrothermal fluids; and (3) The present complex of active craters. On the floor of the Fossa, short wavelength SP lows are organized in drainage-like networks diverging from the main thermal anomalies and converging toward the topographic low in the Fossa area, inside the Small Fossa crater. They are interpreted as the subsurface downhill flow of water condensed above the thermal anomalies. We suspect that water accumulates below the Small Fossa crater as a perched water body, representing a high threat of strong phreatic and phreatomagmatic paroxysms. T and CO2 anomalies are highly correlated. The two types of anomalies have very similar shapes, but the sensitivity of CO2 measurements seems higher for lowest hydrothermal flux. Above T anomalies, a pronounced high frequency SP signal is observed. Isotopic analyses of the fluids show similar compositions between the gases rising through the faults of the Pizzo and Large Fossa craters. This suggests a common origin for gases emerging along different structural paths within the summit of Stromboli. A site was found along the Large Fossa crater fault where high gas flux and low air contamination made gas monitoring possible near the active vents using the alkaline bottle sampling technique.
    Description: Published
    Description: 486â 504
    Description: partially_open
    Keywords: Carbon dioxide ; Hydrothermal system ; Soil gas ; Stromboli ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1326642 bytes
    Format: 535 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: An open channel lava flow on Mt. Etna (Sicily) was observed during May 30–31, 2001. Data collected using a forward looking infrared (FLIR) thermal camera and a Minolta-Land Cyclops 300 thermal infrared thermometer showed that the bulk volume flux of lava flowing in the channel varied greatly over time. Cyclic changes in the channel’s volumetric flow rate occurred over several hours, with cycle durations of 113–190 min, and discharges peaking at 0.7 m3 s−1 and waning to 0.1 m3 s−1. Each cycle was characterized by a relatively short, high-volume flux phase during which a pulse of lava,with awell-defined flow front, would propagate down-channel, followed by a period of waning flow during which volume flux lowered. Pulses involved lava moving at relatively high velocities (up to 0.29 m s−1) and were related to some change in the flow conditions occurring up-channel, possibly at the vent. They implied either a change in the dense rock effusion rate at the source vent and/or cyclic-variation in the vesicle content of the lava changing its bulk volume flux. Pulses would generally overspill the channel to emplace p¯ahoehoe overflows. During periods of waning flow, velocities fell to 0.05 m s–1. Blockages forming during such phases caused lava to back up. Occasionally backup resulted in overflows of slow moving ‘a‘¯a that would advance a few tens of meters down the levee flank. Compound levees were thus a symptom of unsteady flow, where overflow levees were emplaced as relatively fast moving p¯ahoehoe sheets during pulses, and as slow-moving ‘a‘¯a units during backup. Small, localized fluctuations in channel volume flux also occurred on timescales of minutes. Volumes of lava backed up behind blockages that formed at constrictions in the channel. Blockage collapse and/or enhanced flow under/around the blockage would then feed short-lived, wave-like, downchannel surges. Real fluctuations in channel volume flux, due to pulses and surges, can lead to significant errors in effusion rate calculations.
    Description: Published
    Description: 497-515
    Description: reserved
    Keywords: Etna ; FLIR ; Lava channel ; a‘a ; Thermal ; Unsteady flow ; Morphology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1750933 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Mt. Etna, in Sicily (Italy), is one of the world’s most frequent emitters of volcanic plumes. During the last ten years, Etna has produced copious tephra emission and fallout that have damaged the inhabited and cultivated areas on its slopes and created serious hazards to air traffic. Recurrent closures of the Catania International airport have often been necessary, causing great losses to the local economy. Recently, frequent episodes of ash emission, lasting from a few hours to days, occurred from July to December 2006, necessitating a look at additional monitoring techniques, such as remote sensing. The combination of a ground monitoring system, with polar satellite data represents a novel approach to monitor Etna’s eruptive activity and makes Etna one of the few volcanoes for which this surveillance combination is routinely available. In this work, ash emission information derived from an integrated approach, based on comparing ground and NOAA-AVHRR polar satellite observations, is presented. This approach permits us to define the utility of real time satellite monitoring systems for both sporadic and continuous ash emissions. Using field data (visible observations, collection of tephra samples and accounts by local inhabitants), the duration and intensity of most of the tephra fallout events were evaluated in detail and, in some cases, the order of magnitude of the erupted volume was estimated. The ground data vs. satellite data comparison allowed us to define five different categories of Etna volcanic plumes according to their extension and length, while taking into account plume height and wind intensity. Using frequent and good quality satellite data in real time, this classification scheme could prove helpful for investigations into a possible correlation between eruptive intensity and the presence and concentration of ash in the volcanic plume. The development and improvement of this approach may constitute a powerful warning system for Civil Protection, thus preventing unnecessary airport closures.
    Description: FIRB B5 Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by MIUR
    Description: Published
    Description: 135–147
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; Mt. Etna ; ground monitoring ; NOAA–AVHRR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux is measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara, are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.
    Description: In press
    Description: on line first
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 degassing ; volcanic monitoring ; Solfatara ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-03
    Description: A high-resolution morphological and geological inspection was carried out on the Palinuro Bank (39 300N, 14 480E), a volcanic complex made by several, coalescent volcanic features located on the Cam- panian continental slope (Eastern Tyrrhenian Sea, Italy). A shallow ( 84 m asl) volcanic edifice, char- acterized by a flat top modelled surface, is present on its central sector. The use of a very high-resolution Digital Terrain Model allowed recognition of the presence of relict morphologies (perhaps notches/inner margins) related to the past sea-level still-stands. Three depth levels of paleo-shorelines markers are located at 90 m, 100 m, and 123 m, respectively. In addiction, the truncated shape of the cone itself, located between 84 m and 130 m, could be interpreted as a tilted marine terrace. Breaks in slope produced by terrace landforms caused oversteepening that could have triggered lateral collapses both on the northern and southern flanks of the Bank, as suggested by the presence of steep slopes (25e40 ) and indicated by acoustic facies on chirp high-resolution mono-channel seismic profiles. The results allow further hypotheses on vertical displacement between the western sector of the Palinuro Bank, where caldera shapes are present, and the central sector, made by shallower volcanic cones. These two sectors also differ in terms of magnetic properties.
    Description: Published
    Description: 228-237
    Description: JCR Journal
    Description: restricted
    Keywords: Palinuro Bank ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: This study assessed the use of a H2 fuel cell as an H2-selective sensor for volcano monitoring. The resolution, repeatability, and cross-sensitivity of the sensor were investigated and evaluated under known laboratory conditions. A tailor-made device was developed and used for continuously monitoring H2 and CO2 at Mt Etna throughout 2009 and 2010. The temporal variations of both parameters were strongly correlated with the evolution of the volcanic activity during the monitoring period. In particular, the CO2 flux exhibited long-term variations, while H2 exhibited pulses immediately before the explosive activity that occurred at Mt Etna during 2010.
    Description: Published
    Description: 41–51
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; H2 monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: The constant and mild activity of Stromboli volcano (Italy) is occasionally interrupted by effusive events and/or more energetic explosions, referred to as major explosions and paroxysms, which are potentially dangerous for the human community. Although several premonitory signals for effusive phases have been identified, precursors of major explosions and paroxysms still remain poorly understood. With the aim of contributing to the identification of possible precursors of energetic events, this work discusses soil temperature data acquired in low-temperature fumaroles at Stromboli in the period 2006–2010. Data analysis revealed that short-term anomalies recorded in the thermal signal are potentially useful in predicting state changes of the volcano. In particular, sudden changes in fumarole temperatures and their hourly gradients were observed from several days to a few hours prior to fracturing and paroxysmal events, heralded by peculiar waveforms of the recorded signals. The qualitative interpretation is supported by a quantitative, theoretical treatment that uses circuit theory to explain the time dependence of the short-period temperature variations, showing a good agreement between theoretical and observational data.
    Description: DPCN
    Description: Published
    Description: 776
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Effusive eruption ; Low-temperature fumarole ; Major explosion ; Paroxysm ; Precursor ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: There have been limited studies to date targeting gaseous elemental mercury (GEM) flux from soil emission in enriched volcanic substrates and its relation with CO2 release and tectonic structures. In order to evaluate and understand the processes of soil–air exchanges involved at Solfatara of Pozzuoli volcano, the most active zone of Campi Flegrei caldera (Italy), an intensive field measurement survey has been achieved in September 2013 by using high-time resolution techniques. Soil–air exchange fluxes of GEM and CO2 have been measured simultaneously at 116 points, widely distributed within the crater. Quantification of gas flux has been assessed by using field accumulation chamber method in conjunction with a Lumex®-RA 915 + portable mercury vapor analyzer and a LICOR for CO2 determination, respectively. The spatial distribution of GEM and CO2 emissions correlated quite closely with the hydrothermal and geological features of the studied area. The highest GEM fluxes (from 4.04 to 5.9 × 10− 5 g m− 2 d− 1) were encountered close to the southern part of the crater interested by an intense fumarolic activity and along the SE–SW tectonic fracture (1.26 × 10− 6–6.91 × 10− 5 g GEM m− 2 d− 1). Conversely, the lowest values have been detected all along the western rim of the crater, characterized by a weak gas flux and a lush vegetation on a very sealed clay soil, which likely inhibited mercury emission (range: 1.5 × 10− 7–7.18 × 10− 6 g GEM m− 2 d− 1). Results indicate that the GEM exchange between soil and air inside the Solfatara crater is about 2–3 orders of magnitude stronger than that in the background areas (10− 8–10− 7 g m− 2 d− 1). CO2 soil diffuse degassing exhibited an analogous spatial pattern to the GEM fluxes, with emission rates ranging from about 15 to ~ 20,000 g CO2 m− 2 d− 1, from the outermost western zones to the south-eastern sector of the crater. The observed significant correlation between GEM and CO2 suggested that in volcanic system GEM volatilizes from substrate in a similar manner to the release of CO2. The quantitative estimation of the total amount of CO2 and GEM released from the Solfatara crater gave values of about 304 ± 13 and 3.7 ± 0.2 × 10− 6 t d− 1, respectively. Finally, based on our dataset and previous work, we propose that an average GEM/CO2 molar ratio of ~ 2 × 10− 8 (n = 9) is best representative of hydrothermal degassing. Taking into account the uncertainty in global hydrothermal CO2 emissions from sub-aerial environments (~ 1012 Mol yr− 1), we infer a global volcanic GEM flux from hydrothermal environments of ~ about 8.5 t yr− 1. Although this value has to be considered as a lower limit for the global emission of GEM from these sources, we suggest that on a local scale hydrothermal activity can be regarded as a significant source of GEM than previously recognized to the atmospheric pool.
    Description: Published
    Description: 26-40
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Flux Chamber Survey ; Mercury ; CO2 emissions ; Solfatara ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Several volcanoes worldwide have shown changes in their stress state as a consequence of the deformation produced by the pressurization of a magmatic body. This study investigates seismic swarms occurring on the western flank of Mt. Etna in January 1997 - January 1998. Integrating seismic observations and geodetic data, we constrained the seismogenic fault system, and on the basis of stress tensor inversion and SHMAX analyses, we infer an inflating pressure source located at 5.5 km b.s.l. beneath the west portion of summit area. Evaluation of Coulomb failure stress (CFS) related to the proposed model, showed how a large part of the seismogenic fault underwent a significant CFS increase (500 kPa). We infer the presence of a sub-vertical faulted region, potentially weak, N50°E oriented beneath the western sector of Mt. Etna. This structure could be brought closer to failure thereby generating seismic swarms as the effect of elastic stress transfer induced by movement and/or overpressure of magmatic masses within the upper crust under the volcano.
    Description: This research was funded by the INGV–DPC 2007–2009 Agreement (Project V4_Flank).
