ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (29)
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (21)
  • American Geophysical Union  (44)
  • Agu  (4)
  • American Institute of Physics
  • American Physical Society
Collection
Years
  • 1
    Publication Date: 2020-12-15
    Description: Long continuous seismic data recorded at five broadband seismic stations during 2006 at Campi Flegrei caldera have been analyzed. Introducing a coarse-grained method, we evaluate the time evolution of amplitude and polarization of the seismic noise in the frequency band common to long-period events. The series are modulated on tidal time scales: the root-mean square is basically dominated by solar contribution, while the azimuth of the polarization vector shows lunar diurnal and semidiurnal constituents. In addition, we find that in the frequency band common to long-period events the azimuths are polarized toward a specific area, suggesting that these persistent oscillations can be induced by the activity of the shallow geothermal reservoir.
    Description: Published
    Description: 2628–2637
    Description: JCR Journal
    Description: restricted
    Keywords: sustained hydrothermal tremor ; Campi Flegrei Caldera ; polarization analysis ; tidal modulation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: Does the application of seismic Born theory, as opposed to simpler ray theory, lead to an improvement in tomographic images of the Earth? In recent publications, Montelli et al. (2004a, 2004b) and van der Hilst and de Hoop (2005) among others have expressed opposite opinions. We propose a quantitative approach to the comparison of tomographic images, which we apply to the case of surface-wave phase velocity maps derived with Born vs. ray theory.
    Description: Published
    Description: L06302
    Description: JCR Journal
    Description: reserved
    Keywords: global seismic tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-07
    Description: The flow of ground water in a buried permeable paleochannel can be observed at the ground surface through its self-potential signature. We apply this method to delineate the Saint-Ferréol paleo-channel of the Rhone River located in Camargue, in the South East of France. Negative potentials, 30 mV (reference taken outside the paleochannel),are associated with ground water flow in this major sand-filled channel (500 m wide). Electrical resistivity is primarily controls by the salinity of the pore water. Electrical resistivity tomography and in situ sampling show the salinity of the water inside the paleo-channel is ten times smaller by comparison with the pore water of the surrounding sediments. Combining electrical resistivity surveys, self-potential data, and a minimum of drilling information, a 3-D reconstruction of the architecture of the paleo-channel is obtained showing the usefulness of this methodology for geomorphological reconstructions in this type of coastal environment.
    Description: - Observatoire de Recherche en Environnement (ORE)
    Description: Published
    Description: L07401
    Description: partially_open
    Keywords: Self-potential ; electrical resistivity tomography ; hydrogeology ; tomography ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 226125 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-26
    Description: This paper presents a velocity model of the Italian (central Mediterranean) lithosphere in unprecedented detail. The model is derived by inverting a set of 166,000 Pg and Pn seismic wave arrival times, restricted to the highest-quality data available. The tomographic images reveal the geometry of the subduction-collision system between the European, Adriatic, and Tyrrhenian plates, over a larger volume and with finer resolution than previous studies. We find two arcs of low-Vp anomalies running along the Alps and the Apennines, describing the collision zones of underthrusting continental lithospheres. Our results suggest that in the Apennines, a significant portion of the crust has been subducted below the mountain belt. From the velocity model we can also infer thermal softening of the crustal wedge above the subducting Adriatic plate. In the Tyrrhenian back-arc region, strong and extensive low-Vp anomalies depict upwelling asthenospheric material. The tomographic images also allow us to trace the boundary between the Adriatic and the Tyrrhenian plates at Moho depth, revealing some tears in the Adriatic-Ionian subducting lithosphere. The complex lithospheric structure described by this study is the result of a long evolution; the heterogeneities of continental margins, lithospheric underthrusting, and plate indentation have led to subduction variations, slab tears, and asthenospheric upwelling at the present day. The high-resolution model provided here greatly improves our understanding of the central Mediterranean’s structural puzzle. The results of this study can also shed light on the evolution of other regions experiencing both oceanic and continental subduction.
    Description: Published
    Description: B05305
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: lithosphere ; crust ; italy ; plates ; subduction ; europe ; seismicity ; adria ; tyrrhenian ; boundary ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-15
    Description: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Description: Published
    Description: 1181–1199
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-03
    Description: A high resolution P-wave image of Mt. Vesuvius edifice has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes, land based shots and small aperture array data. The results give detailsdownto300 – 500m.Therelocatedlocalseismicity appears to extend down to 5 km below the central crater, distributed in a major cluster, centered at 3 km below the central crater and in a minor group, with diffuse hypocenters inside the volcanic edifice. The two clusters are separated by an anomalously high Vp region at around 1 km depth. A zone with high Vp/Vs in the upper layers is interpreted as produced by the presence of intense fluid circulation. The highest energy quakes (up to M = 3.6) are located in the deeper cluster, in a high P-wave velocity zone. Our results favor an interpretation in terms of absence of shallow magma reservoirs.
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Velocity Tomography ; Mt. Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: High-resolution 3-D P and S-wave velocity models of a central sector of the Apennines (Central Italy) are computed by inverting first arrival times from an aftershock sequence (September–December, 1997) following the Mw 5.7 and Mw 6.0 Umbria-Marche earthquakes that occurred on September 26, 1997. The high quality of the data set, especially for the S-wave, allows us to compute 3-D variations in Vp, Vp/Vs and Vp · Vs. The anomalies can be interpreted as lateral changes in rock type and fracturing, which control fluid diffusion and variation in pore pressure. This is in agreement with a poro-elastic view that can be inferred from the spatio-temporal evolution of the seismic sequence.
    Description: Published
    Description: 61-4
    Description: open
    Keywords: Physical properties of rocks ; Seismicity and seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 246845 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Teleseismic traveltime data, recorded by temporary ocean bottom seismographs deployed in Tyrrhenian Sea around the Aeolian Islands (Tyrrhenian Deep-sea Experiment (TYDE)), have been used for the first time in Italy to refine the 3-D model for the deep P wave velocity structure of the southern Tyrrhenian subduction zone. The arrival times of 35 teleseisms have been combined with those recorded by the Italian National Network. In order to obtain a more complete azimuthal coverage of teleseismic rays, 80 events recorded by land stations from 1990 to 2002 have been included in the data set. In total, 2904 P and 314 PKPdf phases, 1300 recorded by ocean bottom instruments, have been collected. The upper mantle structure is reconstructed down to 500 km by a nonlinear inversion of the relative residuals computed with respect to the reference 1-D velocity model ak135. The obtained tomographic model has a higher resolution than those previously published thanks to the recordings of TYDE seafloor stations. Tomographic results confirm the presence of the Tyrrhenian slab imaged as a high-velocity body extending from the uppermost mantle down to the bottom velocity model with dip 70–75 NW. The model better defines the geometry of the seismogenic part of the slab. Its lateral extension is about 200 km in the depth interval 150–300 km, where most of the deep seismicity is concentrated. At uppermost mantle depths the fast structure has smaller lateral dimensions (about 100 km). The inversion also points out a wide well-resolved low-velocity zone completely surrounding the steeply dipping fast structure from the lower crust down to about 300 km. This feature suggests the presence of a threedimensional circulation of asthenospheric flow around the Ionian slab caused by retreat and roll-back of the slab. Our results are in agreement with recent laboratory experiments, mantle anisotropy studies, geochemical and isotopic analyses, and modeling based on residual topography.
