ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (429)
  • American Association for the Advancement of Science (AAAS)  (429)
  • International Union of Crystallography (IUCr)
  • 1990-1994  (298)
  • 1985-1989  (97)
  • 1980-1984  (34)
  • 1955-1959
  • 1925-1929
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (429)
  • International Union of Crystallography (IUCr)
Years
Year
  • 1
    Publication Date: 1988-07-01
    Description: Expression of the interleukin-2 receptor (IL-2R alpha) gene is activated by the transcriptional activator protein, Tax (previously referred to as the tat gene product), encoded by the human T-cell leukemia virus (HTLV-I). Multiple protein binding sites for specific DNA-protein interactions were identified over the upstream IL-2R alpha transcriptional regulatory sequences. However, only one region, which includes the sequence motif GGGGAATCTCCC, was required for activation by both the tax gene product and mitogenic stimulation. Remarkably, this sequence also bound the nuclear factor NF kappa B, which is important for induction of kappa-immunoglobulin gene expression. A model is presented whereby regulation of cellular gene expression by the HTLV-I tax gene product occurs via an indirect mechanism that may involve a post-translational modification of preexistent cellular transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruben, S -- Poteat, H -- Tan, T H -- Kawakami, K -- Roeder, R -- Haseltine, W -- Rosen, C A -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2838905" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cell Line ; DNA/genetics/metabolism ; Deltaretrovirus/*genetics ; Gene Expression Regulation/*drug effects ; Gene Products, tat ; Immunoglobulin kappa-Chains/genetics ; Mutation ; Plasmids ; Promoter Regions, Genetic ; Receptors, Immunologic/*genetics ; Receptors, Interleukin-2 ; Regulatory Sequences, Nucleic Acid ; Transcription Factors/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-11-25
    Description: The gp120 envelope glycoprotein of the human immunodeficiency virus (HIV), which is expressed on the surface of many HIV-infected cells, binds to the cell surface molecule CD4. Soluble derivatives of recombinant CD4 (rCD4) that bind gp120 with high affinity are attractive vehicles for targeting a cytotoxic reagent to HIV-infected cells. Soluble rCD4 was conjugated to the active subunit of the toxin ricin. This conjugate killed HIV-infected H9 cells but was 1/1000 as toxic to uninfected H9 cells (which do not express gp120) and was not toxic to Daudi cells (which express major histocompatibility class II antigens, the putative natural ligand for cell surface CD4). Specific killing of infected cells can be blocked by rgp120, rCD4, or a monoclonal antibody to the gp120 binding site on CD4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Till, M A -- Ghetie, V -- Gregory, T -- Patzer, E J -- Porter, J P -- Uhr, J W -- Capon, D J -- Vitetta, E S -- CA-09082/CA/NCI NIH HHS/ -- CA-28149/CA/NCI NIH HHS/ -- CA-41081/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1166-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2847316" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation, T-Lymphocyte/*administration & dosage/immunology ; Binding Sites ; Cell Line ; Cell Survival ; Electrophoresis, Polyacrylamide Gel ; HIV/*immunology ; HIV Envelope Protein gp120 ; Histocompatibility Antigens Class II/immunology ; Humans ; Recombinant Proteins/administration & dosage/immunology ; Retroviridae Proteins/*immunology/metabolism ; Ricin/metabolism/*pharmacology ; T-Lymphocytes/immunology/microbiology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-07-08
    Description: Molecules involved in the antigen receptor-dependent regulation of early T cell activation genes were investigated with the use of functional sequences of the T cell activation-specific enhancer of interleukin-2 (IL-2). One of these sequences forms a protein complex, NFAT-1, specifically with nuclear extracts of activated T cells. This complex appeared 10 to 25 minutes before the activation of the IL-2 gene. Studies with inhibitors of protein synthesis indicated that the time of synthesis of the activator of the IL-2 gene in Jurkat T cells corresponds to the time of appearance of NFAT-1. NFAT-1, or a very similar protein, bound functional sequences of the long terminal repeat (LTR) of the human immunodeficiency virus type 1; the LTR of this virus is known to be stimulated during early T cell activation. The binding site for this complex activated a linked promoter after transfection into antigen receptor-activated T cells but not other cell types. These characteristics suggest that NFAT-1 transmits signals initiated at the T cell antigen receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, J P -- Utz, P J -- Durand, D B -- Toole, J J -- Emmel, E A -- Crabtree, G R -- CA 01048/CA/NCI NIH HHS/ -- CA 39612/CA/NCI NIH HHS/ -- HL 33942/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):202-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3260404" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA-Binding Proteins/*physiology ; *Enhancer Elements, Genetic ; HIV/genetics ; Humans ; In Vitro Techniques ; Interleukin-2/genetics ; *Lymphocyte Activation ; Nuclear Proteins/*physiology ; Receptors, Antigen, T-Cell/*physiology ; *Regulatory Sequences, Nucleic Acid ; T-Lymphocytes/*physiology ; Transcription Factors/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-08
    Description: Gramicidin, a linear polypeptide composed of hydrophobic amino acids with alternating L- and D- configurations, forms transmembrane ion channels. The crystal structure of a gramicidin-cesium complex has been determined at 2.0 angstrom resolution. In this structure, gramicidin forms a 26 angstrom long tube comprised of two polypeptide chains arranged as antiparallel beta strands that are wrapped into a left-handed helical coil with 6.4 residues per turn. The polypeptide backbone forms the interior of the hydrophilic, solvent-filled pore and the side chains form a hydrophobic and relatively regular surface on the outside of the pore. This example of a crystal structure of a solvent-filled ion pore provides a basis for understanding the physical nature of ion translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, B A -- Ravikumar, K -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2455344" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cesium ; Computer Simulation ; Crystallography ; *Gramicidin ; *Ion Channels ; Ligands ; Macromolecular Substances ; *Membrane Proteins ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-05
    Description: Although the proteinase inhibitor alpha-2-antiplasmin (alpha 2AP) is known to control the activity of plasmin through rapid formation of stable complexes, it also efficiently inactivates chymotrypsin. These interactions are shown to occur at adjacent, overlapping sites so that plasmin attacks the inhibitor at an Arg364-Met365 peptide bond, while chymotrypsin interacts at a Met365-Ser366 sequence one residue downstream. Thus, a naturally occurring plasma serine proteinase inhibitor can have multiple specificities through interactions at adjacent sites. It also illustrates the potential flexibility of the reactive site loop in this class of inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potempa, J -- Shieh, B H -- Travis, J -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):699-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Jagiellonian University, Cracow, Poland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2456616" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carboxypeptidase B ; Carboxypeptidases/metabolism ; Carboxypeptidases A ; Chromatography, Gel ; Chromatography, High Pressure Liquid ; Chymotrypsin/antagonists & inhibitors/metabolism ; Electrophoresis, Polyacrylamide Gel ; Humans ; Molecular Sequence Data ; Peptide Fragments/metabolism ; Protease Inhibitors ; alpha-2-Antiplasmin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-04
    Description: The origin of allostery is an unanswered question in the evolution of complex regulatory proteins. Anabolic ornithine transcarbamoylase, a trimer of identical subunits, is not an allosteric enzyme per se. However, when the active-site residue arginine-106 of the Escherichia coli enzyme is replaced with a glycine through site-directed mutagenesis, the resultant mutant enzyme manifests substrate cooperativity that is absent in the wild-type enzyme. Both homotropic and heterotropic interactions occur in the mutant enzyme. The initial velocity saturation curves of the substrates, carbamoyl phosphate and L-ornithine, conform to the Hill equation. The observed cooperativity depends on substrate but not enzyme concentration. The finding underscores the possibility that a single mutation of the enzyme in the cell could turn transcarbamoylation into a regulatory junction in the biosynthesis of L-arginine and urea.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, L C -- Zambidis, I -- Caron, C -- DK01721/DK/NIDDK NIH HHS/ -- DK38089/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):522-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Metcalf Center for Science and Engineering, Boston University, MA 02215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2667139" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; Carbamyl Phosphate/metabolism ; Escherichia coli/*enzymology ; Glycine ; Kinetics ; Macromolecular Substances ; *Mutation ; Ornithine/metabolism ; Ornithine Carbamoyltransferase/*genetics/metabolism ; Structure-Activity Relationship ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-08-18
    Description: CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamarre, D -- Ashkenazi, A -- Fleury, S -- Smith, D H -- Sekaly, R P -- Capon, D J -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface ; Binding Sites ; DNA, Recombinant ; HIV/*metabolism ; HIV Envelope Protein gp120 ; HLA-DP Antigens/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; Hybridomas ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, HIV ; Receptors, Virus/genetics/immunology/*metabolism ; Retroviridae Proteins/immunology/*metabolism ; Rosette Formation ; Structure-Activity Relationship ; T-Lymphocytes/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-21
    Description: Ribozymes are RNA molecules that catalyze biochemical reactions. Fe(II)-EDTA, a solvent-based reagent which cleaves both double- and single-stranded RNA, was used to investigate the structure of the Tetrahymena ribozyme. Regions of cleavage alternate with regions of substantial protection along the entire RNA molecule. In particular, most of the catalytic core shows greatly reduced cleavage. These data constitute experimental evidence that an RNA enzyme, like a protein enzyme, has an interior and an exterior. Determination of positions where the phosphodiester backbone of the RNA is on the inside or on the outside of the molecule provides major constraints for modeling the three-dimensional structure of the Tetrahymena ribozyme. This approach should be generally informative for structured RNA molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Latham, J A -- Cech, T R -- GM 11227-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 21;245(4915):276-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2501870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoradiography ; Base Sequence ; Binding Sites ; Crystallography ; Edetic Acid ; Electrophoresis, Polyacrylamide Gel ; Ferrous Compounds ; Molecular Sequence Data ; Molecular Structure ; *Nucleic Acid Conformation ; *RNA Splicing ; RNA, Catalytic ; RNA, Fungal/analysis ; *RNA, Ribosomal/analysis/metabolism ; RNA, Transfer, Phe/analysis ; Tetrahymena/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1989-08-11
    Description: The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance geometry and restrained molecular dynamics calculations. The zinc finger is an independently folded domain with a compact globular structure in which the zinc atom is bound by two cysteine and two histidine ligands. The polypeptide backbone fold consists of a well-defined helix, starting as alpha and ending as 3(10) helix, packed against two beta strands that are arranged in a hairpin structure. A high density of basic and polar amino acid side chains on the exposed face of the helix are probably involved in DNA binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Gippert, G P -- Soman, K V -- Case, D A -- Wright, P E -- GM 36643/GM/NIGMS NIH HHS/ -- GM38794/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):635-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cysteine/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Histidine/metabolism ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Metalloproteins/*metabolism ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Solutions ; Thermodynamics ; Xenopus ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1989-03-03
    Description: Isolation of a clone encoding the mouse lymph node homing receptor reveals a deduced protein with an unusual protein mosaic architecture, containing a separate carbohydrate-binding (lectin) domain, an epidermal growth factor-like (EGF) domain, and an extracellular precisely duplicated repeat unit, which preserves the motif seen in the homologous repeat structure of complement regulatory proteins and other proteins. The receptor molecule is potentially highly glycosylated, and contains an apparent transmembrane region. Analysis of messenger RNA transcripts reveals a predominantly lymphoid distribution in direct relation to the cell surface expression of the MEL-14 determinant, and the cDNA clone is shown to confer the MEL-14 epitope in heterologous cells. The many novel features, including ubiquitination, embodied in this single receptor molecule form the basis for numerous approaches to the study of cell-cell interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegelman, M H -- van de Rijn, M -- Weissman, I L -- AI09022/AI/NIAID NIH HHS/ -- OIG43551/PHS HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1165-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646713" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Base Sequence ; Binding Sites ; Carbohydrate Metabolism ; Cell Membrane/metabolism ; DNA/*genetics ; Epidermal Growth Factor ; Glycosylation ; Lymph Nodes/*metabolism ; Membrane Glycoproteins/*genetics ; Mice ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; Receptors, Lymphocyte Homing ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1990-08-17
    Description: The transcription factor C/EBP uses a bipartite structural motif to bind DNA. Two protein chains dimerize through a set of amphipathic alpha helices termed the leucine zipper. Highly basic polypeptide regions emerge from the zipper to form a linked set of DNA contact surfaces. In the recently proposed a "scissors grip" model, the paired set of basic regions begin DNA contact at a central point and track in opposite directions along the major groove, forming a molecular clamp around DNA. This model predicts that C/EBP must undertake significant changes in protein conformation as it binds and releases DNA. The basic region of ligand-free C/EBP is highly sensitive to protease digestion. Pronounced resistance to proteolysis occurred when C/EBP associated with its specific DNA substrate. Sequencing of discrete proteolytic fragments showed that prominent sites for proteolysis occur at two junction points predicted by the "scissors grip" model. One junction corresponds to the cleft where the basic regions emerge from the leucine zipper. The other corresponds to a localized nonhelical segment that has been hypothesized to contain an N-cap and facilitate the sharp angulation necessary for the basic region to track continuously in the major groove of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuman, J D -- Vinson, C R -- McKnight, S L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2202050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Chromatography, High Pressure Liquid ; DNA/*metabolism ; DNA-Binding Proteins/metabolism ; Kinetics ; Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Peptide Fragments/metabolism ; Peptide Hydrolases/*metabolism ; Protein Conformation ; Transcription Factors/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1989-01-06
    Description: The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from several factors. These factors include the formation of multiple hydrogen bonds and van der Waals interactions between biotin and the protein, together with the ordering of surface polypeptide loops that bury the biotin in the protein interior. Structural alterations at the biotin binding site produce quaternary changes in the streptavidin tetramer. These changes apparently propagate through cooperative deformations in the twisted beta sheets that link tetramer subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, P C -- Ohlendorf, D H -- Wendoloski, J J -- Salemme, F R -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research & Development Department, E. I. du Pont de Neumours and Company, Inc., Wilmington, DE 19880-0228.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911722" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Binding Sites ; Biotin/*metabolism ; Macromolecular Substances ; Models, Molecular ; Protein Conformation ; Streptavidin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1990-07-06
