ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (357)
  • Saccharomyces cerevisiae  (197)
  • mitochondria  (164)
  • Springer  (357)
  • 1995-1999  (357)
  • 1945-1949
  • Biology  (357)
  • Process Engineering, Biotechnology, Nutrition Technology  (23)
  • 1
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; transport ; Saccharomyces cerevisiae ; fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Transport proteins of microorganisms may either belong to the ATP-binding cassette (ABC) superfamily or to the major facilitator (MFS)-superfamily. MFS transporters are single-polypeptide membrane transporters that transport small molecules via uniport, symport or antiport mechanisms in response to a chemiosmotic gradient. Although Saccharomyces cerevisiae is a non-siderophore producer, various bacterial and fungal siderophores can be utilized as an iron source. From yeast genome sequencing data six genes of the unknown major facilitator (UMF) family were known of which YEL065w Sce was recently identified as a transporter for the bacterial siderophore ferrioxamine B (Sit1p). The present investigation shows that another UMF gene, YHL047c Sce, encodes a transporter for the fungal siderophore triacetylfusarinine C. The gene YHL047c Sce (designated TAF1) was disrupted using the kanMX disruption module in a fet3 background (strain DEY 1394 Δfet3), possessing a defect in the high affinity ferrous iron transport. Growth promotion assays and transport experiments with 55Fe-labelled triacetylfusarinine C showed a complete loss of iron utilization and uptake in the disrupted strain, indicating that TAF1 is the gene for the fungal triacetylfusarinine transport in Saccharomyces cerevisiae and possibly in other siderophore producing fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: EPR ; Saccharomyces cerevisiae ; uptake ; vanadate ; vanadyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Vanadium uptake by whole cells and isolated cell walls of the yeast Saccharomyces cerevisiae was studied. When orthovanadate was added to wild-type S. cerevisiae cells growing in rich medium, growth was inhibited as a function of the VO4 3- concentration and the growth was completely arrested at a concentration of 20 mM of VO4 3- in YEPD. Electron paramagnetic resonance (EPR) spectroscopy was used to obtain structural and dynamic information about the cell-associated paramagnetic vanadyl ion. The presence of EPR signals indicated that vanadate was reduced by whole cells to the vanadyl ion. On the contrary, no EPR signals were detected after interaction of vanadate with isolated cell walls. A ‘mobile’ and an ‘immobile’ species associated in cells with small chelates and with macromolecular sites, respectively, were identified. The value of rotational correlation time τ r indicated the relative motional freedom at the macromolecular site. A strongly ‘immobilized’ vanadyl species bound to polar sites mainly through coulombic attractions was detected after interaction of VO2+ ions with isolated cell walls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1117-1122 
    ISSN: 1420-9071
    Keywords: Actin ; myosin ; motor molecules ; secretion ; endocytosis ; mitochondria ; organelle inheritance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Evidence for actin-dependent organelle movement was first obtained from studies of cytoplasmic streaming in plants. These studies, together with cell-free organelle motility studies and biophysical analyses of muscle myosin, support a model whereby organelle-associated motor molecules utilize the energy of adenosine triphosphate binding and hydrolysis to drive movement along F-actin tracks Recent studies indicate that this mechanism for organelle movement may be responsible for organelle and vesicle movement during secretion, endocytosis and mitochondrial inheritance in a variety of eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1130-1135 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; mitochondria ; mRNA-specific translational activation ; synthetic genes ; gene regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mitochondrial gene expression in yeast,Saccharomyces cerevisiae, depends on translational activation of individual mRNAs by distinct proteins encoded in the nucleus. These nuclearly coded mRNA-specific translational activators are bound to the inner membrane and function to mediate the interaction between mRNAs and mitochondrial ribosomes. This complex system, found to date only in organelles, appears to be an adaptation for targeting the synthesis of mitochondrially coded integral membrane proteins to the membrane. In addition, mRNA-specific translational activation is a rate-limiting step used to modulate expression of at least one mitochondrial gene in response to environmental conditions. Direct study of mitochondrial gene regulation and the targeting of mitochondrially coded proteins in vivo will now be possible using synthetic genes inserted into mtDNA that encode soluble reporter/passenger proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1033-1041 
    ISSN: 1420-9071
