ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer  (659.304)
  • PANGAEA  (105.906)
  • MDPI Publishing
  • 2015-2019  (586.407)
  • 2000-2004  (231.322)
Sammlung
Schlagwörter
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-11-29
    Beschreibung: Pore water geochemistry and bulk sediment measurements of downcore profiles covering the upper 100 m-long sequence from site 1A, Lake Towuti, Indonesia
    Materialart: info:eu-repo/semantics/workingPaper
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-10-22
    Beschreibung: The storage concession "Minerbio Stoccaggio" (Bologna, Northern Italy) covers a 69 km 2 area, 65% of hich is located in the Minerbio municipality. Since 1979, a microseismic network for the monitoring of seismicity, eventually induced by gas storage activities, has been installed in this area. The network was operated by Stogit S.p.A, a subsidiary company of Snam, which is the largest storage operator in Italy. In 2016, the microseismic network, consisting of three surface stations and one 100-m-deep borehole sensor with minimum interstation distances of about 3.0 km, was integrated with 12 regional stations installed in an 80 × 80 km 2 area centered on the surface projection of the reservoir. In 2018, the microseismic network was enhanced by adding one surface and three 150-m-deep borehole stations. In this work, we evaluate the detection improvement of the microseismic network, integrated with the regional stations. We define two crustal volumes for earthquake detection: the inner domain of detection, IDD (10 × 10 × 5) km 3 , within which we should ensure the highest network performance, and the extended domain of detection, EDD (22 × 22 × 11) km 3 . By comparing the simulated power spectral density of hypothetical seismic sources located in EDD with the average power spectra of ambient seismic noise observed at each station site, we calculate detection and localization thresholds for the two above-mentioned networks. Under unfavourable noise conditions, we find that the present operative seismic network allows locating earthquakes with M L ≥ 0.8 occurring at the depth of the reservoir and with M L ≥ 1.0 if located within IDD.
    Beschreibung: Funding information This study received financial support from BComune di Minerbio^ under the grant BSperimentazione ILG Minerbio^ (grant number 0913.010)
    Beschreibung: Published
    Beschreibung: 967–977
    Beschreibung: 3SR TERREMOTI - Attività dei Centri
    Beschreibung: JCR Journal
    Schlagwort(e): Induced seismicity ; Earthquake detection ; Ambient seismic noise ; Microseismic monitoring ; MiSE ; oilfield monitoring guidelines
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-09-07
    Beschreibung: This paper presents an original multidisciplinary (geological-structural-geomorphological and seismological) study aimed at investigating the origin of diffused seismic damages affecting several ancient buildings in the Roman port city of Ostia. We also evaluate the possibility to relate these damages to a previously hypothesized ENE-WSW trending fault, bordering the morphological height upon which the Ostia town was founded. Aimed at this scope, we performed seismic noise measures (by using 14 seismic stations) that show no significantly different response and lack of significant ground motion differential amplifications. The coexistence of (i) no local geological heterogeneities and (ii) low amplification of spectral ratios in the recorded seismic signals seems to exclude that the observed seismic damage may be the consequence of significant site effects. When also the large distance from the strongest Apennine’s seismogenic source areas is considered, the possibility that the observed damage may be the consequence of local events should be considered. We discuss the potentiality of the ENE-WSW trending fault as the source of the observed seismic damages, highlighting the supporting evidence as well as the uncertainties of such interpretation.
    Beschreibung: Published
    Beschreibung: 833–851
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-09-07
    Beschreibung: This work describes the analysis of the strong-motion data from the Engineering Strong Motion database (ESM, http://esm.mi.ingv.it), aimed at: (1) extract a dataset of accelero- metric waveforms recorded during the 2016–2017 Central Italy seismic sequence; (2) iden- tify the recording stations to be used as reference sites for further seismological analysis; (3) select the records to be used as input for seismic microzonation of higher level at 137 municipalities. Firstly, a residual analysis is carried out on the extracted dataset to perform: (1) the quality check of the waveforms recorded by temporary networks installed soon after the occurrence of the rst main shock (M 6.0, 24 August 2016); (2) the estimation of the site-to-site residual term for each recording station with the aim of recognising potential reference rock sites. Finally, the software REXELite, integrated within the ESM website, is adopted to select suites of spectrum-compatible accelerograms, that will be used as input for calculating site ampli cations through 1D and 2D simulations at sites which suf- fered the greatest damage. The results of this work demonstrate the success of the synergy among Italian institutions. The setup of key infrastructures, such as emergency networks and data repositories, together with the knowledge developed during national projects, turned out to be successful in terms of timely intervention during the emergency phase and the planning of the post-emergency.
    Beschreibung: Published
    Beschreibung: 5533–5551
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-01-30
    Beschreibung: The purpose of this list of digital platforms is to facilitate the research of scientific data (articles, books, conferences, websites, indexers, etc.) by students of all undergraduate levels. The interface of platforms have similarities and because of this, low degree of difficulty of use. I emphasize that the key to an excellent literature search on digital platforms is to choose the right "keyword".
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/zip
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-01-22
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-04-10
    Beschreibung: Our knowledge on distribution, habitats and behavior of Southern Ocean fishes living at water depths beyond scuba-diving limits is still sparse, as it is difficult to obtain quantitative data on these aspects of their biology. Here, we report the results of an analysis of seabed images to investigate species composition, behavior, spatial distribution and preferred habitats of demersal fish assemblages in the southern Weddell Sea. Our study was based on a total of 2736 high-resolution images, covering a total seabed area of 11,317 m2, which were taken at 13 stations at water depths between 200 and 750 m. Fish were found in 380 images. A total of 379 notothenioid specimens were recorded, representing four families (Nototheniidae, Artedidraconidae, Bathydraconidae, Channichthyidae), 17 genera and 25 species. Nototheniidae was the most speciose fam- ily, including benthic species (Trematomus spp.) and the pelagic species Pleuragramma antarctica, which was occasionally recorded in dense shoals. Bathydraconids ranked second with six species, followed by artedidraconids and channichthyids, both with five species. Most abundant species were Trematomus scotti and T. lepidorhinus among nototheniids, and Dol- loidraco longedorsalis and Pagetopsis maculatus among artedidraconids and channichthyids, respectively. Both T. lepi- dorhinus and P. maculatus preferred seabed habitats characterized by biogenous debris and rich epibenthic fauna, whereas T. scotti and D. longedorsalis were frequently seen resting on fine sediments and scattered gravel. Several fish species were recorded to make use of the three-dimensional structure formed by epibenthic foundation species, like sponges, for perching or hiding inside. Nesting behavior was observed, frequently in association with dropstones, in species from various families, including Channichthyidae (Chaenodraco wilsoni and Pagetopsis macropterus) and Bathydraconidae (Cygnodraco mawsoni).
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2020-03-30
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/zip
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2020-03-30
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    Springer
    In:  EPIC3The Ecosystem of Kongsfjorden, Svalbard, The Ecosystem of Kongsfjorden, Svalbard, Cham, Springer, 566 p., pp. 537-562, ISBN: 978-3-319-46425-1
    Publikationsdatum: 2020-07-08
    Beschreibung: Due to its year-round accessibility and excellent on-site infrastructure, Kongsfjorden and the Ny-Ålesund Research and Monitoring Facility have become established as a primary location to study the impact of environmental change on Arctic coastal ecosystems. Due to its location right at the interface of Arctic and Atlantic oceanic regimes, Kongsfjorden already experiences large amplitudes of variability in physico/chemical conditions and might, thus, be considered as an early warning indicator of future changes, which can then be extrapolated in a pan-Arctic perspective. Already now, Kongsfjorden represents one of the best-studied Arctic fjord systems. However, research conducted to date has concentrated largely on small disciplinary projects, prompting the need for a higher level of integration of future research activities. This contribution, thus, aims at identifying gaps in knowledge and research priorities with respect to ecological and adaptive responses to Arctic ecosystem changes. By doing so we aim to provide a stimulus for the initiation of new international and interdisciplinary research initiatives.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Inbook , peerRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-09-12
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-11-26
    Beschreibung: Modern Society needs interactive public discussion to provide an effective way of focusing on hydrological hazards and their consequences. Embracing a holistic Earth system Science approach, we experiment since 2004 different stimulating educational/communicative model which emotionally involves the participants to raise awareness on the social dimension of the disaster hydrogeological risk reduction, pointing out that human behavior is the crucial factor in the degree of vulnerability and the likelihood of disasters taking place. The implementation of strategies for risk mitigation must include educational aspects, as well as economical and societal ones. Education is the bridge between knowledge and understanding and the key to raise risk perception. Children’s involvement might trigger a chain reaction that reinforce and spread the culture of risk. No matter how heavy was the rain that hit our land in the past and recent seasons, we still are not prepared. If on one hand we need to fight against worsening Global Warming that trigger extreme meteorological events, we should also work on sustainable land use and promote landscape preservation. Since science can work on improving knowledge of phenomena, technology can provide modern tool to reduce the impact of disasters, children and adults education is the flywheel to provide the change. We present here two cases selected among the wide range of educational activities that we have tested and to which more than 2,000 students and adults have participated within a period of 12 years. They include learn-by-playing, hands-on, emotional-learning activities, open questions seminars, learning paths, curiosity-driven approaches, special venues and science outreach.
    Beschreibung: Sendai Partnerships 2015-2025
    Beschreibung: Published
    Beschreibung: Ljubljana (Slovenia)
    Beschreibung: 2TM. Divulgazione Scientifica
    Schlagwort(e): Natural hazard ; Hydrogeological risk ; Prevention ; Participatory approach ; Awareness raising ; Resilience ; Hydrogeological Risk prevention
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Conference paper
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2020-03-23
    Beschreibung: The systematic study of biological basis of behavior and of the process involved in economical choices has outlined a new paradigm of research: neuroeconomics. Now the intersection between neuroscience, psychology and economics, neuroeconomics presents itself as an alternative to the neoclassical vision on economics, according to which the homo oeconomicus acts within the bonds of a formalizing rationality tending to the maximization of the anticipated utility. Brain imagining methods have shown that the decision-making processes activate the frontal lobe and the limbic system above all, a big circonvolution running through the callous body on the medial surface of the hemispheres, extending itself down, responsible for the regulation of emotional phenomena. Reinforcing such a tendency, we find the injury paradigm. It was observed that frontal lobe injuries harm the capacity of making advantageous decisions either in one’s own behalf or in others, as well as decisions according to the social conventions. In this paper, we will try to show that if, by the one hand, the neuro visual methods have given us a great amount of data, on the other hand, using them uncritically, with the recurrent confusion between “correlation” and “causal relation”—contemporary microevents indicate only simple correlations, and no cause-effect relation—risks to stress the relevant explanatory gap regarding the abstract ideal of understanding the nature of the brain.
    Beschreibung: Published
    Beschreibung: 135-141
    Beschreibung: 2TM. Divulgazione Scientifica
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-03-11
    Beschreibung: This paper investigates whether and how depressive disorders affect speech and in particular timing strategies for speech pauses (empty and filled pauses, as well as, phoneme lengthening). The investigation is made exploiting read and spontaneous narratives . The collected data are from 24 subjects, divided into two groups (depressed and control) asked to read a tale, as well as, spontaneously report on their daily activities. Ten different frequency and duration measures for pauses and clauses are proposed and have been collected using the PRAAT software on the speech recordings produced by the participants. A T-Student test for independent samples was applied on the collected frequency and duration measures in order to ascertain whether significant differences between healthy and depressed speech measures are observed. In the “spontaneous narrative” condition, depressed patients exhibited significant differences in: the average duration of their empty pauses, the average frequency, and the average duration of their clauses. In the read narratives, only the average pause’s frequency of the clauses was significantly lower in the depressed subjects with respect to the healthy ones. The results suggest that depressive disorders affect speech quality and speech production through pause and clause durations, as well as, clause quantities. In particular, the significant differences in clause quantities (observed both in the read and spontaneous narratives), suggest a strong general effect of depressive symptoms on cognitive and psychomotor functions. Depressive symptoms produce changes in the planned timing of pauses, even when reading, modifying the timing of pausing strategies.
    Beschreibung: Published
    Beschreibung: 73-82
    Beschreibung: 5TM. Informazione ed editoria
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-04-01
    Beschreibung: t The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and confined to a narrower band against the Italian shelf with less lateral spreading toward the Ionian Sea center. 1
    Beschreibung: Published
    Beschreibung: 1675-1703
    Beschreibung: 4A. Oceanografia e clima
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2019-03-11
    Beschreibung: Humans have very high requirements and expectations when communicating through speech, other than simplicity, flexibility and easiness of interaction. This is because voice interactions do not require cognitive efforts, attention, and memory resources. Voice technologies are however still constrained to use cases and scenarios giving the existing limitations of speech synthesis and recognition systems. Which is the status of nonlinear speech processing techniques and the steps made for cross-fertilization among disciplines? This chapter will provide a short overview trying to answer the above question.