    Description: Oligonucleotides equipped with EDTA-Fe can bind specifically to duplex DNA by triple-helix formation and produce double-strand cleavage at binding sites greater than 12 base pairs in size. To demonstrate that oligonucleotide-directed triple-helix formation is a viable chemical approach for the site-specific cleavage of large genomic DNA, an oligonucleotide with EDTA-Fe at the 5' and 3' ends was targeted to a 20-base pair sequence in the 340-kilobase pair chromosome III of Saccharomyces cerevisiae. Double-strand cleavage products of the correct size and location were observed, indicating that the oligonucleotide bound and cleaved the target site among almost 14 megabase pairs of DNA. Because oligonucleotide-directed triple-helix formation has the potential to be a general solution for DNA recognition, this result has implications for physical mapping of chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strobel, S A -- Dervan, P B -- GM 42966/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 6;249(4964):73-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2195655" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chromosomes, Fungal/*metabolism ; DNA, Fungal/*genetics/metabolism ; Densitometry ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligonucleotides/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1990-05-18
    Description: Most proteins destined for export from Escherichia coli are made as precursors containing amino-terminal leader sequences that are essential for export and that are removed during the process. The initial step in export of a subset of proteins, which includes maltose-binding protein, is binding of the precursor by the molecular chaperone SecB. This work shows directly that SecB binds with high affinity to unfolded maltose-binding protein but does not specifically recognize and bind the leader. Rather, the leader modulates folding to expose elements in the remainder of the polypeptide that are recognized by SecB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randall, L L -- Topping, T B -- Hardy, S J -- GM 29798/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 18;248(4957):860-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry/Biophysics Program, Washington State University, Pullman 99164-4660.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2188362" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Bacterial Proteins/*metabolism ; Binding Sites ; Biological Transport ; Carrier Proteins/*metabolism ; Cytosol/metabolism ; Escherichia coli/*metabolism ; *Escherichia coli Proteins ; Maltose-Binding Proteins ; Molecular Weight ; *Monosaccharide Transport Proteins ; Protein Conformation ; Protein Precursors/*metabolism ; Protein Sorting Signals/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-27
    Description: Light-dependent expression of rbcS, the gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, which is the key enzyme involved in carbon fixation in higher plants, is regulated at the transcriptional level. Sequence analysis of the gene has uncovered a conserved GT motif in the -150 to -100 region of many rbcS promoters. This motif serves as the binding site of a nuclear factor, designated GT-1. Analysis of site-specific mutants of pea rbcS-3A promoter demonstrated that GT-1 binding in vitro is correlated with light-responsive expression of the rbcS promoter in transgenic plants. However, it is not known whether factors other than GT-1 might also be required for activation of transcription by light. A synthetic tetramer of box II (TGTGTGGTTAATATG), the GT-1 binding site located between -152 to -138 of the rbcS-3A promoter, inserted upstream of a truncated cauliflower mosaic virus 35S promoter is sufficient to confer expression in leaves of transgenic tobacco. This expression occurs principally in chloroplast-containing cells, is induced by light, and is correlated with the ability of box II to bind GT-1 in vitro. The data show that the binding site for GT-1 is likely to be a part of the molecular light switch for rbcS activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, E -- Chua, N H -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2330508" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chloramphenicol O-Acetyltransferase/genetics ; Cloning, Molecular ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation/*physiology ; Genetic Vectors ; *Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/*metabolism ; Plant Proteins/*metabolism ; *Plants, Toxic ; Promoter Regions, Genetic/genetics ; Ribulose-Bisphosphate Carboxylase/*genetics ; Tobacco/enzymology/*genetics ; Transcription, Genetic/radiation effects ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-09
    Description: Transcription of a typical eukaryotic gene by RNA polymerase II is activated by proteins bound to sites found near the beginning of the gene as well as to sites, called enhancers, located a great distance from the gene. According to one view, the primary difference between an activator that can work at a large distance and one that cannot is that the former bears a particularly strong activating region; the stronger the activating region, the more readily the activator interacts with its target bound near the transcriptional start site, with the intervening DNA looping out to accommodate the reaction. One alternative view is that the effect of proteins bound to enhancers might require some special aspect of cellular or chromosome structure. Consistent with the first view, an activator bearing an unusually potent activating region can stimulate transcription of a mammalian gene in a HeLa nuclear extract when bound as far as 1.3 kilobase pairs upstream or 320 base pairs downstream of the transcriptional start site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carey, M -- Leatherwood, J -- Ptashne, M -- New York, N.Y. -- Science. 1990 Feb 9;247(4943):710-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2405489" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factors ; Binding Sites ; Blood Proteins/pharmacology ; Cloning, Molecular ; DNA/metabolism ; DNA-Binding Proteins ; Fungal Proteins/metabolism/*pharmacology ; HeLa Cells ; Phosphoproteins/pharmacology ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; Recombinant Fusion Proteins/pharmacology ; *Saccharomyces cerevisiae Proteins ; Templates, Genetic ; Trans-Activators/pharmacology ; Transcription Factors/pharmacology ; Transcription, Genetic/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1990-07-27
    Description: The major autophosphorylation sites of the rat beta II isozyme of protein kinase C were identified. The modified threonine and serine residues were found in the amino-terminal peptide, the carboxyl-terminal tail, and the hinge region between the regulatory lipid-binding domain and the catalytic kinase domain. Because this autophosphorylation follows an intrapeptide mechanism, extraordinary flexibility of the protein is necessary to phosphorylate the three regions. Comparison of the sequences surrounding the modified residues showed no obvious recognition motif nor any similarity to substrate phosphorylation sites, suggesting that proximity to the active site may be the primary criterion for their phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flint, A J -- Paladini, R D -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Cloning, Molecular ; Isoenzymes/genetics/*metabolism ; Molecular Sequence Data ; Peptide Fragments/isolation & purification/metabolism ; Phosphorylation ; Protein Conformation ; Protein Kinase C/genetics/*metabolism ; Rats ; Recombinant Proteins/metabolism ; Signal Transduction ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1990-11-09
    Description: High sequence selectivity in DNA-protein interactions was analyzed by measuring discrimination by Eco RI endonuclease between the recognition site GAATTC and systematically altered DNA sites. Base analogue substitutions that preserve the sequence-dependent conformational motif of the GAATTC site permit deletion of single sites of protein-base contact at a cost of +1 to +2 kcal/mol. However, the introduction of any one incorrect natural base pair costs +6 to +13 kcal/mol in transition state interaction energy, the resultant of the following interdependent factors: deletion of one or two hydrogen bonds between the protein and a purine base; unfavourable steric apposition between a group on the protein and an incorrectly placed functional group on a base; disruption of a pyrimidine contact with the protein; loss of some crucial interactions between protein and DNA phosphates; and an increased energetic cost of attaining the required DNA conformation in the transition state complex. Eco RI endonuclease thus achieves stringent discrimination by both "direct readout" (protein-base contracts) and "indirect readout" (protein-phosphate contacts and DNA conformation) of the DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesser, D R -- Kurpiewski, M R -- Jen-Jacobson, L -- GM-29207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):776-86.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA/chemistry/genetics/*metabolism ; Deoxyribonuclease EcoRI/chemistry/*metabolism ; Energy Transfer ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A class of transcriptional regulator proteins bind to DNA at dyad-symmetric sites through a motif consisting of (i) a "leucine zipper" sequence that associates into noncovalent, parallel, alpha-helical dimers and (ii) a covalently connected basic region necessary for binding DNA. The basic regions are predicted to be disordered in the absence of DNA and to form alpha helices when bound to DNA. These helices bind in the major groove forming multiple hydrogen-bonded and van der Waals contacts with the nucleotide bases. To test this model, two peptides were designed that were identical to natural leucine zipper proteins only at positions hypothesized to be critical for dimerization and DNA recognition. The peptides form dimers that bind specifically to DNA with their basic regions in alpha-helical conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neil, K T -- Hoess, R H -- DeGrado, W F -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research and Development Department, E.I. du Pont de Nemours & Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chemistry, Physical ; Circular Dichroism ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Hydrogen Bonding ; *Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-26
    Description: Expression of the L-arabinose BAD operon in Escherichia coli is regulated by AraC protein which acts both positively in the presence of arabinose to induce transcription and negatively in the absence of arabinose to repress transcription. The repression of the araBAD promoter is mediated by DNA looping between AraC protein bound at two sites near the promoter separated by 210 base pairs, araI and araO2. In vivo and in vitro experiments presented here show that an AraC dimer, with binding to half of araI and to araO2, maintains the repressed state of the operon. The addition of arabinose, which induces the operon, breaks the loop, and shifts the interactions from the distal araO2 site to the previously unoccupied half of the araI site. The conversion between the two states does not require additional binding of AraC protein and appears to be driven largely by properties of the protein rather than being specified by the slightly different DNA sequences of the binding sites. Slight reorientation of the subunits of AraC could specify looping or unlooping by the protein. Such a mechanism could account for regulation of DNA looping in other systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lobell, R B -- Schleif, R F -- GM18277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237403" target="_blank"〉PubMed〈/a〉
    Keywords: AraC Transcription Factor ; Arabinose/genetics/pharmacology ; *Bacterial Proteins ; Binding Sites ; *DNA, Bacterial/genetics/metabolism ; DNA, Superhelical/metabolism ; Escherichia coli/*genetics ; Escherichia coli Proteins ; Fucose/pharmacology ; Gene Expression Regulation, Bacterial/*drug effects ; Guanine/metabolism ; Macromolecular Substances ; Methylation ; Mutation ; Nucleic Acid Conformation/*drug effects ; Operon ; Protein Conformation/drug effects ; Repressor Proteins/metabolism/*pharmacology ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1990-09-21
    Description: Thyrotropin (TSH), luteinizing hormone (LH), and chorionic gonadotropin (CG) are structurally related glycoprotein hormones, which bind to receptors that share a high degree of sequence similarity. However, comparison of the primary amino acid sequences of the TSH and LH-CG receptors reveals two unique insertions of 8 and 50 amino acids in the extracellular domain of the TSH receptor. The functional significance of these insertions were determined by site-directed mutagenesis. Deletion of the 50-amino acid tract (residues 317 to 366) had no effect on TSH binding or on TSH and thyroid-stimulating immunoglobulin (TSI) biological activities. In contrast, either deletion or substitution of the eight-amino acid region (residues 38 to 45) abolished these activities. This eight-amino acid tract near the amino terminus of the TSH receptor appears to be an important site of interaction for both TSH and TSI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadsworth, H L -- Chazenbalk, G D -- Nagayama, Y -- Russo, D -- Rapoport, B -- DK-19289/DK/NIDDK NIH HHS/ -- DK-36182/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1423-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Veterans Administration Medical Center, San Francisco, CA 94121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2169649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Chromosome Deletion ; Clone Cells ; Cyclic AMP/metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotide Probes ; Receptors, Thyrotropin/*genetics/metabolism ; Thyrotropin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-26
    Description: The yeast protein RAP1, initially described as a transcriptional regulator, binds in vitro to sequences found in a number of seemingly unrelated genomic loci. These include the silencers at the transcriptionally repressed mating-type genes, the promoters of many genes important for cell growth, and the poly[(cytosine)1-3 adenine] [poly(C1-3A)] repeats of telomeres. Because RAP1 binds in vitro to the poly(C1-3A) repeats of telomeres, it has been suggested that RAP1 may be involved in telomere function in vivo. In order to test this hypothesis, the telomere tract lengths of yeast strains that contained conditionally lethal (ts) rap1 mutations were analyzed. Several rap1ts alleles reduced telomere length in a temperature-dependent manner. In addition, plasmids that contain small, synthetic telomeres with intact or mutant RAP1 binding sites were tested for their ability to function as substrates for poly(C1-3A) addition in vivo. Mutations in the RAP1 binding sites reduced the efficiency of the addition reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lustig, A J -- Kurtz, S -- Shore, D -- GM 40094/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):549-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237406" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chromosomes, Fungal/metabolism/*ultrastructure ; DNA-Binding Proteins/metabolism ; Fungal Proteins/genetics/*metabolism ; *Genes, Fungal ; *Genes, Mating Type, Fungal ; Molecular Sequence Data ; Mutation ; Plasmids ; Poly A/metabolism ; Poly C/metabolism ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae/*genetics ; Temperature ; *Transcription Factors ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1990-07-27
    Description: The enzymatic degradation of cellulose is an important process, both ecologically and commercially. The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase. The active site of CBHII is located at the carboxyl-terminal end of a parallel beta barrel, in an enclosed tunnel through which the cellulose threads. Two aspartic acid residues, located in the center of the tunnel are the probable catalytic residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouvinen, J -- Bergfors, T -- Teeri, T -- Knowles, J K -- Jones, T A -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):380-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, BMC, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377893" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cellulose/metabolism ; Cellulose 1,4-beta-Cellobiosidase ; Chemistry, Physical ; Crystallization ; Crystallography ; *Glycoside Hydrolases/metabolism ; Glycosylation ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Mitosporic Fungi/*enzymology ; Molecular Sequence Data ; Molecular Structure ; Physicochemical Phenomena ; Protein Conformation ; Trichoderma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is an example of a ubiquitous class of enzymes that are regulated by covalent modification. In the three-dimensional structure of the enzyme-substrate complex, isocitrate forms a hydrogen bond with Ser113, the site of regulatory phosphorylation. The structures of Asp113 and Glu113 mutants, which mimic the inactivation of the enzyme by phosphorylation, show minimal conformational changes from wild type, as in the phosphorylated enzyme. Calculations based on observed structures suggest that the change in electrostatic potential when a negative charge is introduced either by phosporylation or site-directed mutagenesis is sufficient to inactivate the enzyme. Thus, direct interaction at a ligand binding site is an alternative mechanism to induced conformational changes from an allosteric site in the regulation of protein activity by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Dean, A M -- Sohl, J L -- Koshland, D E Jr -- Stroud, R M -- GM 24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1012-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Homeostasis ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1990-03-09