    Description: Published
    Description: B03311
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: P-wave teleseismic tomography ; ocean bottom seismometers and hydrophones (OBS/Hs) ; southern Tyrrhenian subduction zone ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 968888 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Volcanic tremor and low frequency events, together with infrasound signals, can represent important precursory phenomena of eruptive activity because of their strict relationship with eruptive mechanisms and with fluid flows through the volcano's feeding system. Important variations of these seismo-volcanic and infrasound signals, recorded at Mt. Etna volcano, occurred both in the medium- and short-term before the eruption, that took place on 13 May 2008. The most significant changes were observed in the frequency content and location of LP events, as well as in volcanic tremor location, that allowed us to track the magma pathway feeding the 2008 eruptive activity. The infrasound showed three different families of events linked to the activity of the three active vents: North-East crater, South-East crater and the eruptive fissure. The seismic and infrasonic variations reported, corroborated by ground deformations variations, help to develop a quantitative prediction and early-warning system for effusive and or explosive eruptions.
    Description: European Union VOLUME FP6-2004-Global-3
    Description: Published
    Description: L18307
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna Eruption ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Active volcanoes produce inaudible infrasound due to the coupling between surface magmatic processes and the atmosphere. Monitoring techniques based on infrasound measurements have been proved capable of producing information during volcanic crises. We report observations collected from an infrasound network on Mt. Etna which enabled us to detect and locate a new summit eruption on May 13, 2008 when poor weather inhibited direct observations. Three families of signals were identified that allowed the evolution of the eruption to be accurately tracked in real-time. Each family is representative of a different active vent, producing different waveforms due to their varying geometry. Several competitive models have been developed to explain the source mechanisms of the infrasonic events, but according to our studies we demonstrate that two source models coexist at Mt. Etna during the investigated period. Such a monitoring system represents a breakthrough in the ability to monitor and understand volcanic phenomena.
    Description: Published
    Description: L05304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; infrasound ; eruption ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: A new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.
    Description: - European Social Fund.
    Description: Published
    Description: Q09005
    Description: partially_open
    Keywords: dissolved gases ; helium isotope ; PTFE membrane ; Vulcano Island ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 446781 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: Explosion-quake seismograms recorded at Stromboli show that seismic phases with a high-amplitude and high-frequency content propagate with a velocity of approximately 330 m/s - the sound speed. The analysis of seismograms, recorded at a distance of 500 m from one of the three active vents, shows for the first onset a low frequency and particle motion characteristics of a p-wave, which loses its longitudinal polarization with the onset of the air-wave. Recording the explosion-quake simultaneously with a microphonewe would ascertain that the high frequency onset coincides with the air-wave's. In order to better understand the seismic wavefield generated by the atmospheric pressure, we performed a controlled source experiment at Stromboli using a seismic gun. Seismograms with the same two phases and particle motions comparable with the volcanic seismic data were obtained. A second experiment demonstrated, that the air-wave propagates at least in the uppermost 1m of the gound. We suggest that the seismic source of the corresponding seismograms is an explosion at the top of the magma column and conclude that the p- and air-waves are both generated in the same point and at the same time.
    Description: Published
    Description: 65-68
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; Stromboli ; air wave ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The persistent occurrence of long period (LP) events at Mt Etna became apparent with the installation of the first fixed broad-band seismic network in late 2003. Repeating similar LP events from Nov. ‘03 to Sept. ‘04 indicate a non-destructive source process. We perform moment tensor (MT) inversions on a stacked high S/N ratio representative LP signal, conducting a grid search for the source geometry and L2-inversion for the source time function. Results indicate a NNW-SSE oriented resonating sub-vertical crack as the most probable source. This result is consistent with deformation and GPS observations. Crucial to this result are constraints imposed by detailed 3D full waveform numerical simulations in a heterogeneous tomographic model with topography, and in particular a detailed assessment of the influence of very near surface velocity structure on LP signals. Pulsating gas injection is hypothesised as the most likely LP trigger.
    Description: Published
    Description: L22316
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; moment tensor inversion ; LP activity ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  “Accepted for publication in (Journal of Geophysical Research). Copyright (2009) American Geophysical Union. Further reproduction or electronic distribution is not permitted.”