    Beschreibung: Published
    Beschreibung: 5-11
    Beschreibung: 5TM. Informazione ed editoria
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2019-12-09
    Beschreibung: Since the past decade, geodetic techniques are widely used to gain important information for the monitoring and modeling of the deformation of the Earth at different length and time scales. Although the GNSS derived estimates of the Earth crust velocity are becoming more and more reliable, advanced data analysis techniques are needed to recognize geophysical features in the GNSS time-series, e.g., non linear behaviors, discontinuities in the signal and in its derivative, i.e., in the velocity. Unfortunately these phenomena are often hidden in the time-series noise and external information, as seismic events, are not always known. The main focus of this work is the detection of signal discontinuities in GNSS time-series through the use of advanced analysis techniques: the wavelets, the Bayesian and the variational methods. The Mumford and Shah (Commun Pure Appl Math 42:577–685, 1989) and the Blake and Zisserman (Visual reconstruction, 1987) variational models for signal segmentation can detect signal discontinuities in an explicitly way. The Blake and Zisserman (Visual reconstruction, 1987) model can also detect discontinuities of the signal first derivative, i.e., velocity abrupt changes can be detected. At first, to prove and assess the capability to detect discontinuities correctly, the methods have been applied to some Cascadia (North America) time-series, characterized by well known aseismic deformations. A second test area has been taken into account: the Calabrian Arc subduction zone, in southern Italy. The analyzed Italian GNSS time-series are characterized by very weak and noisy signals and the geodynamic of the area is mostly unknown. When present, discontinuities are expected to be very small and compatible with the signal noise. This motivates the use of advanced data analysis techniques to investigate the presence of discontinuities. At the moment, the analysis of the Italian time-series has revealed several discontinuities which nature cannot be labeled easily as geophysical or geodetic.
    Beschreibung: Published
    Beschreibung: 627-634
    Beschreibung: 2T. Deformazione crostale attiva
    Schlagwort(e): Subduction Zone ; Discontinuity point ; Slow slip event ; signal discontinuity ; Cascadia Subduciton zone
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2019-12-02
    Beschreibung: Algorithms based on artificial intelligence (AI) have had a strong development in recent years in different research fields of earth science such as seismology and volcanology. In particular, they have been applied to the study of the volcanic eruptive products of the recent activity of Mount Etna volcano. This work presents an application of the self-organizing map (SOM) neural networks to perform a clustering analysis on petrographic patterns of rocks of Somma–Vesuvius and Campi Flegrei volcanoes, in the Neapolitan area. The goal is to highlight possible affinity between the magmatic reservoirs of these two volcanic complexes. The SOM is known for its ability to cluster data by using intrinsic similarity measures without any previous information about their distribution. Moreover, it allows an easy understandable data visualization by using a two-dimensional map. The SOM has been tested on a geochemical dataset of 271 samples, consisting of 134 samples of Campi Flegrei eruptions (named CF), 24 samples of Somma–Vesuvius effusive eruptions (VF), 73 samples of Somma–Vesuvius explosive eruptions (VX), and finally 40 samples of “foreign” eruptions (ET), included to verify the neural net classification capability. After a pre-processing phase, applied to have a more appropriate data representation as input for the SOM, each sample has been encoded through a vector of 23 features, containing information about major bulk components, trace elements, and Sr isotopic ratio. The resulting SOM identifies three main clusters, and in particular, the foreign patterns (ET) are well separated from the other ones being mainly grouped in a single node. In conclusion, the obtained results suggest the ability of SOM neural network to associate volcanic rock suites on the basis of their geochemical imprint and can be consistent with the hypothesis that there might be a common magma source beneath the whole Neapolitan area.
    Beschreibung: Published
    Beschreibung: 55-60
    Beschreibung: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2020-03-23
    Beschreibung: This paper investigates the ability of adolescents (aged 13–15 years) and young adults (aged 20–26 years) to decode affective bursts culturally situated in a different context (Francophone vs. South Italian). The effects of context show that Italian subjects perform poorly with respect to the Francophone ones revealing a significant native speaker advantage in decoding the selected affective bursts. In addition, adolescents perform better than young adults, particularly in the decoding and intensity ratings of affective bursts of happiness, pain, and pleasure suggesting an effect of age related to language expertise.
    Beschreibung: Published
    Beschreibung: 1TM. Formazione
    Schlagwort(e): Affective bursts ; Age and cultural effects
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-01-02
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2019-03-04
    Beschreibung: Many marine gastropods show species-specific behavioral responses to different predators, but less is known about the mechanisms influencing differences or similarities in specific responses. Herein, we examined whether two limpet species, Scurria viridula (Lamarck, 1819) and Fissurella latimarginata (Sowerby, 1835), show species- and size-specific similarities or differences in their reaction to predatory seastars and crabs. Both S. viridula and F. latimarginata reacted to their main seastar predators with escape responses. In contrast, both limpets did not flee from common crab predators, but, instead, fastened to the rock. All tested size classes of both limpet species reacted in a similar way, escaping from seastars, but clamping onto the rock in response to crabs. Limpets could reach velocities sufficient to outrun their specific seastar predators, but they were not fast enough to escape crabs. Experiments with limpets of different shell conditions (with and without shell damage) indicated that F. latimarginata with a damaged shell showed “accommodation movements” (slow movements away from stimulus) in response to predatory crabs. In contrast, intact F. latimarginata and all S. viridula (intact and damaged) clamped the shell down to the substratum. The response details suggest that the keyhole limpet F. latimarginata is more sensitive to predators (faster reaction time, longer escape distances, and higher proportion of reacting individuals) than S. viridula, possibly because the morphology of F. latimarginata (the relationship of its shell size and structure to its total body size) makes this species more vulnerable to predation. Our study suggests that chemically mediated effects of seastar and crab predators result in contrasting behavioral responses of both limpet species, independent of their habitat and morphology. Despite the different characteristics of the limpet species and the identity of predators, the limpets react in comparable ways to similar predator types.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-01-18
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publikationsdatum: 2019-03-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3SponGES 2019 General Assembly Meeting, Wageningen, 2019-05-19-2019-05-24Bremerhaven, PANGAEA
    Publikationsdatum: 2019-06-03
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/zip
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  EPIC3Coordination Workshop SPP 1158, 2019-09-25-2019-09-27Bremerhaven, PANGAEA
    Publikationsdatum: 2019-09-30
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2019-10-23
    Beschreibung: Knowledge on basic biological functions of organisms is essential to understand not only the role they play in the ecosystems but also to manage and protect their populations. The study of biological processes, such as growth, reproduction and physiology, which can be approached in situ or by collecting specimens and rearing them in aquaria, is particularly challenging for deep-sea organisms like cold-water corals. Field experimental work and monitoring of deep-sea populations is still a chimera. Only a handful of research institutes or companies has been able to install in situ marine observatories in the Mediterranean Sea or elsewhere, which facilitate a continuous monitoring of deep-sea ecosystems. Hence, today’s best way to obtain basic biological information on these organisms is (1) working with collected samples and analysing them post-mortem and / or (2) cultivating corals in aquaria in order to monitor biological processes and investigate coral behaviour and physiological responses under different experimental treatments. The first challenging aspect is the collection process, which implies the use of oceanographic research vessels in most occasions since these organisms inhabit areas between ca. 150 m to more than 1000 m depth, and specific sampling gears. The next challenge is the maintenance of the animals on board (in situations where cruises may take weeks) and their transport to home laboratories. Maintenance in the home laboratories is also extremely challenging since special conditions and set-ups are needed to conduct experimental studies to obtain information on the biological processes of these animals. The complexity of the natural environment from which the corals were collected cannot be exactly replicated within the laboratory setting; a fact which has led some researchers to question the validity of work and conclusions drawn from such undertakings. It is evident that aquaria experiments cannot perfectly reflect the real environmental and trophic conditions where these organisms occur, but: (1) in most cases we do not have the possibility to obtain equivalent in situ information and (2) even with limitations, they produce relevant information about the biological limits of the species, which is especially valuable when considering potential future climate change scenarios. This chapter includes many contributions from different authors and is envisioned as both to be a practical “handbook” for conducting cold-water coral aquaria work, whilst at the same time offering an overview on the cold-water coral research conducted in Mediterranean laboratories equipped with aquaria infrastructure. Experiences from Atlantic and Pacific laboratories with extensive experience with cold-water coral work have also contributed to this chapter, as their procedures are valuable to any researcher interested in conducting experimental work with cold-water corals in aquaria. It was impossible to include contributions from all laboratories in the world currently working experimentally with cold-water corals in the laboratory, but at the conclusion of the chapter we attempt, to our best of our knowledge, to supply a list of several laboratories with operational cold-water coral aquaria facilities.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Inbook , peerRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2020-03-30
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    facet.materialart.
    Unbekannt
    Springer
    In:  EPIC3Energy Transfers in Atmosphere and Ocean, Energy Transfers in Atmosphere and Ocean, Springer, 1, pp. 87-125, ISBN: 978-3-030-05704-6, ISSN: 2524-4264
    Publikationsdatum: 2020-04-20
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Inbook , peerRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2023-11-16
    Beschreibung: The paper presents the results of 5 case studies on complex site e ects selected within the project for the level 3 seismic microzonation of several municipalities of Central Italy dam- aged by the 2016 seismic sequence. The case studies are characterized by di erent geo- logical and morphological con gurations: Monte San Martino is located along a hill slope, Montedinove and Arquata del Tronto villages are located at ridge top whereas Capitignano and Norcia lie in correspondence of sediment- lled valleys. Peculiarities of the sites are constituted by the presence of weathered/jointed rock mass, fault zone, shear wave veloc- ity inversion, complex surface and buried morphologies. These factors make the de ni- tion of the subsoil model and the evaluation of the local response particularly complex and di cult to ascertain. For each site, after the discussion of the subsoil model, the results of site response numerical analyses are presented in terms of ampli cation factors and acceleration response spectra in selected points. The physical phenomena governing the site response have also been investigated at each site by comparing 1D and 2D numerical analyses. Implications are deduced for seismic microzonation studies in similar geological and morphological conditions.
    Beschreibung: Published
    Beschreibung: 5741–5777
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Beschreibung: JCR Journal
    Schlagwort(e): Seismic microzonation ; Ampli cation factors ; Response spectra ; Numerical analyses ; site response
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2023-11-21
    Beschreibung: This paper describes the seismological analyses performed within the framework of the seismic microzonation study for the reconstruction of 138 municipalities damaged by the 2016–2017 sequence in Central Italy. Many waveforms were recorded over approximately 15 years at approximately 180 instrumented sites equipped with permanent or temporary stations in an area that includes all the damaged localities. Site response was assessed using earthquake and noise recordings at the selected stations through different parameters, such as spectral amplification curves, fundamental resonance frequencies, site-specific response spectra, and average amplification factors. The present study was a collaboration of many different institutions under the coordination of the Italian Center for Seismic Microzonation and its applications. The results were homogenized and gathered into site-specific forms, which represent the main deliverable for the benefit of Italian Civil Protection. It is remarkable that the bulk of this study was performed in a very short period (approximately 2 months) to provide quantitative information for detailed microzonation and future reconstruction of the damaged municipalities.
    Beschreibung: Published
    Beschreibung: 5553–5593
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2022-09-07
    Beschreibung: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of sponges and echinoderms in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Sponges: The map of interpolated occurrence of sponges is based on quantitative abundance data (Gerdes 2014 a - o) and on semi-quantitative data obtained by W. Arntz (retired; formerly AWI) (see Teschke & Brey 2019a for presence / absence records of the latter dataset). The abundance data were classified to be merged with the semi-quantitative data and an inverse distance weighted method was performed on the united dataset. Areas with very common occurrence of sponges occurred on the shelf near Brunt Ice Shelf along Riiser - Larsen Ice Shelf to Ekstrøm Ice Shelf. Echinoderms: A cluster analysis with species x station datasets of asteroids (Teschke & Brey 2019b), ophiuroids (Teschke & Brey 2019c) and holothurians (Gutt et al. 2014) from the Antarctic Weddell Sea indicated a particular cold-water echinoderm fauna on the Filchner shelf. We approximated this potential habitat by bottom temperature ≤ -1°, based on seawater temperature data from the Finite Element Sea Ice - Ocean Model provided by R. Timmermann (AWI). More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16).