    Description: Comparison of a lambda repressor-operator complex and a 434 repressor-operator complex reveals that three conserved residues in the helix-turn-helix (HTH) region make similar contacts in each of the crystallographically determined structures. These conserved residues and their interactions with phosphodiester oxygens help establish a frame of reference within which other HTH residues make contacts that are critical for site-specific recognition. Such "positioning contacts" may be important conserved features within families of HTH proteins. In contrast, the structural comparisons appear to rule out any simple "recognition code" at the level of detailed side chain-base pair interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pabo, C O -- Aggarwal, A K -- Jordan, S R -- Beamer, L J -- Obeysekare, U R -- Harrison, S C -- GM 29109/GM/NIGMS NIH HHS/ -- GM 31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1210-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315694" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Asparagine ; Base Composition ; Base Sequence ; Binding Sites ; *DNA-Binding Proteins ; Glutamine ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; *Operator Regions, Genetic ; Protein Conformation ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1990-04-06
    Description: A complementary DNA (cDNA) clone that encodes inositol 1,4,5-trisphosphate 3-kinase was isolated from a rat brain cDNA expression library with the use of monoclonal antibodies. This clone had an open reading frame that would direct the synthesis of a protein consisting of 449 amino acids and with a molecular mass of 49,853 daltons. The putative protein revealed a potential calmodulin-binding site and six regions with amino acid compositions (PEST regions) common to proteins that are susceptible to calpain. Expression of the cDNA in COS cells resulted in an approximately 150-fold increase in inositol 1,4,5-trisphosphate 3-kinase activity of these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, K Y -- Kim, H K -- Lee, S Y -- Moon, K H -- Sim, S S -- Kim, J W -- Chung, H K -- Rhee, S G -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):64-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157285" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Calcium/metabolism ; Calmodulin/metabolism ; Calpain/antagonists & inhibitors/pharmacology ; Cell Line ; *Cloning, Molecular ; Codon ; DNA/*genetics ; *Gene Expression ; Molecular Sequence Data ; Molecular Weight ; Phosphotransferases/*genetics/metabolism ; *Phosphotransferases (Alcohol Group Acceptor) ; Plasmids ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1990-07-20
    Description: The crystallographic structure of a recombinant hirudin-thrombin complex has been solved at 2.3 angstrom (A) resolution. Hirudin consists of an NH2-terminal globular domain and a long (39 A) COOH-terminal extended domain. Residues Ile1 to Tyr3 of hirudin form a parallel beta-strand with Ser214 to Glu217 of thrombin with the nitrogen atom of Ile1 making a hydrogen bond with Ser195 O gamma atom of the catalytic site, but the specificity pocket of thrombin is not involved in the interaction. The COOH-terminal segment makes numerous electrostatic interactions with an anion-binding exosite of thrombin, whereas the last five residues are in a helical loop that forms many hydrophobic contacts. In all, 27 of the 65 residues of hirudin have contacts less than 4.0 A with thrombin (10 ion pairs and 23 hydrogen bonds). Such abundant interactions may account for the high affinity and specificity of hirudin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rydel, T J -- Ravichandran, K G -- Tulinsky, A -- Bode, W -- Huber, R -- Roitsch, C -- Fenton, J W 2nd -- HL13160/HL/NHLBI NIH HHS/ -- HL43229/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):277-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing 48824.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Hirudins/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Proteins/metabolism ; Thrombin/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1990-05-25
    Description: An active site, cofactor-containing peptide has been obtained in high yield from bovine serum amine oxidase. Sequencing of this pentapeptide indicates: Leu-Asn-X-Asp-Tyr. Analysis of the peptide by mass spectrometry, ultraviolet-visible spectroscopy, and proton nuclear magnetic resonance leads to the identification of X as 6-hydroxydopa. This result indicates that, contrary to previous proposals, pyrroloquinoline quinone is not the active site cofactor in mammalian copper amine oxidases. Although 6-hydroxydopa has been implicated in neurotoxicity, the data presented suggest that this compound has a functional role at an enzyme active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janes, S M -- Mu, D -- Wemmer, D -- Smith, A J -- Kaur, S -- Maltby, D -- Burlingame, A L -- Klinman, J P -- GM 39296/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):981-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111581" target="_blank"〉PubMed〈/a〉
    Keywords: *Amine Oxidase (Copper-Containing) ; Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Copper ; Dihydroxyphenylalanine/*analogs & derivatives/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Sequence Data ; Oxidoreductases/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/blood/*metabolism ; Peptide Fragments/analysis/chemical synthesis ; Quinones/metabolism ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-19
    Description: For self-splicing of Tetrahymena ribosomal RNA precursor, guanosine binding is required for 5' splice-site cleavage and exon ligation. Whether these two reactions use the same or different guanosine-binding sites has been debated. A double mutation in a previously identified guanosine-binding site within the intron resulted in preference for adenosine (or adenosine triphosphate) as the substrate for cleavage at the 5' splice site. However, splicing was blocked in the exon ligation step. Blockage was reversed by a change from guanine to adenine at the 3' splice site. These results indicate that a single determinant specifies nucleoside binding for both steps of splicing. Furthermore, it suggests that RNA could form an active site specific for adenosine triphosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Been, M D -- Perrotta, A T -- GM-40689/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 19;252(5004):434-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2017681" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Base Sequence ; Binding Sites ; Exons ; Guanosine/metabolism ; *Introns ; Magnesium/pharmacology ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis ; RNA Precursors/chemistry/genetics ; *RNA Splicing ; RNA, Catalytic/metabolism ; Tetrahymena/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1991-05-31
    Description: An in vivo selection system for isolating targets of DNA binding proteins in yeast was developed and used to identify the DNA binding site for the NGFI-B protein, a member of the steroid-thyroid hormone receptor superfamily. The feasibility of the technique was verified by selecting DNA fragments that contained binding sites for GCN4, a well-characterized yeast transcriptional activator. The DNA binding domain of NGFI-B, expressed as part of a LexA-NGFI-B-GAL4 chimeric activator, was then used to isolate a rat genomic DNA fragment that contained an NGFI-B binding site. The NGFI-B response element (NBRE) is similar to but functionally distinct from elements recognized by the estrogen and thyroid hormone receptors and the hormone receptor-like proteins COUP-TF, CF1, and H-2RIIBP. Cotransfection experiments in mammalian cells demonstrated that NGFI-B can activate transcription from the NBRE with or without its putative ligand binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Fahrner, T J -- Johnston, M -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1296-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Cloning, Molecular ; DNA, Fungal/*metabolism ; DNA-Binding Proteins/genetics/*metabolism/pharmacology ; Fungal Proteins/metabolism ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Plasmids ; *Protein Kinases ; Rats ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Repressor Proteins ; Saccharomyces cerevisiae/*genetics ; *Saccharomyces cerevisiae Proteins ; *Serine Endopeptidases ; Transcription Factors/genetics/*metabolism/pharmacology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1991-12-20
    Description: Rap1A is a low molecular weight guanosine triphosphate (GTP)-binding protein in human neutrophil membranes whose cellular function is unknown. Rap1A was found to form stoichiometric complexes with the cytochrome b558 component of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The (guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S)-bound form of Rap1A bound more tightly to cytochrome b558 than did the guanosine diphosphate-bound form. No complex formation was observed between cytochrome b558 and H-Ras-GTP-gamma-S or Rap1A-GTP-gamma-S that had been heat-inactivated, nor between Rap1A-GTP-gamma-S and hydrophobic proteins serving as controls. Complex formation between Rap1A-GTP-gamma-S and cytochrome b558 was inhibited by phosphorylation of Rap1A with cyclic adenosine monophosphate (cAMP)-dependent protein kinase. These observations suggest that Rap1A may participate in the structure or regulation of the NADPH oxidase system and that this function of the Rap1A protein may be altered by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, G M -- Quilliam, L A -- Bohl, B P -- Jesaitis, A J -- Quinn, M T -- 5RO126711/PHS HHS/ -- GM39434/GM/NIGMS NIH HHS/ -- GM44428/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1794-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763330" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatography, Gel ; Cytochrome b Group/isolation & purification/*metabolism ; GTP-Binding Proteins/antagonists & inhibitors/isolation & ; purification/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Humans ; Kinetics ; Macromolecular Substances ; NADH, NADPH Oxidoreductases/*metabolism ; NADPH Oxidase ; Neutrophils/enzymology ; Phosphorylation ; Protein Binding ; Protein Kinase C/metabolism ; Proto-Oncogene Proteins/metabolism ; Recombinant Proteins/antagonists & inhibitors/isolation & purification/metabolism ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1991-02-01
    Description: Rhodopsin and the visual pigments are a distinct group within the family of G-protein-linked receptors in that they have a covalently bound ligand, the 11-cis-retinal chromophore, whereas all of the other receptors bind their agonists through noncovalent interactions. The retinal chromophore in rhodopsin is bound by means of a protonated Schiff base linkage to the epsilon-amino group of Lys-296. Two rhodopsin mutants have been constructed, K296G and K296A, in which the covalent linkage to the chromophore is removed. Both mutants form a pigment with an absorption spectrum close to that of the wild type when reconstituted with the Schiff base of an n-alkylamine and 11-cis-retinal. In addition, the pigment formed from K296G and the n-propylamine Schiff base of 11-cis-retinal was found to activate transducin in a light-dependent manner, with 30 to 40% of the specific activity measured for the wild-type protein. It appears that the covalent bond is not essential for binding of the chromophore or for catalytic activation of transducin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhukovsky, E A -- Robinson, P R -- Oprian, D D -- 5T32 GM07596-11/GM/NIGMS NIH HHS/ -- EY07965/EY/NEI NIH HHS/ -- R01 EY007965/EY/NEI NIH HHS/ -- S07 RR07044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 1;251(4993):558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1990431" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Kinetics ; Mutagenesis, Site-Directed ; Protein Binding ; Retinaldehyde/*metabolism ; Rhodopsin/genetics/*metabolism/radiation effects ; Schiff Bases ; Spectrophotometry ; Transducin/*metabolism/radiation effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: RAP30/74 is a heteromeric general transcription initiation factor that binds to mammalian RNA polymerase II. The RAP30 subunit contains a region that is similar in amino acid sequence to the RNA polymerase-binding domain of the Escherichia coli transcription initiation factor sigma 70 (sigma 70). Mammalian RNA polymerase II specifically protected a serine residue in the sigma 70-related region of RAP30 from phosphorylation in vitro. In addition, human RAP30/74 bound to Escherichia coli RNA polymerase and was displaced by sigma 70. These results suggest that RAP30 and sigma 70 have functionally related RNA polymerase-binding regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCracken, S -- Greenblatt, J -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Centrifugation, Density Gradient ; Cyanogen Bromide ; Cyclic AMP/pharmacology ; Escherichia coli/*analysis/enzymology ; Humans ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Sigma Factor/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism ; *Transcription Factors, TFII ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1991-06-14
    Description: In the interleukin-2 (IL-2) system, intracellular signal transduction is triggered by the beta chain of the IL-2 receptor (IL-2R beta); however, the responsible signaling mechanism remains unidentified. Evidence for the formation of a stable complex of IL-2R beta and the lymphocyte-specific protein tyrosine kinase p56lck is presented. Specific association sites were identified in the tyrosine kinase catalytic domain of p56lck and in the cytoplasmic domain of IL-2R beta. As a result of interaction, IL-2R beta became phosphorylated in vitro by p56lck. Treatment of T lymphocytes with IL-2 promotes p56lck kinase activity. These data suggest the participation of p56lck as a critical signaling molecule downstream of IL-2R via a novel interaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatakeyama, M -- Kono, T -- Kobayashi, N -- Kawahara, A -- Levin, S D -- Perlmutter, R M -- Taniguchi, T -- New York, N.Y. -- Science. 1991 Jun 14;252(5012):1523-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047859" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Antigens, CD/immunology ; Base Sequence ; Binding Sites ; Cell Division/drug effects ; Cell Line ; Humans ; Interleukin-2/pharmacology ; Killer Cells, Natural/cytology/drug effects/immunology ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Lymphocytes/drug effects/*immunology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Oligonucleotide Probes ; Protein-Tyrosine Kinases/genetics/isolation & purification/*metabolism ; Receptors, Interleukin-2/genetics/isolation & purification/*physiology ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1991-03-22
    Description: Serine 130 is one of seven residues that form a total of seven hydrogen bonds with the sulfate completely sequestered deep in the cleft between the two lobes of the bilobate sulfate-binding protein from Salmonella typhimurium. This residue has been replaced with Cys, Ala, and Gly by site-directed mutagenesis in an Escherichia coli expression system. Replacement with the isosteric Cys caused a 3200-fold decrease in the sulfate-binding activity relative to the wild-type activity, whereas replacement with Ala and Gly resulted in only 100- and 15-fold decreases, respectively. The effect of the Cys substitution is attributed largely to steric effect, whereas the Gly substitution more nearly reflects the loss of one hydrogen bond to the bound sulfate with a strength of only 1.6 kilocalories per mole.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, J J -- Quiocho, F A -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1900953" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Binding Sites ; Carrier Proteins/chemistry/*genetics/metabolism ; Cysteine ; DNA Mutational Analysis ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; *Periplasmic Binding Proteins ; Salmonella typhimurium ; Serine ; Structure-Activity Relationship ; Sulfates/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Que, L Jr -- New York, N.Y. -- Science. 1991 Jul 19;253(5017):273-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Minnesota, Minneapolis 55455.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1857963" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Hemerythrin/metabolism ; Histidine ; Iron/*metabolism ; Macromolecular Substances ; Models, Theoretical ; Oxygen/*metabolism ; Ribonucleotide Reductases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1991-08-23