    Description: Published
    Description: 339-348
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; modelling ; Seismicity ; GPS monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-03
    Description: A geologically reasonable working hypothesis is proposed for the lithology of the basement underlying the Campi Flegrei caldera in the ca. 4–8 km depth range. In most current geophysical modeling, this portion of crust is interpreted as composed of Meso-Cenozoic carbonate rocks, underlain by a ca. 1 km thick sill of partially molten rock, thought to be a main magma reservoir. Shallower magma reservoirs likely occur in the 3–4 km depth range. However, the lack of carbonate lithics in any Campi Flegrei caldera volcanic rocks does not support the hypothesis of a limestone basement. Considering the major caldera-forming eruptions, which generated widespread and voluminous ignimbrites during late Quaternary times, including the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions, the total volume of trachytic to phonolitic ejected magma is conservatively estimated at not less than 350 km3. Results of least-squared mass-balance calculations suggest that this evolved magma formed through fractional crystallization from at least 2500 km3 of parent shoshonitic magma, in turn derived from even more voluminous, more mafic, K-basaltic magma. Calculations suggest that shoshonitic magma, likely emplaced at ca. 8 km depth, must have crystallized about 2100 km3 of solid material, dominated by alkali-feldspar and plagioclase, with a slightly lower amount of mafic minerals, during its route toward shallower magma reservoirs, before feeding the Campi Flegrei large-volume eruptions. The calculated volume of cumulate material, likely syenitic in composition at least in its upper portions, is more than enough to completely fill the basement volume in the 4–8 km depth range beneath the Campi Flegrei caldera, estimated at ca. 1250 km3. Thus, it is proposed that the basement underlying the Campi Flegrei caldera below 4 km is composed mostly of crystalline igneous rocks, as for many large calderas worldwide. Syenite sensu lato would meet physical properties requirements for geophysical data interpretations, explain some geochemical and isotopic features of the past 15 ka volcanics, and justify the carbon isotopic composition of fumaroles at the Campi Flegrei caldera. This implies that Meso-Cenozoic limestones, if still present today beneath the Campi Flegrei caldera, no longer constitute significant portions of its basement.
    Description: Published
    Description: 91–98
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: We produce a spatial probability map of vent opening (susceptibility map) at Etna, using a statistical analysis of structural features of flank eruptions of the last 2 ky. We exploit a detailed knowledge of the volcano structures, including the modalities of shallow magma transfer deriving from dike and dike-fed fissure eruptions analysis on historical eruptions. Assuming the location of future vents will have the same causal factors as the past eruptions, we converted the geological and structural data in distinct and weighted probability density functions, which were included in a non-homogeneous Poisson process to obtain the susceptibility map. The highest probability of new eruptive vents opening falls within a N-S aligned area passing through the Summit Craters down to about 2,000 ma.s.l. on the southern flank. Other zones of high probability follow the North-East, East-North-East, West, and South Rifts, the latter reaching low altitudes (∼400 m). Less susceptible areas are found around the faults cutting the upper portions of Etna, including the western portion of the Pernicana fault and the northern extent of the Ragalna fault. This structuralbased susceptibility map is a crucial step in forecasting lava flow hazards at Etna, providing a support tool for decision makers.
    Description: This study was performed with the financial support from the V3-LAVA project (DPC-INGV 2007–2009 contract).
    Description: Published
    Description: 2083–2094
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Flank eruption ; Dike ; Volcano structure ; Susceptibility map ; Spatial clustering ; Back analysis ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: In this paper, we report four years of soil CO2 emission data measured monthly at 130 sites in two peripheral areas of Mt Etna Volcano that are well known for their high discharge rates of volcanic gas. We remove the influence of atmospheric parameters, and by means of statistical analyses, we (i) demonstrate that variations in CO2 emissions are due mainly to CO2 of a deep origin and (ii) quantify the total amounts of CO2 derived from a deep magma source. Periods of anomalous deep degassing are identified in both areas. A comparison of the timing of these anomalies and geophysical data indicates that the periods of anomalous degassing can be mostly ascribed to intrusions of fresh magma into the Etna plumbing system, which is in agreement with many previous works. Based on the existing literature, we formulate an interpretative framework of magma migration within the plumbing system, consistent with temporal trends in the observed anomalies. Finally, we reconstruct the processes of recent magma ascent at Mt Etna based on our interpretative framework, published geophysical data, and records of volcanic activity.
    Description: Published
    Description: 218-227
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; Mt Etna ; Volcanic activity ; Magma transfer ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: We propose a formal procedure to validate the hypothesis of a causal relationship between great tectonic earthquakes and volcanic eruptions through a forward statistical test. This approach allows such a hypothesis to be evaluated in an objective way, ruling out any possible unconscious overfitting of the past data. The procedure consists of two steps: (a) the computation of the stress perturbation in a volcanic area due to some selected seismic event, by means of a spherical, layered, viscoelastic and self- gravitating earth model; and (b) the application of a statistical test to check the differences in the spatio-temporal distribution of eruptions before and after the earthquake, weighting each eruption with the stress perturbation induced at the volcano at the time of the eruption. Finally, for the sake of example, we apply the method to the case of the recent Engano earthquake in Sumatra (June 2000) and the Denali earthquake in Alaska (November 2002).
    Description: Published
    Description: 383 – 395
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake–volcano interaction ; post-seismic stress perturbation ; forward test ; Engano earthquake ; Denali earthquake ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: To achieve a balance between uncertainty and efficiency in gravity measurements, we have investigated the applicability of combined measurements of absolute and relative gravity as a hybrid method for volcano monitoring. Between 2007 and 2009, three hybrid gravity surveys were conducted at Mt Etna volcano, in June 2007, July 2008, and July 2009. Absolute gravity data were collected with two absolute gravimeters, which represent the state of the art in recent advances in ballistic gravimeter technology: (1) the commercial instrument FG5#238 and (2) the prototype instrument IMGC-02. We carried out several field surveys and confirmed that both the absolute gravimeters can still achieve a 10 μGal or better uncertainty even when they are operated in severe environmental conditions. The use of absolute gravimeters in a field survey of the summit area of Mt Etna is unprecedented. The annual changes of the gravity measured over 2007–2008 and 2008–2009 provide unequivocal evidence that during the 2007–2009 period, two main phenomena of subsurface mass redistribution occurred in distinct sectors of the volcano, accompanying different eruptive episodes. From 2007 to 2008, a gravity change of −60 μGal was concentrated around the North- East Rift. This coincided with a zone affected by strong extensional tectonics, and hence might have been related to the opening of new voids. Between 2008 and 2009, a North-South elongate feature with a maximum gravity change of +80 μGal was identified in the summit craters area. This is interpreted to indicate recharge of a deepintermediate magma storage zone, which could have occurred when the 2008–2009 eruption was still ongoing.
    Description: Published
    Description: 1745-1756
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mt Etna . Relative gravity . Absolute gravity . ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009–May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai–Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July–August 2011. We interpreted the seismic-related anomalies as ‘‘crustal fluid transients’’, i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.
    Description: Accordo Quadro DPC-INGV 2012-21, Convenzione C, 2012,Progetto V3, Task 3, WP13, UR2
    Description: Published
    Description: 160-169
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal transient ; Fumarole temperature ; Seismic activity ; Stress field ; Teleseism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: The continuous monitoring shows short term dynamics and allows multidisciplinary comparisons. Sharp increases and trending variations were recorded in fumarole temperatures. The trends highlighted by punctual monitoring characterized the main fumaroles. A new phase of increasing temperature begun after the year 2001 at the rim fumaroles.
    Description: The exhalation activity at the La Fossa cone (Vulcano Island, Aeolian Archipelago, Italy) has been ongoing for more than 1 century. Many of the monitored geochemical and geophysical parameters have showed transient variations of energy release. The time-series analyses of fumarole temperatures presented in this paper enabled the sequence of observations to be defined and information from different monitoring stations to be integrated. The motion of fluids feeding the fumaroles of the La Fossa cone is driven by the thermal and kinetic energies that balance the seismic and volcanic forces active in the region, and the temperatures of the fumaroles reflect the local response of the hydrothermal system to these forces. During a 14-year period of observation, from 1998 to 2012, fumarole temperatures showed various trends but also cyclic variations characterized by sharp increases. The repetition of these variations during periods with different trends indicates that no physical variation occurred from the hydrothermal source to the surface during the analyzed period, and after each periodic geochemical crisis the previous thermal conditions were restored. Although the continuous monitoring of hightemperature fumaroles was limited to only a few sites, the observed trends characterized the most important fumaroles in the area of Vulcano Island. An evaluation of thermal-energy release based on these spatially discrete measurements would be a speculative exercise in thermodynamics, but the analyses of the recorded data represent a step forward in interpreting the signals from ongoing volcanic activity and in assessing the seismic risk. © 2013 Elsevier B.V. All rights reserved.
    Description: INGV-DPC project
    Description: Published
    Description: 150-163
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: temperature, fumarole, time series, monitoring, geochemistry, volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Archaeological and volcanological studies conducted in the Naples area have revealed that numerous high-intensity explosive eruptions that occurred in the past 10 ka caused damage and victims in the human communities living in the plain surrounding the Neapolitan volcanoes. These catastrophic events were interspersed by hundred to thousand year long periods of quiescence, usually exceeding a human life-time. During the Early Bronze Age in particular, the Campania Plain was densely inhabited due to favourable climatic conditions and soil fertility. The archaeological and volcanological investigation of the sequences found in archaeological excavations has permitted the detailed reconstruction of the effects of eruptions and deposition mechanisms of their products on settlements. This paper discusses the example of Nola- Palma Campania during a most interesting, though poorly known, period of activity bracketed by the Vesuvian Pomici di Avellino (Early Bronze Age) and Pollena (AD 472) Plinian eruptions. Through this timespan the Plainwas variably inhabited, crossed by long-lived roads and subject to agricultural exploitation. Eruptions caused significant breaks in the occupation of the area, but also maintained the plain’s extraordinary fertility. During this period, at least eight other eruptions occurred: the Pomici di Pompei Plinian event (AD 79), two sub-Plinian to phreato-Plinian events, and five violent Strombolian to Vulcanian events. Thin and poorly developed to thicker and mature palaeosols or erosional unconformities separate the various pyroclastic deposits. Almost all the eruptions and related phenomena interacted with human settlements in the Campania Plain, and in their sequences many traces of the displacement of people during the eruptions may be seen, as well as land reclamation and re-utilization soon afterwards. Despite the various kinds of hazard posed by volcanic and related phenomena, humans nevertheless found good reasons for settlement in the Campania Plain and flourished there. A multidisciplinary approach has yielded detailed information regarding the evolution of the area and the effects of eruptions on settlements. These data are of paramount importance for an improved understanding of past events and in evaluating the hazard of eruptions and related phenomena.
    Description: Published
    Description: 132-141
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: stratigrafy ; volcanology ; archaeology ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: In the period from June to September 2011, the Stromboli volcano was affected by an activity characterized by an increase of the volcanic tremor amplitude, in the magnitude of explosions and with some lava overflows. In order to examine and understand in more detail this particular phase of the volcano, we present here an unsupervised investigation of the waveform variation of the explosion-quakes recorded during this period. The aim is to identify a possible relationship between the temporal changes of these events and the volcano seismic activity. The analysis is performed on a dataset of about 8400 explosion-quakes by using a SOM neural network. This technique works well with large datasets allowing to find out unpredicted characteristics among them. The SOM clustering highlights sudden changes occurring at the end of July and of August and a permanent variation between June and September reflecting a modification in the volcano activity. These results could be interesting for focusing the analysis of the seismological dataset in these intervals in order to evidence minor, but important variations, which were previously undetected and to improve the knowledge on the explosive dynamics of the volcano.
    Description: Published
    Description: 111-119
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: restricted
    Keywords: Explosion-quakes ; SOM neural network ; unsupervised clustering ; volcano dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through newfieldworkmeasurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.