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2022-09-07
    Beschreibung: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of demersal and pelagic fishes in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Antarctic toothfish: The map of Dissostichus mawsoni occurrence probability is based on catch per unit effort (CPUE) data from the database of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) (data request: 03-08-2016) and on bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO). We fitted a four-parameter Weibull model to the simulated CPUE data per depth interval by means of the R package \textquotesinglefitdistrplus\textquotesingle. The highest D. mawsoni occurrence probability was shown at depths between 1500 and 2000 m and only approximately 20 % of the Antarctic toothfish population occurred deeper than 2000 m. Antarctic silverfish: The map of interpolated abundances of Pleuragramma antarctica was based on pelagic trawl survey data, which were collected during "Polarstern" cruises ANT-I/2, ANT-III/3 and in the context of the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6, ANT-XXIV/2). The first mentioned data were provided by V. Siegel (retired; formerly Th\"unen Institute), the LAKRIS data by H. Flores (AWI). Those data were complemented by benthic trawl survey data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI) as well as by data on counts of fish species from trawl and dredge samples by Drescher et. (2012), Ekau et al. (2012a, b), Hureau et al. (2012), Kock et al. (2012) and W\"ohrmann et al. (2012). An inverse distance weighted interpolation was performed for a 10 nautical mile radius around each record. Areas with highest numbers of P. antarctica (〉 36 individuals/1000 m²) occurred offshore Riiser -Larsen Ice Shelf and on the southern Weddell Sea continental shelf offshore Filchner Ice Shelf. Demersal fish: The map of predicted habitat suitability for demersal fish is based on data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI). The habitat suitability model was developed by the use of the modelling package "biomod2". Most suitable habitat conditions for demersal fish in the wider Weddell Sea occurred on the continental shelf between approx. 5° and 30°W, on the shelf west and east of the tip of the Antarctic Peninsula as well as around the South Shetland and South Orkney Islands. Nesting sites of demersal fish: The map on observation of nesting sites of demersal fish is based on data, which were collected during "Polarstern" cruises ANT-XXVII/3, ANT-XXIX/9 and ANT-XXXI/2 and were obtained by T. Lund\"alv (retired; formerly University of Gothenburg), D. Gerdes (retired; formerly AWI) and E. Riginella (University of Padova), respectively. Those data were complemented by a literature research. Most nesting sites were observed west of 25°W, north of the tip of the Antarctic Peninsula and along the west coast of the Antarctic Peninsula. More information is given in the working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management CCAMLR (available at https://www.ccamlr.org/en/wg-emm-16). Revised versions of the spatial analysis are described in working paper WG-SAM-17/30 and WS-SM-18/13 submitted to the CCAMLR Working Group on Statistics, Assessments and Modelling and the CCAMLR Workshop on Spatial Management, respectively (available at https://www.ccamlr.org/en/wg-sam-17; https://www.ccamlr.org/en/ws-sm-1
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2022-09-07
    Beschreibung: Here, we provided four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic krill, Euphausia superba, (adults and larvae) and ice krill, Euphausia crystallorophias, in the wider Weddell Sea. The files were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic krill (adults): The map of predicted habitat suitability for adult Antarctic krill was based on krill data from the database KRILLBASE (Atkinson et al., 2017; data request: 26-09-13). Those data were complemented by krill data, which were collected (a) during the Norwegian Antarctic research expedition 1976/77 (M/V "Polarsirkel"), (b) during two Soviet research cruises (RV "Gizhiga", 1977; RV "Volny Vetter", 1983), (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-XXIX/3. The habitat suitability model was developed by the use of the modelling package "biomod2". As predictor variables, we used (i) dissolved oxygen from the World Ocean Atlas 2013, (ii) ice coverage from AMSR-E sea ice maps, (iii) seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI), (iv) bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO) and (v) SeaWiFS chlorophyll-a concentration data. Most suitable habitat conditions for the Antarctic krill seem to occur near the tip of the Antarctic Peninsula, on the continental slope between 15°W and 15°E and on the Maud Rise plateau. Antarctic krill (larvae): The map of interpolated abundances of krill larvae is based on abundance data, which were collected (a) during the Norwegian Antarctic research expeditions 1976/77, 1977/78 and 1979/80 (M/V "Polarsirkel"), (b) in the context of the First International BIOMASS Experiment survey (FIBEX) (Walther Herwig cruise 1981) and the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6) as well as (c) during "Polarstern" cruise ANT-VII/4 and the combined "Polarstern" (ANT-VIII/2) and R.V. "Akademik Fedorova" cruise. An inverse distance weighted (IDW) interpolation was performed for a 30 km radius around each krill larvae record. Areas with highest numbers of E. superba larvae (〉 1000 individuals/m²) occurred west of the Prime Meridian from approximately 65°S to the ice shelf. Ice krill (adults): The map of the potential habitat of E. crystallorophias was approximated by water depth from 0 m to 550 m, using bathymetric data from IBCSO, and mean sea surface temperature ≤ 0°C based on temperature data from FESOM provided by R. Timmermann (AWI). The map of interpolated density of individuals of E. crystallorophias is based on abundance data, which were collected (a) during the Norwegian Antarctic research expedition 1979/80 (M/V "Polarsirkel"), (b) during the German Antarctic research cruise 1975/76 with "Walther Herwig", (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-V/1-3, ANT-VII/4 and ANT-XXIX/3. An IDW interpolation was performed for a 30 km radius around each record of ice krill. Areas with highest densities of E. crystallorophias individuals occurred on the south-eastern Weddell Sea shelf and near the tip of the Antarctic Peninsula. Volker Siegel (retired; formerly Th\"unen Institute) provided the data for the Antarctic krill and ice krill. More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16)
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2022-09-07
    Beschreibung: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2022-09-07
    Beschreibung: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2022-09-07
    Beschreibung: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2022-09-07
    Beschreibung: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Other , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2022-06-09
    Beschreibung: In this paper we describe the macroseismic effects produced by the long and destructive seismic sequence that hit Central Italy from 24 August 2016 to January 2017. Starting from the procedure adopted in the complex field survey, we discuss the characteristics of the building stock and its classification in terms of EMS-98 as well as the issues associated with the intensity assessment due to the evolution of damage caused by multiple shocks. As a result, macroseismic intensity for about 300 localities has been determined; however, most of the intensities assessed for the earthquakes following the first strong shock on 24 August 2016, represent the cumulative effect of damage during the sequence. The earthquake parameters computed from the macroseismic datasets are compared with the instrumental determinations in order to highlight critical issues related to the assessment of macroseismic parameters of strong earthquakes during a seismic sequence. The results also provide indications on how location and magnitude computation can be strongly biased when dealing with historical seismic sequences.
    Beschreibung: Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC)
    Beschreibung: Published
    Beschreibung: 2407–2431
    Beschreibung: 4T. Sismicità dell'Italia
    Beschreibung: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Beschreibung: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Beschreibung: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Beschreibung: JCR Journal
    Schlagwort(e): Central Italy ; 2016–2017 Earthquake sequence ; Cumulative damage ; EMS-98 ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwaha, T., Bernhard, J. M., Edgcomb, V. P., & Todaro, M. A. Aethozooides uraniae, a new deep-sea genus and species of solitary bryozoan from the Mediterranean Sea, with a revision of the Aethozoidae. Marine Biodiversity, 49(4), (2019): 1843-1856, doi: 10.1007/s12526-019-00948-w.
    Beschreibung: Bryozoa is a phylum of about 6000 extant species that are almost exclusively colonial. Few species of the uncalcified Gymnolaemata, the ctenostomes, however, show solitary forms that essentially consist of single zooids. Recently, several specimens of a solitary ctenostome bryozoan were encountered for the first time in the deep Mediterranean Sea, at the edge of an anoxic brine lake. Differences in size, tentacle number, and in the variability of cystid appendages set these specimens apart from all other known solitary species. Moreover, additional morphological autapomorphic traits suggest the erection of a novel genus to allocate the new species. Consequently, the new taxon Aethozooides gen. nov. is proposed in virtue of the general resemblance of the Mediterranean specimens with those of the genus Aethozoon Hayward, 1978. Aethozooides uraniae gen. et sp. nov. shows significant variability in the number and location of cystid appendages that range from two on the basal side to one or two on the zooid mid-peristomial position and/or, rarely, on the terminal frontal side. The polypide possesses a distinct, long tentacle crown always carrying 10 tentacles. The prominent retractor muscle consists of numerous bundles that, in contrast to other known gymnolaemates, attach not only to the lophophoral base but also to various parts of the gut. Distally, the aperture shows a set of four apertural muscles including four parieto-vaginal bands. Reviewing the state and diversity of solitary ctenostomes, we propose a revision of the family Aethozoidae to include the genera Franzenella d’Hondt, 1983, Aethozoon, Aethozooides, and two species currently affiliated to the genus Franzenella (F. monniotae and F. radicans) for which we erected the new taxon Solella gen. nov. Keywords
    Beschreibung: Open access funding provided by University of Vienna. This study was supported by NSF grants OCE-0849578 to VPE and JMB, OCE-1061391 to JMB and VPE, and The Investment in Science Fund at WHOI.
    Schlagwort(e): Ctenostomata ; Lophophore ; Cystid appendages ; Arachnidioidea ; Solella
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mitchell, S. J., Houghton, B. F., Carey, R. J., Manga, M., Fauria, K. E., Jones, M. R., Soule, S. A., Conway, C. E., Wei, Z., & Giachetti, T. Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology, 81(7), (2019): 42, doi:10.1007/s00445-019-1298-5.
    Beschreibung: Meter-scale vesicular blocks, termed “giant pumice,” are characteristic primary products of many subaqueous silicic eruptions. The size of giant pumices allows us to describe meter-scale variations in textures and geochemistry with implications for shearing processes, ascent dynamics, and thermal histories within submarine conduits prior to eruption. The submarine eruption of Havre volcano, Kermadec Arc, in 2012, produced at least 0.1 km3 of rhyolitic giant pumice from a single 900-m-deep vent, with blocks up to 10 m in size transported to at least 6 km from source. We sampled and analyzed 29 giant pumices from the 2012 Havre eruption. Geochemical analyses of whole rock and matrix glass show no evidence for geochemical heterogeneities in parental magma; any textural variations can be attributed to crystallization of phenocrysts and microlites, and degassing. Extensive growth of microlites occurred near conduit walls where magma was then mingled with ascending microlite-poor, low viscosity rhyolite. Meter- to micron-scale textural analyses of giant pumices identify diversity throughout an individual block and between the exteriors of individual blocks. We identify evidence for post-disruption vesicle growth during pumice ascent in the water column above the submarine vent. A 2D cumulative strain model with a flared, shallow conduit may explain observed vesicularity contrasts (elongate tube vesicles vs spherical vesicles). Low vesicle number densities in these pumices from this high-intensity silicic eruption demonstrate the effect of hydrostatic pressure above a deep submarine vent in suppressing rapid late-stage bubble nucleation and inhibiting explosive fragmentation in the shallow conduit.
    Beschreibung: This study was funded primarily through an NSF Ocean grant: OCE-1357443 (SJM, BFH and RJC). MM is supported by NSF EAR 1447559. The μXRT analysis was performed at the Lawrence Berkeley National Lab Advanced Light Source beamline 8.3.2 and the large CT scan by SAS at the University of Texas Austin micro-CT facility. Capillary flow porometry and He-pycnometry were assisted by TG and MRJ at the University of Oregon. Microprobe analysis was conducted at the University of Hawai’i at Mānoa. CEC was supported by post-doctoral research fellowship from the Japan Society for the Promotion of Science (JSPS16788). We would like to thank Kenichiro Tani, Takashi Sano, and Eric Hellebrand for their assistance with geochemical data acquisition, JoAnn Sinton and Wagner Petrographic for thin section preparation, Zachary Langdalen for binary processing of BSE images, Warren M. McKenzie for measuring clast densities, and Dula Parkinson for guidance with the μXRT imaging. We further acknowledge the full scientific team, crew and Jason ROV team (Woods Hole Oceanographic Institute) aboard the R/V Roger Revelle (Scripps Institute of Oceanography) during the MESH expedition in 2015, without whom, this study would not have been possible. Finally, we thank Andrew Harris, Katharine Cashman, Lucia Gurioli and an anonymous reviewer for their insightful and helpful reviews of the manuscript.
    Schlagwort(e): Giant pumice ; Submarine volcanism ; Banding ; Tube pumice ; Bubble deformation ; Conduit dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kelly, M. R., Jr., Neubert, M. G., & Lenhart, S. Marine reserves and optimal dynamic harvesting when fishing damages habitat. Theoretical Ecology, 12(2), (2019): 131-144, doi:10.1007/s12080-018-0399-7.
    Beschreibung: Marine fisheries are a significant source of protein for many human populations. In some locations, however, destructive fishing practices have negatively impacted the quality of fish habitat and reduced the habitat’s ability to sustain fish stocks. Improving the management of stocks that can be potentially damaged by harvesting requires improved understanding of the spatiotemporal dynamics of the stocks, their habitats, and the behavior of the harvesters. We develop a mathematical model for both a fish stock as well as its habitat quality. Both are modeled using nonlinear, parabolic partial differential equations, and density dependence in the growth rate of the fish stock depends upon habitat quality. The objective is to find the dynamic distribution of harvest effort that maximizes the discounted net present value of the coupled fishery-habitat system. The value derives both from extraction (and sale) of the stock and the provisioning of ecosystem services by the habitat. Optimal harvesting strategies are found numerically. The results suggest that no-take marine reserves can be an important part of the optimal strategy and that their spatiotemporal configuration depends both on the vulnerability of habitat to fishing damage and on the timescale of habitat recovery when fishing ceases.
    Beschreibung: This manuscript is based upon the work supported by the National Science Foundation under Grant No. DEB-1558904 (to MGN) and also supported by the National Institute for Mathematical and Biological Synthesis, an Institute supported by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville.
    Schlagwort(e): Fisheries bioeconomics ; Marine protected areas ; Optimal control ; Destructive fishing ; Ecosystem-based management
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in , Zakroff, C., Mooney, T.A. & Berumen, M.L. Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Marine Biology, (2019), 166: 62. doi:10.1007/s00227-019-3510-8.
    Beschreibung: Coastal squids lay their eggs on the benthos, leaving them to develop in a dynamic system that is undergoing rapid acidification due to human influence. Prior studies have broadly investigated the impacts of ocean acidification on embryonic squid, but have not addressed the thresholds at which these responses occur or their potential variability. We raised squid, Doryteuthis pealeii (captured in Vineyard Sound, Massachusetts, USA: 41° 23.370N 70° 46.418´W), eggs in three trials across the breeding season (May - September, 2013) in a total of six chronic pCO2 exposures (400, 550, 850, 1300, 1900, and 2200 ppm). Hatchlings were counted and subsampled for mantle length, yolk volume, hatching time, hatching success, and statolith morphology. New methods for analysis of statolith shape, rugosity, and surface degradation were developed and are presented (with code). Responses to acidification (e.g., reduced mantle lengths, delayed hatching, and smaller, more degraded statoliths) were evident at ~ 1300 ppm CO2. However, patterns of physiological response and energy management, based on comparisons of yolk consumption and growth, varied among trials. Interactions between pCO2 and hatching day indicated a potential influence of exposure time on responses, while interactions with culture vessel highlighted the substantive natural variability within a clutch of eggs. While this study is consistent with, and expands upon, previous findings of sensitivity of the early life stages to acidification, it also highlights the plasticity and potential for resilience in this population of squid.