    Publication Date: 2017-04-04
    Description: The eruptive episode of Mount Etna’s Southeast Crater (SEC) on 16 November 2006, which culminated with phreatomagmatic explosions and a peculiar volcaniclastic flowage event, is the subject of different interpretations. Behncke (2009) and Behncke et al. (2008, 2009), interpret the explosions as resulting from mixing of flowing lava with fluid-saturated, hydrothermally altered rock, and describe the resulting flow as a low-temperature (but potentially deadly) pyroclastic density current (PDC). Norini et al. (2009) speak of gravity-induced flank collapse affecting the SEC cone, leading to the emplacement of a landslide (or debris avalanche) deposit. Finally, Ferlito et al., commenting our recent work (Behncke et al., 2009), re-propose their earlier (2007) scenario of a shallow intrusion from the SEC conduit, caused by unloading and decompression when a part of the SEC cone flank was removed (“sector collapse”), leading to the explosive opening of an eruptive fissure, which discharged a pyroclastic flow. An outstanding feature of this event is that it was not accompanied by any significant change in the seismic signal, which led us (Behncke et al. 2009) to exclude the opening of an eruptive fissure. However, Ferlito et al. point out that seismic evidence alone does not rule out their scenario, and cite the lack of seismic signals accompanying the start of the (rather voluminous, in terms of lava discharge, but purely effusive) 2004-2005 Etna eruption as support for their hypothesis. Finally, they describe what they interpret as the source fissure for the phreatomagmatic explosions and PDCs, and was the site of minor lava extrusion toward the end of the 16 November 2006 event. On their website, Ferlito et al. host a short (〈2 min) clip excerpted from a 40:54 min long video recorded by G. Tomarchio, cameraman of the Italian public television RAI, featuring only the 1425 GMT explosion and PDC. The integral, original version of that video (which was made available to INGV-CT immediately after the event) documents, amongst others, the presence of Behncke and INGV colleagues on-site, and shows a number of extremely similar explosions and PDCs over several hours prior to 1425 GMT, only on a smaller scale. As for the 1425 GMT event, the video spectacularly shows explosive activity, but nothing proving the opening of an eruptive fissure, neither does it show any landsliding as surmised by Norini et al. (2009). Our careful viewing of 1500 still photographs taken of the activity on that day, including nearly 1000 taken by INGV staff, plus other videos taken from different viewpoints (e.g., Movie S3 in the auxiliary material to our article) leads us to analogous conclusions. Videos and photographs document dozens of minor explosive, PDC-generating events before the major phreatomagmatic explosions and PDCs at 1425 GMT. The mechanisms of these events were virtually the same throughout, differing only in their magnitude. All were caused by hot, flowing lava mixing with wet, hydrothermally altered rocks making up the SEC cone’s flank that the lava was burrowing through. The “eruptive fracture” that Ferlito et al. refer to is a secondary feature, formed at the toe of a lava flow, which had flowed down the ESE side of the cone early on 16 November 2006 and was severed around noon by the progressive enlargement of the large scar eroded into the cone’s flank. Draining of the lava within the active channel of the severed flow led to accumulation of lava at the cone’s base, developing into a sort of bubble. For reasons unknown, this bubble drained during the late afternoon, yielding an extremely small flow. The pocket evacuated by this outflow subsided to become what Ferlito et al. interpret as an eruptive fissure, a single slightly elongate collapse depression, lying approximately 150 m northeast of the locus of the 1425 GMT phreatomagmatic explosions, which is well visible in aerial photographs taken after the events under discussion (Figure 1). The lava flow that Ferlito et al. claim to have sampled is the secondary flow formed by the draining of the pocket. It has no whatsoever genetic relationship with the phreatomagmatic explosions and PDCs of 1425 GMT. Another fundamental argument lies in the seismic record, and it is here that Ferlito et al. miss two major points. Firstly, unlike the seismic scenario usually observed at Etna in more than three decades of monitoring (e.g., Patanè et al., 2004), the start of the 2004-2005 lava effusion was exceptionally silent as many authors noted (e.g., Burton et al., 2005; Di Grazia et al., 2006; Corsaro et al., 2009). The onset of lava emission was indeed completely and unusually aseismic (in terms of volcano-tectonic seismicity, volcanic tremor changes, etc.), but it was also totally non-explosive, due to the nearly complete depletion in gas of the magma. Therefore, this effusive episode stands in marked contrast with the 16 November 2006 activity. It should be noted that when new, gas-rich magma moved toward the surface at a later stage of the 2004-2005 lava effusion, the volcanic tremor amplitude markedly increased (Di Grazia et al., 2006). Secondly, Ferlito et al. refer to papers (e.g., Cardaci et al., 1993; Patanè et al., 2004) which deal with the relationship between volcano-tectonic (VT) seismicity and the triggering of eruptive activity at Etna. VT seismicity covers just a part of the information contained in a seismic record (e.g., McNutt, 2000), a detail which can be easily missed by non-experts in seismology. There is indeed a variety of signals (e.g., long-period events, hybrid events, volcanic tremor, explosion quakes) related to the movement of fluids and/or magma, which can herald and accompany the opening of eruptive fractures. We did extensive cross-checking of the seismic record of the entire 2006 eruptive sequence, paying particular attention to episodes of new eruptive fissures opening. Each single event marked by the opening of new vents displaying some sort of explosive activity (this occurred during at least four of the paroxysms during the August-December 2006 eruptive sequence) shows conspicuous changes not only in the amplitude of the seismic (tremor) signal, but also in the location of the centroid of the tremor source, and frequency content, features amply discussed in our paper (Behncke et al., 2009). The migration of subsurface magma can thus be well documented, if it is accompanied by degassing. We would also like to point out that the phreatomagmatic explosions and PDCs of 1425 GMT occurred shortly after a conspicuous drop in the volcanic tremor amplitude (see Fig. 8 in Behncke et al., 2009). The lack of changes in the seismic signals concurrent with the PDC is also evident in the spectrograms (in which the frequency content excludes the occurrence of any seismic signals associated with fracturing, see Fig. 9 in Behncke et al., 2009) and in the records of all the broadband stations considered by Behncke et al. (2009), notwithstanding their vicinity to the site of the PDC-generating explosions (EBEL and ECPN are located ~1 km from the SEC, at 2899 and 3050 m elevation above sea level, respectively). Finally, the hypothesis of magma uprise at the base of the SEC cone caused by unloading related to the removal of a major portion of the cone’s flank, has been vested by Ferlito et al. (2007) in a volcanic sector collapse scenario similar to the catastrophic 1980 debris avalanche at Mount St. Helens. Volcanic sector collapse commonly takes place instantaneously, which is the contrary of what happened at the SEC on 16 November 2006. Thanks to our presence on site from the early morning onward, we were able to document how the removal of a portion of the flank of the cone occurred extremely slowly, over at least 5 hours (cf. Fig. 5 in Behncke et al., 2008). The material involved in this displacement moved at best at 50-80 m per hour, which is rather unlike the speed of volcanic debris avalanches. There was no such thing as a major landslide, and no such thing as a new eruptive fissure opening; what did happen was a very hazardous sequence of events, including phreatomagmatic explosions and quite low-temperature but fast-moving, dense pyroclastic density currents. Such volcanic phenomena deserve in-depth multidisciplinary studies, and the ongoing discussion underscores how much work is still necessary to better understand the dynamics of a versatile volcano such as Mount Etna.