    Description: This work has been partially funded by the Spanish Geological Survey (IGME) through the MODEX Project (directed by Luis Laín) and a Research Grant for LB, and the Research grant program “Innova Canarias 2020®” from the “Fundación Universitaria de Las Palmas”.
    Description: Published
    Description: 21-30
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Susceptibility ; Volcanic hazard ; Eruptive vent ; Volcano-tectonics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: The 1669 AD flank eruption was the most destructive event on Etna volcano in historical times (~700 BC) and provided, because of the presence of numerous quarries and subsurface data, the opportunity for a unique case study in which we directly measured the thickness of the lava field. Moreover, analysis of historical documents allowed reconstruction of the temporal evolution of the lava field and estimation of the average effusion rate. One hundred and thirty eight thickness measurements, acquired from field surveys and subsurface data, allowed us to divide the lava field into twelve zones of homogenous mean thickness and to calculate a total lava volume of (607 ± 105) × 106 m3, corresponding to an average effusion rate of 58 ± 10 m3/s. This new volume differs by −24% up to +64%, from previously published values. The temporal evolution of the cumulative volume and average effusion rate were reconstructed for the first fourteen days, from field data and analysis of historical records. A short initial phase was characterized by a rapid increase in effusion rate, which reached a peak of ~640 m3/s after three days. This was followed by a longer phase in which the flow rate decreased. The first fourteen days were crucial for the development of the lava field, and in this time it covered 72% of its final area and produced most of the damage. Thereafter, the growth of a complex lava tube network promoted lava field lengthening to the city of Catania, 17 km away from the vent. Effusion rate trends like those of the 1669 eruption can be adopted for future investigations aimed at assessing the effects of similar events on Etna’s most highly urbanized area and at other effusive basaltic volcanoes.
    Description: Published
    Description: 694
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna, 1669, Lava flow field, Lava volume, effusion rate trend ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: We report the results of 16 months of continuous measurements of soil CO2 flux at a fumarole field in the summit area of Mt. Etna. The patterns of soil CO2 emissions suggest two contrasting degassing regimes. During the period of observation, volcanic activity at the summit craters displayed striking extremes, ranging from passive to explosive degassing, which culminated in lava fountains. These changes in activity coincided with fluctuation between the two degassing patterns. Building on the findings of previous studies, we propose an interpretative framework that explains the observed correlation in terms of a modification of the dynamics of magma supply. We argue that periods of higher CO2 flux are associated with deep open system degassing conditions, whereas low-level CO2 flux signals closed system degassing and less efficient discharge of deeply exsolved gas. An important implication of our study is that, in relation to the two degassing regimes, two types of activity are expected at the summit craters. Thus, our measurements represent a valuable tool for the evaluation of the evolution of volcanic activity
    Description: Published
    Description: 846
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Magma supply dynamics ; Soil CO2 emissions ; Lava fountain ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Herein we report on the chemical and isotopic (C, H, O, and He) compositions of the fluids from La Fossa crater fumaroles of Vulcano from 1999 to 2010. Consistent with records obtained since the end of the 1980s, our data show that the geochemical features of the fumarole system have experienced several episodes of remarkable change, each lasting no more than a few months. Typical signatures of these short-term anomalies are large increments in CO2, N2, and He concentrations, coupled to increased 13C/12C isotopic ratios, but their meaning remains widely debated. Within a model of fumarolic fluids based on mixing between hydrothermal and magmatic endmembers, we have developed a novel approach to constrain chemical (He/ CO2 and N2/He) and isotopic (13C/12C, D/H, and 3He/4He) ratios of the magmatic endmember during the short-term anomalies. Although much of the geochemical variability in fumaroles results from changes in mixing proportions, the magmatic fluid unquestionably shows significant variations in time. The magmatic He/CO2, N2/He, 13C/12C, and 3He/4He values throughout 1988–1996 differed from those feeding the anomaly at the end of 2004. Early clues of the new magmatic fluid appeared in 1998–1999, far from any short-term anomaly, whereas new and old magmatic fluids coexisted after 2004. We quantitatively prove that the detected geochemical changes are consistent with the degassing path of a magma having a latitic composition, and suggest the presence of two magma ponding levels at slightly different pressures, where bubble–melt decoupling can occur. The different He-isotope compositions at these levels suggest low hydraulic connectivity typical of a complex reservoir with dike and sill structures. In this framework, the short-term geochemical anomalies are probably due to gas accumulation at the top of magma bodies followed by massive escape, or activation of new degassing levels in the reservoir, for which the stress field almost certainly plays a key role. Such a scenario explains the observed increases in both fumarole output and shallow high-frequency seismicity (due to increased pore pressure) during the anomalies, while being consistent with the concomitant absence of any deep seismicity or ground deformation, eventually related to magma movement.
    Description: Published
    Description: 158-178
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: fumarole geochemistry ; magma degassing ; thermodynamic modeling ; noble gas geochemistry ; carbon isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: During the ~8-year period between the 1991–93 and 2001 flank eruptions, the eruptive activity of Mt. Etna was confined to the summit craters. Deformation and tomography studies indicate that this activity was fed by a magma accumulation zone centered NE of the summit, at a depth of 5 to 9 km below sea level. The most significant gravity changesmeasured during the same period were induced bymass redistributions at shallower depth below the southeastern flank of the volcano, whereminor ground deformationwas observed (i.e., vertical displacementswithin 2cm). The mismatch between the position of pressure and mass sources is difficult to explain under the assumption that both are directly related to magma dynamics. Past studies have suggested that the gravity changes observed during 1994–2001 may primarily reflect changes in the rate of microfracturing along the NNW–SSE fracture/ weakness zone (FWZ) that crosses the SE slope of Etna. We use the finite element method to shed new light on the complex relations between stress, strain and mass changes that occurred at Etna during the studied period. In particular, following previous results on the degradation of themechanical properties of rocks,we performa set of simulations assuming that the part of themedium containing the FWZ is characterized by a lower Young's modulus than would be expected from interpolation of tomographic data.Wefind that the presence of theFWZ creates a distortion of the displacement field induced by the deeper pressure source, locally resulting in a weak extensional regime. This finding supports the hypothesis of a cause–effect relationship between pressurization beneath theNWflank and tensile extension beneath the SE slope of the volcano. Wepropose that this extensional regime enhanced the propagation of pressurized gas, that, in turn, amplified the tensile strain across the FWZ. We also find that decreasing the value of Young'smodulus in the FWZ allows for a larger amount of extension at depth, with no change in the magnitude of surface displacements. This result provides an indication of how the changes in the rate of microfracturing at depth,which are needed to induce the observed gravity changes,might have occurred without large ground deformation.
    Description: Published
    Description: 454–468
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna volcano ; Gravity changes ; Ground deformation ; Fracture zone ; Young's modulus ; Finite element method ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-02-24
    Description: Time-dependent brittle deformation is a fundamental and pervasive process operating in the Earth's upper crust. Its characterization is a pre-requisite to understanding and unraveling the complexities of crustal evolution and dynamics. The preferential chemical interaction between pore fluids and strained atomic bonds at crack tips, a mechanism known as stress corrosion, allows rock to fail under a constant stress that is well below its short-term strength over an extended period of time; a process known as brittle creep. Here we present the first experimental measurements of brittle creep in a basic igneous rock (a basalt from Mt. Etna volcano) under triaxial stress conditions. Results from conventional creep experiments show that creep strain rates are highly dependent on the level of applied stress (and can be equally well fit by a power law or an exponential law); with a 20% increase in stress producing close to three orders of magnitude increase in creep strain rate. Results from stress-stepping creep experiments show that creep strain rates are also influenced by the imposed effective confining pressure. We show that only part of this change can be attributed to the purely mechanical influence of an increase in effective pressure, with the remainder interpreted as due to a reduction in stress corrosion reactions; the result of a reduction in crack aperture that restricts the rate of transport of reactive species to crack tips. Overall, our results also suggest that a critical level of crack damage is required before the deformation starts to accelerate to failure, regardless of the level of applied stress and the time taken to reach this point. The experimental results are discussed in terms of microstructural observations and fits to a macroscopic creep law, and compared with the observed deformation history at Mt. Etna volcano.
    Description: Published
    Description: 71–82
    Description: JCR Journal
    Description: restricted
    Keywords: stress corrosion ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-02-24
    Description: We investigated the eruptive episodes that occurred at Etna volcano on 15 November 2011 and 18 March 2012 using different types of data. We present novel data from two recently installed strainmeters that recorded unique signals during the lava fountain phases of these events. The strainmeter data, integrated with those recorded by the magnetic network, and with satellite and ground thermal data, allowed us to follow the path of a gas-rich magma batch from the source inside the volcano to the surface and atmosphere. The amplitude ratio of the volumetric strain changes constrained the storage depth of the magma feeding the lava fountains above 1.5 km below sea level. Magnetic data revealed an attempted shallow lateral intrusion, whereas ground and satellite thermal data furnished a quantification of the total erupted volumes of ∼2.2×106m3 for the 15 November event and ∼3.0×106m3 for the 18 March event. Despite different durations of the explosive and effusive phases of the two lava fountain events, the total erupted volume was quite similar, suggesting the emptying of a shallow storage system displaying a steady behaviour.
    Description: Published
    Description: article 690
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna volcano ; lava fountain ; strain ; magnetic data ; thermal data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-02-24
    Description: We present a coupled fluid-dynamic and electromagnetic model for volcanic ash plumes. In a forward approach, the model is able to simulate the plume dynamics from prescribed input flow conditions and generate the corresponding synthetic thermal infrared (TIR) image, allowing a comparison with field-based observations. An inversion procedure is then developed to retrieve vent conditions from TIR images, and to independently estimate the mass eruption rate. The adopted fluid-dynamic model is based on a one-dimensional, stationary description of a self-similar turbulent plume, for which an asymptotic analytical solution is obtained. The electromagnetic emission/absorption model is based on Schwarzschild's equation and on Mie's theory for disperse particles, and we assume that particles are coarser than the radiation wavelength (about 10 μm) and that scattering is negligible. In the inversion procedure, model parameter space is sampled to find the optimal set of input conditions which minimizes the difference between the experimental and the synthetic image. Application of the inversion procedure to an ash plume at Santiaguito (Santa Maria volcano, Guatemala) has allowed us to retrieve the main plume input parameters, namely mass flow rate, initial radius, velocity, temperature, gas mass ratio, entrainment coefficient and their related uncertainty. Moreover, by coupling with the electromagnetic model we have been able to obtain a reliable estimate of the equivalent Sauter diameter of the total particle size distribution. The presented method is general and, in principle, can be applied to the spatial distribution of particle concentration and temperature obtained by any fluid-dynamic model, either integral or multidimensional, stationary or time-dependent, single or multiphase. The method discussed here is fast and robust, thus indicating potential for applications to real-time estimation of ash mass flux and particle size distribution, which is crucial for model-based forecasts of the volcanic ash dispersal process.
    Description: Published
    Description: 129–147
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash plume ; Volcanic ash plume ; Thermal camera ; Inversion ; Mass flow ; Particle size ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-05-28
    Description: The Campi Flegrei caldera is a restless, nested structure resulting from two major collapses related to the Campanian Ignimbrite 37,000 years BP. and the Neapolitan Yellow Tuff 12,000 years BP. eruptions, respectively. Detailed stratigraphical, structural, volcanological and 14C AMS. geochronological studies, devoted to the reconstruction of the volcanic and deformational history of the Campi Flegrei caldera in the past 12,000 years have been carried out. The results of these studies show that in this time span, intense both volcanic and volcano-tectonic activity was confined inside the Neapolitan Yellow Tuff caldera. Volcanism was concentrated in epochs of intense activity, alternating to periods of quiescence. The I epoch lasted from 12,000 to 9500 years BP giving rise to 34 explosive eruptions, each every 70 years on average. During the II epoch, dated between 8600 and 8200 years BP, six explosive eruptions took place at an average interval of 65 years. The III epoch lasted from 4800 to 3800 years BP and produced 16 explosive and four effusive eruptions which followed each other at mean intervals of 50 years. Eruption vents of the I epoch were located mostly along the marginal faults of the Neapolitan Yellow Tuff caldera, while those of the II epoch aligned on the northeastern sector of this margin. During the III epoch volcanism was confined in the northeastern sector of the Neapolitan Yellow Tuff caldera floor. The caldera floor is disjointed in blocks with variable vertical movements by fault and fracture systems mainly trending NE–SW and NW–SE. The still active resurgence of the caldera floor began soon after its collapse. Onset of both II and III epoch of activity coincides with increase in resurgence rate of La Starza marine terrace, the most uplifted part of the resurgent block.