    Beschreibung: This material was based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374 to CZ. This project was funded by National Science Foundation Grant No. 1220034 to TAM.
    Beschreibung: 2020-04-19
    Schlagwort(e): cephalopod ; embryo ; hypercapnia ; paralarvae ; statolith ; stress
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    facet.materialart.
    Unbekannt
    Springer
    In:  EPIC3Advances in Polar Ecology, The Ecosystem of Kongsfjorden, Svalbard, Springer, pp. 23-46, ISBN: 978-3-319-46423-7
    Publikationsdatum: 2023-06-21
    Beschreibung: The Arctic region is considered to be most sensitive to climate change, with warming in the Arctic occurring considerably faster than the global average due to several positive feedback mechanisms contributing to the “Arctic amplification”. Also the maritime and mountainous climate of Svalbard has undergone changes during the last decades. Here, the focus is set on the current atmospheric boundary conditions for the marine ecosystem in the Kongsfjorden area, discussed in the frame of long-term climatic observations in the larger regional and hemispheric context. During the last century, a general warming is found with temperature increases and precipitation changes varying in strength. During the last decades, a strong seasonality of the warming is observed in the Kongsfjorden area, with the strongest temperature increase occurring during the winter season. The winter warming is related to observed changes in the net longwave radiation. Moreover, changes in the net shortwave are observed during the summer period, attributed to the decrease in reflected radiation caused by the retreating snow cover. Another related aspect of radiation is the intensity of solar ultra-violet radiation that is closely coupled to the abundance of ozone in the column of air overhead. The long term evolution of ozone losses in the Arctic and their connection to climate change are discussed.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Inbook , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2023-06-21
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2023-03-14
    Schlagwort(e): 64PE411; 64PE411_BY15_MUC; Baltic Fe; BY15; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH
    Materialart: Dataset
    Format: text/tab-separated-values, 2127 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2023-03-14
    Schlagwort(e): 64PE411; 64PE411_Site_1_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 1
    Materialart: Dataset
    Format: text/tab-separated-values, 2318 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2023-03-14
    Schlagwort(e): 64PE411; 64PE411_Site_2_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 2
    Materialart: Dataset
    Format: text/tab-separated-values, 2286 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2023-03-14
    Schlagwort(e): 64PE411; 64PE411_Site_3_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 3
    Materialart: Dataset
    Format: text/tab-separated-values, 2190 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2023-03-14
    Schlagwort(e): 64PE411; 64PE411_Site_4_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 4
    Materialart: Dataset
    Format: text/tab-separated-values, 2235 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2023-03-14
    Schlagwort(e): 64PE411; 64PE411_Site_5_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 5
    Materialart: Dataset
    Format: text/tab-separated-values, 1474 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2023-03-14
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Calculated; Calculated based on salinity (Jiang et al. 2014); Calculated using CO2SYS; Cape_Byron; Carbon, inorganic, dissolved; DATE/TIME; Day of the year; DEPTH, water; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); MULT; Multiple investigations; New South Wales, Australia; Ocean acidification; Omega; Oxygen; Oxygen saturation; pH; pH, standard deviation; Pressure, water; Salinity; SeaPHOX; SeapHOx, MicroCAT; Temperature, water; thresholds; Upwelling; western boundary system
    Materialart: Dataset
    Format: text/tab-separated-values, 84790 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2023-03-14
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Calculated; Calculated based on salinity (Jiang et al. 2014); Calculated using CO2SYS; Cape_Byron; Carbon, inorganic, dissolved; DATE/TIME; Day of the year; DEPTH, water; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); MULT; Multiple investigations; New South Wales, Australia; Ocean acidification; Omega; Oxygen; Oxygen saturation; pH; pH, standard deviation; Pressure, water; Salinity; SeaPHOX; SeapHOx, MicroCAT; Temperature, water; thresholds; Upwelling; western boundary system
    Materialart: Dataset
    Format: text/tab-separated-values, 88634 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2023-03-14
    Schlagwort(e): Alkalinity, total; bioindicators; Chlorophyll a; coastal pollution; Conductivity; Densu_S1; Densu_S10; Densu_S2; Densu_S3; Densu_S4; Densu_S5; Densu_S6; Densu_S7; Densu_S8; Densu_S9; DEPTH, water; Event label; Latitude of event; Longitude of event; Nitrate; Oxidation reduction (RedOx) potential; Oxygen; Oxygen saturation; pH; Phosphate; S1; S10; S2; S3; S4; S5; S6; S7; S8; S9; Salinity; Sulfate; Suspended matter, total; Temperature, water; Total dissolved solids; tropical estuarines; water quality index; Water quality index; Water sample; WS
    Materialart: Dataset
    Format: text/tab-separated-values, 150 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2023-03-14
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Aragonite saturation state, standard error; Area/locality; Bicarbonate ion; Bicarbonate ion, standard error; Bottle, Niskin; Calcite saturation state; Calcite saturation state, standard error; Calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard error; carbonate system; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, standard error; Central Red Sea; CO2; Coral; CTD; DATE/TIME; Difference; Error; Event label; Fugacity of carbon dioxide in seawater; Latitude of event; Longitude of event; mangrove; NIS; Normalised (Friis et al., 2003); pH; Phosphate; pH sensor, Satlantic SeaFET; Red Sea; RedSea_Coral_reef; RedSea_Mangrove; RedSea_Pelagic_reference_station; RedSea_Seagrass_bed; Salinity; Sample code/label; Seagrass; Silicate; Temperature, water
    Materialart: Dataset
    Format: text/tab-separated-values, 3217 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2023-03-14
    Schlagwort(e): Canada; Carbon, organic, dissolved; Carbon dioxide; Humification index; Identification; Lake; Lake_LAU; Lake_SWA; Laurentian; MESO; Mesocosm experiment; Methane; pH; Position; Specific ultraviolet absorbance per mass Carbon; Swan; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 275 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2023-03-14
    Schlagwort(e): acid-sulfate; argillic alteration; back-arc; BAMBUS; basalt; Bismarck Sea; Boron; Center for Marine Environmental Sciences; Chloride; Event label; hydrothermal circulation; J2-220; J2-221; J2-223; J2-227; J2-228; Li isotopes; Lithium; Lithium/Magnesium ratio; Location; Location type; MAGELLAN-06; magmatic degassing; Magnesium; Manus Basin; MARUM; Melville; Mg isotopes; MGLN06MV; pH; Potassium/Magnesium ratio; Remote operated vehicle; Remote operated vehicle Jason II; ROV; ROVJ; Sample ID; Silicon dioxide; SO216; SO216-19-1; SO216-21-1; SO216-23-1; SO216-45-1; SO216-47-1; Sodium/Magnesium ratio; Sonne; Sr isotopes. alteration; Strontium; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Sulfate; Temperature, water; vent fluids; Years; δ11B; δ11B, standard deviation; δ26Mg; δ26Mg, standard deviation; δ7Li; δ7Li, standard deviation
    Materialart: Dataset
    Format: text/tab-separated-values, 588 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2023-03-14
    Schlagwort(e): DEPTH, soil; digital soil mapping; Elbe Estuary; GEOP; Geophysics; Germany, Saxony; LATITUDE; LONGITUDE; Organic carbon, soil; pH; Sample ID; Sample method; Selbitz; Soil; Soil moisture; Soil Moisture; UTM Easting, Universal Transverse Mercator; UTM Northing, Universal Transverse Mercator; UTM Zone, Universal Transverse Mercator
    Materialart: Dataset
    Format: text/tab-separated-values, 1120 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2023-03-13
    Schlagwort(e): DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K063_2011; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Materialart: Dataset
    Format: text/tab-separated-values, 141426 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2023-03-13
    Schlagwort(e): C-GJKB; DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K066_2016; K066_2016a; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Materialart: Dataset
    Format: text/tab-separated-values, 567258 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2023-03-10
    Schlagwort(e): 17; 21; 25; 3; 6; Angeles Alvarino; Area/locality; Bay of Biscay; Biological sample; BIOS; Campaign; Carter_St-25; Carvalho_St-17; Carvalho_St-21; Collection; Comment; DATE/TIME; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; Depth, description; DEPTH, water; DR15; DR4; DR7; DR9; ECOMARG_0717; ECOMARG_0717_TF17; ECOMARG_0717_TF24; ECOMARG_0717_TF51; ECOMARG_0717_TF52; ECOMARG_0717_TF53; ECOMARG_0717_TF54; ECOMARG_0717_TF55; ECOMARG_0717_TV17; ECOMARG_2019; ECOMARG_2019_TF11; ECOMARG_2019_TF12; ECOMARG_2019_TF13; ECOMARG_2019_TF2; ECOMARG_2019_TF20; ECOMARG_2019_TF21; ECOMARG_2019_TF22; ECOMARG_2019_TF3; ECOMARG_2019_TF4; ECOMARG_2019_TF5; ESMAREC_0514; ESMAREC_0514_TF13; ESMAREC_0514_TF16; ESMAREC_0514_TF20; ESMAREC_0514_TF30; ESMAREC_0514_TF9; Habitat; INDEMARES_AV0511; INDERMARES_AV0511_DR7; Johnson; Latitude of event; Longitude of event; Name; Pisera_Vacelet; Pouliquen_St-3; Pouliquen_St-6; Ramon Margalef; South Atlantic Ocean; Species; SponGES; SponGES_0617; SponGES_0617_DR15; SponGES_0617_DR4; SponGES_0617_DR9; Station label; TF11; TF12; TF13; TF16; TF17; TF2; TF20; TF21; TF22; TF24; TF3; TF30; TF4; TF5; TF51; TF52; TF53; TF54; TF55; TF9; TV17; Type; Vizconde de Eza; Western Basin
    Materialart: Dataset
    Format: text/tab-separated-values, 215 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2023-03-13
    Schlagwort(e): DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K063_2013; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Materialart: Dataset
    Format: text/tab-separated-values, 48968 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2023-03-13
    Schlagwort(e): C-GJKB; DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K066_2017; K066-1718-A; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Materialart: Dataset
    Format: text/tab-separated-values, 480766 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2023-03-14
    Beschreibung: The CO2 fluxes were obtained in three cruises in RV Mexican Navy Altair in September 2016 in Navachiste, Sinaloa and Guaymas, Sonora in the Gulf of California.
    Schlagwort(e): Alkalinity, total; Altair; Altair_2016-09; Altair_2016-09_A; Altair_2016-09_B; Altair_2016-09_C; Altair_2016-09_G01; Altair_2016-09_G07; Altair_2016-09_G08; Altair_2016-09_G09; Altair_2016-09_G13; Altair_2016-09_NV3; Altair_2016-09_NV6; Altair_2016-09_NV7; Altair_2016-09_NV8; Altair_2016-09_NV9; Area/locality; Carbon, inorganic, dissolved; Carbon dioxide, partial pressure; carbon system; CO2 flux; Date/Time of event; DEPTH, water; Event label; Fugacity of carbon dioxide in seawater, per carbon; Gulf of California; Latitude of event; Longitude of event; MULT; Multiple investigations; pH; Δ partial pressure of carbon dioxide
    Materialart: Dataset
    Format: text/tab-separated-values, 91 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Brett, Gemma Marie; Irvin, Anne; Rack, Wolfgang; Haas, Christian; Langhorne, Patricia J; Leonard, Greg H (2020): Variability in the Distribution of Fast Ice and the Sub‐ice Platelet Layer Near McMurdo Ice Shelf. Journal of Geophysical Research: Oceans, 125(3), e2019JC015678, https://doi.org/10.1029/2019JC015678
    Publikationsdatum: 2023-03-13
    Beschreibung: Ground-based electromagnetic induction (EM) surveys of sea ice and sub-ice platelet layer thicknesses were carried out on land-fast sea ice in McMurdo Sound, Antarctica in November of 2011, 2013, 2016 and 2017. The EM data was acquired using a frequency-domain Geonics Ltd EM31-MK2 instrument mounted on a sledge and towed by skidoo. The thicknesses of total ice (sea ice plus the snow layer) and the SPL were simultaneously retrieved from the EM31 measured response using the processing method of Irvin (2018) (refer to pages 89-98). A correction for the addition of the snow layer was applied to obtain to EM measured Sea Ice (emSI) thickness according to section 2.3 of Brett et al. 2019.
    Schlagwort(e): C-GJKB; DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; EML; K063_2011; K063_2013; K066_2016; K066_2016a; K066_2017; K066-1718-A; McMurdo Sound; TOPIMASI
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2023-03-14
    Beschreibung: The CO2 fluxes were obtained in front of Navachiste Coastal System, Sinaloa in March 2017, a board a little ship from Laboratorio de Productividad Primaria y Sistema del Carbono (IPN-LPPSC).