    Description: The three-dimensional structure of acetylcholinesterase from Torpedo californica electric organ has been determined by x-ray analysis to 2.8 angstrom resolution. The form crystallized is the glycolipid-anchored homodimer that was purified subsequent to solubilization with a bacterial phosphatidylinositol-specific phospholipase C. The enzyme monomer is an alpha/beta protein that contains 537 amino acids. It consists of a 12-stranded mixed beta sheet surrounded by 14 alpha helices and bears a striking resemblance to several hydrolase structures including dienelactone hydrolase, serine carboxypeptidase-II, three neutral lipases, and haloalkane dehalogenase. The active site is unusual because it contains Glu, not Asp, in the Ser-His-acid catalytic triad and because the relation of the triad to the rest of the protein approximates a mirror image of that seen in the serine proteases. Furthermore, the active site lies near the bottom of a deep and narrow gorge that reaches halfway into the protein. Modeling of acetylcholine binding to the enzyme suggests that the quaternary ammonium ion is bound not to a negatively charged "anionic" site, but rather to some of the 14 aromatic residues that line the gorge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sussman, J L -- Harel, M -- Frolow, F -- Oefner, C -- Goldman, A -- Toker, L -- Silman, I -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):872-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Chemistry, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1678899" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*metabolism ; Acetylcholinesterase/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Membrane/enzymology ; Chemistry, Physical ; Crystallization ; Electric Organ/*enzymology ; Glutamates ; Glutamic Acid ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Phosphatidylinositols/metabolism ; Physicochemical Phenomena ; Protein Conformation ; Sequence Homology, Nucleic Acid ; *Torpedo ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1991-12-09
    Description: The three-dimensional structure of an active, disulfide cross-linked dimer of the ligand-binding domain of the Salmonella typhimurium aspartate receptor and that of an aspartate complex have been determined by x-ray crystallographic methods at 2.4 and 2.0 angstrom (A) resolution, respectively. A single subunit is a four-alpha-helix bundle with two long amino-terminal and carboxyl-terminal helices and two shorter helices that form a cylinder 20 A in diameter and more than 70 A long. The two subunits in the disulfide-bonded dimer are related by a crystallographic twofold axis in the apo structure, but by a noncrystallographic twofold axis in the aspartate complex structure. The latter structure reveals that the ligand binding site is located more than 60 A from the presumed membrane surface and is at the interface of the two subunits. Aspartate binds between two alpha helices from one subunit and one alpha helix from the other in a highly charged pocket formed by three arginines. The comparison of the apo and aspartate complex structures shows only small structural changes in the individual subunits, except for one loop region that is disordered, but the subunits appear to change orientation relative to each other. The structures of the two forms of this protein provide a step toward understanding the mechanisms of transmembrane signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Prive, G G -- Milligan, D L -- Scott, W G -- Yeh, J -- Jancarik, J -- Koshland, D E Jr -- Kim, S H -- AI 30725/AI/NIAID NIH HHS/ -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1342-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1660187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/metabolism ; Binding Sites ; Disulfides/analysis ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry/metabolism ; Salmonella typhimurium/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1991-05-10
    Description: Immunophilins, when complexed to immunosuppressive ligands, appear to inhibit signal transduction pathways that result in exocytosis and transcription. The solution structure of one of these, the human FK506 and rapamycin binding protein (FKBP), has been determined by nuclear magnetic resonance (NMR). FKBP has a previously unobserved antiparallel beta-sheet folding topology that results in a novel loop crossing and produces a large cavity lined by a conserved array of aromatic residues; this cavity serves as the rotamase active site and drug-binding pocket. There are other significant structural features (such as a protruding positively charged loop and an apparently flexible loop) that may be involved in the biological activity of FKBP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michnick, S W -- Rosen, M K -- Wandless, T J -- Karplus, M -- Schreiber, S L -- GM-30804/GM/NIGMS NIH HHS/ -- GM-38627/GM/NIGMS NIH HHS/ -- I-S10-RR04870/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 May 10;252(5007):836-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1709301" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/metabolism ; Binding Sites ; Carrier Proteins/*ultrastructure ; Crystallography ; Humans ; Immunosuppressive Agents/metabolism ; Magnetic Resonance Spectroscopy ; Molecular Structure ; Polyenes/metabolism ; Sirolimus ; Tacrolimus ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1991-09-06
    Description: The c-Myb protein is a sequence-specific DNA binding protein that activates transcription in hematopoietic cells. Three imperfect repeats (R1, R2, and R3) that contain regularly spaced tryptophan residues form the DNA binding domain of c-Myb. A fragment of c-Myb that contained the R2 and R3 regions bound specifically to a DNA sequence recognized by c-Myb plus ten additional base pairs at the 3' end of the element. The R2R3 fragment was predicted to contain two consecutive helix-turn-helix (HTH) motifs with unconventional turns. Mutagenesis of amino acids in R2R3 at positions that correspond to DNA-contacting amino acids in other HTH-containing proteins abolished specific DNA binding without affecting nonspecific DNA interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gabrielsen, O S -- Sentenac, A -- Fromageot, P -- New York, N.Y. -- Science. 1991 Sep 6;253(5024):1140-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Ingenierie des Proteines, Centre d'Etudes de Saclay, Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1887237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Chickens ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Oncogenes ; Polymerase Chain Reaction ; Protein Conformation ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-myb ; Recombinant Proteins/metabolism ; Restriction Mapping ; Sequence Homology, Nucleic Acid ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1991-03-29
    Description: Human immunodeficiency virus type 1 (HIV-1) gene expression is activated by Tat, a virally encoded protein. Tat trans-activation requires viral (trans-activation--responsive; TAR) RNA sequences located in the R region of the long terminal repeat (LTR). Existing evidence suggests that Tat probably cooperates with cellular factors that bind to TAR RNA in the overall trans-activation process. A HeLa complementary DNA was isolated and characterized that encodes a TAR RNA-binding protein (TRBP). TRBP activated the HIV-1 LTR and was synergistic with Tat function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatignol, A -- Buckler-White, A -- Berkhout, B -- Jeang, K T -- New York, N.Y. -- Science. 1991 Mar 29;251(5001):1597-600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2011739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Carrier Proteins/*genetics ; Endoribonucleases/genetics ; Escherichia coli/enzymology ; *Escherichia coli Proteins ; Gene Products, tat/metabolism ; *HIV Long Terminal Repeat ; HIV-1/*genetics ; Humans ; Molecular Sequence Data ; Nucleic Acid Conformation ; Plasmids ; RNA, Viral/genetics ; *RNA-Binding Proteins ; Ribonuclease III ; Sequence Homology, Nucleic Acid ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1991-02-01
    Description: Multiple mutations in the gene responsible for cystic fibrosis are located within a region predicted to encode a nucleotide-binding fold in the amino terminal half of the cystic fibrosis transmembrane conductance regulator protein. A 67-amino acid peptide (P-67) that corresponds to the central region of this putative nucleotide binding site was chemically synthesized and purified. This peptide bound adenine nucleotides. The apparent dissociation constants (Kd's) for the trinitrophenyl (TNP) adenine nucleotides, TNP-adenosine triphosphate, TNP-adenosine diphosphate, and TNP-adenosine monophosphate, were 300 nanomolar, 200 nanomolar, and greater than 1 micromolar, respectively. The Kd for adenosine triphosphate was 300 micromolar. Circular dichroism spectroscopy was used to show that P-67 assumes a predominantly beta sheet structure in solution, a finding that is consistent with secondary structure predictions. On the basis of this information, the phenylalanine at position 508, which is deleted in approximately 70 percent of individuals with cystic fibrosis, was localized to a beta strand within the nucleotide binding peptide. Deletion of this residue is predicted to induce a significant structural change in the beta strand and altered nucleotide binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, P J -- Shenbagamurthi, P -- Ysern, X -- Pedersen, P L -- CA 10951/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 1;251(4993):555-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1703660" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/*metabolism ; Amino Acid Sequence ; Binding Sites ; Chromatography, High Pressure Liquid ; Cystic Fibrosis/*genetics/metabolism ; Cystic Fibrosis Transmembrane Conductance Regulator ; Humans ; Membrane Proteins/*genetics/isolation & purification/metabolism ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnold, F H -- Haymore, B L -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1796-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648261" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/*chemical synthesis/chemistry/isolation & purification ; Cytochrome c Group/chemistry ; Histidine ; Ligands ; Metals/*metabolism ; Models, Molecular ; Protein Conformation ; *Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1991-08-16
    Description: Analysis of the heteromeric DNA binding protein GABP has revealed the interaction of two distinct peptide sequence motifs normally associated with proteins located in different cellular compartments. The alpha subunit of GABP contains an 85-amino acid segment related to the Ets family of DNA binding proteins. The ETS domain of GABP alpha facilitates weak binding to DNA and, together with an adjacent segment of 37 amino acids, mediates stable interaction with GABP beta. The beta subunit of GABP contains four imperfect repeats of a sequence present in several transmembrane proteins including the product of the Notch gene of Drosophila melanogaster. These amino-terminal repeats of GABP beta mediate stable interaction with GABP alpha and, when complexed with GABP alpha, directly contact DNA. These observations provide evidence for a distinct biochemical role for the 33-amino acid repeats, and suggest that they may serve as a module for the generation of specific dimerization interfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, C C -- Brown, T A -- McKnight, S L -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):762-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1876833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cross-Linking Reagents ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; GA-Binding Protein Transcription Factor ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Multigene Family ; Nuclear Proteins/*chemistry/metabolism ; Oligonucleotides/chemistry ; Proto-Oncogene Proteins/chemistry ; Proto-Oncogene Proteins c-ets ; Rats ; Recombinant Proteins ; Structure-Activity Relationship ; Transcription Factors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, M -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):742.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1831563" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins ; Base Sequence ; Binding Sites ; Blood Proteins/*chemistry ; Membrane Proteins/*chemistry ; Molecular Sequence Data ; *Protein Binding ; Structure-Activity Relationship ; Transcription Factors/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1991-05-10
    Description: The structure of the human FK506 binding protein (FKBP), complexed with the immunosuppressant FK506, has been determined to 1.7 angstroms resolution by x-ray crystallography. The conformation of the protein changes little upon complexation, but the conformation of FK506 is markedly different in the bound and unbound forms. The drug's association with the protein involves five hydrogen bonds, a hydrophobic binding pocket lined with conserved aromatic residues, and an unusual carbonyl binding pocket. The nature of this complex has implications for the mechanism of rotamase catalysis and for the biological actions of FK506 and rapamycin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Duyne, G D -- Standaert, R F -- Karplus, P A -- Schreiber, S L -- Clardy, J -- CA-24487/CA/NCI NIH HHS/ -- GM-38627/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 10;252(5007):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1709302" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism ; Binding Sites ; Carrier Proteins/*ultrastructure ; Humans ; *Immunosuppressive Agents ; Molecular Structure ; Tacrolimus ; Tacrolimus Binding Proteins ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1992-11-13
    Description: When glycine418 of Escherichia coli glutathione reductase, which is in a closely packed region of the dimer interface, is replaced with a bulky tryptophan residue, the enzyme becomes highly cooperative (Hill coefficient 1.76) for glutathione binding. The cooperativity is lost when the mutant subunit is hybridized with a wild-type subunit to create a heterodimer. The mutation appears to disrupt atomic packing at the dimer interface, which induces a change of kinetic mechanism. A single mutation in a region of the protein remote from the active site can thus act as a molecular switch to confer cooperativity on an enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scrutton, N S -- Deonarain, M P -- Berry, A -- Perham, R N -- New York, N.Y. -- Science. 1992 Nov 13;258(5085):1140-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439821" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Genes, Bacterial ; Glutathione/metabolism ; Glutathione Reductase/*chemistry/genetics/metabolism ; Glycine/chemistry ; Kinetics ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; *Mutagenesis, Site-Directed ; NADP/metabolism ; Plasmids ; Protein Multimerization ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abelson, J -- New York, N.Y. -- Science. 1992 Mar 13;255(5050):1390.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1542787" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Endoribonucleases/*metabolism ; Introns/*physiology ; RNA Precursors/*metabolism ; RNA Splicing/*physiology ; RNA, Transfer/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1992-07-31
    Description: The Wilms tumor suppressor gene wt1 encodes a zinc finger DNA binding protein, WT1, that functions as a transcriptional repressor. The fetal mitogen insulin-like growth factor II (IGF-II) is overexpressed in Wilms tumors and may have autocrine effects in tumor progression. The major fetal IGF-II promoter was defined in transient transfection assays as a region spanning from nucleotides -295 to +135, relative to the transcription start site. WT1 bound to multiple sites in this region and functioned as a potent repressor of IGF-II transcription in vivo. Maximal repression was dependent on the presence of WT1 binding sites on each side of the transcriptional initiation site. These findings provide a molecular basis for overexpression of IGF-II in Wilms tumors and suggest that WT1 negatively regulates blastemal cell proliferation by limiting the production of a fetal growth factor in the developing vertebrate kidney.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drummond, I A -- Madden, S L -- Rohwer-Nutter, P -- Bell, G I -- Sukhatme, V P -- Rauscher, F J 3rd -- CA 10817/CA/NCI NIH HHS/ -- CA 47983/CA/NCI NIH HHS/ -- CA 52009/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 31;257(5070):674-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Blotting, Northern ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; *Gene Expression Regulation, Neoplastic ; Genes, Wilms Tumor/*physiology ; Humans ; Insulin-Like Growth Factor II/*genetics ; Kidney/embryology/metabolism ; Mice ; Molecular Sequence Data ; Promoter Regions, Genetic ; Rats ; Sequence Homology, Nucleic Acid ; Transfection ; WT1 Proteins ; Wilms Tumor/genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1992-09-25