    Description: Published
    Description: 221-246
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; volcanism; ; deformation ; chronostratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: During the years 2013–2014, the New Southeast Crater (NSEC) at the summit of Mount Etna produced frequent episodes of lava fountaining (paroxysms), and its cone continued to grow at unprecedented rates. Many of the episodes were of rather brief duration and violently explosive, producing mostly pyroclastic material and minor volumes of lava. Other episodes, especially those since mid-December 2013,were characterized by violent Strombolian activity without producing sustained lava fountains and significant amounts of tephra, but emitting more voluminous lava flows. One episode of intense Strombolian and effusive activity that was possibly fed from the NSEC conduit occurred from vents located approximately 1 km north of the crater, on the east flank of the Northeast Crater, in July–August 2014. The evolution of the NSEC cone between 2012 and 2014was documented by repeated GPS surveys carried out both froma distance and on the cone itself, by the acquisition of comparison photographs, and by two aerophotogrammetric surveys. Fromthese surveys the highest point of the NSEC results to have grown from 190 m (May 2012) to ̴215 m (October 2014) above the pre-cone surface reaching an elevation of 3290 m, and its volumemore than doubled to ̴50.0±6.5 × 106m3, representing the 40% of the total (bulk) volume of the volcanic products including pyroclastic fallout erupted in 2011–2014, which is 147.2 × 106 m3 (101.3 × 106m3 dense-rock equivalent). Thewhole of the 2011–2014 NSEC activity marks an unusually high frequency of rather explosive, tephra-rich eruptive episodes compared to Etna's activity in past decades and centuries, although the average magma production rate in this interval is close to the supposed long-term output rate of the volcano. The latest eruptive episodes showa tendency of theNSEC coalescingwith the old Southeast Crater cone, which therefore represents a miniature example of a growing compound volcano at the summit of Etna.
    Description: Published
    Description: 175-186
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, Summit eruptions, Pyroclastic cone, Volcano growth, Aerophotogrammetry, Lava and tephra, volume, ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: Near-infrared room temperature tunable diode lasers(TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross sections of the atmospheric plumes of two major fumarolic fields (Solfatara and Pisciarelli). By using a tomographic post-processing routine, we resolved, for each of the two fields, the contour maps of CO2 mixing ratios in the atmosphere, from the integration of which (and after multiplication by the plumes’ transport speeds) the CO2 fluxes were finally obtained. We evaluate a total CO2 output from the Campi Flegrei fumaroles of ∼490 Mg/day, in line with independent estimates based on in situ (Multi-GAS) observations. We conclude that TDL technique may enable CO2 flux quantification at other volcanoes worldwide.
    Description: 1- Progetto V2 “Precursori” DPC-INGV research agreement 2012-2013; 2- Miur (PRIN 2009; PI M.V.), and 3-European Research Council under the European Union’s Seventh Framework Programme (FP7/2007/2013)/ERC grant agreement n1305377 (PI, A.A).
    Description: Published
    Description: 812
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Tunable diode lasers ; Atmospheric CO2 monitoring ; gas sensing ; spectroscopy ; Volcanic CO2 fluxes ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: The evolution of lava flows emplaced on Mount Etna (Italy) in September 2004 is examined in detail through the analysis ofmorphometricmeasurements of flow units. The growth of the main channelized flow is consistent with a layering of lava blankets, which maintains the initial geometry of the channel (although levees are widened and raised), and is here explicitly related to the repeated overflow of lava pulses. A simple analytical model is introduced describing the evolution of the flow level in a channelized flow unit fed by a fluctuating supply. The model, named FLOWPULSE, shows that a fluctuation in the velocity of lava extrusion at the vent triggers the formation of pulses, which become increasingly high the farther they are from the vent, and are invariably destined to overflow within a given distance. The FLOWPULSE simulations are in accordance with the observed morphology, characterized by a very flat initial profile followed by a massive increase in flow unit cross-section area between 600 and 700 m downflow. The modeled emplacement dynamics provides also an explanation for the observed substantial “loss” of the original flowing mass with increasing distance from the vent.
    Description: Published
    Description: 801
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Lava flows . Emplacement dynamics . Lava flow modeling . Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: The row of pyroclastic cones named Mts. Sartorius, outcropping on the NE flank of Etna, formed in 1865 during a lateral eruption that lasted about 6 months. The event was eye witnessed and described by numerous scientists and reporters. In this work, we use their observations to reconstruct the eruption chronology and scenario, and carry out a detailed geomorphologic survey to identify the eruptive features and pyroclastic deposits. The 1865 eruption began on 29 January along a segment of the main system of fractures oriented ENE–WSW, radial to the central conduit. After 30 January, a secondary system of fractures trending NNW–SSE was simultaneously active. The six larger Mts. Sartorius cones developed since 3 February along the lower extension of the radial system. They are markedly asymmetric due to the persistent winds blowing at the time and to the pre-existing topography formed on underlying deposits, previously unreported, that we have recognized. Now, about 150 years after the eruption, most of the eruptive vents and fractures are no longer observable in the field, being mostly hidden by products of subsequent phases of the eruption and by younger epiclastic deposits.
    Description: Published
    Description: 1155-1162
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mts. Sartorius ; 1865 lateral eruption ; Etna volcano ; Italy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: Many volcanic eruptions are shortly preceded by injection of new magma into a pre-existing, shallow (〈10 km) magma chamber, causing convection and mixing between the incoming and resident magmas. These processes may trigger dyke propagation and further magma rise, inducing long-term (days to months) volcano deformation, seismic swarms, gravity anomalies, and changes in the composition of volcanic plumes and fumaroles, eventually culminating in an eruption. Although new magma injection into shallow magma chambers can lead to hazardous event, such injection is still not systematically detected and recognized. Here, we present the results of numerical simulations of magma convection and mixing in geometrically complex magmatic systems, and describe the multiparametric dynamics associated with buoyant magma injection. Our results reveal unexpected pressure trends and pressure oscillations in the Ultra-Long-Period (ULP) range of minutes, related to the generation of discrete plumes of rising magma. Very long pressure oscillation wavelengths translate into comparably ULP ground displacements with amplitudes of order 10−4–10−2 m. Thus, new magma injection into magma chambers beneath volcanoes can be revealed by ULP ground displacement measured at the surface.
    Description: Published
    Description: 873-880
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Magma dynamics ; Magma convection ; Magma mixing ; ULP ground displacement ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: Since January 2008, several geophysical parameters have evidenced a recharging phase at Mt. Etna volcano culminating with an effusive eruption that began on May 13, 2008. Seismic activity recorded at Mt. Etna from January 2007 to May 2008 was analyzed in order to provide seismological constraints to the volcano dynamics leading to the eruption. A total of 336 selected earthquakes, withML≥1.5, were used as data source for this study. Specifically, we calculated 3D velocity and attenuation tomography, including a 3D relocation of the events, and we computed 53 selected fault plane solutions (FPSs) that were used for stress tensor inversion. The most important result obtained from the joint analysis of VP, VP/VS and P-wave attenuation is an anomalous zone with normal to high VP (values between 3.5 and 4.5 km/s) and low VP/VS (values≤1.64), which partially overlaps with a low QP (values≤50) volume located along a NS trending channel beneath the central crater. This can be interpreted as a shallow volume characterized by high temperature where the magma is located with the presence of supercritical fluids. The analysis of seismic stress tensor evidenced an extensional regime in the depth range 3–13 km with a vertically oriented σ1. This finding may suggest an extensional stress regime, probably related to the kinematic response of the volcanic edifice to both a deep magmatic intrusion and a condition of decreased regional compressive stress facilitated by sliding processes of the eastern flank of the volcano.
    Description: Published
    Description: 50–63
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Volcanic eruptions ; Stress Tensor ; Velocity tomography ; Attenuation tomography ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: The morphological evolution of the Sciara del Fuoco, Stromboli, is described from a time series dataset formed by Digital Elevation Models and orthophotos derived by digitising historical contour maps compiled in 1868 and 1937 and by processing data from aerial surveys carried out between 1954 and 2009. All maps were coregistered in the same reference system and used to build a quantitative reconstruction of the morphological changes of the Sciara del Fuoco slope. The changes mainly relate to the emplacement of many lava flows and their successive erosion. A comparative quantitative analysis yields estimates of areas and volumes of the lava fields formed on the sub-aerial part of the Sciara del Fuoco during a number of effusive events between 1937 and 2001, some of them never assessed before. The results of the analysis constrain the interpretation of the evolution and the magnitude of the recent effusive activity at the Stromboli volcano. Despite some uncertainties due to widely spaced observation periods, the results integrate all available topographic knowledge and contribute to an understanding of the main characteristics of the recent effusive eruptive styles at Stromboli volcano.
    Description: Published
    Description: 231-248
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; Lava flow eruptions ; Digital Elevation Models ; Sciara del Fuoco ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: The 15 March 2007 Vulcanian paroxysm at Stromboli volcano was recorded by several instruments that allowed description of the eruptive sequence and unravelling the processes in the upper feeding system. Among the devices installed on the island, two borehole strainmeters recorded unique signals not fully explored before. Here we present an analysis of these signals together with the time-lapse images from a monitoring system comprising both infrared and visual cameras. The two strainmeter signals display an initial phase of pressure growth in the feeding system lasting ~2 min. This is followed by 25 s of low-amplitude oscillations of the two signals, that we interpret as a strong step-like overpressure building up in the uppermost conduit by the gas-rich magma accumulating below a thick pile of rock produced by crater rim collapses. This overpressure caused shaking of the ground, and triggered a number of small landslides of the inner crater rim recorded by the monitoring cameras. When the plug obstructing the crater was removed by the initial Vulcanian blast, the two strainmeter signals showed opposite sign, compatible with a depressurizing source at ~1.5 km depth, at the junction between the intermediate and shallow feeding system inferred by previous studies. The sudden depressurization accompanying the Vulcanian blast caused an oscillation of the source composed by three cycles of about 20 sec each with a decreasing amplitude, as well recorded by the strainmeters. The visible effect of this behaviour was the initial Vulcanian blast and a 2-3 km high eruptive column followed by two lava fountainings displaying decreasing intensity and height. To our knowledge, this is the first time that such a behaviour was observed on an open conduit volcano.
    Description: Published
    Description: 249-256
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; paroxysmal explosions ; shallow plumbing system ; borehole strainmeters ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: Herein, we present a method for continuous measurement of soil CO2 flux that is completely new and distinct from existing instruments. The foremost difference is that instead of using an infrared gas analyser (IRGA), the new device measures soil CO2 flux by means of a simple pressure sensor, measuring pressure transients inside a closed polymeric tube inserted into the soil. This allows continuous measurements even in soil placed in environments that could potentially damage IRGA. In addition, due to the innovative operating principle, measurements of soil CO2 flux can be effortlessly performed also in strongly harsh weather conditions. Theoretical equations were derived for calculating soil CO2 flux solely using measured transient values. The reliability of the equations was rigorously tested with a variety of experiments. Continuous measurements over four months, acquired in a high-emission area on the Island of Vulcano, compared favourably with the data obtained using an established method.