    Schlagwort(e): Alkalinity, total; Area/locality; Carbon, inorganic, dissolved; Carbon dioxide, partial pressure; carbon system; CO2 flux; DEPTH, water; Event label; Fugacity of carbon dioxide in seawater, per carbon; Gulf of California; Latitude of event; Longitude of event; LPPSC_2017_E01; LPPSC_2017_E02; LPPSC_2017_E03; LPPSC_2017_E04; LPPSC_2017_E05; LPPSC_2017_E06; LPPSC_2017_E07; LPPSC_2017_E08; LPPSC_2017_E09; MULT; Multiple investigations; pH; Δ partial pressure of carbon dioxide
    Materialart: Dataset
    Format: text/tab-separated-values, 63 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Abed, Raeid M M; Tamm, Susanne; Hassenrück, Christiane; Al-Rawahi, Ahmed N; Rodríguez-Caballero, Emilio; Fiedler, Stephanie; Maier, Stefanie; Weber, Bettina (2019): Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-42911-6
    Publikationsdatum: 2023-03-14
    Beschreibung: Biological soil crusts (biocrusts) occur within drylands throughout the world, covering ~12% of the global terrestrial soil surface. Their occurrence in the deserts of the Arabian Peninsula has rarely been reported and their spatial distribution, diversity, and microbial composition remained largely unexplored. We investigated biocrusts at six different locations in the coastal and central deserts of Oman. The biocrust types were characterized, and the bacterial and fungal community compositions of biocrusts and uncrusted soils were analysed by amplicon sequencing. For each sample two different libraries were prepared: one for the V3V4 hypervariable region of the 16S rRNA gene (bacteria), and the other for the internal transcribed spacer 1 (ITS1; fungi). Sequences were processed in R using dada2. The code for sequence processing as well as statistical analysis, final OTU and taxonomy tables were archived on PANGAEA alongside the environmental information.
    Schlagwort(e): Area/locality; Carbon, total; Carbon/Nitrogen ratio; Conductivity, specific; Country; Date/Time of event; Depth, bottom/max; Depth, top/min; ELEVATION; Environment; Event label; Guidelines for soil description; Impact; Latitude of event; Longitude of event; Minitrode, Hamilton Messetechnik GmbH, Höchst, Germany; Nitrogen, total; Oman; Oman_20160125; Oman_20160126; Oman_20160127-01; Oman_20160127-02; Oman_20160127-03; Oman_20160127-04; Oman_20160129; pH; Replicates; Sample code/label; Sample comment; Soil properties; Soil type; Type
    Materialart: Dataset
    Format: text/tab-separated-values, 908 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Baxter, Allix J; Hopmans, Ellen C; Russell, James M; Sinninghe Damsté, Jaap S (2019): Bacterial GMGTs in East African lake sediments: Their potential as palaeotemperature indicators. Geochimica et Cosmochimica Acta, 259, 155-169, https://doi.org/10.1016/j.gca.2019.05.039
    Publikationsdatum: 2023-03-14
    Beschreibung: Glycerol monoalkyl glycerol tetraethers (GMGTs) are a group of membrane spanning lipids produced by some species of archaea and bacteria. They differ from the more commonly studied glycerol dialkyl glycerol tetraethers (GDGTs) in having an additional covalent carbon-carbon bond connecting the two alkyl chain. The relative abundance and distribution of bacterial branched GMGTs (brGMGTs) in surface sediments from a set of East African lakes were studied. The abundance of brGMGTs relative to the brGDGTs is positively correlated to measured mean annual air temperature (MAAT), although with a significant amount of scatter. BrGMGT abundance was not correlated to lake water pH. Seven major brGMGTs that vary in degree of methylation were identified, with m/z 1020, 1034 and 1048. Further, the mass chromatograms of the m/z 1020 and 1034 brGMGTs show an interesting distribution of peaks, which likely relates to the occurrence of distinct brGMGT isomers. This structural complexity is higher than previously observed in peats and marine sediments. Principal component analysis of the fractional abundance of bacterial tetraether lipids revealed the brGMGTs behave similarly to one another but differently from both the 5- or 6-methyl brGDGTs. This suggests the brGMGTs are produced by a common source organism and are methylated at a different position. The distribution of the seven brGMGTs showed considerable correlation with MAAT. This variability was captured in a new proxy index (the brGMGTI), which showed a strong positive linear relationship with MAAT. Lacustrine brGMGTs show potential to be applied to ancient settings to provide information about paleoclimate.
    Schlagwort(e): Albert_Lake; Bandara_Lake; Batoda_Lake; Bigata_Lake; Branched glycerol dialkyl glycerol tetraether, Ia; Branched glycerol dialkyl glycerol tetraether, Ia (peak area); Branched glycerol dialkyl glycerol tetraether, Ib; Branched glycerol dialkyl glycerol tetraether, Ib (peak area); Branched glycerol dialkyl glycerol tetraether, Ic; Branched glycerol dialkyl glycerol tetraether, Ic (peak area); Branched glycerol dialkyl glycerol tetraether, IIa; Branched glycerol dialkyl glycerol tetraether, IIa'; Branched glycerol dialkyl glycerol tetraether, IIa' (peak area); Branched glycerol dialkyl glycerol tetraether, IIa (peak area); Branched glycerol dialkyl glycerol tetraether, IIb; Branched glycerol dialkyl glycerol tetraether, IIb'; Branched glycerol dialkyl glycerol tetraether, IIb' (peak area); Branched glycerol dialkyl glycerol tetraether, IIb (peak area); Branched glycerol dialkyl glycerol tetraether, IIIa; Branched glycerol dialkyl glycerol tetraether, IIIa'; Branched glycerol dialkyl glycerol tetraether, IIIa' (peak area); Branched glycerol dialkyl glycerol tetraether, IIIa (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1020a; Branched glycerol monoalkyl glycerol tetraethers, H1020a (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1020b; Branched glycerol monoalkyl glycerol tetraethers, H1020b (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1020c; Branched glycerol monoalkyl glycerol tetraethers, H1020c (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1034a; Branched glycerol monoalkyl glycerol tetraethers, H1034a (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1034b; Branched glycerol monoalkyl glycerol tetraethers, H1034b (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1034c; Branched glycerol monoalkyl glycerol tetraethers, H1034c (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1048; Branched glycerol monoalkyl glycerol tetraethers, H1048 (peak area); Bugwagi_Lake; Bukurungu_East_Lake; Central_Lake; Chibwera_Lake; Country; Crane_Lake; DEPTH, water; Dimtu_Lake; Edward_Lake; Elevation of event; Enchanted_Lake__Lake; Event label; Gallery_Tarn_Lake; Garba_Gurach_Lake; GDGTs; GMGT; Hanging_Tarn_Lake; Hara_Laki_Lake; Hara_Lucas_Lake; Haro_Lakota_Lake; Harris_Tarn_Lake; Hausburg_Tarn_Lake; H-GDGT; Hut_Tarn_Lake; Ibamba_Lake; Kacuba_Lake; Kako_Lake; Kamweru_Lake; Kanyabutetere_Lake; Kanyanchu_Lake; Kasirya_Lake; Katanda_Lake; Katunda_Lake; Kifuruka_Lake; Kisibendi_Lake; Kitere_Lake; Kopello_Lake; Koromi_Lake; Kuware_Lake; Kyasunduka_Lake; Kyerbwato_Lake; Kyogo_Lake; Lake; Lake_Ellis; lakes; Lake surface area; Large_Hall_Tarn_Lake; Latitude of event; Longitude of event; Lower_Kachope_Lake; Lower_Simba_Lake; Mahoma_Lake; Mahuhura_Lake; Mbayo_Lake; membrane lipids; Middle_Kachope_Lake; Mirambi_Lake; MULT; Multiple investigations; Murabio_Lake; Murusi_Lake; Mwengenyi_Lake; Nanyuki_Tarn_Lake; NIOZ_UU; NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University; Njarayabana_Lake; Nkuruba_Lake; Nyamugosani_Lake; Nyamusingere_Lake; Nyantonde_Lake; Oblong_Tarn_Lake; palaeotemperature; pH; Ruhandika_Lake; Rutundu_Lake; sediments; Small_Hall_Tarn_Lake; Square_Tarn_Lake; Sum; Tanganyika_Lake; Teleki_Tarn_Lake; Temperature, air, annual mean; Temperature, water; tetraethers; Thompson_Lake_Lake; Togona_Lake; Veggi_Tarn_Lake; Wandakara_Lake; Wankenzi_Lake
    Materialart: Dataset
    Format: text/tab-separated-values, 2991 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ANT-XXXI/3; AWI_BioOce; Biological Oceanography @ AWI; Coccolithophores; CTD/Rosette; CTD-RO; DEPTH, water; Drake Passage; Elevation of event; Emiliania huxleyi; Event label; Latitude of event; Longitude of event; Polarstern; PS97; PS97/016-1; PS97/017-1; PS97/018-1; PS97/029-1; PS97/030-1; PS97/031-1; PS97/032-1; PS97/033-1; PS97/034-2; PS97/035-1; PS97/036-1; PS97/037-1; PS97/038-1; PS97/039-1; PS97/040-1; PS97/041-1; PS97/043-2; PS97/047-1; PS97/050-2; Southern Ocean; South Pacific Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 768 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ANT-XXXI/3; AWI_BioOce; AWI_PhyOce; Biological Oceanography @ AWI; Coccolithophores; CTD/Rosette; CTD-RO; Density, sigma-theta (0); DEPTH, water; Drake Passage; Elevation of event; Event label; Fluorescence, chlorophyll; Latitude of event; Longitude of event; Oxygen; Physical Oceanography @ AWI; Polarstern; PS97; PS97/016-1; PS97/017-1; PS97/018-1; PS97/029-1; PS97/030-1; PS97/031-1; PS97/032-1; PS97/033-1; PS97/034-2; PS97/035-1; PS97/036-1; PS97/037-1; PS97/038-1; PS97/039-1; PS97/040-1; PS97/041-1; PS97/043-2; PS97/047-1; PS97/050-2; Salinity; Southern Ocean; South Pacific Ocean; Temperature, water
    Materialart: Dataset
    Format: text/tab-separated-values, 480 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_08_2; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 3663886 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_12_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 11061398 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_08_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 382236 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_14_2; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 248528 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_11_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 1285356 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_12_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 1853304 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_14_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 2803488 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_18_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 10202962 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_22_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 11755628 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_23_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 10104058 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_15_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 1910919 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_19_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Materialart: Dataset
    Format: text/tab-separated-values, 2183496 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_19_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 466540 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_17_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 2188474 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_07_3; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; LATITUDE; Lincoln Sea; LONGITUDE; Radiance, downward; Radiance, downward, photosynthetically active; Radiance, downward, photosynthetically active, absolute; Remote operated vehicle; ROV; Sampling on land; Spectral radiance, downward at 320 nm; Spectral radiance, downward at 321 nm; Spectral radiance, downward at 322 nm; Spectral radiance, downward at 323 nm; Spectral radiance, downward at 324 nm; Spectral radiance, downward at 325 nm; Spectral radiance, downward at 326 nm; Spectral radiance, downward at 327 nm; Spectral radiance, downward at 328 nm; Spectral radiance, downward at 329 nm; Spectral radiance, downward at 330 nm; Spectral radiance, downward at 331 nm; Spectral radiance, downward at 332 nm; Spectral radiance, downward at 333 nm; Spectral radiance, downward at 334 nm; Spectral radiance, downward at 335 nm; Spectral radiance, downward at 336 nm; Spectral radiance, downward at 337 nm; Spectral radiance, downward at 338 nm; Spectral radiance, downward at 339 nm; Spectral radiance, downward at 340 nm; Spectral radiance, downward at 341 nm; Spectral radiance, downward at 342 nm; Spectral radiance, downward at 343 nm; Spectral radiance, downward at 344 nm; Spectral radiance, downward at 345 nm; Spectral radiance, downward at 346 nm; Spectral radiance, downward at 347 nm; Spectral radiance, downward at 348 nm; Spectral radiance, downward at 349 nm; Spectral radiance, downward at 350 nm; Spectral radiance, downward at 351 nm; Spectral radiance, downward at 352 nm; Spectral radiance, downward at 353 nm; Spectral radiance, downward at 354 nm; Spectral radiance, downward at 355 nm; Spectral radiance, downward at 356 nm; Spectral radiance, downward at 357 nm; Spectral radiance, downward at 358 nm; Spectral radiance, downward at 359 nm; Spectral radiance, downward at 360 nm; Spectral radiance, downward at 361 nm; Spectral radiance, downward at 