    Description: Published
    Description: B12205
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Volcano monitoring ; Mt. Etna ; Volcanic hazard ; instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Travel times of about 39,000 Pn arrivals recorded from regional earthquakes by the Italian Telemetered Seismic Network and by stations of nearby countries are inverted to image lateral variations of seismic velocity and anisotropy at subcrustal depth in Italy and surrounding regions. This method allows simultaneous imaging of variations of Pn velocity and anisotropy, as well as crustal thickness variations. The Po plain, the Adriatic Sea, and the Ionian Sea have normal to high Pn velocities. In contrast, lower velocities (7.9-8.0 km/s) are imaged in Italy beneath the western Alps, the northern Apennines, and eastern Sicily and nearby Calabria, as well as in northern Albania and beneath the Pannonian basin. Low Pn velocities beneath the northern Apennines correlate with present-day extension and may have resulted from thermal anomalies in the uppermost mantle due to delamination processes. Low velocities are consistent with the high-attenuation zone inferred in the uppermost mantle beneath the internal Apennine units and the Tyrrhenian margin of the peninsula by Mele et al. [1996, 1997]. On the contrary, low velocities beneath the western Alps may be an apparent effect due to the abrupt thickening of the crustal roots. Pn velocity is anisotropic in the study area with a maximum amplitude of ± 0.2 km/s. The largest anisotropic velocity anomalies are observed along the major arc structures of Italy, i.e., the northern Apennines and the Calabrian Arc, indicating that these features are controlled by uppermost mantle processes. The anisotropy anomaly along the Calabrian Arc extends as far as Albania but ends abruptly north of this area, suggesting that a lithospheric discontinuity is present along the northern Albanian border.
    Description: Published
    Description: 12,529-12,543
    Description: JCR Journal
    Description: reserved
    Keywords: Pn anisotropic tomography ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability.We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003.We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts.We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d.We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
    Description: This work was supported financially by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, project INGV-DPC V4/02.
    Description: Published
    Description: Q04022
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: rockfalls ; seismicity ; volcanoes ; volcano collapses ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The period September–November 2007 was characterized at Mount Etna by explosive activity and intense degassing. During this time interval, infrasonic signals were recorded by an infrasonic network. By a triggering procedure, about 1000 infrasonic events were found, characterized by very high signal-to-noise ratio and grouped into nine families. Successively, the spectral analysis allowed subdividing these nine families into three clusters based on the peak frequency and the quality factor of the events. Finally, by the location analysis a cluster (cluster 1) was related to the degassing activity of the northeast crater (NEC), while the other two (clusters 2 and 3) to the explosive activity of the southeast crater (SEC). The comparison between the stacked infrasonic waveforms, interpreted as generated by the vibration of large gas bubbles, and the synthetic ones, permitted to calculate radius, length of the bubble, and initial overpressure, by a genetic algorithm method. The higher overpressure values of cluster 3 compared to the cluster 2 values were in good agreement with the stronger intensity of the explosions accompanying the infrasonic events of cluster 3. The variation of both intensities and waveforms is tentatively attributed to the occasional accumulation of lithic clasts (due to moderate landslides?) on the explosive vent. Indeed, events belonging to cluster 3 were no longer observed once the landslides had ended. Finally, the daily emitted gas volume, related to the active degassing, was estimated for NEC and SEC by using the infrasonic data during the studied period.
    Description: Published
    Description: B08308
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Infrasound ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: Seismic, deformation, and volcanic gas observations offer independent and complementary information on the activity state and dynamics of quiescent and eruptive volcanoes and thus all contribute to volcanic risk assessment. In spite of their wide use, there have been only a few efforts to systematically integrate and compare the results of these different monitoring techniques. Here we combine seismic (volcanic tremor and long‐period seismicity), deformation (GPS), and geochemical (volcanic gas plume CO2/SO2 ratios) measurements in an attempt to interpret trends in the recent (2007–2008) activity of Etna volcano. We show that each eruptive episode occurring at the Southeast Crater (SEC) was preceded by a cyclic phase of increase‐decrease of plume CO2/SO2 ratios and by inflation of the volcano’s summit captured by the GPS network. These observations are interpreted as reflecting the persistent supply of CO2‐rich gas bubbles (and eventually more primitive magmas) to a shallow (depth of 1–2.8 km asl) magma storage zone below the volcano’s central craters (CCs). Overpressuring of the resident magma stored in the upper CCs’ conduit triggers further magma ascent and finally eruption at SEC, a process which we capture as an abrupt increase in tremor amplitude, an upward (〉2800 m asl) and eastward migration of the source location of seismic tremor, and a rapid contraction of the volcano’s summit. Resumption of volcanic activity at SEC was also systematically anticipated by declining plume CO2/SO2 ratios, consistent with magma degassing being diverted from the central conduit area (toward SEC).
    Description: Published
    Description: Q09008
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano monitoring ; Mt. Etna volcano ; geochemistry and geophysics ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-02-03
    Description: Influences of distant earthquakes on volcanic systems by dynamic stress transfer are well documented. We analyzed seismic signals and volcanic activity at Mount Etna during two periods, January 2006 and May 2008, that clearly showed variations coincident with distant earthquakes. In the first period, characterized by mild volcano activity, the effect of the dynamic stress transfer, caused by an earthquake in Greece (M = 6.8), was twofold: (1) banded tremor activity changed its features and almost disappeared; (2) a swarm of volcano‐tectonic (VT) earthquakes took place. The changes of the banded tremor were likely due to variations in rock permeability, caused by fluid flows driven by dynamic strain. The VT earthquake swarm probably developed as a secondary process, promoted by the dynamically triggered activation of magmatic fluids. The second period, May 2008, showed an intense explosive activity. During this interval, the dynamic stress transfer, associated with the arrival of the seismic waves of the Sichuan earthquake (M = 7.9), affected the character of the seismo‐volcanic signals and on the following day triggered an eruption. In particular, we observed changes in volcanic tremor and increases of both occurrence rate and energy of long period events. In this case, we suggest that dynamic stress transfer caused nucleation of new bubbles in volatile‐rich magma bodies with consequent buildup of pressure, highlighted by the increase of long period activity, followed by the occurrence of an eruption. We conclude that stresses from distant earthquakes are capable of modifying the state of the volcano.
    Description: Published
    Description: B12304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna volcano ; dynamic stress transfer ; triggered eruption ; triggered seismicity ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: The goal of this paper is to yield physical constrains on the nature and evolution of a seismic swarm by means of a quantitative stochastic modeling of earthquakes occurrence. With this purpose, we fit different stationary and nonstationary stochastic ETAS models to the Izu Islands seismic swarm occurred in 2000. We find that a nonstationary model with background activity and p-value varying through time describes the observations better than other simpler ETAS models. The coherent fluctuations of these parameters and of the spatio-temporal earthquake distribution are interpreted in terms of a magma/fluids source process that evolves through outbursts of activity superimposed to low frequency variations. The results obtained suggest that suitable nonstationary ETAS modeling can be very useful to characterize the nature of the swarm source, and it may provide the basis to build a quantitative tool for tracking in almost real-time the evolution of a magma/fluids source.