    Description: Published
    Description: 102-109
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Soil CO2 flux measurements ; Continuous monitoring ; Methods of measurement ; Polymeric membranes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: Between 1994 and 2010, we completed 16 thermal surveys of Vulcano’s Fossa fumarole field (Aeolian Islands, Italy). In each survey, between 400 and 1,200 vent temperatures were collected using a thermal infrared thermometer from distances of ∼1 m. The results show a general decrease in average vent temperature during 1994–2003, with the average for the entire field falling from ∼220°C in 1994 to ∼150°C by 2003. However, between 2004 and 2010, we witnessed heating, with the average increasing to ∼190°C by 2010. Alongside these annual-scale field-wide trends, we record a spatial re-organisation of the fumarole field, characterised by shut down of vent zones towards the crater floor, matched by rejuvenation of zones located towards the crater rim. Heating may be expected to be associated with deflation because increased amounts of vaporisation will remove volume from the hydrothermal system Gambino and Guglielmino (J Geophys Res 113: B07402, 2008). However, over the 2004–2010 heating period, no ground deformation was observed. Instead, the number of seismic events increased from a typical rate of 37 events per month during 1994–2000 to 195 events per month during 2004–2010. As part of this increase, we noticed a much greater number of high-frequency events associated with rock fracturing. We thus suggest that the heating event of 2004–2010 was the result of changed permeability conditions, rather than change in the heat supply from the deeper magmatic source. Within this scenario, cooling causes shut down of lower sectors and re-establishment of pathways located towards the crater rim, causing fracturing, increased seismicity and heat flow in these regions. This is consistent with the zone of rejuvenation (which lies towards and at the rim) being the most favourable location for fracturing given the stress field of the Fossa cone Schöpa et al. (J Volcanol Geotherm Res 203:133–145, 2011); it is also the most established zone, having been active at least since the early twentieth century. Our data show the value of deploying multi-disciplinary geophysical campaigns at degassing (fumarolic) hydrothermal systems. This allows more complete and constrained understanding of the true heat loss dynamics of the system. In the case study presented here, it allows us to distinguish true heating from apparent heating phases. While the former are triggered from the bottom-up, i.e. they are driven by increases in heat supply from the magmatic source, the latter are triggered from the top-down, i.e. by changing permeability conditions in the uppermost portion of the system to allow more efficient heat flow over zones predisposed to fracturing.
    Description: Published
    Description: 1293-1311
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Fumaroles ; Vulcano ; Vent temperature ; Seismicity ; Ground Deformation ; Permeability ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: Stromboli is known for its mild, persistent explosive activity from the vents located within the summit crater depression at the uppermost part of the Sciara del Fuoco (SdF) depression. Effusive activity (lava flows) at this volcano normally occurs every 5–15 years, involving often the opening of eruptive fissures along the SdF, and more rarely overflows from the summit crater. Between the end of the 2007 effusive eruption and December 2012, the number of lava flows inside and outside the crater depression has increased significantly, reaching a total of 28, with an average of 4.8 episodes per year. An open question is why this activity has become so frequent during the last 6 years and was quite rare before. In this paper, we describe this exceptional activity and propose an interpretation based on the structural state of the volcano, changed after the 2002–2003 and even more after the 2007 flank effusive eruption. We use images from the Stromboli fixed cameras network, as well as ground photos, plume SO2 and CO2 fluxes released by the summit crater, and continuous fumarole temperature recording, to unravel the interplay between magma supply, structural and morphology changes, and lava flow output. Our results might help forecast the future behaviour and hazard at Stromboli and might be applicable to other openconduit volcanoes.
    Description: partially supported by the Project INGV-DPC Paroxysm V2/03, 2007–2009 funded by the Istituto Nazionale di Geofisica e Vulcanologia and the Italian Civil Protection
    Description: Published
    Description: 841
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; effusive activity ; structural changes ; morphology changes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Between 30 August and 15 December 2006,Mt Etna, Italy, underwent both effusive and explosive activity which took place fromthe South-East Crater, one of its summit craters. Several paroxysmal episodes followed in succession, separated by a fewdays of minor activity and characterised by dissimilar explosive style and intensity. Here, we report one of the most studied and powerful episodes, which started early in the morning on 24 November 2006 and lasted about 13 h. Excellent weather conditions enabled reconstructing in detail the onset and evolution of the eruptive phenomena both by live-camera recordings and direct observations. The explosive activity consisted of powerful Strombolian activity alternating with short periods of lava fountains. A weak volcanic plume rose up to ~2 km above the volcanic vent, followed by tephra fallout which covered the SE and S flanks of Etna. Campaigns allowed collecting about 40 tephra samples and mapping the fallout deposit. The clockwise shifting of the volcanic plume during the eruption caused the different timing of the fallout on the ground, thus widening the dispersal area. Voronoi's method was used to evaluate: i) the total grain-size distribution, indicating that the fallout deposit peaked at 1 ϕ, and, for the first time at Etna, ii) the total componentry distribution, finding thatmost of the particles were lithics, with a low proportion of juvenile vs. lithics (34:65). The total erupted mass was estimated ~1.9 × 108 kg, corresponding to a mass eruption rate of ~5 × 103 kg s−1. Physical parameters and textural features of the erupted products suggest that the 24 November 2006 explosive event may be classified as small-sized in the recent history of Etna, and that the eruptive dynamicwasmainly governed by magma/gas decoupling, which produced relatively fine-grained fallout deposits containing unusual elongated sideromelane ash particles.
    Description: Published
    Description: 78-91
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: tephra deposit ; Etna eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: We installed a permanent SO2 camera system on Stromboli, Italy, in May 2013, in order to improve our capacity to monitor the SO2 emissions from this volcano. The camera collects images of SO2 concentrations with a period of ~ 10 s, allowing quantification of short-term processes, such as the gas released during the frequent explosions which are synonymous with Stromboli. It also allows quantification of the quiescent gas flux, and therefore comparison with the FLAME network of scanning ultraviolet spectrometers previously installed on the island. Analysis of results from the SO2 camera demonstrated a good agreement with the FLAME network when the plume was blown fully into the field of view of the camera. Permanent volcano monitoring with SO2 cameras is still very much in its infancy, and therefore this finding is a significant step in the use of such cameras for monitoring, whilst also highlighting the requirement of a favourable wind direction and strength. We found that the explosion gas emissions are correlated with seismic events which have a very long period component. There is a variable time lag between event onset time and the increase in gas flux observed by the camera as the explosion gas advects into the field of view of the camera. This variable lag is related to the plume direction, as shown by comparison with the plume location detected with the FLAME network. The correlation between explosion gas emissions and seismic signal amplitude show is consistent with a gas slug-driven mechanism for seismic event production. Comparison of the SO2 camera measurements of the quiescent gas flux shows a fair quantitative agreement with the SO2 flux measured with the FLAME network. Overall, the SO2 camera complements the FLAME network well, as it allows frequent quantification of the explosion gas flux produced by Stromboli, whose signal is in general too brief to be measured with the FLAME network. Further work is required, however, to fully automate the calculation of SO2 flux from the SO2 images captured with the camera, and to adequately account for scattering effects.
    Description: Published
    Description: 95-102
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; SO2 flux ; VLP ; Explosion ; SO2 camera ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-04-04
    Description: The Southeast Crater (SEC) of Mt. Etna, Italy, is renowned for its high activity, mainly long-lived eruptions consisting of sequences of individual paroxysmal episodes which have produced more than 150 eruptive events since 1998. Each episode typically forms eruption columns followed by tephra fallout over distances of up to about 100 km from the vent. One of the last sequences consisted of 25 lava fountaining events, which took place between January 2011 and April 2012 from a pit-vent on the eastern flank of the SEC and built a new scoria cone renamed New Southeast Crater. The first episode on 12–13 January 2011 produced tephra fallout which was unusually dispersed toward to the South extending out over the Mediterranean Sea. The southerly deposition of tephra permitted an extensive survey at distances between ~1 and ~100 km, providing an excellent characterization of the tephra deposit. Here, we document the stratigraphy of the 12–13 January fallout deposit, draw its dispersal, and reconstruct its isopleth map. These data are then used to estimate the main eruption source parameters. The total erupted mass (TEM) was calculated by using four different methodologies which give a mean value of 1.5 ± 0.4 × 108 kg. The mass eruption rate (MER) is 2.5 ± 0.7 × 104 kg/s using eruption duration of 100 min. The total grain-size (TGS) distribution, peaked at −3 phi, ranges between −5 and 5 phi and has a median value of −1.4 phi. Further, for the eruption column height, we obtained respective values of 6.8–13.8 km by using the method of Carey and Sparks (1986) and 3.4 ± 0.3 km by using the methods of Wilson and Walker (1987), Mastin et al. (2009), and Pistolesi et al. (2011) and considering the mean value of MER from the deposit. We also evaluated the uncertainty and reliability of TEM and TGS for scenarios where the proximal and distal samples are not obtainable. This is achieved by only using a sector spanning the downwind distances between 6 and 23 km. This scenario is typical for Etna when the tephra plume is dispersed eastward, i.e., in the prevailing wind direction. Our results show that, if the analyzed deposit has poorer sample coverage than presented in this study, the TEM (3.4 × 107 kg) is 22 % than the TEM obtained from the whole deposit. The lack of the proximal (〈6 km) deposit may cause more significant differences in the TGS estimations.
    Description: Published
    Description: 861
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: tephra deposit ; Etna eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: Unique volcanic structures, known in the literature as “lava trees” and “tree molds”, have formed at several sites on Mt. Etna volcano (northeastern Sicily, Italy). They form when a fluid lava flow runs over a tree, wraps around it and, while the wood burns off, solidifies forming a hollow cast of the tree. The inhabitants of the Etna area call these formations “pietre cannone” (“cannon stones”) because of their cylindrical shape. The first documentation of lava trees is from Hawaii, but the first eye-witnessed accounts of their formation are, to our knowledge, from Etna’s 1865 eruption. Although many of the literature examples of lava trees and tree molds formed in pahoehoe, many of those reported in this work formed in a’a. The sites where we have found the lava tree molds are located within the territory of the Etna Regional Park; most occur next to walking trails and have a high potential for geotourism.
    Description: Published
    Description: 633–638
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Lava trees ; Tree molds ; Etna volcano ; Italy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: Three small-scale paroxysmal explosions (also called major explosions) interrupted ordinary mild Strombolian activity at Stromboli on May 3, November 8 and 24, 2009. Products were largely confined to the summit area, except in the November 24 event, during which coarse pumiceous lapilli reached the coast. Emission of crystal-poor pumice closely mingled with crystal-rich products characterized the three events. The textural and chemical study of minerals and glassy matrices revealed that the two end-members are mingled together physically in the May 3 and November 24 pumice, whereas November 8 products contain heterogeneous glass with intermediate compositions derived from chemical mixing between crystal-rich and crystal-poor magmas. We here discuss the different degrees of interaction between the two magmas in the three explosions in terms of magma dynamics during small-scale paroxysms.
    Description: Published
    Description: 1147-1154
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Paroxysm ; Glass chemistry ; Mixing ; Eruption dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-03
    Description: This paper presents the results of a systematic historical study of the seismic, bradyseismic and eruptive activity of the Campi Flegrei caldera. The aim is to make a revised historical data available for accurate volcanological interpretation, supplying additional data and highlighting spurious previous data. The analysis begins with the supposed 1198 eruption, which did not actually take place. No information is available for the thirteenth and fourteenth centuries. As far as the fifteenth and sixteenth centuries are concerned, only direct sources were examined for this paper, and they include many different types of evidence. The chronological breadth of the analysis has also provided information about the seismic crises and bradyseisms prior to the eruption of 1538. The exceptional nature of this 1538 eruption attracted the attention of intellectuals, diplomats and natural philosophers, who left valuable accounts, which we have analysed, and which include many that are still available in their original manuscript form. The previous studies concerning the 1538 eruption were based on 23 (variously used) sources. We have examined 35 additional sources bringing the overall corpus of sources analysed to 58. The results provide a more precise scenario of events preceding the 1538 eruption, including bradyseismic activity starting from the end of the fifteenth century. The chronology of the phenomena described comprises the core result of this study, and has been constructed so as to clarify the time, location and impact of each event. For the 1538 eruption, a countdown is included which may also have a predictive value. For the last 36 hours before eruption began, the countdown is hour-by-hour. The effects of the eruption and earthquakes on people, structures and society are also described for Pozzuoli, Agnano and Naples. The areas where heavy materials and ash fell are likewise indicated, as well are the earth tremors felt by the population from the eruptive crisis up to 1582.