362 nm; Spectral radiance, downward at 363 nm; Spectral radiance, downward at 364 nm; Spectral radiance, downward at 365 nm; Spectral radiance, downward at 366 nm; Spectral radiance, downward at 367 nm; Spectral radiance, downward at 368 nm; Spectral radiance, downward at 369 nm; Spectral radiance, downward at 370 nm; Spectral radiance, downward at 371 nm; Spectral radiance, downward at 372 nm; Spectral radiance, downward at 373 nm; Spectral radiance, downward at 374 nm; Spectral radiance, downward at 375 nm; Spectral radiance, downward at 376 nm; Spectral radiance, downward at 377 nm; Spectral radiance, downward at 378 nm; Spectral radiance, downward at 379 nm; Spectral radiance, downward at 380 nm; Spectral radiance, downward at 381 nm; Spectral radiance, downward at 382 nm; Spectral radiance, downward at 383 nm; Spectral radiance, downward at 384 nm; Spectral radiance, downward at 385 nm; Spectral radiance, downward at 386 nm; Spectral radiance, downward at 387 nm; Spectral radiance, downward at 388 nm; Spectral radiance, downward at 389 nm; Spectral radiance, downward at 390 nm; Spectral radiance, downward at 391 nm; Spectral radiance, downward at 392 nm; Spectral radiance, downward at 393 nm; Spectral radiance, downward at 394 nm; Spectral radiance, downward at 395 nm; Spectral radiance, downward at 396 nm; Spectral radiance, downward at 397 nm; Spectral radiance, downward at 398 nm; Spectral radiance, downward at 399 nm; Spectral radiance, downward at 400 nm; Spectral radiance, downward at 401 nm; Spectral radiance, downward at 402 nm; Spectral radiance, downward at 403 nm; Spectral radiance, downward at 404 nm; Spectral radiance, downward at 405 nm; Spectral radiance, downward at 406 nm; Spectral radiance, downward at 407 nm; Spectral radiance, downward at 408 nm; Spectral radiance, downward at 409 nm; Spectral radiance, downward at 410 nm; Spectral radiance, downward at 411 nm; Spectral radiance, downward at 412 nm; Spectral radiance, downward at 413 nm; Spectral radiance, downward at 414 nm; Spectral radiance, downward at 415 nm; Spectral radiance, downward at 416 nm; Spectral radiance, downward at 417 nm; Spectral radiance, downward at 418 nm; Spectral radiance, downward at 419 nm; Spectral radiance, downward at 420 nm; Spectral radiance, downward at 421 nm; Spectral radiance, downward at 422 nm; Spectral radiance, downward at 423 nm; Spectral radiance, downward at 424 nm; Spectral radiance, downward at 425 nm; Spectral radiance, downward at 426 nm; Spectral radiance, downward at 427 nm; Spectral radiance, downward at 428 nm; Spectral radiance, downward at 429 nm; Spectral radiance, downward at 430 nm; Spectral radiance, downward at 431 nm; Spectral radiance, downward at 432 nm; Spectral radiance, downward at 433 nm; Spectral radiance, downward at 434 nm; Spectral radiance, downward at 435 nm; Spectral radiance, downward at 436 nm; Spectral radiance, downward at 437 nm; Spectral radiance, downward at 438 nm; Spectral radiance, downward at 439 nm; Spectral radiance, downward at 440 nm; Spectral radiance, downward at 441 nm; Spectral radiance, downward at 442 nm; Spectral radiance, downward at 443 nm; Spectral radiance, downward at 444 nm; Spectral radiance, downward at 445 nm; Spectral radiance, downward at 446 nm; Spectral radiance, downward at 447 nm; Spectral radiance, downward at 448 nm; Spectral radiance, downward at 449 nm; Spectral radiance, downward at 450 nm; Spectral radiance, downward at 451 nm; Spectral radiance, downward at 452 nm; Spectral radiance, downward at 453 nm; Spectral radiance, downward at 454 nm; Spectral radiance, downward at 455 nm; Spectral radiance, downward at 456 nm; Spectral radiance, downward at 457 nm; Spectral radiance, downward at 458 nm; Spectral radiance, downward at 459 nm; Spectral radiance, downward at 460 nm; Spectral radiance, downward at 461 nm; Spectral radiance, downward at 462 nm; Spectral radiance, downward at 463 nm; Spectral radiance, downward at 464 nm; Spectral radiance, downward at 465 nm; Spectral radiance, downward at 466 nm; Spectral radiance, downward at 467 nm; Spectral radiance, downward at 468 nm; Spectral radiance, downward at 469 nm; Spectral radiance, downward at 470 nm; Spectral radiance, downward at 471 nm; Spectral radiance, downward at 472 nm; Spectral radiance, downward at 473 nm; Spectral radiance, downward at 474 nm; Spectral radiance, downward at 475 nm; Spectral radiance, downward at 476 nm; Spectral radiance, downward at 477 nm; Spectral radiance, downward at 478 nm; Spectral radiance, downward at 479 nm; Spectral radiance, downward at 480 nm; Spectral radiance, downward at 481 nm; Spectral radiance, downward at 482 nm; Spectral radiance, downward at 483 nm; Spectral radiance, downward at 484 nm; Spectral radiance, downward at 485 nm; Spectral radiance, downward at 486 nm; Spectral radiance, downward at 487 nm; Spectral radiance, downward at 488 nm; Spectral radiance, downward at 489 nm; Spectral radiance, downward at 490 nm; Spectral radiance, downward at 491 nm; Spectral radiance, downward at 492 nm; Spectral radiance, downward at 493 nm; Spectral radiance, downward at 494 nm; Spectral radiance, downward at 495 nm; Spectral radiance, downward at 496 nm; Spectral radiance, downward at 497 nm; Spectral radiance, downward at 498 nm; Spectral radiance, downward at 499 nm; Spectral radiance, downward at 500 nm; Spectral radiance, downward at 501 nm; Spectral radiance, downward at 502 nm; Spectral radiance, downward at 503 nm; Spectral radiance, downward at 504 nm; Spectral radiance, downward at 505 nm; Spectral radiance, downward at 506 nm; Spectral radiance, downward at 507 nm; Spectral radiance, downward at 508 nm; Spectral radiance, downward at 509 nm; Spectral radiance, downward at 510 nm; Spectral radiance, downward at 511 nm; Spectral radiance, downward at 512 nm; Spectral radiance, downward at 513 nm; Spectral radiance, downward at 514 nm; Spectral radiance,
    Materialart: Dataset
    Format: text/tab-separated-values, 656296 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_23_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Materialart: Dataset
    Format: text/tab-separated-values, 2490576 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_13_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; LATITUDE; Lincoln Sea; LONGITUDE; Radiance, downward; Radiance, downward, photosynthetically active; Radiance, downward, photosynthetically active, absolute; Remote operated vehicle; ROV; Sampling on land; Spectral radiance, downward at 320 nm; Spectral radiance, downward at 321 nm; Spectral radiance, downward at 322 nm; Spectral radiance, downward at 323 nm; Spectral radiance, downward at 324 nm; Spectral radiance, downward at 325 nm; Spectral radiance, downward at 326 nm; Spectral radiance, downward at 327 nm; Spectral radiance, downward at 328 nm; Spectral radiance, downward at 329 nm; Spectral radiance, downward at 330 nm; Spectral radiance, downward at 331 nm; Spectral radiance, downward at 332 nm; Spectral radiance, downward at 333 nm; Spectral radiance, downward at 334 nm; Spectral radiance, downward at 335 nm; Spectral radiance, downward at 336 nm; Spectral radiance, downward at 337 nm; Spectral radiance, downward at 338 nm; Spectral radiance, downward at 339 nm; Spectral radiance, downward at 340 nm; Spectral radiance, downward at 341 nm; Spectral radiance, downward at 342 nm; Spectral radiance, downward at 343 nm; Spectral radiance, downward at 344 nm; Spectral radiance, downward at 345 nm; Spectral radiance, downward at 346 nm; Spectral radiance, downward at 347 nm; Spectral radiance, downward at 348 nm; Spectral radiance, downward at 349 nm; Spectral radiance, downward at 350 nm; Spectral radiance, downward at 351 nm; Spectral radiance, downward at 352 nm; Spectral radiance, downward at 353 nm; Spectral radiance, downward at 354 nm; Spectral radiance, downward at 355 nm; Spectral radiance, downward at 356 nm; Spectral radiance, downward at 357 nm; Spectral radiance, downward at 358 nm; Spectral radiance, downward at 359 nm; Spectral radiance, downward at 360 nm; Spectral radiance, downward at 361 nm; Spectral radiance, downward at 362 nm; Spectral radiance, downward at 363 nm; Spectral radiance, downward at 364 nm; Spectral radiance, downward at 365 nm; Spectral radiance, downward at 366 nm; Spectral radiance, downward at 367 nm; Spectral radiance, downward at 368 nm; Spectral radiance, downward at 369 nm; Spectral radiance, downward at 370 nm; Spectral radiance, downward at 371 nm; Spectral radiance, downward at 372 nm; Spectral radiance, downward at 373 nm; Spectral radiance, downward at 374 nm; Spectral radiance, downward at 375 nm; Spectral radiance, downward at 376 nm; Spectral radiance, downward at 377 nm; Spectral radiance, downward at 378 nm; Spectral radiance, downward at 379 nm; Spectral radiance, downward at 380 nm; Spectral radiance, downward at 381 nm; Spectral radiance, downward at 382 nm; Spectral radiance, downward at 383 nm; Spectral radiance, downward at 384 nm; Spectral radiance, downward at 385 nm; Spectral radiance, downward at 386 nm; Spectral radiance, downward at 387 nm; Spectral radiance, downward at 388 nm; Spectral radiance, downward at 389 nm; Spectral radiance, downward at 390 nm; Spectral radiance, downward at 391 nm; Spectral radiance, downward at 392 nm; Spectral radiance, downward at 393 nm; Spectral radiance, downward at 394 nm; Spectral radiance, downward at 395 nm; Spectral radiance, downward at 396 nm; Spectral radiance, downward at 397 nm; Spectral radiance, downward at 398 nm; Spectral radiance, downward at 399 nm; Spectral radiance, downward at 400 nm; Spectral radiance, downward at 401 nm; Spectral radiance, downward at 402 nm; Spectral radiance, downward at 403 nm; Spectral radiance, downward at 404 nm; Spectral radiance, downward at 405 nm; Spectral radiance, downward at 406 nm; Spectral radiance, downward at 407 nm; Spectral radiance, downward at 408 nm; Spectral radiance, downward at 409 nm; Spectral radiance, downward at 410 nm; Spectral radiance, downward at 411 nm; Spectral radiance, downward at 412 nm; Spectral radiance, downward at 413 nm; Spectral radiance, downward at 414 nm; Spectral radiance, downward at 415 nm; Spectral radiance, downward at 416 nm; Spectral radiance, downward at 417 nm; Spectral radiance, downward at 418 nm; Spectral radiance, downward at 419 nm; Spectral radiance, downward at 420 nm; Spectral radiance, downward at 421 nm; Spectral radiance, downward at 422 nm; Spectral radiance, downward at 423 nm; Spectral radiance, downward at 424 nm; Spectral radiance, downward at 425 nm; Spectral radiance, downward at 426 nm; Spectral radiance, downward at 427 nm; Spectral radiance, downward at 428 nm; Spectral radiance, downward at 429 nm; Spectral radiance, downward at 430 nm; Spectral radiance, downward at 431 nm; Spectral radiance, downward at 432 nm; Spectral radiance, downward at 433 nm; Spectral radiance, downward at 434 nm; Spectral radiance, downward at 435 nm; Spectral radiance, downward at 436 nm; Spectral radiance, downward at 437 nm; Spectral radiance, downward at 438 nm; Spectral radiance, downward at 439 nm; Spectral radiance, downward at 440 nm; Spectral radiance, downward at 441 nm; Spectral radiance, downward at 442 nm; Spectral radiance, downward at 443 nm; Spectral radiance, downward at 444 nm; Spectral radiance, downward at 445 nm; Spectral radiance, downward at 446 nm; Spectral radiance, downward at 447 nm; Spectral radiance, downward at 448 nm; Spectral radiance, downward at 449 nm; Spectral radiance, downward at 450 nm; Spectral radiance, downward at 451 nm; Spectral radiance, downward at 452 nm; Spectral radiance, downward at 453 nm; Spectral radiance, downward at 454 nm; Spectral radiance, downward at 455 nm; Spectral radiance, downward at 456 nm; Spectral radiance, downward at 457 nm; Spectral radiance, downward at 458 nm; Spectral radiance, downward at 459 nm; Spectral radiance, downward at 460 nm; Spectral radiance, downward at 461 nm; Spectral radiance, downward at 462 nm; Spectral radiance, downward at 463 nm; Spectral radiance, downward at 464 nm; Spectral radiance, downward at 465 nm; Spectral radiance, downward at 466 nm; Spectral radiance, downward at 467 nm; Spectral radiance, downward at 468 nm; Spectral radiance, downward at 469 nm; Spectral radiance, downward at 470 nm; Spectral radiance, downward at 471 nm; Spectral radiance, downward at 472 nm; Spectral radiance, downward at 473 nm; Spectral radiance, downward at 474 nm; Spectral radiance, downward at 475 nm; Spectral radiance, downward at 476 nm; Spectral radiance, downward at 477 nm; Spectral radiance, downward at 478 nm; Spectral radiance, downward at 479 nm; Spectral radiance, downward at 480 nm; Spectral radiance, downward at 481 nm; Spectral radiance, downward at 482 nm; Spectral radiance, downward at 483 nm; Spectral radiance, downward at 484 nm; Spectral radiance, downward at 485 nm; Spectral radiance, downward at 486 nm; Spectral radiance, downward at 487 nm; Spectral radiance, downward at 488 nm; Spectral radiance, downward at 489 nm; Spectral radiance, downward at 490 nm; Spectral radiance, downward at 491 nm; Spectral radiance, downward at 492 nm; Spectral radiance, downward at 493 nm; Spectral radiance, downward at 494 nm; Spectral radiance, downward at 495 nm; Spectral radiance, downward at 496 nm; Spectral radiance, downward at 497 nm; Spectral radiance, downward at 498 nm; Spectral radiance, downward at 499 nm; Spectral radiance, downward at 500 nm; Spectral radiance, downward at 501 nm; Spectral radiance, downward at 502 nm; Spectral radiance, downward at 503 nm; Spectral radiance, downward at 504 nm; Spectral radiance, downward at 505 nm; Spectral radiance, downward at 506 nm; Spectral radiance, downward at 507 nm; Spectral radiance, downward at 508 nm; Spectral radiance, downward at 509 nm; Spectral radiance, downward at 510 nm; Spectral radiance, downward at 511 nm; Spectral radiance, downward at 512 nm; Spectral radiance, downward at 513 nm; Spectral radiance, downward at 514 nm; Spectral radiance,