    Description: Published
    Description: L07310
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic seismic ; Izu Islands swarm ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union
    Publication Date: 2017-04-04
    Description: Three eruptive episodes during the 2006 summit eruptions of Mount Etna were exceptionally well documented by visual, seismic and thermal monitoring. The first (16 November) was strongly explosive, with vigorous Strombolian activity and ash emission from multiple vents, lava emission, and phreatomagmatic explosions generating pyroclastic density currents (PDCs). The second episode (19 November) had a rather weakly explosive component, with mild Strombolian activity but more voluminous lava emission. The third (24 November) was a moderately explosive paroxysm, with intermittent lava fountaining and generation of a tephra column as well as lava emission and PDCs. Data recorded by a thermal monitoring camera clearly document the different phases of each paroxysm, weather clouds occasionally hampering thermal monitoring. The images show a rapid onset of the volcanic activity, which during each of the paroxysms reached a peak in eruptive and thermal intensity, and then decreased gradually. The stronger phreatomagmatic explosions and PDCs on 16 and 24 November did not yield any seismic signature linked to the opening of new vents, nor were they associated with peculiar characteristics of the seismic signal. Nevertheless, eruptive styles (Strombolian activity, lava emission) and different levels in the intensity of explosive activity were generally well reflected in the amplitude and frequency content of the seismic signal, and in the source location of the volcanic tremor centroid throughout the three eruptive episodes. This multidisciplinary study, therefore, not only provides a key to distinguish between endogenous and exogenous origins of the phenomena observed, but also documents the complex magma dynamics within the volcano.
    Description: Published
    Description: B03211
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano monitoring ; Mt Etna ; volcanic hazard ; instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: We have found experimental evidence which shows that the volcanic tremor recorded at Deception Island (South Shetland Islands, Antarctica) is a superposition in time of overlapping hybrid events.
    Description: Published
    Description: 3069-3072
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Arrays ; volcanictremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic Vp model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high‐velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low‐velocity anomaly (8%–10 % reduction in Vp) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low‐velocity volume (∼5% reduction in Vp and as much as 40% reduction in Vs) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low‐velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.
    Description: Published
    Description: B12314
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Tomography ; Long Valley Caldera ; Receiver Function ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: In this work, waveform variations in repeating volcanotectonic earthquakes occurring from 2001–2009 in the northeastern flank of Mt. Etna were studied. Changes in waveform were found mainly during 2002–2003; and consisted of a decreasing similarity in the coda of events in earthquake families, as revealed by cross-correlation analysis, and delays, increasing proportionally to the lapse time, detected by coda wave interferometry. Such variations, mainly evident at stations located in the north-eastern flank of the volcano, were likely due to medium changes taking place within this region. Localized medium velocity decreases were inferred to occur in 2002–2003, followed by successive increases. The velocity decrease was interpreted as being caused by the opening or enlargement of cracks, produced by intruding magma bodies, intense ground deformation, and/ or VT earthquake activity that accompanied the 2002–2003 Mt. Etna eruption. On the other hand, subsequent velocity increases were interpreted as resulting from healing processes.
    Description: Published
    Description: L18311
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: coda wave interferometry ; Etna ; VT earthquakes ; Pernicana fault ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Since the second half of the 1990s, the eruptive activity of Mount Etna has provided evidence that both explosive and effusive eruptions display periodic variations in discharge and eruption style. In this work, a multiparametric approach, consisting of comparing volcanological, geophysical, and geochemical data, was applied to explore the volcano's dynamics during 2009–2011. In particular, temporal and/or spatial variations of seismicity (volcano-tectonic earthquakes, volcanic tremor, and long-period and very long period events), ground deformation (GPS and tiltmeter data), and geochemistry (SO2 flux, CO2 flux, CO2/SO2 ratio) were studied to understand the volcanic activity, as well as to investigate magma movement in both deep and shallow portions of the plumbing system, feeding the 2011 eruptive period. After the volcano deflation, accompanying the onset of the 2008–2009 eruption, a new recharging phase began in August 2008. This new volcanic cycle evolved from an initial recharge phase of the intermediate-shallower plumbing system and inflation, followed by (i) accelerated displacement in the volcano's eastern flank since April 2009 and (ii) renewal of summit volcanic activity during the second half of 2010, culminating in 2011 in a cyclic eruptive behavior with 18 lava fountains from New Southeast Crater (NSEC). Furthermore, supported by the geochemical data, the inversion of ground deformation GPS data and the locations of the tremor sources are used here to constrain both the area and the depth range of magma degassing, allowing reconstructing the intermediate and shallow storage zones feeding the 2011 cyclic fountaining NSEC activity.
    Description: Published
    Description: 3519–3539
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Mt Etna ; seismology ; ground deformation ; geochemistry ; volcanology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: We investigated the banded tremor activity occurring at Mt. Etna volcano between August-October 2008 during the 2008-2009 eruption. The banded tremor occurred in episodes lasting 25-30 minutes with intervals in between the episodes of about 25 minutes. Seismic signal analyses showed that the banded tremor was characterised by spectral contents, wavefields and source locations that differed from the “ordinary” volcanic tremor. The infrasound recordings exhibited an intermittent infrasonic tremor alternating with the banded tremor episodes. Finally, nonlinear analyses suggested that banded tremor system can be considered chaotic, implying: i) sensitive dependence on initial conditions, suggesting not only that a banded tremor system requires particular conditions to generate, but also that slight variations of these conditions are able to greatly change the features of the banded tremor or even to stop it; ii) long-term unpredictability, that is, the impossibility to forecast the long-term evolution of the banded tremor. On the basis of all these results and analogies with geyser models, we suggest a model of banded tremor that invokes alternating recharge-discharge phases. Banded tremor is due to “perturbations” in shallow aquifers, such as fluid movement and bubble growth or collapse due to hydrothermal boiling, triggered by the heat and hot fluid transfer from the underlying magma bodies. This heat-fluid transfer also causes an increasing pressure in the aquifer leading to fluid-discharge. During this process the seismic radiation decreases and, if the fluid-discharge is well coupled with the atmosphere, acoustic signals are generated.