    Description: Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gogos, J A -- Hsu, T -- Bolton, J -- Kafatos, F C -- New York, N.Y. -- Science. 1992 Sep 25;257(5078):1951-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1290524" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/*metabolism ; *Drosophila Proteins ; Drosophila melanogaster/genetics ; Hydrogen Bonding ; Molecular Sequence Data ; Oligodeoxyribonucleotides/chemistry/metabolism ; Protein Binding ; *Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/*metabolism ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertman, K F -- Drubin, D G -- GM42759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 30;258(5083):759-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439782" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/genetics/metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Models, Molecular ; Molecular Structure ; Mutation ; Rabbits ; Tetrahymena/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1992-08-14
    Description: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop. This binding motif was used to target the human immunodeficiency virus TAR element, an important viral RNA structure that is the receptor for Tat, the major viral transactivator protein. Oligonucleotides complementary to different halves of the TAR structure bound with greater affinity than molecules designed to bind symmetrically around the hairpin. The pseudo--half-knot--forming oligonucleotides altered the TAR structure so that specific recognition and binding of a Tat-derived peptide was disrupted. This general binding motif may be used to disrupt the structure of regulatory RNA hairpins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ecker, D J -- Vickers, T A -- Bruice, T W -- Freier, S M -- Jenison, R D -- Manoharan, M -- Zounes, M -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ISIS Pharmaceuticals, Carlsbad, CA 92008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502560" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA, Viral/metabolism ; Gene Products, tat/metabolism ; HIV/*genetics ; Kinetics ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Oligoribonucleotides/*chemistry ; RNA, Viral/*chemistry/genetics/metabolism ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1992-02-21
    Description: The gap genes of Drosophila are the first zygotic genes to respond to the maternal positional signals and establish the body pattern along the anterior-posterior axis. The gap gene knirps, required for patterning in the posterior region of the embryo, can be activated throughout the wild-type embryo and is normally repressed from the anterior and posterior sides. These results provide direct molecular evidence that the posterior morphogen system interacts in a fundamentally different manner than do hunchback and bicoid, which are responsible for anterior pattern formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pankratz, M J -- Busch, M -- Hoch, M -- Seifert, E -- Jackle, H -- New York, N.Y. -- Science. 1992 Feb 21;255(5047):986-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institut fur Biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cloning, Molecular ; Drosophila melanogaster/embryology/*genetics ; Gene Expression Regulation ; Genes ; Molecular Sequence Data ; Morphogenesis ; Regulatory Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1992-11-06
    Description: Electron transfer in nitrogenase involves a gating process initiated by MgATP (magnesium adenosine triphosphate) binding to Fe-protein. The redox site, an 4Fe:4S cluster, is structurally separated from the MgATP binding site. For MgATP hydrolysis to be coupled to electron transfer, a signal transduction mechanism is proposed that is similar to that in guanosine triphosphatase proteins. Based on the three-dimensional structure of Fe-protein, Asp125 is likely to be part of a putative transduction path. Altered Fe-protein with Glu replacing Asp has been prepared and retains the ability for the initial nucleotide-dependent conformational change. However, either MgADP or MgATP can induce the shift and Mg binding to the nucleotide is no longer essential.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolle, D -- Dean, D R -- Howard, J B -- New York, N.Y. -- Science. 1992 Nov 6;258(5084):992-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Minnesota, Minneapolis 55455.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1359643" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Aspartic Acid/*metabolism ; Azotobacter vinelandii/enzymology ; Binding Sites ; Crystallization ; Electron Transport ; Glutamates ; Glutamic Acid ; Iron-Sulfur Proteins/*metabolism ; Molecular Structure ; Mutagenesis, Site-Directed ; Nitrogenase/chemistry/genetics/*metabolism ; Protein Conformation ; Signal Transduction/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1992-06-26
    Description: The interaction of the T cell glycoprotein CD2 with one ligand, CD58, contributes to T cell function. We have identified CD59, a glycoprotein with complement-inhibitory function, as a second physiological ligand for CD2. Antibodies to CD59 inhibit CD2-dependent T cell activation in murine T cell hybridomas expressing human CD2. In an in vitro binding assay with purified CD58 and CD59, CD2+ cells bind not only immobilized CD58 but also CD59. With two complementary approaches, it was demonstrated that the binding sites on CD2 for CD58 and CD59 are overlapping but nonidentical. These observations suggest that direct interactions between CD2 and both CD58 and CD59 contribute to T cell activation and adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hahn, W C -- Menu, E -- Bothwell, A L -- Sims, P J -- Bierer, B E -- AI28554/AI/NIAID NIH HHS/ -- HL36061/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1992 Jun 26;256(5065):1805-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1377404" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*metabolism ; Antigens, CD2 ; Antigens, CD58 ; Antigens, CD59 ; Antigens, Differentiation, T-Lymphocyte/*metabolism ; Binding Sites ; Dose-Response Relationship, Drug ; Humans ; Hybridomas ; Immunity, Cellular ; In Vitro Techniques ; Membrane Glycoproteins/*metabolism ; Mice ; Receptors, Antigen, T-Cell/*physiology ; Receptors, Immunologic/*metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1992-01-24
    Description: The c-Myc oncoprotein belongs to a family of proteins whose DNA binding domains contain a basic region-helix-loop-helix (bHLH) motif. Systematic mutagenesis of c-Myc revealed that dimerized bHLH motifs formed a parallel four-helix bundle with the amino termini of helices 1 and 2 directed toward the inner and outer nucleotides of the DNA binding site, respectively. Both the basic region and the carboxyl-terminal end of the loop contributed to DNA binding specificity. The DNA binding domain of c-Myc may therefore be structurally similar to that of restriction endonuclease Eco RI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halazonetis, T D -- Kandil, A N -- New York, N.Y. -- Science. 1992 Jan 24;255(5043):464-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Sharp and Dohme Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1734524" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/*chemistry ; Deoxyribonuclease EcoRI/*chemistry ; Humans ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Proto-Oncogene Proteins c-myc/*chemistry ; Sequence Alignment ; Transcription Factors/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-01-10
    Description: Many specific DNA-binding proteins bind to sites with dyad symmetry, and the bound form of the protein is a dimer. For some proteins, dimers form in solution and bind to DNA. LexA repressor of Escherichia coli has been used to test an alternative binding model in which two monomers bind sequentially. This model predicts that a repressor monomer should bind with high specificity to an isolated operator half-site. Monomer binding to a half-site was observed. A second monomer bound to an intact operator far more tightly than the first monomer; this cooperativity arose from protein-protein contacts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, B -- Little, J W -- GM24178/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):203-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Arizona, Tucson 85721.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553548" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Base Sequence ; Binding Sites ; DNA, Bacterial/*metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonucleases ; Escherichia coli/*metabolism ; Kinetics ; Macromolecular Substances ; Models, Structural ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; Operon ; Rec A Recombinases/genetics ; Repressor Proteins/metabolism ; *Serine Endopeptidases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1992-09-04
    Description: The transcriptional antiterminator protein BglG inhibits transcription termination of the bgl operon in Escherichia coli when it is in the nonphosphorylated state. The BglG protein is now shown to exist in two configurations, an active, dimeric nonphosphorylated form and an inactive, monomeric phosphorylated form. The migration of BglG on native polyacrylamide gels was consistent with it existing as a dimer when nonphosphorylated and as a monomer when phosphorylated. Only the nonphosphorylated dimer was found to bind to the target RNA. When the dimerization domain of the lambda repressor was replaced with BglG, the resulting chimera behaved like an intact lambda repressor in its ability to repress lambda gene expression, which suggests that BglG dimerizes in vivo. Repression by the lambda-BglG hybrid was significantly reduced by BglF, the BglG kinase, an effect that was relieved by conditions that stimulate dephosphorylation of BglG by BglF. These results suggest that the phosphorylation and the dephosphorylation of BglG regulate its activity by controlling its dimeric state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amster-Choder, O -- Wright, A -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1395-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, MA 02111.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1382312" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Bacteriophage lambda/genetics ; Binding Sites ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli/metabolism ; Macromolecular Substances ; Molecular Weight ; Operon ; Phosphorylation ; RNA/metabolism ; RNA-Binding Proteins/*chemistry/metabolism ; Repressor Proteins/metabolism ; Structure-Activity Relationship ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1992-08-07
    Description: A Src homology 3 (SH3) region is a sequence of approximately 50 amino acids found in many nonreceptor tyrosine kinases and other proteins. Deletion of the SH3 region from the protein encoded by the c-abl proto-oncogene activates the protein's transforming capacity, thereby suggesting the participation of the SH3 region in the negative regulation of transformation. A complementary DNA was isolated that encoded a protein, 3BP-1, to which the SH3 region of Abl bound with high specificity and to which SH3 regions from other proteins bound differentially. The sequence of the 3BP-1 protein is similar to that of a COOH-terminal segment of Bcr and to guanosine triphosphatase-activating protein (GAP)-rho, which suggests that it might have GAP activity for Ras-related proteins. The 3BP-1 protein may therefore be a mediator of SH3 function in transformation inhibition and may link tyrosine kinases to Ras-related proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cicchetti, P -- Mayer, B J -- Thiel, G -- Baltimore, D -- A107233/PHS HHS/ -- CA 08875/CA/NCI NIH HHS/ -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 7;257(5071):803-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1379745" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Binding Sites ; Chimera ; Cloning, Molecular ; GTPase-Activating Proteins ; Gene Library ; *Genes, abl ; *Genes, src ; Glutathione Transferase/genetics/metabolism ; Mice ; Molecular Sequence Data ; Oncogene Proteins/genetics/*metabolism ; Plasmids ; Polymerase Chain Reaction/methods ; Prosencephalon/physiology ; Protein-Tyrosine Kinases/*metabolism ; Proteins/*metabolism ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-abl/genetics/*metabolism ; Proto-Oncogene Proteins c-bcr ; Proto-Oncogene Proteins pp60(c-src)/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Restriction Mapping ; Rho Factor/*metabolism ; Sequence Homology, Nucleic Acid ; ras GTPase-Activating Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-03-06
    Description: Trypsin (Tr) and chymotrypsin (Ch) have similar tertiary structures, yet Tr cleaves peptides at arginine and lysine residues and Ch prefers large hydrophobic residues. Although replacement of the S1 binding site of Tr with the analogous residues of Ch is sufficient to transfer Ch specificity for ester hydrolysis, specificity for amide hydrolysis is not transferred. Trypsin is converted to a Ch-like protease when the binding pocket alterations are further modified by exchange of the Ch surface loops 185 through 188 and 221 through 225 for the analogous Tr loops. These loops are not structural components of either the S1 binding site or the extended substrate binding sites. This mutant enzyme is equivalent to Ch in its catalytic rate, but its substrate binding is impaired. Like Ch, this mutant utilizes extended substrate binding to accelerate catalysis, and substrate discrimination occurs during the acylation step rather than in substrate binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hedstrom, L -- Szilagyi, L -- Rutter, W J -- DK21344/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 6;255(5049):1249-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hormone Research Institute, University of California, San Francisco 94143-0534.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546324" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chymotrypsin/*chemistry/metabolism ; Hydrolysis ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis, Site-Directed ; Protein Conformation ; Substrate Specificity ; Trypsin/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-21
    Description: The mouse albumin gene promoter has six closely spaced binding sites for nuclear proteins that are located between the TATA motif and nucleotide position -170. In vitro transcription with liver or spleen nuclear extracts of templates containing either mutated or polymerized albumin promoter elements establishes a hierarchy of the different protein binding sites for tissue-specific albumin gene transcription. The HNF-1 and C/EBP binding sites strongly activate transcription in a tissue-specific manner. The NF-Y binding site has a lower activation potential and is less specific, being equally efficient in liver and spleen nuclear extracts. The remaining elements are relatively weak activator sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maire, P -- Wuarin, J -- Schibler, U -- New York, N.Y. -- Science. 1989 Apr 21;244(4902):343-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Biologie Moleculaire, Sciences II, Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2711183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Carrier Proteins/metabolism/pharmacology ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Dicarboxylic Acid Transporters ; *Gene Expression Regulation/drug effects ; Liver/metabolism/ultrastructure ; Mice ; Nuclear Proteins/metabolism/pharmacology ; *Promoter Regions, Genetic ; Serum Albumin/*genetics ; Spleen/metabolism/ultrastructure ; Templates, Genetic ; Transcription Factors ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):598.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2669127" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Endopeptidases ; HIV/*enzymology ; HIV Protease ; Molecular Structure ; *Protease Inhibitors ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1989-12-01
    Description: A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA(Tyr] with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA(Gln] and supF tRNA(Tyr) but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA(Gln) complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp235 makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3.C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3.70 as one of the identity determinants of tRNA(Gln). Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perona, J J -- Swanson, R N -- Rould, M A -- Steitz, T A -- Soll, D -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1152-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2686030" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acyl-tRNA Synthetases/genetics/*metabolism ; Aspartic Acid ; Binding Sites ; Crystallization ; Escherichia coli/*enzymology/genetics ; Glutamine/metabolism ; Hydrogen Bonding ; Isoleucine ; Molecular Structure ; *Mutation ; RNA, Transfer, Gln/metabolism ; RNA, Transfer, Tyr ; Structure-Activity Relationship ; Substrate Specificity ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1989-02-03