    Materialart: Dataset
    Format: text/tab-separated-values, 1672680 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_14_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; LATITUDE; Lincoln Sea; LONGITUDE; Radiance, downward; Radiance, downward, photosynthetically active; Radiance, downward, photosynthetically active, absolute; Remote operated vehicle; ROV; Sampling on land; Spectral radiance, downward at 320 nm; Spectral radiance, downward at 321 nm; Spectral radiance, downward at 322 nm; Spectral radiance, downward at 323 nm; Spectral radiance, downward at 324 nm; Spectral radiance, downward at 325 nm; Spectral radiance, downward at 326 nm; Spectral radiance, downward at 327 nm; Spectral radiance, downward at 328 nm; Spectral radiance, downward at 329 nm; Spectral radiance, downward at 330 nm; Spectral radiance, downward at 331 nm; Spectral radiance, downward at 332 nm; Spectral radiance, downward at 333 nm; Spectral radiance, downward at 334 nm; Spectral radiance, downward at 335 nm; Spectral radiance, downward at 336 nm; Spectral radiance, downward at 337 nm; Spectral radiance, downward at 338 nm; Spectral radiance, downward at 339 nm; Spectral radiance, downward at 340 nm; Spectral radiance, downward at 341 nm; Spectral radiance, downward at 342 nm; Spectral radiance, downward at 343 nm; Spectral radiance, downward at 344 nm; Spectral radiance, downward at 345 nm; Spectral radiance, downward at 346 nm; Spectral radiance, downward at 347 nm; Spectral radiance, downward at 348 nm; Spectral radiance, downward at 349 nm; Spectral radiance, downward at 350 nm; Spectral radiance, downward at 351 nm; Spectral radiance, downward at 352 nm; Spectral radiance, downward at 353 nm; Spectral radiance, downward at 354 nm; Spectral radiance, downward at 355 nm; Spectral radiance, downward at 356 nm; Spectral radiance, downward at 357 nm; Spectral radiance, downward at 358 nm; Spectral radiance, downward at 359 nm; Spectral radiance, downward at 360 nm; Spectral radiance, downward at 361 nm; Spectral radiance, downward at 362 nm; Spectral radiance, downward at 363 nm; Spectral radiance, downward at 364 nm; Spectral radiance, downward at 365 nm; Spectral radiance, downward at 366 nm; Spectral radiance, downward at 367 nm; Spectral radiance, downward at 368 nm; Spectral radiance, downward at 369 nm; Spectral radiance, downward at 370 nm; Spectral radiance, downward at 371 nm; Spectral radiance, downward at 372 nm; Spectral radiance, downward at 373 nm; Spectral radiance, downward at 374 nm; Spectral radiance, downward at 375 nm; Spectral radiance, downward at 376 nm; Spectral radiance, downward at 377 nm; Spectral radiance, downward at 378 nm; Spectral radiance, downward at 379 nm; Spectral radiance, downward at 380 nm; Spectral radiance, downward at 381 nm; Spectral radiance, downward at 382 nm; Spectral radiance, downward at 383 nm; Spectral radiance, downward at 384 nm; Spectral radiance, downward at 385 nm; Spectral radiance, downward at 386 nm; Spectral radiance, downward at 387 nm; Spectral radiance, downward at 388 nm; Spectral radiance, downward at 389 nm; Spectral radiance, downward at 390 nm; Spectral radiance, downward at 391 nm; Spectral radiance, downward at 392 nm; Spectral radiance, downward at 393 nm; Spectral radiance, downward at 394 nm; Spectral radiance, downward at 395 nm; Spectral radiance, downward at 396 nm; Spectral radiance, downward at 397 nm; Spectral radiance, downward at 398 nm; Spectral radiance, downward at 399 nm; Spectral radiance, downward at 400 nm; Spectral radiance, downward at 401 nm; Spectral radiance, downward at 402 nm; Spectral radiance, downward at 403 nm; Spectral radiance, downward at 404 nm; Spectral radiance, downward at 405 nm; Spectral radiance, downward at 406 nm; Spectral radiance, downward at 407 nm; Spectral radiance, downward at 408 nm; Spectral radiance, downward at 409 nm; Spectral radiance, downward at 410 nm; Spectral radiance, downward at 411 nm; Spectral radiance, downward at 412 nm; Spectral radiance, downward at 413 nm; Spectral radiance, downward at 414 nm; Spectral radiance, downward at 415 nm; Spectral radiance, downward at 416 nm; Spectral radiance, downward at 417 nm; Spectral radiance, downward at 418 nm; Spectral radiance, downward at 419 nm; Spectral radiance, downward at 420 nm; Spectral radiance, downward at 421 nm; Spectral radiance, downward at 422 nm; Spectral radiance, downward at 423 nm; Spectral radiance, downward at 424 nm; Spectral radiance, downward at 425 nm; Spectral radiance, downward at 426 nm; Spectral radiance, downward at 427 nm; Spectral radiance, downward at 428 nm; Spectral radiance, downward at 429 nm; Spectral radiance, downward at 430 nm; Spectral radiance, downward at 431 nm; Spectral radiance, downward at 432 nm; Spectral radiance, downward at 433 nm; Spectral radiance, downward at 434 nm; Spectral radiance, downward at 435 nm; Spectral radiance, downward at 436 nm; Spectral radiance, downward at 437 nm; Spectral radiance, downward at 438 nm; Spectral radiance, downward at 439 nm; Spectral radiance, downward at 440 nm; Spectral radiance, downward at 441 nm; Spectral radiance, downward at 442 nm; Spectral radiance, downward at 443 nm; Spectral radiance, downward at 444 nm; Spectral radiance, downward at 445 nm; Spectral radiance, downward at 446 nm; Spectral radiance, downward at 447 nm; Spectral radiance, downward at 448 nm; Spectral radiance, downward at 449 nm; Spectral radiance, downward at 450 nm; Spectral radiance, downward at 451 nm; Spectral radiance, downward at 452 nm; Spectral radiance, downward at 453 nm; Spectral radiance, downward at 454 nm; Spectral radiance, downward at 455 nm; Spectral radiance, downward at 456 nm; Spectral radiance, downward at 457 nm; Spectral radiance, downward at 458 nm; Spectral radiance, downward at 459 nm; Spectral radiance, downward at 460 nm; Spectral radiance, downward at 461 nm; Spectral radiance, downward at 462 nm; Spectral radiance, downward at 463 nm; Spectral radiance, downward at 464 nm; Spectral radiance, downward at 465 nm; Spectral radiance, downward at 466 nm; Spectral radiance, downward at 467 nm; Spectral radiance, downward at 468 nm; Spectral radiance, downward at 469 nm; Spectral radiance, downward at 470 nm; Spectral radiance, downward at 471 nm; Spectral radiance, downward at 472 nm; Spectral radiance, downward at 473 nm; Spectral radiance, downward at 474 nm; Spectral radiance, downward at 475 nm; Spectral radiance, downward at 476 nm; Spectral radiance, downward at 477 nm; Spectral radiance, downward at 478 nm; Spectral radiance, downward at 479 nm; Spectral radiance, downward at 480 nm; Spectral radiance, downward at 481 nm; Spectral radiance, downward at 482 nm; Spectral radiance, downward at 483 nm; Spectral radiance, downward at 484 nm; Spectral radiance, downward at 485 nm; Spectral radiance, downward at 486 nm; Spectral radiance, downward at 487 nm; Spectral radiance, downward at 488 nm; Spectral radiance, downward at 489 nm; Spectral radiance, downward at 490 nm; Spectral radiance, downward at 491 nm; Spectral radiance, downward at 492 nm; Spectral radiance, downward at 493 nm; Spectral radiance, downward at 494 nm; Spectral radiance, downward at 495 nm; Spectral radiance, downward at 496 nm; Spectral radiance, downward at 497 nm; Spectral radiance, downward at 498 nm; Spectral radiance, downward at 499 nm; Spectral radiance, downward at 500 nm; Spectral radiance, downward at 501 nm; Spectral radiance, downward at 502 nm; Spectral radiance, downward at 503 nm; Spectral radiance, downward at 504 nm; Spectral radiance, downward at 505 nm; Spectral radiance, downward at 506 nm; Spectral radiance, downward at 507 nm; Spectral radiance, downward at 508 nm; Spectral radiance, downward at 509 nm; Spectral radiance, downward at 510 nm; Spectral radiance, downward at 511 nm; Spectral radiance, downward at 512 nm; Spectral radiance, downward at 513 nm; Spectral radiance, downward at 514 nm; Spectral radiance,
    Materialart: Dataset
    Format: text/tab-separated-values, 3932388 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_14_1; DATE/TIME; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land
    Materialart: Dataset
    Format: text/tab-separated-values, 2040 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_17_1; DATE/TIME; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land
    Materialart: Dataset
    Format: text/tab-separated-values, 2166 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_19_2; DATE/TIME; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land
    Materialart: Dataset
    Format: text/tab-separated-values, 1494 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_12_1; Current meter, pitch; Current meter, roll; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Heading; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land
    Materialart: Dataset
    Format: text/tab-separated-values, 104330 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_11_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Transmittance; Transmittance, photosynthetically active; Transmittance at 320 nm; Transmittance at 321 nm; Transmittance at 322 nm; Transmittance at 323 nm; Transmittance at 324 nm; Transmittance at 325 nm; Transmittance at 326 nm; Transmittance at 327 nm; Transmittance at 328 nm; Transmittance at 329 nm; Transmittance at 330 nm; Transmittance at 331 nm; Transmittance at 332 nm; Transmittance at 333 nm; Transmittance at 334 nm; Transmittance at 335 nm; Transmittance at 336 nm; Transmittance at 337 nm; Transmittance at 338 nm; Transmittance at 339 nm; Transmittance at 340 nm; Transmittance at 341 nm; Transmittance at 342 nm; Transmittance at 343 nm; Transmittance at 344 nm; Transmittance at 345 nm; Transmittance at 346 nm; Transmittance at 347 nm; Transmittance at 348 nm; Transmittance at 349 nm; Transmittance at 350 nm; Transmittance at 351 nm; Transmittance at 352 nm; Transmittance at 353 nm; Transmittance at 354 nm; Transmittance at 355 nm; Transmittance at 356 nm; Transmittance at 357 nm; Transmittance at 358 nm; Transmittance at 359 nm; Transmittance at 360 nm; Transmittance at 361 nm; Transmittance at 362 nm; Transmittance at 363 nm; Transmittance at 364 nm; Transmittance at 365 nm; Transmittance at 366 nm; Transmittance at 367 nm; Transmittance at 368 nm; Transmittance at 369 nm; Transmittance at 370 nm; Transmittance at 371 nm; Transmittance at 372 nm; Transmittance at 373 nm; Transmittance at 374 nm; Transmittance at 375 nm; Transmittance at 376 nm; Transmittance at 377 nm; Transmittance at 378 nm; Transmittance at 379 nm; Transmittance at 380 nm; Transmittance at 381 nm; Transmittance at 382 nm; Transmittance at 383 nm; Transmittance at 384 nm; Transmittance at 385 nm; Transmittance at 386 nm; Transmittance at 387 nm; Transmittance at 388 nm; Transmittance at 389 nm; Transmittance at 390 nm; Transmittance at 391 nm; Transmittance at 392 nm; Transmittance at 393 nm; Transmittance at 394 nm; Transmittance at 395 nm; Transmittance at 396 nm; Transmittance at 397 nm; Transmittance at 398 nm; Transmittance at 399 nm; Transmittance at 400 nm; Transmittance at 401 nm; Transmittance at 402 nm; Transmittance at 403 nm; Transmittance at 404 nm; Transmittance at 405 nm; Transmittance at 406 nm; Transmittance at 407 nm; Transmittance at 408 nm; Transmittance at 409 nm; Transmittance at 410 nm; Transmittance at 411 nm; Transmittance at 412 nm; Transmittance at 413 nm; Transmittance at 414 nm; Transmittance at 415 nm; Transmittance at 416 nm; Transmittance at 417 nm; Transmittance at 418 nm; Transmittance at 419 nm; Transmittance at 420 nm; Transmittance at 421 nm; Transmittance at 422 nm; Transmittance at 423 nm; Transmittance at 424 nm; Transmittance at 425 nm; Transmittance at 426 nm; Transmittance at 427 nm; Transmittance at 428 nm; Transmittance at 429 