    Description: Published
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Banded tremor ; Mt. Etna volcano ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: We present results from the first crustal seismic tomography for the southern Tyrrhenian area, which includes ocean bottom seismometer (OBS) data and a bathymetry correction. This area comprises Mt. Etna, the Aeolian Islands, and many volcanic seamounts, including the Marsili Seamount. The seismicity distribution in the area depends on the complex interaction between tectonics and volcanism. The 3-D velocity model presented in this study is obtained by the inversion of P wave arrival times from crustal earthquakes. We integrate travel time data recorded by an OBS network (Tyrrhenian Deep Sea Experiment), the SN-1 seafloor observatory, and the land network. Our model shows a high correlation between the P wave anomaly distribution and seismic and volcanic structures. Two main low-velocity anomalies underlie the central Aeolian Islands and Mt. Etna. The two volumes, which are related to the well-known active volcanism, are separated and located at different depths. This finding, in agreement with structural, petrography, and GPS data from literature, confirms the independence of the two systems. The strongest negative anomaly is found below Mt. Etna at the base of the crust, and we associate it with the deep feeding system of the volcano. We infer that most of the seismicity is generated in brittle rock volumes that are affected by the action of hot fluids under high pressure due to the active volcanism in the area. Lateral changes of velocity are related to a transition from the western to the central Aeolian Islands and to the passage from continental crust to the Tyrrhenian oceanic uppermost mantle.
    Description: Published
    Description: 3703–3719
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: ocean bottom seismometers ; southern Tyrrhenian Sea ; seismic tomography ; Aeolian Islands ; Etna ; oceanic continental crust ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: We present a 3-D P wave velocity model of the crust and shallowest mantle under the Italian region, that includes a revised Moho depth map, obtained by regional seismic travel time tomography. We invert 191,850 Pn and Pg wave arrival times from 6850 earthquakes that occurred within the region from 1988 to 2007, recorded by 264 permanent seismic stations. We adopt a high-resolution linear B-spline model representation, with 0.1􏰂 horizontal and 2 km vertical grid spacing, and an accurate finite-difference forward calculation scheme. Our nonlinear iterative inversion process uses the recent European reference 3-D crustal model EPcrust as a priori information. Our resulting model shows two arcs of relatively low velocity in the crust running along both the Alps and the Apennines, underlying the collision belts between plates. Beneath the Western Alps we detect the presence of the Ivrea body, denoted by a strong high P wave velocity anomaly. We also map the Moho discontinuity resulting from the inversion, imaged as the relatively sharp transition between crust and mantle, where P wave velocity steps up to values larger than 8 km/s. This simple condition yields an image quite in agreement with previous studies that use explicit representations for the discontinuity. We find a complex lithospheric structure characterized by shallower Moho close by the Tyrrhenian Sea, intermediate depth along the Adriatic coast, and deepest Moho under the two mountain belts.
    Description: Published
    Description: 69-88
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: seismic tomography ; body waves ; computational seismology ; Moho topography ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-05-23
    Description: SPAC method applied to data from a small aperture seismic array on Mt. Vesuvius gives the shallow velocity model.
    Description: Published
    Description: 481-484
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Array analysis ; shallow structure ; SPAC method ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: 129 Long Period (LP) events, divided in two families were recorded by 50 stations deployed on Mount Etna within an eruptive context in the second half of June 2008. In order to understand the mechanisms of these events, we perform moment tensor inversion. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainities in the velocity model. These tests emphasize the importance of using stations located as close as possible to the source in the inversion of LP events. Inversion of LP signals is initially unconstrained, in order to estimate the most likely mechanism. Constrained inversions then allow us to accurately determine the structural orientations of the mechanisms. Inversions for both families show mechanisms with strong volumetric components. These events are generated by cracks striking SW-NE for both families and dipping 70± SE (fam. 1) and 50± NW (fam. 2). The geometries of the cracks are different from the structures obtained by the location of these events. The orientation of the cracks is consistent with the local tectonic context on Mount Etna. The LP events seem to be a response to the lava fountain occuring on the 10th of May, 2008.
    Description: In press
    Description: (38)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Long-Period events ; earthquake source mechanism ; Etna Volcano ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: On 16 November 2006, a 1 day long paroxysmal eruption occurred at the summit craters of Mt. Etna volcano. A multiparametric approach, consisting of analyzing infrasonic, seismic, and video camera recordings, was carried out to follow its evolution. Volcanological and geophysical observations identified three eruptive phases. In the first phase, infrasonic and seismic characteristics reflected the highly explosive nature of the activity. Waveform characterization of infrasound events confirmed the activity of the several explosive vents at the summit of Southeast Crater (SEC). During the second phase, results highlighted the decoupling between seismic and infrasonic sources, which was due to the decrease in explosive activity and the reactivation of effusive vents located south of Bocca Nuova and on the saddle between Bocca Nuova and SEC. The third phase was the most intense and was characterized by various volcanic phenomena (pyroclastic flows, jets of dark ash, and white steam). The very high radiated infrasonic energy, together with infrasound event features, led us to infer a gas enrichment of the shallow magma column, preceding by a few minutes and likely related to the pyroclastic flows in the SEC area. After the eruption at SEC, variations in infrasound events related to the activity of Northeast Crater (NEC) were found. The observed spectral changes and the source mechanism modeling of the NEC infrasound events suggest the existence of a link in the plumbing system feeding the two craters.
    Description: Published
    Description: B09301
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Infrasound ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: One hundred twenty-nine long-period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit Strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW–NE for both families and dipping 70° SE (family 1) and 50° NW (family 2). For family 1 events, the crack geometry is nearly orthogonal to the dikelike structure along which events are located, while for family 2 the location gave two pipelike bodies that belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction. The LP events appear to be a response to the lava fountain occurring on 10 May 2008 as opposed to the flank lava flow.
    Description: Published
    Description: B01304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Etna Volcano ; long-period events ; source mechanism ; location ; plumbing systems ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (40°W–70°E). The 3-D image of the density-vS coupling provides unprecedented detail of information on the compositional and thermal contributions to density structures. The accurate and high-resolution crustal model allows us to compute a reliable residual topography to understand the dynamic implications of our models. The correlation between residual topography and mantle residual gravity anomalies defines three large-scale regions where upper mantle dynamics produce surface expression: the East European Craton; the eastern side of the Arabian Plate; and the Mediterranean Basin. The effects of mantle convection are also clearly visible at: (1) the Eastern Sirt Embayment; (2) the West African Craton northern margins; (3) the volcanically active region of the Canarian Archipelago; (4) the northern edge of the Central European Volcanic Province; and (5) the Northeastern part of the Atlantic Ocean, between Greenland and Iceland. Strong connections are observed among areas of weak radial anisotropy and areas where the mantle dynamics show surface expression. Although both thermal and additional dependencies have been incorporated into the density model, convective down-welling in the mantle below the East European Craton is required to explain the strong correlation between the estimated negative mantle residual anomalies and the negative residual topography.