    Description: The nitrogen regulatory (NtrC) protein of enteric bacteria, which binds to sites that have the properties of transcriptional enhancers, is known to activate transcription by a form of RNA polymerase that contains the NtrA protein (sigma 54) as sigma factor (referred to as sigma 54-holoenzyme). In the presence of adenosine triphosphate, the NtrC protein catalyzes isomerization of closed recognition complexes between sigma 54-holoenzyme and the glnA promoter to open complexes in which DNA in the region of the transcription start site is locally denatured. NtrC is not required subsequently for maintenance of open complexes or initiation of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popham, D L -- Szeto, D -- Keener, J -- Kustu, S -- GM38361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 3;243(4891):629-35.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, Berkley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2563595" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism/pharmacology ; *Bacterial Proteins ; Base Sequence ; Binding Sites ; DNA, Bacterial/metabolism ; DNA-Binding Proteins/*metabolism ; DNA-Directed RNA Polymerases/metabolism ; Deoxyribonuclease I ; *Enhancer Elements, Genetic ; Glutamate-Ammonia Ligase/genetics ; Heparin/pharmacology ; Molecular Sequence Data ; Mutation ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; Promoter Regions, Genetic ; Salmonella typhimurium/*genetics ; Sigma Factor/metabolism ; *Trans-Activators ; Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1989-08-11
    Description: Cholesterol balance in mammalian cells is maintained in part by sterol-mediated repression of gene transcription for the low density lipoprotein receptor and enzymes in the cholesterol biosynthetic pathway. A promoter sequence termed the sterol regulatory element (SRE) is essential for this repression. With the use of an oligonucleotide containing the SRE to screen a human hepatoma complementary DNA expression library, a clone for a DNA binding protein was isolated that binds to the conserved SRE octanucleotide in both a sequence-specific and a single-strand--specific manner. This protein contains seven highly conserved zinc finger repeats that exhibit striking sequence similarity to retroviral nucleic acid binding proteins (NBPs). We have designated the protein "cellular NBP" (CNBP). CNBP is expressed in a wide variety of tissues, is up regulated by sterols, and exhibits binding specificity that correlates with in vivo function. These properties are consistent with a role in sterol-mediated control of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajavashisth, T B -- Taylor, A K -- Andalibi, A -- Svenson, K L -- Lusis, A J -- HL30568/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2562787" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Carcinoma, Hepatocellular/metabolism ; Cholesterol/biosynthesis ; DNA/*metabolism ; DNA Probes ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation/*drug effects ; Humans ; Hydroxymethylglutaryl CoA Reductases/genetics ; Liver Neoplasms/metabolism ; Metalloproteins/genetics/*metabolism ; Molecular Sequence Data ; Promoter Regions, Genetic ; *RNA-Binding Proteins ; Receptors, LDL/genetics ; *Regulatory Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Sterols/*pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1989-12-01
    Description: The crystal structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) complexed with its cognate glutaminyl transfer RNA (tRNA(Gln] and adenosine triphosphate (ATP) has been derived from a 2.8 angstrom resolution electron density map and the known protein and tRNA sequences. The 63.4-kilodalton monomeric enzyme consists of four domains arranged to give an elongated molecule with an axial ratio greater than 3 to 1. Its interactions with the tRNA extend from the anticodon to the acceptor stem along the entire inside of the L of the tRNA. The complexed tRNA retains the overall conformation of the yeast phenylalanine tRNA (tRNA(Phe] with two major differences: the 3' acceptor strand of tRNA(Gln) makes a hairpin turn toward the inside of the L, with the disruption of the final base pair of the acceptor stem, and the anticodon loop adopts a conformation not seen in any of the previously determined tRNA structures. Specific recognition elements identified so far include (i) enzyme contacts with the 2-amino groups of guanine via the tRNA minor groove in the acceptor stem at G2 and G3; (ii) interactions between the enzyme and the anticodon nucleotides; and (iii) the ability of the nucleotides G73 and U1.A72 of the cognate tRNA to assume a conformation stabilized by the protein at a lower free energy cost than noncognate sequences. The central domain of this synthetase binds ATP, glutamine, and the acceptor end of the tRNA as well as making specific interactions with the acceptor stem.2+t is〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rould, M A -- Perona, J J -- Soll, D -- Steitz, T A -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1135-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479982" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Amino Acyl-tRNA Synthetases/genetics/*metabolism ; Anticodon ; Base Composition ; Base Sequence ; Binding Sites ; Biological Evolution ; Chemistry, Physical ; Crystallization ; Escherichia coli/*enzymology/genetics ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; Physicochemical Phenomena ; RNA, Bacterial/*metabolism ; RNA, Fungal ; RNA, Transfer, Amino Acid-Specific/*metabolism ; RNA, Transfer, Gln/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1990-12-21
    Description: Human growth hormone (hGH) elicits a diverse set of biological activities including lactation that derives from binding to the prolactin (PRL) receptor. The binding affinity of hGH for the extracellular binding domain of the hPRL receptor (hPRLbp) was increased about 8000-fold by addition of 50 micromolar ZnCl2. Zinc was not required for binding of hGH to the hGH binding protein (hGHbp) or for binding of hPRL to the hPRLbp. Other divalent metal ions (Ca2+, Mg2+, Cu2+, Mn2+, and Co2+) at physiological concentrations did not support such strong binding. Scatchard analysis indicated a stoichiometry of one Zn2+ per hGH.hPRLbp complex. Mutational analysis showed that a cluster of three residues (His18, His21, and Glu174) in hGH and His188 from the hPRLbp (conserved in all PRL receptors but not GH receptors) are probable Zn2+ ligands. This polypeptide hormone.receptor "zinc sandwich" provides a molecular mechanism to explain why nonprimate GHs are not lactogenic and offers a molecular link between zinc deficiency and its association with altered functions of hGH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Bass, S -- Fuh, G -- Wells, J A -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chlorides/*pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Plasmids ; Protein Conformation ; Receptors, Prolactin/drug effects/genetics/*metabolism ; Restriction Mapping ; Zinc/metabolism/*pharmacology ; *Zinc Compounds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1990-12-21
    Description: The mechanism by which transcription factors stimulate DNA replication in eukaryotes is unknown. Bovine papillomavirus DNA synthesis requires the products of the viral E1 gene and the transcriptional activator protein encoded by the E2 gene. Experimental data showed that the 68-kilodalton (kD) E1 protein formed a complex with the 48-kD E2 transcription factor. This complex bound specifically to the viral origin of replication, which contains multiple binding sites for E2. Repressor proteins encoded by the E2 open reading frame failed to complex with E1 suggesting that the 162-amino acid region of E2 that participates in transactivation contained critical determinants for interaction with E1. The physical association between a replication protein and a transcription factor suggests that transcriptional activator proteins may function in targeting replication initiator proteins to their respective origins of replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohr, I J -- Clark, R -- Sun, S -- Androphy, E J -- MacPherson, P -- Botchan, M R -- CA-30490/CA/NCI NIH HHS/ -- CA-42414/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1694-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkely 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2176744" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Bovine papillomavirus 1/*genetics ; Cell Line ; *DNA Replication ; DNA, Viral/biosynthesis/genetics ; DNA-Binding Proteins/*metabolism ; Genes, Viral ; Open Reading Frames ; Protein Binding ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Viral Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4 degrees C. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Talanian, R V -- McKnight, C J -- Kim, P S -- GM13665/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):769-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389142" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Circular Dichroism ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I ; Disulfides ; Fungal Proteins/*metabolism ; Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptides/*metabolism ; Protein Conformation ; *Protein Kinases ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1990-02-23
    Description: Bacterial MerR proteins are dimeric DNA-binding proteins that mediate the Hg(II)-dependent induction of mercury resistance operons. Site-directed mutagenesis of the Bacillus sp. RC607 MerR protein reveals that three of four Cys residues per monomer are required for Hg(II) binding at the single high-affinity binding site. Inactive mutant homodimers can exchange subunits to form heterodimers active for Hg(II) binding. Studies of a heterodimer retaining only three of eight cysteine residues per dimer reveal that Cys79 in one subunit and Cys114 and Cys123 in the second subunit are necessary and sufficient for high-affinity Hg(II) binding in an asymmetric, subunit bridging coordination complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmann, J D -- Ballard, B T -- Walsh, C T -- GM20011/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):946-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305262" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus/*analysis/genetics ; Bacterial Proteins/genetics/*metabolism ; Base Sequence ; Binding Sites ; Cations ; DNA-Binding Proteins/genetics/*metabolism ; Macromolecular Substances ; Mercury/*metabolism ; Molecular Sequence Data ; Mutation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1990-11-23
    Description: The CD4 antigen is the high affinity cellular receptor for the human immunodeficiency virus type-1 (HIV-1). Binding of recombinant soluble CD4 (sCD4) or the purified V1 domain of sCD4 to the surface glycoprotein gp120 on virions resulted in rapid dissociation of gp120 from its complex with the transmembrane glycoprotein gp41. This may represent the initial stage in virus-cell and cell-cell fusion. Shedding of gp120 from virions induced by sCD4 may also contribute to the mechanism by which these soluble receptor molecules neutralize HIV-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, J P -- McKeating, J A -- Weiss, R A -- Sattentau, Q J -- New York, N.Y. -- Science. 1990 Nov 23;250(4984):1139-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2251501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/pharmacology ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding, Competitive ; Cell Line ; Cricetinae ; HIV Envelope Protein gp120/*metabolism ; HIV Envelope Protein gp41/metabolism ; HIV-1/*metabolism ; Virion/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):744.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2117777" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; GTPase-Activating Proteins ; Genes, ras ; Humans ; Neurofibromatosis 1/*genetics ; Proteins/genetics ; Sequence Homology, Nucleic Acid ; ras GTPase-Activating Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1990-01-05
    Description: Receptor binding studies show that resistance of a laboratory-selected Plodia interpunctella strain to a Bacillus thuringiensis insecticidal crystal protein (ICP) is correlated with a 50-fold reduction in affinity of the membrane receptor for this protein. The strain is sensitive to a second type of ICP that apparently recognizes a different receptor. Understanding the mechanism of resistance will provide strategies to prevent or delay resistance and hence prolong the usefulness of B. thuringiensis ICPs as environmentally safe insecticides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Rie, J -- McGaughey, W H -- Johnson, D E -- Barnett, B D -- Van Mellaert, H -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):72-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Genetic Systems, Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacillus thuringiensis ; *Bacterial Proteins/metabolism ; Bacterial Toxins/metabolism ; Binding Sites ; Cell Membrane/metabolism ; *Endotoxins ; Hemolysin Proteins ; Insecticide Resistance/*physiology ; *Lepidoptera ; Microvilli/metabolism ; *Moths ; *Pest Control, Biological ; Receptors, Drug/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1990-12-14
    Description: A chemical description of the action of phospholipase A2 (PLA2) can now be inferred with confidence from three high-resolution x-ray crystal structures. The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue. This enzyme is typical of a large, well-studied homologous family of PLA2S. The second is a similar complex with the evolutionarily distant bee-venom PLA2. The third structure is the uninhibited PLA2 from Chinese cobra venom. Despite the different molecular architectures of the cobra and bee-venom PLA2s, the transition-state analogue interacts in a nearly identical way with the catalytic machinery of both enzymes. The disposition of the fatty-acid side chains suggests a common access route of the substrate from its position in the lipid aggregate to its productive interaction with the active site. Comparison of the cobra-venom complex with the uninhibited enzyme indicates that optimal binding and catalysis at the lipid-water interface is due to facilitated substrate diffusion from the interfacial binding surface to the catalytic site rather than an allosteric change in the enzyme's structure. However, a second bound calcium ion changes its position upon the binding of the transition-state analogue, suggesting a mechanism for augmenting the critical electrophile.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443688/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443688/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, D L -- White, S P -- Otwinowski, Z -- Yuan, W -- Gelb, M H -- Sigler, P B -- GM22324/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- R01 HL036235/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1541-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274785" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/analysis ; Binding Sites ; Calcium/metabolism ; Catalysis ; Chemistry, Physical ; Cobra Venoms/analysis ; Models, Molecular ; Molecular Structure ; Organophosphonates/metabolism ; Phospholipases A/chemistry/*metabolism ; Phospholipases A2 ; Phospholipids/metabolism ; Physicochemical Phenomena ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1990-12-14
    Description: The 2.0 angstroms crystal structure of a complex containing bee-venom phospholipase A2 (PLA2) and a phosphonate transition-state analogue was solved by multiple isomorphous replacement. The electron-density map is sufficiently detailed to visualize the proximal sugars of the enzyme's N-linked carbohydrate and a single molecule of the transition-state analogue bound ot its active center. Although bee-venom PLA2 does not belong to the large homologous Class I/II family that encompasses most other well-studied PLA2s, there is segmental sequence similarity and conservation of many functional substructures. Comparison of the bee-venom enzyme with other phospholipase structures provides compelling evidence for a common catalytic mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, D L -- Otwinowski, Z -- Gelb, M H -- Sigler, P B -- GM22324/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274788" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bee Venoms/*analysis ; Binding Sites ; Calcium/metabolism ; Carbohydrate Metabolism ; Catalysis ; Chemistry, Physical ; Crystallization ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; Phosphatidylethanolamines/*metabolism ; Phospholipases A/*chemistry/metabolism ; Phospholipases A2 ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1991-06-28