nm; Transmittance at 430 nm; Transmittance at 431 nm; Transmittance at 432 nm; Transmittance at 433 nm; Transmittance at 434 nm; Transmittance at 435 nm; Transmittance at 436 nm; Transmittance at 437 nm; Transmittance at 438 nm; Transmittance at 439 nm; Transmittance at 440 nm; Transmittance at 441 nm; Transmittance at 442 nm; Transmittance at 443 nm; Transmittance at 444 nm; Transmittance at 445 nm; Transmittance at 446 nm; Transmittance at 447 nm; Transmittance at 448 nm; Transmittance at 449 nm; Transmittance at 450 nm; Transmittance at 451 nm; Transmittance at 452 nm; Transmittance at 453 nm; Transmittance at 454 nm; Transmittance at 455 nm; Transmittance at 456 nm; Transmittance at 457 nm; Transmittance at 458 nm; Transmittance at 459 nm; Transmittance at 460 nm; Transmittance at 461 nm; Transmittance at 462 nm; Transmittance at 463 nm; Transmittance at 464 nm; Transmittance at 465 nm; Transmittance at 466 nm; Transmittance at 467 nm; Transmittance at 468 nm; Transmittance at 469 nm; Transmittance at 470 nm; Transmittance at 471 nm; Transmittance at 472 nm; Transmittance at 473 nm; Transmittance at 474 nm; Transmittance at 475 nm; Transmittance at 476 nm; Transmittance at 477 nm; Transmittance at 478 nm; Transmittance at 479 nm; Transmittance at 480 nm; Transmittance at 481 nm; Transmittance at 482 nm; Transmittance at 483 nm; Transmittance at 484 nm; Transmittance at 485 nm; Transmittance at 486 nm; Transmittance at 487 nm; Transmittance at 488 nm; Transmittance at 489 nm; Transmittance at 490 nm; Transmittance at 491 nm; Transmittance at 492 nm; Transmittance at 493 nm; Transmittance at 494 nm; Transmittance at 495 nm; Transmittance at 496 nm; Transmittance at 497 nm; Transmittance at 498 nm; Transmittance at 499 nm; Transmittance at 500 nm; Transmittance at 501 nm; Transmittance at 502 nm; Transmittance at 503 nm; Transmittance at 504 nm; Transmittance at 505 nm; Transmittance at 506 nm; Transmittance at 507 nm; Transmittance at 508 nm; Transmittance at 509 nm; Transmittance at 510 nm; Transmittance at 511 nm; Transmittance at 512 nm; Transmittance at 513 nm; Transmittance at 514 nm; Transmittance at 515 nm; Transmittance at 516 nm; Transmittance at 517 nm; Transmittance at 518 nm; Transmittance at 519 nm; Transmittance at 520 nm; Transmittance at 521 nm; Transmittance at 522 nm; Transmittance at 523 nm; Transmittance at 524 nm; Transmittance at 525 nm; Transmittance at 526 nm; Transmittance at 527 nm; Transmittance at 528 nm; Transmittance at 529 nm; Transmittance at 530 nm; Transmittance at 531 nm; Transmittance at 532 nm; Transmittance at 533 nm; Transmittance at 534 nm; Transmittance at 535 nm; Transmittance at 536 nm; Transmittance at 537 nm; Transmittance at 538 nm; Transmittance at 539 nm; Transmittance at 540 nm; Transmittance at 541 nm; Transmittance at 542 nm; Transmittance at 543 nm; Transmittance at 544 nm; Transmittance at 545 nm; Transmittance at 546 nm; Transmittance at 547 nm; Transmittance at 548 nm; Transmittance at 549 nm; Transmittance at 550 nm; Transmittance at 551 nm; Transmittance at 552 nm; Transmittance at 553 nm; Transmittance at 554 nm; Transmittance at 555 nm; Transmittance at 556 nm; Transmittance at 557 nm; Transmittance at 558 nm; Transmittance at 559 nm; Transmittance at 560 nm; Transmittance at 561 nm; Transmittance at 562 nm; Transmittance at 563 nm; Transmittance at 564 nm; Transmittance at 565 nm; Transmittance at 566 nm; Transmittance at 567 nm; Transmittance at 568 nm; Transmittance at 569 nm; Transmittance at 570 nm; Transmittance at 571 nm; Transmittance at 572 nm; Transmittance at 573 nm; Transmittance at 574 nm; Transmittance at 575 nm; Transmittance at 576 nm; Transmittance at 577 nm; Transmittance at 578 nm; Transmittance at 579 nm; Transmittance at 580 nm; Transmittance at 581 nm; Transmittance at 582 nm; Transmittance at 583 nm; Transmittance at 584 nm; Transmittance at 585 nm; Transmittance at 586 nm; Transmittance at 587 nm; Transmittance at 588 nm; Transmittance at 589 nm; Transmittance at 590 nm; Transmittance at 591 nm; Transmittance at 592 nm; Transmittance at 593 nm; Transmittance at 594 nm; Transmittance at 595 nm; Transmittance at 596 nm; Transmittance at 597 nm; Transmittance at 598 nm; Transmittance at 599 nm; Transmittance at 600 nm; Transmittance at 601 nm; Transmittance at 602 nm; Transmittance at 603 nm; Transmittance at 604 nm; Transmittance at 605 nm; Transmittance at 606 nm; Transmittance at 607 nm; Transmittance at 608 nm; Transmittance at 609 nm; Transmittance at 610 nm; Transmittance at 611 nm; Transmittance at 612 nm; Transmittance at 613 nm; Transmittance at 614 nm; Transmittance at 615 nm; Transmittance at 616 nm; Transmittance at 617 nm; Transmittance at 618 nm; Transmittance at 619 nm; Transmittance at 620 nm; Transmittance at 621 nm; Transmittance at 622 nm; Transmittance at 623 nm; Transmittance at 624 nm; Transmittance at 625 nm; Transmittance at 626 nm; Transmittance at
    Materialart: Dataset
    Format: text/tab-separated-values, 1283335 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ALERT2018; ALERT2018_12_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Transmittance; Transmittance, photosynthetically active; Transmittance at 320 nm; Transmittance at 321 nm; Transmittance at 322 nm; Transmittance at 323 nm; Transmittance at 324 nm; Transmittance at 325 nm; Transmittance at 326 nm; Transmittance at 327 nm; Transmittance at 328 nm; Transmittance at 329 nm; Transmittance at 330 nm; Transmittance at 331 nm; Transmittance at 332 nm; Transmittance at 333 nm; Transmittance at 334 nm; Transmittance at 335 nm; Transmittance at 336 nm; Transmittance at 337 nm; Transmittance at 338 nm; Transmittance at 339 nm; Transmittance at 340 nm; Transmittance at 341 nm; Transmittance at 342 nm; Transmittance at 343 nm; Transmittance at 344 nm; Transmittance at 345 nm; Transmittance at 346 nm; Transmittance at 347 nm; Transmittance at 348 nm; Transmittance at 349 nm; Transmittance at 350 nm; Transmittance at 351 nm; Transmittance at 352 nm; Transmittance at 353 nm; Transmittance at 354 nm; Transmittance at 355 nm; Transmittance at 356 nm; Transmittance at 357 nm; Transmittance at 358 nm; Transmittance at 359 nm; Transmittance at 360 nm; Transmittance at 361 nm; Transmittance at 362 nm; Transmittance at 363 nm; Transmittance at 364 nm; Transmittance at 365 nm; Transmittance at 366 nm; Transmittance at 367 nm; Transmittance at 368 nm; Transmittance at 369 nm; Transmittance at 370 nm; Transmittance at 371 nm; Transmittance at 372 nm; Transmittance at 373 nm; Transmittance at 374 nm; Transmittance at 375 nm; Transmittance at 376 nm; Transmittance at 377 nm; Transmittance at 378 nm; Transmittance at 379 nm; Transmittance at 380 nm; Transmittance at 381 nm; Transmittance at 382 nm; Transmittance at 383 nm; Transmittance at 384 nm; Transmittance at 385 nm; Transmittance at 386 nm; Transmittance at 387 nm; Transmittance at 388 nm; Transmittance at 389 nm; Transmittance at 390 nm; Transmittance at 391 nm; Transmittance at 392 nm; Transmittance at 393 nm; Transmittance at 394 nm; Transmittance at 395 nm; Transmittance at 396 nm; Transmittance at 397 nm; Transmittance at 398 nm; Transmittance at 399 nm; Transmittance at 400 nm; Transmittance at 401 nm; Transmittance at 402 nm; Transmittance at 403 nm; Transmittance at 404 nm; Transmittance at 405 nm; Transmittance at 406 nm; Transmittance at 407 nm; Transmittance at 408 nm; Transmittance at 409 nm; Transmittance at 410 nm; Transmittance at 411 nm; Transmittance at 412 nm; Transmittance at 413 nm; Transmittance at 414 nm; Transmittance at 415 nm; Transmittance at 416 nm; Transmittance at 417 nm; Transmittance at 418 nm; Transmittance at 419 nm; Transmittance at 420 nm; Transmittance at 421 nm; Transmittance at 422 nm; Transmittance at 423 nm; Transmittance at 424 nm; Transmittance at 425 nm; Transmittance at 426 nm; Transmittance at 427 nm; Transmittance at 428 nm; Transmittance at 429 nm; Transmittance at 430 nm; Transmittance at 431 nm; Transmittance at 432 nm; Transmittance at 433 nm; Transmittance at 434 nm; Transmittance at 435 nm; Transmittance at 436 nm; Transmittance at 437 nm; Transmittance at 438 nm; Transmittance at 439 nm; Transmittance at 440 nm; Transmittance at 441 nm; Transmittance at 442 nm; Transmittance at 443 nm; Transmittance at 444 nm; Transmittance at 445 nm; Transmittance at 446 nm; Transmittance at 447 nm; Transmittance at 448 nm; Transmittance at 449 nm; Transmittance at 450 nm; Transmittance at 451 nm; Transmittance at 452 nm; Transmittance at 453 nm; Transmittance at 454 nm; Transmittance at 455 nm; Transmittance at 456 nm; Transmittance at 457 nm; Transmittance at 458 nm; Transmittance at 459 nm; Transmittance at 460 nm; Transmittance at 461 nm; Transmittance at 462 nm; Transmittance at 463 nm; Transmittance at 464 nm; Transmittance at 465 nm; Transmittance at 466 nm; Transmittance at 467 nm; Transmittance at 468 nm; Transmittance at 469 nm; Transmittance at 470 nm; Transmittance at 471 nm; Transmittance at 472 nm; Transmittance at 473 nm; Transmittance at 474 nm; Transmittance at 475 nm; Transmittance at 476 nm; Transmittance at 477 nm; Transmittance at 478 nm; Transmittance at 479 nm; Transmittance at 480 nm; Transmittance at 481 nm; Transmittance at 482 nm; Transmittance at 483 nm; Transmittance at 484 nm; Transmittance at 485 nm; Transmittance at 486 nm; Transmittance at 487 nm; Transmittance at 488 nm; Transmittance at 489 nm; Transmittance at 490 nm; Transmittance at 491 nm; Transmittance at 492 nm; Transmittance at 493 nm; Transmittance at 494 nm; Transmittance at 495 nm; Transmittance at 496 nm; Transmittance at 497 nm; Transmittance at 498 nm; Transmittance at 499 nm; Transmittance at 500 nm; Transmittance at 501 nm; Transmittance at 502 nm; Transmittance at 503 nm; Transmittance at 504 nm; Transmittance at 505 nm; Transmittance at 506 nm; Transmittance at 507 nm; Transmittance at 508 nm; Transmittance at 509 nm; Transmittance at 510 nm; Transmittance at 511 nm; Transmittance at 512 nm; Transmittance at 513 nm; Transmittance at 514 nm; Transmittance at 515 nm; Transmittance at 516 nm; Transmittance at 517 nm; Transmittance at 518 nm; Transmittance at 519 nm; Transmittance at 520 nm; Transmittance at 521 nm; Transmittance at 522 nm; Transmittance at 523 nm; Transmittance at 524 nm; Transmittance at 525 nm; Transmittance at 526 nm; Transmittance at 527 nm; Transmittance at 528 nm; Transmittance at 529 nm; Transmittance at 530 nm; Transmittance at 531 nm; Transmittance at 532 nm; Transmittance at 533 nm; Transmittance at 534 nm; Transmittance at 535 nm; Transmittance at 536 nm; Transmittance at 537 nm; Transmittance at 538 nm; Transmittance at 539 nm; Transmittance at 540 nm; Transmittance at 541 nm; Transmittance at 542 nm; Transmittance at 543 nm; Transmittance at 544 nm; Transmittance at 545 nm; Transmittance at 546 nm; Transmittance at 547 nm; Transmittance at 548 nm; Transmittance at 549 nm; Transmittance at 550 nm; Transmittance at 551 nm; Transmittance at 552 nm; Transmittance at 553 nm; Transmittance at 554 nm; Transmittance at 555 nm; Transmittance at 556 nm; Transmittance at 557 nm; Transmittance at 558 nm; Transmittance at 559 nm; Transmittance at 560 nm; Transmittance at 561 nm; Transmittance at 562 nm; Transmittance at 563 nm; Transmittance at 564 nm; Transmittance at 565 nm; Transmittance at 566 nm; Transmittance at 567 nm; Transmittance at 568 nm; Transmittance at 569 nm; Transmittance at 570 nm; Transmittance at 571 nm; Transmittance at 572 nm; Transmittance at 573 nm; Transmittance at 574 nm; Transmittance at 575 nm; Transmittance at 576 nm; Transmittance at 577 nm; Transmittance at 578 nm; Transmittance at 579 nm; Transmittance at 580 nm; Transmittance at 581 nm; Transmittance at 582 nm; Transmittance at 583 nm; Transmittance at 584 nm; Transmittance at 585 nm; Transmittance at 586 nm; Transmittance at 587 nm; Transmittance at 588 nm; Transmittance at 589 nm; Transmittance at 590 nm; Transmittance at 591 nm; Transmittance at 592 nm; Transmittance at 593 nm; Transmittance at 594 nm; Transmittance at 595 nm; Transmittance at 596 nm; Transmittance at 597 nm; Transmittance at 598 nm; Transmittance at 599 nm; Transmittance at 600 nm; Transmittance at 601 nm; Transmittance at 602 nm; Transmittance at 603 nm; Transmittance at 604 nm; Transmittance at 605 nm; Transmittance at 606 nm; Transmittance at 607 nm; Transmittance at 608 nm; Transmittance at 609 nm; Transmittance at 610 nm; Transmittance at 611 nm; Transmittance at 612 nm; Transmittance at 613 nm; Transmittance at 614 nm; Transmittance at 615 nm; Transmittance at 616 nm; Transmittance at 617 nm; Transmittance at 618 nm; Transmittance at 619 nm; Transmittance at 620 nm; Transmittance at 621 nm; Transmittance at 622 nm; Transmittance at 623 nm; Transmittance at 624 nm; Transmittance at 625 nm; Transmittance at 626 nm; Transmittance at
    Materialart: Dataset
    Format: text/tab-separated-values, 1850390 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...