    Description: DATEC MERG-CT-2007-046522 and NERIES INFRAST-2.1-026130
    Description: Published
    Description: B09401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Europe ; GRACE ; density-velocity scaling relationship ; dynamic topography ; surface waves ; upper mantle density ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Strong changes in seismic radiation, comparable to those preceding and/or accompanying eruptive activity in recent years, were recorded at Mt. Etna volcano, Italy, from November 2005 to January 2006. The amplitude of volcanic tremor peaked in mid-December 2005 after a continuous, slow increase from August 2005 onwards, during which neither effusive nor paroxysmal activity was observed by volcanologists and alpine guides. During this time span, the centroid locations of volcanic tremor moved towards the surface, more and more clustered below the summit craters. The application of pattern classification analysis based on Self-Organizing Maps and fuzzy clustering to volcanic tremor data highlighted variations in the frequency domain as well. These changes were temporally associated with ground deformation variations, as indicative of a mild inflation of the summit of the volcano, and with a conspicuous increase in the SO2 plume-flux emission. Overall, we interpret this evidence as the result of recharging of the volcanic feeder at depth (〉 3 km below sea level) during which magma did not reach the shallow plumbing system.
    Description: Published
    Description: 4989–5005
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: embargoed_20140606
    Keywords: time series analysis ; volcano seismology ; volcano monitoring ; neural network and fuzzy logic ; seismic tomography ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal-fault system. High-Vp bodies defined in the upper and mid crust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the mid crust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal-faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that pre-existing structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a 30 km long, NE-dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s sub-events) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt.
    Description: Published
    Description: 8283–8311
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: embargoed_20150609
    Keywords: The velocity structure of the southern Apennines is determined by a multi-scale tomography ; Large Cenozoic mafic intrusions are identified in the Apulian crust ; Pressurized CO2 reservoirs identified under the axial belt can affect crustal seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: In this work we present intrinsic and scattering seismic attenuation 2-D images of Stromboli Volcano. We used 21,953 waveforms from air gun shots fired by an oceanographic vessel and recorded at 33 inland and 10 ocean bottom seismometer seismic stations. Coda wave envelopes of the filtered seismic traces were fitted to the energy transport equation in the diffusion approximation, obtaining a couple of separate Qi and Qs in six frequency bands. Using numerically estimated sensitivity kernels for coda waves, separate images of each quality factor were produced. Results appear stable and robust. They show that scattering attenuation prevails over intrinsic attenuation. The scattering pattern shows a strong concordance with the tectonic lineaments in the area, while an area of high total attenuation coincides with the zone where most of the volcanic activity occurs. Our results provide evidence that the most important attenuation effects in volcanic areas are associated with the presence of geological heterogeneities.
    Description: Published
    Description: 1717–1724
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Attenuation Tomography ; Seismic scattering ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: The joint application of different seismological techniques for seismic noise analysis, and the results of a volcanological and morphostructural survey, have allowed us to obtain a detailed and well constrained image of the shallow crustal structure of the Solfatara volcano (Campi Flegrei caldera, Italy). Horizontal-to-vertical spectral ratios, inversion of surface wave dispersion curves and polarization analysis provided resonance frequencies and peak amplitudes, shear wave velocity profiles and polarization pattern of coherent ambient noise. These results, combined in a unique framework, indicate that the volcanic edifice is characterized by lateral and vertical discontinuities and heterogeneities in terms of shear wave velocity, lithological contrasts and structural setting. The interpretation of the seismological results, with the volcanological and morphostructural constraints, supports the hypothesis that the volcano has been characterized by a complex and intense activity, with the alternation of constructive and destructive phases, during which magmatic and phreatomagmatic explosions built a complex tuff-cone, later reworked by atmospheric agents and altered by hydrothermal activity. The differences in the velocity structure between the central and eastern parts of the crater have been interpreted as resulting from a possible eastward migration of the eruptive vent along the deformational features affecting the area, and to the presence of viscous lava and lithified tuff bodies within the feeding conduits, which are buried under a covering of reworked materials of variable thickness. The observed fault and fracture systems, partially inherited from regional structural setting and exhumed during volcanism and ground deformation episodes also seems to strongly control wave propagation, affecting the noise polarization properties.
    Description: Published
    Description: Q07006
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Solfatara ; crustal structure ; seismic noise ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: In this study we present new high-resolution, regional-scale, Vp and Vp/Vs models of the northern-central Apennines along with accurate 3-D locations of a large set of local earthquakes. The main velocity anomalies are consistent with the surface geology in the shallow layers and present evidence for fluids stored within the basement at greater depths beneath the extensional belt. The Adria and Tyrrhenian mantle are defined by positive velocity anomalies below 30 km depth, while a low-Vp, high-Vp/Vs region in between indicates the existence of a hydrated wedge. The results yield new constraints on active processes in the Apennines and more generally envisage the evolution of a postcollisional belt. Velocity anomalies and earthquakes are consistent with a complex system of delamination and sinking of the Adria continental lithosphere, with the peeling of the crust identified by intermediate-depth seismicity. Change of seismicity and structural patterns along the belt indicates that this tectonic process is diachronous and that fluids, released by sunken lithosphere, are stored within the crust, conditioning the occurrence of seismicity and the onset of extension.
    Description: Published
    Description: 5391-5403
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Local earthquake tomography ; tectonic of Apennines ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: Adria is a small region surrounded by three mountain belts: the Alps, the Apennines, and the Dinarides, built up by long evolution of subduction and collisional systems. We present 253 shear wave splitting measurements obtained by studying more than 100 teleseismic events for 12 stations. SKS splitting measurements show 3-D complexity and quite strong upper mantle deformation. We carefully analyzed results in terms of back azimuthal coverage and interpret measurements as related to Adria rotation and to subductions evolution. In the northern part of Adria, the anisotropy pattern follows the arcuate shape of the Alps; the same pattern, parallel to the mountains, occurs along the Apennines, but fast directions show a sudden change in the Adria foreland. This lateral variation has been analyzed to isolate a distinct Adria mantle anisotropic pattern, which is identified as NE-SW fast direction along the western microplate boundary and as N-S fast direction at Trieste. This pattern might be induced by drag effect of the counterclockwise rotation of Adria lithosphere that behaves as an independent microplate as identified by GPS data. Our measurements suggest that the geodynamic process that generated the Alps is more efficient deforming a larger volume of mantle than its Apennine counterpart. Moreover, the mantle circulation we hypothesize looking at the regional-scale patterns of anisotropy requires the existence of an escape route beneath the Alps-Apennines transition, through which the mantle flows and feed circulation in the Tyrrhenian mantle system as suggested by previous geodynamic models and as seen by some tomographic studies.