    Description: Human apolipoprotein E, a blood plasma protein, mediates the transport and uptake of cholesterol and lipid by way of its high affinity interaction with different cellular receptors, including the low-density lipoprotein (LDL) receptor. The three-dimensional structure of the LDL receptor-binding domain of apoE has been determined at 2.5 angstrom resolution by x-ray crystallography. The protein forms an unusually elongated (65 angstroms) four-helix bundle, with the helices apparently stabilized by a tightly packed hydrophobic core that includes leucine zipper-type interactions and by numerous salt bridges on the mostly charged surface. Basic amino acids important for LDL receptor binding are clustered into a surface patch on one long helix. This structure provides the basis for understanding the behavior of naturally occurring mutants that can lead to atherosclerosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, C -- Wardell, M R -- Weisgraber, K H -- Mahley, R W -- Agard, D A -- HL-41633/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1817-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2063194" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apolipoproteins E/*chemistry/genetics/metabolism ; Binding Sites ; Computer Graphics ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, LDL/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1991-05-31
    Description: The crystal structure of a murine adenosine deaminase complexed with 6-hydroxyl-1,6-dihydropurine ribonucleoside, a nearly ideal transition-state analog, has been determined and refined at 2.4 angstrom resolution. The structure is folded as an eight-stranded parallel alpha/beta barrel with a deep pocket at the beta-barrel COOH-terminal end wherein the inhibitor and a zinc are bound and completely sequestered. The presence of the zinc cofactor and the precise structure of the bound analog were not previously known. The 6R isomer of the analog is very tightly held in place by the coordination of the 6-hydroxyl to the zinc and the formation of nine hydrogen bonds. On the basis of the structure of the complex a stereoselective addition-elimination or SN2 mechanism of the enzyme is proposed with the zinc atom and the Glu and Asp residues playing key roles. A molecular explanation of a hereditary disease caused by several point mutations of an enzyme is also presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Rudolph, F B -- Quiocho, F A -- CA14030/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1278-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925539" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/deficiency/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Catalysis ; Crystallization ; Immunologic Deficiency Syndromes/*enzymology/genetics ; Mice ; Models, Molecular ; Molecular Structure ; Mutation ; Protein Conformation ; Purine Nucleosides/chemistry/*metabolism ; Ribonucleosides/chemistry/*metabolism ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1991-08-16
    Description: Pit-1, a tissue-specific POU domain transcription factor, is required for the activation of the prolactin, growth hormone, and Pit-1 promoters that confer regulation by epidermal growth factor, adenosine 3',5'-monophosphate (cAMP), and phorbol esters. Pit-1 is phosphorylated in pituitary cells at two distinct sites in response to phorbol esters and cAMP. Phosphorylation of Pit-1 modifies its conformation on DNA recognition elements and results in increased binding at certain sites and decreased binding at other sites, dependent on DNA sequences adjacent to the core Pit-1 binding motif. One residue (Thr220), located in the POU homeodomain within a sequence conserved throughout the POU-domain family, confers these responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapiloff, M S -- Farkash, Y -- Wegner, M -- Rosenfeld, M G -- DK 18477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eukaryotic Regulatory Biology Program, School of Medicine, University of California, San Diego, La Jolla 92093-0648.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Cell Line ; Cyclic AMP/pharmacology ; DNA/metabolism ; DNA-Binding Proteins/chemistry/*physiology ; In Vitro Techniques ; Molecular Sequence Data ; Peptide Mapping ; Phosphorylation ; Phosphothreonine/metabolism ; Pituitary Gland/*physiology ; Protein Kinases/metabolism ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/*physiology ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1991-02-22
    Description: The active site of voltage-activated potassium channels is a transmembrane aqueous pore that permits ions to permeate the cell membrane in a rapid yet highly selective manner. A useful probe for the pore of potassium-selective channels is the organic ion tetraethylammonium (TEA), which binds with millimolar affinity to the intracellular opening of the pore and blocks potassium current. In the potassium channel encoded by the Drosophila Shaker gene, an amino acid residue that specifically affects the affinity for intracellular TEA has now been identified by site-directed mutagenesis. This residue is in the middle of a conserved stretch of 18 amino acids that separates two locations that are both near the external opening of the pore. These findings suggest that this conserved region is intimately involved in the formation of the ion conduction pore of voltage-activated potassium channels. Further, a stretch of only eight amino acid residues must traverse 80 percent of the transmembrane electric potential difference.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yellen, G -- Jurman, M E -- Abramson, T -- MacKinnon, R -- GM4399/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 22;251(4996):939-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2000494" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Drosophila/genetics ; Genes ; Membrane Potentials ; Models, Structural ; Molecular Sequence Data ; *Mutagenesis, Site-Directed ; Potassium Channels/drug effects/genetics/*physiology ; Protein Conformation ; Tetraethylammonium ; Tetraethylammonium Compounds/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1991-11-08
    Description: Restriction of sodium, potassium adenosine triphosphatase (Na+,K(+)-ATPase) to either the apical or basal-lateral membrane domain of polarized epithelial cells is fundamental to vectorial ion and solute transport in many tissues and organs. A restricted membrane distribution of Na+,K(+)-ATPase in Madin-Darby canine kidney (MDCK) epithelial cells was found experimentally to be generated by preferential retention of active enzyme in the basal-lateral membrane domain and selective inactivation and loss from the apical membrane domain, rather than by vectorial targeting of newly synthesized protein from the Golgi complex to the basal-lateral membrane domain. These results show how different distributions of the same subunits of Na+,K(+)-ATPase may be generated in normal polarized epithelial and in disease states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammerton, R W -- Krzeminski, K A -- Mays, R W -- Ryan, T A -- Wollner, D A -- Nelson, W J -- GM 35527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):847-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5426.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658934" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Communication ; Cell Line ; Cell Membrane/*enzymology/physiology ; *Cell Polarity ; Dogs ; Epithelium/enzymology/physiology ; Kinetics ; Ouabain/metabolism ; Sodium-Potassium-Exchanging ATPase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1991-11-29
    Description: The three-dimensional structure of the activated state of glycogen phosphorylase (GP) as induced by adenosine monophosphate (AMP) has been determined from crystals of pyridoxalpyrophosphoryl-GP. The same quaternary changes relative to the inactive conformation as those induced by phosphorylation are induced by AMP, although the two regulatory signals function through different local structural mechanisms. Moreover, previous descriptions of the phosphorylase active state have been extended by demonstrating that, on activation, the amino- and carboxyl-terminal domains of GP rotate apart by 5 degrees, thereby increasing access of substrates to the catalytic site. The structure also reveals previously unobserved interactions with the nucleotide that accounts for the specificity of the nucleotide binding site for AMP in preference to inosine monophosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sprang, S R -- Withers, S G -- Goldsmith, E J -- Fletterick, R J -- Madsen, N B -- R01 DK26081/DK/NIDDK NIH HHS/ -- R01 DK31507/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1367-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1962195" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/*pharmacology ; Amino Acid Sequence ; Binding Sites ; Enzyme Activation ; Macromolecular Substances ; Models, Molecular ; Phosphorylase b/chemistry/*metabolism ; Protein Conformation ; Pyridoxal Phosphate/analogs & derivatives/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1991-01-25
    Description: CP-96,345, a nonpeptide substance P antagonist, is selective for the tachykinin NK1 receptor. The compound binds to a single population of sites in guinea pig brain and potently inhibits substance P-induced excitation of locus ceruleus neurons. CP-96,345 should be a useful tool for studying the action of substance P in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLean, S -- Ganong, A H -- Seeger, T F -- Bryce, D K -- Pratt, K G -- Reynolds, L S -- Siok, C J -- Lowe, J A 3rd -- Heym, J -- New York, N.Y. -- Science. 1991 Jan 25;251(4992):437-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Central Research Division, Pfizer Inc., Groton, CT 06340.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1703324" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Autoradiography ; Binding Sites ; Binding, Competitive ; Biphenyl Compounds/*metabolism/pharmacology ; Brain/*metabolism/radionuclide imaging ; Corpus Striatum/*metabolism/radionuclide imaging ; Guinea Pigs ; Hydrogen-Ion Concentration ; Male ; Receptors, Neurokinin-1 ; Receptors, Neurotransmitter/*antagonists & inhibitors/*metabolism ; Receptors, Tachykinin ; Spectrophotometry ; Substance P/metabolism ; Tachykinins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: FK506 and rapamycin are related immunosuppressive compounds that block helper T cell activation by interfering with signal transduction. In vitro, both drugs bind and inhibit the FK506-binding protein (FKBP) proline rotamase. Saccharomyces cerevisiae cells treated with rapamycin irreversibly arrested in the G1 phase of the cell cycle. An FKBP-rapamycin complex is concluded to be the toxic agent because (i) strains that lack FKBP proline rotamase, encoded by FPR1, were viable and fully resistant to rapamycin and (ii) FK506 antagonized rapamycin toxicity in vivo. Mutations that conferred rapamycin resistance altered conserved residues in FKBP that are critical for drug binding. Two genes other than FPR1, named TOR1 and TOR2, that participate in rapamycin toxicity were identified. Nonallelic noncomplementation between FPR1, TOR1, and TOR2 alleles suggests that the products of these genes may interact as subunits of a protein complex. Such a complex may mediate nuclear entry of signals required for progression through the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heitman, J -- Movva, N R -- Hall, M N -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):905-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1715094" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/metabolism/pharmacology ; Base Sequence ; Binding Sites ; Carrier Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Cell Cycle/*drug effects ; Cyclosporins/pharmacology ; Drug Resistance, Microbial/genetics ; G1 Phase/drug effects ; Humans ; Immunosuppressive Agents/pharmacology ; Molecular Sequence Data ; Molecular Structure ; Mutation ; Polyenes/metabolism/*pharmacology ; Saccharomyces cerevisiae/*cytology/drug effects ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Sirolimus ; Tacrolimus ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: The 17-amino acid peptide from chicken ovalbumin, Ova(323-339), was labeled at the amino terminus with fluorescein [FOva(323-339)] and near the carboxyl terminus with Texas Red [AcOva(323-338)KTR]. Fluorescence spectroscopy was carried out on resolved electrophoretic bands on nonreducing polyacrylamide gels derived from incubation mixtures containing major histocompatibility complex (MHC) class II molecules IAd and the FOva(323-339)- and AcOva(323-338)KTR-labeled peptides. Energy transfer between fluorescein and Texas Red was observed in the "floppy" alpha beta heterodimer band, but not in the "compact" alpha beta heterodimer band. Energy transfer was detected between the truncated peptides FOva(323-328)CONH2 and AcOva(331-338)KTR in both the compact alpha beta and floppy alpha beta gel bands. The energy-transfer data suggest that the two binding sites of floppy alpha beta arise from splitting apart a putative large, single binding site region in compact alpha beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tampe, R -- Clark, B R -- McConnell, H M -- 2R37 AI 13587-16/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):87-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stauffer Laboratory for Physical Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656526" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Energy Transfer ; Histocompatibility Antigens Class II/chemistry/*metabolism ; In Vitro Techniques ; Mice ; Molecular Sequence Data ; Ovalbumin/chemistry ; Peptides/chemistry/*metabolism ; Spectrometry, Fluorescence ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1991-07-12
    Description: The cystic fibrosis transmembrane conductance regulator (CFTR), which forms adenosine 3',5'-monophosphate (cAMP)-regulated chloride channels, is defective in patients with cystic fibrosis. This protein contains two putative nucleotide binding domains (NBD1 and NBD2) and an R domain. CFTR in which the R domain was deleted (CFTR delta R) conducted chloride independently of the presence of cAMP. However, sites within CFTR other than those deleted also respond to cAMP, because the chloride current of CFTR delta R increased further in response to cAMP stimulation. In addition, deletion of the R domain suppressed the inactivating effect of a mutation in NBD2 (but not NBD1), a result which suggests that NBD2 interacts with the channel through the R domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rich, D P -- Gregory, R J -- Anderson, M P -- Manavalan, P -- Smith, A E -- Welsh, M J -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):205-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1712985" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chloride Channels ; Chlorides/*physiology ; Cyclic AMP/physiology ; Cystic Fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator ; DNA Mutational Analysis ; Electric Conductivity ; HeLa Cells ; Humans ; In Vitro Techniques ; Ion Channel Gating ; Ion Channels/chemistry/*physiology ; Membrane Potentials ; Membrane Proteins/chemistry/*physiology ; Nitrates/metabolism ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1992-09-04
    Description: Yeast RNA polymerase II initiation factor b copurifies with three polypeptides of 85, 73, and 50 kilodaltons and with a protein kinase that phosphorylates the carboxyl-terminal repeat domain (CTD) of the largest polymerase subunit. The gene that encodes the 73-kilodalton polypeptide, designated TFB1, was cloned and found to be essential for cell growth. The deduced protein sequence exhibits no similarity to those of protein kinases. However, the sequence is similar to that of the 62-kilodalton subunit of the HeLa transcription factor BFT2, suggesting that this factor is the human counterpart of yeast factor b. Immunoprecipitation experiments using antibodies to the TFB1 gene product demonstrate that the transcriptional and CTD kinase activities of factor b are closely associated with an oligomer of the three polypeptides. Photoaffinity labeling with 3'-O-(4-benzoyl)benzoyl-ATP (adenosine triphosphate) identified an ATP-binding site in the 85-kilodalton polypeptide, suggesting that the 85-kilodalton subunit contains the catalytic domain of the kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gileadi, O -- Feaver, W J -- Kornberg, R D -- GM-36659/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1389-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Sherman Fairchild Center, Stanford University Medical School, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1445600" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Affinity Labels ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; *Cloning, Molecular ; Immunosorbent Techniques ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/chemistry/*genetics/metabolism ; RNA Polymerase II/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid ; Transcription Factors/chemistry/*genetics ; *Transcription Factors, General ; *Transcription Factors, TFII ; *Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-24