    Description: Published
    Description: 655-677
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera. ; historical data ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: At Stromboli volcano, Italy, continuous seismic monitoring and periodic, visual observations of volcanic activity for surveillance purposes began in the mid-1980s. Since 1985, two eruptions have occurred, one lasting from December, 1985 until April, 1986, and one in May, 1993. There have also been two small overflows, in 1990 and 1994. Since these episodes of lava effusion, the persistent Strombolian activity of the volcano has had several fluctuations during the past 15 years. Some episodes climaxed in powerful explosions. According to seismic records, these paroxysms consisted of a variable number of explosion quakes in rapid succession (i.e. from tens of seconds to a few minutes), associated with a notable increment in the amplitude of volcanic tremor. Throughout these episodes - which are called explosive sequences - lapilli, fragments of old rock, and bombs of varying dimensions were ejected, affecting an area greater than the crater terrace where the active craters are located. In this article, we describe the explosive sequences recorded at Stromboli between 1985 and 1999. We provide a characterization in terms of reduced displacement and duration for nine episodes occurring in 1998 and 1999. Their reduced displacements range from 15 to 124 cm2; their durations are between 6 and 18 min. We find no change in the frequency content of the seismic signal several minutes before and during the sequences. Considering medium- to long-term behavior, the spectral amplitude of the seismic signal decreases or has low values over several months preceding the occurrence of the paroxysms. This feature is common to 20 of the 22 explosive sequences, and is indicative of internal conditions that periodically characterize the feeder. We surmise that the paroxysms are the result of the partial obstruction of the volcanic conduit when the magma column is low or dropping. The onset of the explosive sequence, causing the sudden removal of the material which forms the obstruction, would trigger a sudden depressurization of the conduit and the rapid rise of magma from depth.
    Description: Published
    Description: 137-150
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Paroxysms ; Seismicity ; Volcanoes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: A 4-year geochemical survey of some fumaroles at the Voragine summit crater of Mt Etna was performed in combination with synchronous monitoring of peripheral gas emissions at the base of the volcano. This was the first geochemical study at Mt Etna to have included the abundances of Ar, He, and C isotopes. Once the effects of postmagmatic shallow processes were identified and quantitatively removed, the He–Ar–CO2 systematics of the Voragine crater fumaroles and peripheral gas emissions described the same degassing path. Combining the carbon-isotope composition with information about noble gases provided evidence that the crater fumaroles are fed from a two-endmember mixture composed of a deep member coming from pressures between 200 and 400 MPa (depending on time), and a shallower one exsolved at 130 MPa. Similar mixing processes probably also occur in gases from peripheral vents. The simultaneous assessment of d13CCO2 and He/Ar values of crater fumaroles over time has identified simple changes in the mixing proportion between the two endmembers and, moreover, periods during which the exsolution pressure of the deep fluid increased. These periods seem to be linked to pre-eruptive phases of the volcano. The identified open-system degassing processes are indicative of efficient bubble–melt decoupling at depth, whereas the mixing process requires a convective transfer of the deeply exsolved fluids toward shallower levels of magma where further vapor is exsolved. In agreement with the most recent geophysical and petrological data from Mt Etna, these observations allow inferences about a deep portion of the plumbing system (5 to 12 km b.s.l.), comprising sill-like reservoirs connected by small vertical structures, and a main reservoir at 2–3 km b.s.l. that is probably fluxed by magmatic volatiles. 2012 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 380-394
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: gas geochemistry, isotopes, degassing, modelling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: On 13 May 2008, an eruption began at Mt. Etna from an eruptive fissure that opened on the upper eastern flank of the volcano. During 12-13 May, 157 infrasonic events, together with the related seismic transients, were collected. We carried out several analyses to obtain dominant frequencies, pseudospectrograms, peak-to-peak amplitudes, source locations and time lags between infrasonic and seismic events. Spectra of the infrasonic events show two main spectral peaks in the frequency bands ~0.4-0.7 Hz and 1.5-2.0 Hz, respectively. Both infrasonic and seismic events were separately located below the North-East Crater, where no eruptive activity was observed. Moreover, significant changes in infrasound spectral content, as well as in the infrasonic-seismic lags, were found a few hours before the beginning of the eruption. On the basis of the collected information the infrasound source mechanism was modelled as a superposition of pipe and Helmholtz resonance, also leading to outline the geometry of the shallower portion of the North-East Crater plumbing system. The occurrence of these seismo-infrasonic events together with other geological and geophysical evidences, led us to inferring a direct link between North-East Crater activity and the eruptive fissure. Further, based on variations over time of both spectral features and seismicinfrasonic time lag, shallowing phenomena of the free magma column inside North-East Crater conduit were hypothesized. Such an uprise of magma was likely caused by a pressure increase inside the plumbing system occurring before the beginning of the 2008-2009 eruption.
    Description: Published
    Description: 53-68
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; Helmholtz resonator ; plumbing system geometry ; seismo-acoustic studies ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: We present a review of our work on data acquired by GEOSTAR-class (GEophysical and Oceanographic STation for Abyssal Research) observatories deployed at three EMSO (European Multidisciplinary Seafloor and water-column Observatory; http://www.emso-eu.org) sites in southern European waters where strong geo-hazards are present: the Western Iberian Margin, the Western Ionian Sea, the Marmara Sea, and the Marsili basin in the Tyrrhenian Sea. A procedure for multiparameter data quality control is described. Then we explain why the seafloor is an interesting observation point for geophysical parameters and how it differs from land sites. We consider four interesting geophysical phenomena found at the EMSO sites that are related to geo-hazard. In the first case, we show how unknown seismicity and landslides in the Western Ionian Sea were identified and roughly localised through a single-sensor analysis based on the seismometer. In the second case, we concentrate on the problem of near-coast tsunami generation and describe a Tsunami Early Warning Detection (TEWD) system, tested in the Western Iberian Margin and currently operating in real time at the Western Ionian site. In the third case, we consider two large volcanoes in the central Mediterranean area, Mt. Etna and the Marsili seamount. Signals from the seismometer and gravimeter recorded at the seafloor at 2100 m b.s.l. show various phases of Mt. Etna's 2002–2003 eruption. For the less-known Marsili we illustrate how several indicators coming from different sensors point to hydrothermal activity. A vector magnetometer at the two volcanic sites helps identify the magnetic lithospheric depth. In the fourth and final case, we present a multiparameter analysis which was focused on finding possible correlations between methane seepage and seismic energy release in the Gulf of Izmit (Marmara Sea).
    Description: Published
    Description: 12–30
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: European Seas ; Geophysical measurements ; Multiparameter seafloor and water-column observatories ; Data quality analysis ; Geo-hazard ; Tsunami early detection ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: Between January 2011 and April 2012, the Southeast Crater (SEC) on Mount Etna was the site of 25 episodes of lava fountaining, which led to the construction of a new pyroclastic cone on the eastern flank of the SEC. During these episodes lava overflows reached 4.3 km in length with an area of 3.19 km2 and a volume of 28 x 106 m3. The new cone, informally called New Southeast Crater (NSEC), grew over a pre-existing subsidence depression (pit crater), which had been formed in 2007-2009. The evolution of the NSEC cone was documented from its start by repeated GPS surveys carried out both from a distance and on the cone itself, and by the acquisition of comparison photographs. These surveys reveal that after the cessation of the lava fountains in April 2012, the highest point of the NSEC stood 190 m above the pre-cone surface, while the cone volume was about 19 x 106 m3, representing 38 % of the total (bulk) volume of the volcanic products including pyroclastic fallout erupted in 2011-2012, which is 50 x 106 m3 (about 33 x 106 m3 dense-rock equivalent). Growth of the new cone took place exclusively during the paroxysmal phases of the lava fountaining episodes, which were nearly always rather brief (on the average 2 hours). Overall, the paroxysmal phases of all 25 episodes represent 51 hours of lava fountaining activity – the time needed to build the cone. This is the fastest documented growth of a newborn volcanic cone both in terms of volume and height. Mean effusion rates during the lava fountaining episodes on 20 August 2011 (E11), as well as 12 and 24 April 2012 (E24 and E25) exceeded 500 m3/s (with maximum rates of 980 m3/s during E11) and thus they are among the highest effusion rates ever recorded at Etna. The composition of the erupted products varies in time, reflecting different rates of magma supply into the shallow feeding system, but without notable effects on the eruptive phenomenology. This implies that the dynamics leading to the episodic lava fountaining was largely, though not entirely, controlled by the repeated formation and collapse of a foam layer in the uppermost portion of the magmatic reservoir of the NSEC.
    Description: Published
    Description: 10-21
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, summit eruptions; scoria cone growth; lava and tephra volume; collapsing foam model ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: In this paper we present the first data of temperature continuously recorded in two fumarole fields (designated VOR and HOR) located in the summit area of Mount Etna volcano (Italy). The time series embraces two distinct periods: (1) October 2007 to November 2009, during which an effusive eruption occurred from May 2008 to July 2009, and (2) November 2011 to June 2012, characterized by the occurrence of strong paroxysms (fire fountains and lava flow). The analysis of the temperature signal in both the time and frequency domains, and its comparison with meteorological observations allowed us to separate the exogenous influences from the effects of variations in the activity state of the volcano. The acquired data were weakly affected by seasonal cycles of the air temperature and strongly affected by the rainfall. Optimization of site conditions (i.e., sensor depth and soil permeability) markedly reduced meteorological disturbances. The distance from the main degassing and/or eruptive fractures was crucial to maximizing the probability of the technical survival of the monitoring apparatus, which was seriously affected by the emission of acidic gases, tephra fallout, and lava flows. Apart from the exogenous influences, the most appreciable variation was observed at VOR, where a huge increase in fumarole temperature was detected immediately after the onset of the 2008–2009 eruption. Such an anomalous increase was attributed to the rapid ascent of magma feeding the eruptive fracture. Another abrupt increase in temperature was recorded at HOR in March and April 2012. During this period the frequency of paroxysm occurrence increased markedly, and this led us to hypothesize that the thermal anomaly was due to the intrusion of a new batch of magma in the conduits of the southeast crater. Medium- to long-term monitoring (weeks to months) of fumarole temperatures revealed variations that were attributed to pressurization/depressurization phases of the shallow volcanic system, which varied between the various monitored sectors of the volcano. Our observations suggest that continuous monitoring of fumarole temperature can give useful information about the activity of Mount Etna. Moreover, due to the complexity of its shallow plumbing system, we conclude that the monitoring systems should be extended to cover the entire fumarole network of the summit area.
    Description: Published
    Description: 12-20
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Continuous monitoring ; Mount Etna ; Fumarole temperature ; Meteorological parameters ; Volcanic Degassing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: The shallow thermal aquifer at Vulcano Island is strongly affected by deep volcanic fluids. The most significant variations were observed during the 1989–1996 crisis due to a large input of steam and acidic gases from depth. Besides chemical variations related to the input of deep fluids, the record of the water-table elevation at monitored wells has provided remarkable insights into the pressure conditions of the volcano-hydrothermal system. After the pressure drop due to the extensive vaporization of the hydrothermal aquifer, occurred after 1993, the volcano-hydrothermal system has been re-pressurized since 2001, probably because of the contribution of volatiles from the hydrothermal-magmatic source. The increase in fluid pressure may have caused reopening of fractures (which had self-seated during the previous period of cooling) and the onset of a phase of higher vapor output in the fumarole field later in 2004. The fracture opening would have promoted further vapor separation from the deep fluid reservoir (hypothesized at 0.5–1.5 km depth) and finally the drainage of S-rich fluids into the shallow thermal aquifer (found out at few tens of meters of depth). The monitoring of both the water chemistry and the water-table elevation provides insights into the eventual pressurization of the volcano-hydrothermal system that precedes the fracture opening and the extensive drainage of deep fluids. The findings of this study could represent crucial information about the stability of the volcano edifice, and lead to reliable techniques for determining the risk of or even predicting phreatic explosions.