    Description: Published
    Description: 5814–5826
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Anisotropy ; Adriatic region ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-03-05
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Passive high‐resolution attenuation tomography is used here to image the geological structure in the first upper 4 km of the shallow crust beneath the Campi Flegrei caldera, southern Italy. The inverse Q was estimated for each source‐receiver path using the coda‐normalization method (S‐waves) and the slope decay method (P‐waves and S‐waves). Inversion was performed using a multi‐resolution method, which ensures a minimum cell‐size resolution of 500 m. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. High attenuation vertical structures are connected at the surface with the main volcanological features (e.g., the Solfatara and Mofete fumarole fields), and depict vertical Q contrast imaging important geological structures, such as the La Starza fault. These high attenuation volumes extend between the surface and a depth of about 3 km, where a hard rock layer is imaged by the sharp contrast of the quality factors. The retrieved image of the Campi Flegrei has been jointly interpreted taking into account evidence from seismological, geological, volcanological and geochemical investigations. This analysis has allowed an unprecedented view of the feeding systems in this area, and in particular it recognizes the vertically extending, high attenuation structures that correspond to gas or fluid reservoirs beneath Pozzuoli‐Solfatara, Solfatara, Mofete‐Mt. Nuovo and Agnano. This high‐attenuation system is possibly connected with the magma sill revealed at about 7 km in depth by passive travel‐time tomography.
    Description: Published
    Description: B09312
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; gas ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-11-17
    Description: Island (Antarctica), recorded during three Antarctic summers (1994- 1995, 1995-1996 and 1996-1997), are analyzed using a dense small-aperture (500 m) seismic array. The visual and spectral classification of the seismic events shows the existence of long-period and hybrid isolated seismic events, and of low-frequency, quasi-monochromatic and spasmodic continuous tremors, All spectra have the highest amplitudes in the frequency band between 1 and 4 Hz, while hybrids and spasmodic tremors have also significant amplitudes in the high-frequency band (4-10 Hz). The array analysis indicates that almost all the well-correlated low-frequency signals share similar array parameters (slowness and back azimuth) and have the same source area, close to the array site. The polarization analysis shows that phases at high-frequency are mostly composed of P waves, and those phases dominated by low frequencies can be interpreted as surface waves. No clear shear waves are evidenced. From the energy evaluation, we have found that the reduced displacement values for surface and body waves are confined in a narrow interval. Volcano-tectonic seismicity is located close to the array, at a depth shallower than 1 km. The wave-field properties of the seismovolcanic signals allow us to assume a unique source model, a shallow resonating fluid-filled crack system at a depth of some hundreds of meters. All of the seismic activity is interpreted as the response of a reasonably stable stationary geothermal process. The differences observed in the back azimuth between low and high frequencies are a near-field effect. A few episodes of the degassification process in an open conduit were observed and modeled with a simple organ pipe.
    Description: Published
    Description: 13905-13931
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Long Period Events ; Deception Island ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: We analyze the distribution of volcanic earthquake recurrence intervals in the Vesuvio, Campi Flegrei, and Hawaii regions and compare it with tectonic recurrence rates in California. We find that the distribution behavior is similar for volcanic and tectonic seismic events. In both cases, the recurrence interval distributions collapse onto the same master curve if time is rescaled by the average occurrence rate. This implies that both phenomena have the same temporal organization, and it is possible to adopt for volcanic areas that the same occurrence models used for tectonic regions.
    Description: Published
    Description: B10309
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic earthquake ; recurrence intervals ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-11-09
    Description: In this study, we present a three-dimensional P wave upper-mantle tomography model of the southwest Iberian margin and Alboran Sea based on teleseismic arrival times recorded by Iberian and Moroccan land stations and by a seafloor network deployed for 1 year in the Gulf of Cadiz area during the European Commission Integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system (EC NEAREST) project. The three-dimensional model was computed down to 600 kmdepth. The tomographic images exhibit significant velocity contrasts, as large as 3%, confirming the complex evolution of this plate boundary region. Prominent high-velocity anomalies are found beneath Betics-Alboran Sea, off-shore southwest Portugal, and north Portugal, at sublithospheric depths. The transition zones between high- and low-velocity anomalies in southwest and south Iberia are associated to the contact of oceanic and continental lithosphere. The fast structure below the Alboran Sea-Granada area depicts an L-shaped body steeply dipping from the uppermost mantle to the transition zone where it becomes less curved. This anomaly is consistent with the results of previous tomographic investigations and recent geophysical data such as stress distribution, GPS measurements of plate motion, and anisotropy patterns. In the Atlantic domain, under the Horseshoe Abyssal Plain, the main feature is a high-velocity zone found at uppermost mantle depths. This feature appears laterally separated from the positive anomaly recovered in the Alboran domain by the interposition of low-velocity zones which characterize the lithosphere beneath the southwest Iberian peninsula margin, suggesting that there is no continuity between the high-velocity anomalies of the two domains west and east of the Gibraltar Strait.
    Description: Published
    Description: 1587–1601
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Upper-mantle seismic tomography ; land and marine seismic networks ; SW Iberian margin ; Alboran Sea ; Atlantic domain ; Gulf of Cadiz ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-06-14
    Description: Rayleigh wave tomography provides images of the shallow mantle shear wave velocity structure beneath the Gulf of California. Low-velocity zones (LVZs) are found on axis between 26 and 50 km depth beneath the Guaymas Basin but mostly off axis under the other rift basins, with the largest feature underlying the Ballenas Transform Fault. We interpret the broadly distributed LVZs as regions of partial melting in a solid mantle matrix. The pathway for melt migration and focusing is more complex than an axis-centered source aligned above a deeper region of mantle melt and likely reflects the magmatic evolution of rift segments. We also consider the existence of solid lower continental crust in the Gulf north of the Guaymas Basin, where the association of the LVZs with asthenospheric upwelling suggests lateral flow assisted by a heat source. These results provide key constraints for numerical models of mantle upwelling and melt focusing in this young oblique rift.
    Description: Published
    Description: 1766–1774
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Low velocities in the Gulf upper mantle are interpreted as partial melting ; Partial melting under the Guaymas Basin and off axis of the other rift basins ; Lower crustal flow assisted by heat source in N Gulf near mantle upwelling ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...