    Description: A cleavage reagent directed to the active site of the Tetrahymena catalytic RNA was synthesized by derivatization of the guanosine substrate with a metal chelator. When complexed with iron(II), this reagent cleaved the RNA in five regions. Cleavage at adenosine 207, which is far from the guanosine-binding site in the primary and secondary structure, provides a constraint for the higher order folding of the RNA. This cleavage site constitutes physical evidence for a key feature of the Michel-Westhof model. Targeting a reactive entity to a specific site should be generally useful for determining proximity within folded RNA molecules or ribonucleoprotein complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, J F -- Cech, T R -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):526-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1315076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Edetic Acid/metabolism ; Free Radicals ; Guanosine/*metabolism ; Guanosine Monophosphate/metabolism ; Iron/metabolism ; Iron Chelating Agents/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; Pentetic Acid/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1992-05-15
    Description: A facile method for isolating genes that encode interacting proteins has been developed with a polypeptide probe that contains an amino-terminal extension with recognition sites for a monoclonal antibody, a specific endopeptidase, and a site-specific protein kinase. This probe, containing the basic region-leucine zipper dimerization motif of c-Fos, was used to screen a complementary DNA library. A complementary DNA that encoded a member of the basic-helix-loop-helix-zipper (bHLH-Zip) family of proteins was isolated. The complementary DNA-encoded polypeptide FIP (Fos interacting protein) bound to oligonucleotide probes that contained DNA binding motifs for other HLH proteins. When cotransfected with c-Fos, FIP stimulated transcription of an AP-1-responsive promoter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blanar, M A -- Rutter, W J -- DK-21344/DK/NIDDK NIH HHS/ -- DK-41822/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 May 15;256(5059):1014-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hormone Research Institute, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1589769" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; *Cloning, Molecular ; DNA/isolation & purification ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Genes, fos/genetics ; HeLa Cells ; Humans ; Leucine Zippers/*genetics ; Macromolecular Substances ; Molecular Sequence Data ; Oligonucleotide Probes/chemistry/metabolism ; Protein Conformation ; Proto-Oncogene Proteins c-fos/chemistry/metabolism ; Proto-Oncogene Proteins c-jun/chemistry/metabolism ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1992-12-21
    Description: Interferon-gamma (IFN-gamma) induces the transcription of the gene encoding a guanylate binding protein by activating a latent cytoplasmic factor, GAF (gamma-activated factor). GAF is translocated to the nucleus and binds a DNA element, the gamma-activated site. Through cross-linking and the use of specific antibodies GAF was found to be a 91-kilodalton DNA binding protein that was previously identified as one of four proteins in interferon-stimulated gene factor-3 (ISGF-3), a transcription complex activated by IFN-alpha. The IFN-gamma-dependent activation of the 91-kilodalton DNA binding protein required cytoplasmic phosphorylation of the protein on tyrosine. The 113-kilodalton ISGF-3 protein that is phosphorylated in response to IFN-alpha was not phosphorylated nor translocated to the nucleus in response to IFN-gamma. Thus the two different ligands result in tyrosine phosphorylation of different combinations of latent cytoplasmic transcription factors that then act at different DNA binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuai, K -- Schindler, C -- Prezioso, V R -- Darnell, J E Jr -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1808-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1281555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/isolation & purification/*metabolism ; Electrophoresis, Gel, Two-Dimensional ; Electrophoresis, Polyacrylamide Gel ; GTP-Binding Proteins/*genetics ; Gene Expression Regulation/drug effects ; Interferon-alpha/pharmacology ; Interferon-gamma/*pharmacology ; Models, Biological ; Molecular Sequence Data ; Molecular Weight ; Oligodeoxyribonucleotides ; Phosphorylation ; Phosphotyrosine ; Promoter Regions, Genetic ; STAT1 Transcription Factor ; Signal Transduction/drug effects ; *Trans-Activators ; *Transcription, Genetic/drug effects ; Tyrosine/analogs & derivatives/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1992-08-21
    Description: Cells with distinct developmental histories can respond differentially to identical signals, suggesting that signals are interpreted in a fashion that reflects a cell's identity. How this might occur is suggested by the observation that proteins of the homeodomain family, including a newly identified human protein, enhance the DNA-binding activity of serum response factor, a protein required for the induction of genes by growth and differentiation factors. Interaction with proteins of the serum response factor family may allow homeodomain proteins to specify the transcriptional response to inductive signals. Moreover, because the ability to enhance the binding of serum response factor to DNA residues within the homeodomain but is independent of homeodomain DNA-binding activity, this additional activity of the homeodomain may account for some of specificity of action of homeodomain proteins in development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grueneberg, D A -- Natesan, S -- Alexandre, C -- Gilman, M Z -- CA08968/CA/NCI NIH HHS/ -- CA45642/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 21;257(5073):1089-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1509260" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/genetics/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism/*pharmacology ; Drosophila/genetics ; *Drosophila Proteins ; Fungal Proteins/chemistry/pharmacology ; *Homeodomain Proteins ; Humans ; Minichromosome Maintenance 1 Protein ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Saccharomyces cerevisiae/genetics ; Serum Response Factor ; Transcription Factors/chemistry/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1992-01-17
    Description: Binding of human growth hormone (hGH) to its receptor is required for regulation of normal human growth and development. Examination of the 2.8 angstrom crystal structure of the complex between the hormone and the extracellular domain of its receptor (hGHbp) showed that the complex consists of one molecule of growth hormone per two molecules of receptor. The hormone is a four-helix bundle with an unusual topology. The binding protein contains two distinct domains, similar in some respects to immunoglobulin domains. The relative orientation of these domains differs from that found between constant and variable domains in immunoglobulin Fab fragments. Both hGHbp domains contribute residues that participate in hGH binding. In the complex both receptors donate essentially the same residues to interact with the hormone, even though the two binding sites on hGH have no structural similarity. Generally, the hormone-receptor interfaces match those identified by previous mutational analyses. In addition to the hormone-receptor interfaces, there is also a substantial contact surface between the carboxyl-terminal domains of the receptors. The relative extents of the contact areas support a sequential mechanism for dimerization that may be crucial for signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Vos, A M -- Ultsch, M -- Kossiakoff, A A -- New York, N.Y. -- Science. 1992 Jan 17;255(5042):306-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549776" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography ; Growth Hormone/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Structure ; Mutation ; Receptors, Somatotropin/*chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-06-05
    Description: Regulation of interleukin-2 (IL-2) gene expression by the p50 and p65 subunits of the DNA binding protein NF-kappa B was studied in nontransformed CD4+ T lymphocyte clones. A homodimeric complex of the NF-kappa B p50 subunit was found in resting T cells. The amount of p50-p50 complex decreased after full antigenic stimulation, whereas the amount of the NF-kappa B p50-p65 heterodimer was increased. Increased expression of the IL-2 gene and activity of the IL-2 kappa B DNA binding site correlated with a decrease in the p50-p50 complex. Overexpression of p50 repressed IL-2 promoter expression. The switch from p50-p50 to p50-p65 complexes depended on a protein that caused sequestration of the p50-p50 complex in the nucleus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, S M -- Tran, A C -- Grilli, M -- Lenardo, M J -- New York, N.Y. -- Science. 1992 Jun 5;256(5062):1452-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1604322" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*immunology ; Base Sequence ; Binding Sites ; Cell Line ; Cell Nucleus/physiology ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Clone Cells ; Columbidae ; DNA/genetics ; *Gene Expression Regulation ; Interleukin-2/*genetics ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Oligonucleotide Probes ; Promoter Regions, Genetic ; RNA, Messenger/metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocyte Subsets/*immunology ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-17
    Description: The Escherichia coli Rep helicase unwinds duplex DNA during replication. The functional helicase appears to be a dimer that forms only on binding DNA. Both protomers of the dimer can bind either single-stranded or duplex DNA. Because binding and hydrolysis of adenosine triphosphate (ATP) are essential for helicase function, the energetics of DNA binding and DNA-induced Rep dimerization were studied quantitatively in the presence of the nucleotide cofactors adenosine diphosphate (ADP) and the nonhydrolyzable ATP analog AMPP(NH)P. Large allosteric effects of nucleotide cofactors on DNA binding to Rep were observed. Binding of ADP favored Rep dimers in which both protomers bound single-stranded DNA, whereas binding of AMPP(NH)P favored simultaneous binding of both single-stranded and duplex DNA to the Rep dimer. A rolling model for the active unwinding of duplex DNA by the dimeric Rep helicase is proposed that explains vectorial unwinding and predicts that helicase translocation along DNA is coupled to ATP binding, whereas ATP hydrolysis drives unwinding of multiple DNA base pairs for each catalytic event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, I -- Lohman, T M -- GM30498/GM/NIGMS NIH HHS/ -- GM45948/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 17;256(5055):350-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1533057" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/*pharmacology ; Adenosine Diphosphate/metabolism/pharmacology ; Adenosine Triphosphatases/*metabolism ; Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/pharmacology ; Base Sequence ; Binding Sites ; Binding, Competitive ; DNA/chemistry/*metabolism ; *DNA Helicases ; DNA, Single-Stranded/metabolism ; DNA, Viral/metabolism ; Escherichia coli/*enzymology ; Escherichia coli Proteins ; Macromolecular Substances ; Magnesium/pharmacology ; Molecular Sequence Data ; Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1992-07-03
    Description: Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. A 1.65 angstrom refined structure of a recombinant human placenta aldose reductase reveals that the enzyme contains a parallel beta 8/alpha 8-barrel motif and establishes a new motif for NADP-binding oxidoreductases. The substrate-binding site is located in a large, deep elliptical pocket at the COOH-terminal end of the beta barrel with a bound NADPH in an extended conformation. The highly hydrophobic nature of the active site pocket greatly favors aromatic and apolar substrates over highly polar monosaccharides. The structure should allow for the rational design of specific inhibitors that might provide molecular understanding of the catalytic mechanism, as well as possible therapeutic agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Bohren, K M -- Gabbay, K H -- Quiocho, F A -- DK-39,044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621098" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Reductase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; *Diabetes Complications ; Diabetes Mellitus/*enzymology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1992-04-03
    Description: Steroid-thyroid hormone receptors typically bind as dimers to DNA sequences that contain repeated elements termed half-sites. NGFI-B, an early response protein and orphan member of this receptor superfamily, binds to a DNA sequence that contains only one half-site (5'-AAAGGTCA-3'). A domain separate from the NGFI-B zinc fingers, termed the A box, was identified and is required for recognition of the two adenine-thymidine (A-T) base pairs at the 5' end of the NGFI-B DNA binding element. In addition, a domain downstream of the zinc fingers of the orphan receptor H-2 region II binding protein, termed the T box, determined binding to tandem repeats of the estrogen receptor half-site (5'-AGGTCA-3').〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Paulsen, R E -- Padgett, K A -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 3;256(5053):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1314418" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; CHO Cells ; Cell Nucleus/*physiology ; Cricetinae ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Kinetics ; Mice ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Oligodeoxyribonucleotides/metabolism ; Polymerase Chain Reaction ; Receptors, Cell Surface/*metabolism ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Nucleic Acid ; Substrate Specificity ; Transcription Factors/genetics/*metabolism ; Transfection ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1992-12-11
    Description: The crystal structure of a 1:1 complex between yeast cytochrome c peroxidase and yeast iso-1-cytochrome c was determined at 2.3 A resolution. This structure reveals a possible electron transfer pathway unlike any previously proposed for this extensively studied redox pair. The shortest straight line between the two hemes closely follows the peroxidase backbone chain of residues Ala194, Ala193, Gly192, and finally Trp191, the indole ring of which is perpendicular to, and in van der Waals contact with, the peroxidase heme. The crystal structure at 2.8 A of a complex between yeast cytochrome c peroxidase and horse heart cytochrome c was also determined. Although crystals of the two complexes (one with cytochrome c from yeast and the other with cytochrome c from horse) grew under very different conditions and belong to different space groups, the two complex structures are closely similar, suggesting that cytochrome c interacts with its redox partners in a highly specific manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelletier, H -- Kraut, J -- DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1748-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego, La Jolla 92093-0317.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1334573" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cytochrome c Group/*chemistry/metabolism ; Cytochrome-c Peroxidase/*chemistry/metabolism ; *Electron Transport ; Heme/metabolism ; Horses ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Saccharomyces cerevisiae/metabolism ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1992-09-04
    Description: The N-methyl-D-aspartate (NMDA) receptor forms a cation-selective channel with a high calcium permeability and sensitivity to channel block by extracellular magnesium. These properties, which are believed to be important for the induction of long-term changes in synaptic strength, are imparted by asparagine residues in a putative channel-forming segment of the protein, transmembrane 2 (TM2). In the NR1 subunit, replacement of this asparagine by a glutamine residue decreases calcium permeability of the channel and slightly reduces magnesium block. The same substitution in NR2 subunits strongly reduces magnesium block and increases the magnesium permeability but barely affects calcium permeability. These asparagines are in a position homologous to the site in the TM2 region (Q/R site) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that is occupied by either glutamine (Q) or arginine (R) and that controls divalent cation permeability of the AMPA receptor channel. Hence AMPA and NMDA receptor channels contain common structural motifs in their TM2 segments that are responsible for some of their ion selectivity and conductance properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnashev, N -- Schoepfer, R -- Monyer, H -- Ruppersberg, J P -- Gunther, W -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1415-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Zellphysiologie, Max-Planck-Institut fur Medizinische Forschung, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1382314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Asparagine/*chemistry ; Binding Sites ; Calcium/*metabolism/pharmacology ; Cell Line ; Electric Conductivity ; Glutamates/pharmacology ; Glutamic Acid ; Ion Channels/chemistry/*physiology ; Magnesium/metabolism/*pharmacology ; Mice ; Molecular Sequence Data ; Mutagenesis ; Oocytes/metabolism ; Permeability ; Rats ; Receptors, N-Methyl-D-Aspartate/chemistry/genetics/*physiology ; Structure-Activity Relationship ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...