    Description: Published
    Description: 70-80
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal system ; Vulcano Island ; Fluid pressure ; Thermal wells ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-06-16
    Description: The application of biochar to agricultural soils to increase nutrient availability, crop production and carbon sequestration has gained increasing interest but data from field experiments on temperate, marginal soils are still under‐represented. In the current study, biochar, produced from organic residues (digestates) from a biogas plant, was applied with and without digestates at low (3.4 t ha−1) and intermediate (17.1 t ha−1) rates to two acidic and sandy soils in northern Germany that are used for corn (Zea mays L.) production. Soil nutrient availability, crop yields, microbial biomass and carbon dioxide (CO2) emissions from heterotrophic respiration were measured over two consecutive years. The effects of biochar application depended on the intrinsic properties of the two tested soils and the biochar application rates. Although the soils at the fallow site, with initially low nutrient concentrations, showed a significant increase in pH, soil nutrients and crop yield after low biochar application rates, a similar response was found at the cornfield site only after application of substantially larger amounts of biochar. The effect of a single dose of biochar at the beginning of the experiment diminished over time but was still detectable after 2 years. Whereas plant available nutrient concentrations increased after biochar application, the availability of potentially phytotoxic trace elements (Zn, Pb, Cd, Cr) decreased significantly, and although slight increases in microbial biomass carbon and heterotrophic CO2 fluxes were observed after biochar application, they were mostly not significant. The results indicate that the application of relatively small amounts of biochar could have positive effects on plant available nutrients and crop yields of marginal arable soils and may decrease the need for mineral fertilizers while simultaneously increasing the sequestration of soil organic carbon. Highlights A low rate of biochar increased plant available nutrients and crop yield on marginal soils. Biochar application reduced the availability of potentially harmful trace elements. Heterotrophic respiration showed no clear response to biochar application. Biochar application may reduce fertilizer need and increase carbon sequestration on marginal soils.
    Description: German Academic Exchange Service http://dx.doi.org/10.13039/501100001655
    Description: Institute Strategic Programme grants, “Soils to Nutrition”
    Keywords: 631.4 ; black carbon ; carbon sequestration ; corn ; digestate ; heterotrophic respiration ; marginal soils ; microbial biomass
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-10-06
    Description: Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions atMt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from2.6 to 3.0 g/cm3. P wave velocities (VP), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent VP with recent literature data on 3D VP seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (〉5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.
    Description: Published
    Description: 722
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Cognate xenoliths . Gabbro . Geobarometry . Rock density . P-wave velocity . Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: At Mount Etna, the present-day active volcano is an open conduit structure characterized by continuous eruptive activity. Such conditions have been thought unique in the evolution of the Etnean volcano as well as in the Mediterranean region. However, a review study of available geophysical data and models, combined with geological records, petrographic and geochemical considerations, has led us to consider that a large area of about 28 km2 located in Val Calanna, on the eastern side of Valle del Bove, can be interpreted as the site of an old open conduit volcano. A dyke swarm outcrops in the area, whose deep alteration and fumarolization can be attributed to the sustained passage of volcanic gases over long periods. Radiometric dating yields an age of about 129 ka. This finding sheds new light on the evolution of Mount Etna volcano, indicating that the tectonic conditions leading to an open conduit volcano must also have been active in the past.
    Description: Published
    Description: 50
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Magnetic anomalies ; Dyke ; Mount Etna ; Mt. Calanna volcanics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-04-03
    Description: Since January 2011, Mt. Etna volcano has been affected by more than forty paroxysmal eruptions at the summit (New South East Crater; NSEC). On the basis of their very variable duration, seven eruptions have been selected among the twenty-five of 2011–2012 in order to decipher potential differences in their triggering mechanism. Paroxysms have been investigated through a multidisciplinary approach that integrates data from volcanic tremor and petrology (textures and micro-analysis on plagioclase crystals). Our results lead to the conclusion that close relationships exist between the duration of the eruptions and the temporal evolution of the volcanic tremor amplitude, especially during the Strombolian phase preceding the paroxysmal activity. In this regard, we distinguished: 1) paroxysms preceded by long-lasting initial Strombolian phases, characterized by low rate of volcanic tremor amplitude increase; and 2) eruptions preceded by short initial Strombolian phases, showing high rate of volcanic tremor amplitude increase. Based on the pattern of volcanic tremor amplitude increase, the former mainly showed a ramp-shaped morphology, while the latter a bell-shaped trend. Location of the volcanic tremor centroid during the quiescent intervals between the paroxysmal eruptions has highlighted the presence of a magmatic volume at 1–2 km a.s.l. beneath the North East Crater (NEC). During the syn-eruptive Strombolian and lava fountaining phases, the centroid of volcanic tremor migrates below the NSEC. This leads to the consideration that the magma batch residing beneath NEC played an important role in the volcanic activity at NSEC during the considered period. Also the textures and compositional zoning (anorthite and iron variations) in selected plagioclase crystals of the analyzed lavas suggest relations between duration of the paroxysms and dynamics of pre-eruptive magmatic processes at depth. Particularly, two mechanisms have been accounted for triggering of eruptions at the NSEC on the basis of the concordant or discordant behavior of anorthite and iron in plagioclase coupled with disequilibrium textures at the rim. Concordant anorthite and iron increases in plagioclase crystals with sieve-textured rims indicate recharge by more mafic, gas-rich magma. This textural-compositional behavior has been related to long-lasting eruptions, whose volcanic tremor amplitude evolution produced ramp-shaped increase of the volcanic tremor amplitude before the paroxysmal phase. On the contrary, crystalswith sieve-textures at the rim, characterized by increasing iron at rather constant or decreasing anorthite, suggest the prominent role of gas injections into the residing system. In this instance, the compositional behavior has been linked with short-lasting eruptions, whose volcanic tremor amplitude evolution led to a sudden increase of the seismic amplitude before the climax of the eruption. Thus, our work put forward the idea that the evolution and duration of the Strombolian phase preceding the paroxysmal eruptions of 2011–2012 at Mt. Etna are strongly controlled by the eruption triggering mechanism, which can be either gas burst or gas-rich magma recharge.
    Description: Published
    Description: 1–13
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; Volcanic tremor ; Paroxysmal activity ; Plagioclase Texture ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: The carbon dioxide emissions of volcanoes have been targeted as effective contributors of CO2 to the atmosphere. However, different sources can be effective and active at the same time in the generation and release of CO2 in volcanic zones. Since isotopic fingerprinting of CO2 allows the precise identification of different sources, coupling carbon isotope and CO2 flux measurements enables the evaluation of the mass contribution of each source to the carbon dioxide emissions. This paper accounts for the first extensive spatial analysis of coupled measurements of carbon isotopologues of CO2 in the soil gases and CO2 fluxes discharged by soils on Vulcano Island. An innovative method has been designed, tested and fine-tuned in the laboratory to measure δ13C(CO2) values directly in field using a new type of laser-based isotopologues analyzer, namely a DeltaRay™ (Thermo Fisher Scientific). The method can be used to determine the carbon isotope composition across the full range of CO2 concentrations in the soil gases (0 – 100 vol%). These data have been combined with measurements of the CO2 contents in the soil gases to distinguish CO2 from deep origins from CO2 of biogenic origin in the inhabited area of Vulcano Porto. The method of evaluating the amount of deep-origin CO2 in the soil gases is widely applicable in volcanic and geothermal zones for evaluation and monitoring purposes for both gas and volcanic hazards.
    Description: Published
    Description: 59-70
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Carbon dioxide ; CO2 flux ; CO2 soil degassing ; CO2 isotope composition ; Volcano monitoring ; Vulcano Island (Aeolian Islands) ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-02-24
    Description: Etna volcano is affected by a downward sliding of its eastern flank, as rapid as a few cm/year, whose nature is highly debated. Recently collected marine geological and geophysical data allows a detailed image of the morphostructural setting of the continental margin facing the volcano. Here, a large bulge offsets the margin that is deeply affected by widespread semicircular steps, interpreted as evidence of large-scale gravitational instability. Such features permeate the whole margin and extend inshore to the volcano sector where the larger ground deformations are measured. Both submarine instability and subaerial flank sliding are bounded by two regional tectonic lineaments interpreted as weakness lines. These cross the coastline to accommodate the basinward movement of this large sector of the continental margin topped by the Etna volcanic pile. The new data allows re-interpreting the tectonic setting of the coastal belt and proposing a novel structural model, highlighting the active role of the continental margin instability to drive the seaward sliding of the volcano's eastern flank. This model may suggest why a very active basaltic volcano has so unusually developed in front of an active thrust belt.
    Description: Published
    Description: 57–64
    Description: JCR Journal
    Description: restricted
    Keywords: volcano sliding ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-02-24
    Description: The morphometry of a great number of scoria cones, belonging to volcanic fields of various geodynamic settings, has been measured and analyzed, addressing the question whether there is a relation between the prevalent cone shape in a given field and the geodynamic setting of the field itself. Morphometric analysis was carried out on freely downloadable digital elevation models (DEMs). The accuracy of the used DEMs and the associated error in scoria cone morphometry were determined by cross-comparing high-resolution LIDAR-derived DEMs, USGS NED, TINITALY DEM and ASTER GDEM. The 10-m TINITALY/01 and USGS NED DEMs are proven to be suitable for scoria cone morphometry, whereas ASTER GDEM can be used reliably for cones with volume greater than 30 × 106 m3. According to a detailed morphometry of all scoria cones, we propose that the cones related to subductional setting show relatively higher values of Hco/Wco and lower values of Wcr/Wco than the cones related to extensional setting. The detected differences can be imputable to peculiar eruption dynamics resulting in slight but systematic changes in shape, and differences in lithological and sedimentological characteristics that govern post-eruptive erosion. To constrain the pathway of scoria cone erosion, the detected morphometric changes were also interpreted using a simple linear degradation model. Utilizing the obtained simulation results, the inferred initial cone base, and the age of scoria cones, we calculated a diffusion coefficient (K) for several dated cones, which are related to the prevalent climate. Our results, despite the high error associated, allow to assess the median K for all volcanic fields. Due to the complexity of the factors behind, it is not easy to understand if the prevalent shape characterizing a certain volcanic field is due mainly to sin-eruptive or post-eruptive mechanisms; however, our distinction between the two main geodynamic settings may be the first step to decipher these factors.
    Description: Published
    Description: 56-72
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: Scoria cone ; Digital elevation models (DEMs) ; Morphometry ; Volcanic field ; Cone degradation simulation ; Geodynamic setting ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-02-24
    Description: The Aeolian Arc (Southern Tyrrhenian Sea, Italy) is one of the most active volcanic areas of the Mediterranean basin, affected by volcanic/hydrothermal and seismic activity. Ancient populations settled this region since historical times, building coastal installations which currently are valuable archaeological indicators of relative sea level changes and vertical land movements. In this study we show and discuss data on the relative sea level change estimated from a submerged wharf of Roman age dated between 50 B.C. and 50 A.D., located at Basiluzzo Island. This structure has been studied through marine surveys and archaeological interpretations and is presently located at a corrected depth of 4.10 0.2 m. We explain this submergence by a cumulative effect of the relative sea level change caused by the regional glaciohydro- isostatic signal, active since the end of the last glacial maximum, and the local volcano-tectonic land subsidence. Finally, a total subsidence rate of 2.05 0.1 mm/yr 1, with a volcano-tectonic contribution of 1.43 0.1 mm/yr 1 for the last 2 ka BP, is inferred from the comparison against the latest predicted sea level curve for the Southern Tyrrhenian Sea, suggesting new evaluations of the volcanotectonic hazard for this area of the Aeolian islands.
    Description: Published
    Description: 143-150
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Aeolian islands, sea level, crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-05-29
    Description: The Campi Flegrei caldera in southern Italy is one of the greatest geohazard areas on Earth. Evidence of an active magmatic and geothermal system is provided by ongoing ground uplift, with volcano-tectonic and longperiod (LP) seismicity, the persistent degassing of ~1500 tonnes of CO2 per day, the presence of hot fumaroles at temperatures of 90–150 °C, brine-rich aquifers (with total dissolved solids up to 33 g l−1) and high thermal gradients in the crust (with temperatures reaching 420 °C at 3,050 m b.s.l.). Since the 1940s, more than 100 exploratory boreholes have been drilled in the area to depths of 80–3,100 m by the Azienda Geologica Italiana Petroli (AGIP) and the Società Anonima Forze Endogene Napoletane (SAFEN). To date, however, no systematic reanalysis of the drilling data has been carried out, and the buried volcanic structure has not been updated using the most recent scientific results and previous findings. By integrating unpublished data from the AGIP and SAFEN reports with published information from geological, volcanological, petrological, petrophysical and geophysical studies, this paper presents an improved picture of the Campi Flegrei caldera that will be useful for volcanic hazard assessment and mitigation in the Naples area and for future research planning The results suggest that intra-caldera activity has been influenced by how the magmatic system at depths greater than about 4 km has determined the transfer of magma, volatiles, and heat to the overlying geothermal system and, ultimately, to the surface. In particular, intriguing is that the most volcanically active central-eastern sector of the caldera, which is subject to intense bradyseismic ground movement and gas emission, coincides with a structurally delimited subsurface rock volume characterized by an uprising of the 100 °C isotherm, a deep water supply to the shallower aquifer, the early disappearance of secondary calcite, LP seismicity and high seismic S-wave attenuation. In this area, we also document evidence of repeated injection at depths of c. 1.5–3.0 km of isolated and small-volume batches of magma, where occurred their crystallization and degassing. Shallow intrusions and degassing of magma are thus identified as two of the key processes that drive unrest in Campi Flegrei.
    Description: Published
    Description: 401-421
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic system ; Campi Flegrei ; AGIP ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-02-24
    Description: Hydrothermal fluid circulation may cause measurable gravity changes and ground deformation. We extend our previous studies and increase the number of observable parameters to include gas temperature, the rate of diffuse degassing, the extent of the degassing area, and electrical conductivity. We have carried out simulations using TOUGH2/EOS2 of a large scale hydrothermal system, then we have calculated observables arising from changes in hydrothermal fluid circulation. Our results show that fluids affect many observable parameters generating detectable signals. However, a more detailed description of the shallow subsurface is necessary to properly calculate electrical conductivity. Studies at Solfatara volcano (Campi Flegrei caldera, Italy) highlight the presence of an unsaturated layer at depth and allow to determine the position of the water table. Then, we present results from a new, small scale simulation, focused on the crater, and carried out with a new, refined meshgrid taking into account the real topography. Aim of the work is to calculate a detailed electrical conductivity map and reproduce the main features of the Solfatara crater.
    Description: Published
    Description: 93–105
    Description: JCR Journal
    Description: restricted
    Keywords: Electrical conductivity ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-02-24
    Description: Thermal imagery obtained with portable infrared cameras is widely used to track and measure volcanic phenomena. In the case of explosive eruptions, both air and ground-based thermal monitoring have enabled collection of data streams from relatively safe distances. Analysis of these data have enabled the characterisation of different explosive regimes, parameterisation of eruptive plumes, and assessment on the dynamics occurring in the shallow system. Here we explore the suitability of infrared imagers for investigating the short time scale eruptive behaviour of three basaltic volcanoes. We present high-time resolution thermal image data-sets recorded at Etna, Stromboli and Kīlauea volcano. At the time of observations, all three exhibited pulsed degassing. Signal processing of the mean apparent temperature time-series highlights four broad classes of cyclic temperature changes at the three volcanoes based on characteristic time-scales revealed in the periodograms: (1) 〈15 s, (2) ~20-50 s, (3) ~1-10 min, and (4) 12–90 min. Based on previous studies and integrating time-series results with qualitative visible and thermal observations and, in case of Kīlauea, also with SO2 column amounts in the plume, we hypothesise that short cycles relate mainly to bursting of overpressured gas bubbles at the magma surface, while long cycles might be associated with mechanisms of gas slug formation and ascent, and to the emplacement and drainage of a lava lake. At Kīlauea, slow fluctuations may reflect periodic variations of the lava lake surface level. The data from all three volcanoes reveal superimposition of degassing cycles of different frequencies, suggesting link through common magmatic processes and physical properties.
    Description: LS, GGS and CO thank the UK NERC for an urgency grant to carry out the fieldwork on Hawai`i (PI: M. Edmonds). CO also thanks the NERC for funding through the UK National Centre for Earth Observation (Theme 6 “Dynamic Earth and Geohazards”, PI: B. Parsons). GGS acknowledges NOVAC EU-funded Sixth Framework Programme project 18354. The thermal survey carried out at Stromboli by SC was part of the 2007–09 INGV-DPC Project V2 “Paroxysm”.
    Description: Published
    Description: 1281-1292
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal imaging ; SO2 DOAS measurements ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-02-24
    Description: Detailed stratigraphic and micropalaeontological analyses of samples from boreholes at the Somma-Vesuvius apron, between Pompeii and the sea, allowed reconstruction of Late Quaternary palaeoenvironmental evolution of the Sarno coastal plain. In all, 116 samples were recovered from seven boreholes drilled from 2–10 m a.s.l. to 16.5–26 m b.s.l. Microfossil assemblages, with special regard to benthic foraminifers and ostracods, were used to reconstruct the depositional palaeoenvironment. Fossil remains show that all the pre-79 AD fossiliferous sediments from 2 to − 24 m a.s.l. were deposited in shallow marine waters for a long time despite an appreciable sea level rise. The data indicate alternation of both shallow marine and subaerial conditions during the last ~ 15 kyr, evidencing ground uplift of the area of about 75 m at a rate of ~ 5 mm/year. Marine sediment accumulation (~ 6 m/kyr) and tectonic uplift long offset the sea level rise, and as a consequence, submerged areas remained the same as well.
    Description: Published
    Description: 211–227
    Description: JCR Journal
    Description: restricted
    Keywords: ground uplift; Somma-Vesuvius; Pleistocene; Palaeoecology; benthic foraminifers; ostracods ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-02-24
    Description: We report simultaneous laboratory measurements of seismic velocities and fluid permeability on lava flow basalt from Etna (Italy). Results were obtained for dry and saturated samples deformed under triaxial compression. During each test, the effective pressure was first increased up to 190 MPa to investigate the effect of pre-existing crack closure on seismic properties. Then, the effective pressure was unloaded down to 20 MPa, a pressure which mirrors the stress field acting under a lava pile of approximately 1.5–2 km thick, and deviatoric stress was increased until failure of the specimens. Using an effective medium model, the measured elastic wave velocities were inverted in terms of two crack densities: ρi the crack density of the pre-existing thermal cracks and ρv the crack density of the stress-induced cracks. In addition a link was established between elastic properties (elastic wave velocities Vp and Vs) and permeability using a statistical permeability model. Our results show that the velocities increase with increasing hydrostatic pressure up to 190 MPa, due to the closure of the pre-existing thermal cracks. This is interpreted by a decrease of the crack density ρi from ~ 1 to 0.2. The effect of pre-existing cracks closure is also highlighted by the permeability evolution which decreases of more than two orders of magnitude. Under deviatoric loading, the velocities signature is interpreted, in the first stage of the loading, by the closure of the pre-existing thermal cracks. However, with increasing deviatoric loading newly-formed vertical cracks nucleate and propagate. This is clearly seen from the velocity signature and its interpretation in term of crack density, from the location of the acoustic emission sources, and from microstructural observations. This competition between pre-existing cracks closure and propagation of vertical cracks is also seen from the permeability evolution, and our study shows that mechanically-induced cracks has lesser influence on permeability change than pre-existing thermal cracks.
    Description: Published
    Description: 60–74
    Description: JCR Journal
    Description: restricted
    Keywords: Elastic wave velocity ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: Between 1987 and 1993, fumarole temperatures at the Fossa crater of Vulcano (Italy) were characterized by the highest values since the 1920’s, increasing from about 300°C in 1987 to 690°C in May 1993, before decreasing to 400°C by 1996–1997. During 1990, Vulcano’s Electronic Distance Measurement (EDM) network was expanded to provide more detailed coverage of the northern sector of the Fossa crater and, in particular, to monitor the movement of the northern flank the Fossa cone. Measurements, carried out between 1990 and 1994, showed shortening by about 6 to 7 cm along baselines measured to a small section of the northern rim. Over the following four years these baselines showed a slow extension by about 3 cm, to gradually recover part of the previous deformation. We believe that the shortening and lengthening of the EDM baselines was respectively due to the increasing and decreasing temperature of the rock body lying close to the deforming area. This caused thermal expansion, followed by contraction. The positive movement of the rim was not completely matched by a negative recovery, suggesting that a nonrecoverable sliding movement was also responsible for some of the shortening of the baselines. We verified our hypothesis by calculating the expected dilatation of a rock body, as a function of the volume of rock heated and its thermal expansion coefficient, and compared the expected deformation to that observed. The geodetic investigation showed that the unstable portion affects a small length of the rim (about 100 m long) and involves a volume of about 0.8×106 m3. However, this zone lies directly above a particularly unstable portion of the flank, as well as the main village and port on the island.
    Description: Published
    Description: 791-801
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano monitoring ; Ground deformation ; slope instability ; thermo-elastic deformation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-04-01
    Description: We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi‐analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log‐transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type‐curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open‐source software package welltestpy.
    Description: Article impact statement: We present a workflow to infer parameters of subsurface heterogeneity from pumping test data exemplified at two sites using welltestpy.
    Description: German Federal Environmental Foundation (DBU) http://dx.doi.org/10.13039/100007636
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-03-02
    Description: In this paper we provide a geochemical investigation on 34 groundwater samples in the Mt. Vulture volcanic aquifer representing one of the most important groundwater resources of the southern Italy pumped for drinking and irrigation supply. The present study includes the first data on the abundance and mobility of minor and trace elements and the thermodynamic considerations on water–rock interaction processes in order to evaluate the conditions of alkali basalt weathering by waters enriched in magma-derived CO2. The results highlight the occurrence of two hydrofacies: bicarbonate alkaline-earth and alkaline waters deriving from low-temperature leaching of volcanic rocks of Mt. Vulture, and bicarbonate-sulfate-alkaline waters (high-salinity waters) related to prolonged water circulation in alkali and feldspathoids-rich pyroclastic layers interbedded with clay deposits. The Al-normalized relative mobility (RM) of metals in Vulture's aquifer varies over a wide range (10− 1 〈 RM 〈 104), confirming that the basalt weathering is not a congruent and isochemical process. Chemical equilibrium studies show that the bicarbonate alkaline-earth and alkaline waters, having a short interaction with silicate minerals, plot very close to the kaolinite–smectite stability boundary, whereas the high-salinity waters fall in the stability field of smectite and muscovite because of prolonged interaction with alkali and feldspathoids-rich pyroclastic layers. Overall, for the bicarbonate alkaline-earth and alkaline waters, the release of toxic metals in solutions is related to the spatial variation of host-rock geochemistry, the high-salinity waters, collected near urban areas, show values higher than legal limits for Ni and As, likely as a consequence of anthropogenic contribution.
    Description: Published
    Description: 233-244
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic aquifer system ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...