    Keywords: Ubiquitin ; yeast ; Saccharomyces cerevisiae ; Dictyostelium discoideum ; cytoskeleton ; mutants ; endocytosis ; actin ; myosin ; calmodulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Endocytosis is a general term that is used to describe the internalization of external and plasma membrane molecules into the cell interior. In fact, several different mechanisms exist for the internalization step of this process. In this review we emphasize the work on the actin-dependent pathways, in particular in the yeastSaccharomyces cerevisiae, because several components of the molecular machinery are identified. In this yeast, the analysis of endocytosis in various mutants reveals a requirement for actin, calmodulin, a type I myosin, as well as a number of other proteins that affect actin dynamics. Some of these proteins have homology to proteins in animal cells that are believed to be involved in endocytosis. In addition, the demonstration that ubiquitination of some cell surface molecules is required for their efficient internalization is described. We compare the actin, myosin and ubiquitin requirements for endocytosis with recent results found studying these processes usingDictyostelium discoideum and animal cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1111-1116 
    ISSN: 1420-9071
    Keywords: Mitochondria ; mitochondrial inheritance ; cytoskeleton ; Saccharomyces cerevisiae ; Schizosaccharomyces pombe ; membrane proteins ; organelle movement ; mitochondrial morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mechanisms mediating the inheritance of mitochondria are poorly understood, but recent studies with the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe have begun to identify components that facilitate this essential process. These components have been identified through the analysis of conditional yeast mutants that display aberrant mitochondrial distribution at restrictive conditions. The analysis of these mutants has uncovered several novel proteins that are localized either to cytoskeletal structures or to the mitochondria themselves. Many mitochondrial inheritance mutants also show altered mitochondrial morphology and defects in maintenance of the mitochondrial genome. Although some inheritance components and mechanisms appear to function specifically in certain types of cells, other conserved proteins are likely to mediate mitochondrial behavior in all eukaryotic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; mitochondrial ribosomes ; peptidyl transferase ; Varl ribosomal protein ; gene relocation ; posttranscriptional rRNA modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mitochondria posses their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. In yeast,Saccharomyces cerevisiae, the two ribosomal RNAs and a single ribosomal protein, Varl, are products of mitochondrial genes, and the remaining approximately 80 ribosomal proteins are encoded in the nucleus. The mitochondrial translation system is dispensable in yeast, providing an excellent experimental model for the molecular genetic analysis of the fundamental properties of ribosomes in general as well as adaptations required for the specialized role of ribosomes in mitochondria. Recent studies of the peptidyl transferase center, one of the most highly conserved functional centers of the ribosome, and the Varl protein, an unusual yet essential protein in the small ribosomal subunit, have provided new insight into conserved and divergent features of the mitochondrial ribosome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-8773
    Keywords: copper deficiency ; Cytochrome c oxidase ; heart ; mitochondria ; rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Copper deficiency has been reported to be associated withdecreased cytochrome c oxidase activity, whichin turn may be responsible for theobserved mitochondrial impairment and cardiac failure. We isolatedmito-chondriafrom hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lowerthan incopper-adequate mitochondria. The residual activity paralleled coppercontent of mitochondria and also corresponded with the heme amount associated with cytochromeaa3. In fact, lower absorption in thea-band region of cytochrome aa3 was foundfor copper-deficient rat heart mitochondria. Gel electrophoresisof protein extractedfrom mitochondrial membranes allowed measurements of protein content of thecomplexes ofoxidative phosphorylation, revealing a lower content of complex IV protein incopper-deficientrat heart mitochondria. The alterations caused by copper deficiency appear to bespecific forcytochrome c oxidase. Changes were not observed for F 0 F 1 ATP synthase activity,for heme contents ofcytochrome c and b, and for protein contents of complexes I, III and V.The present study demonstrates that the alteration of cytochrome c oxidase activityobserved in copper deficiency is due to a diminishedcontent of assembled protein and that shortnessof copper impairs heme insertion into cytochrome c oxidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    BioMetals 12 (1999), S. 289-294 
    ISSN: 1572-8773
    Keywords: accumulation ; gold ; proton efflux ; Saccharomyces cerevisiae ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract This paper examines the effects of ionic gold on Saccharomyces cerevisiae, as determined by long-term (growth in gold-containing media) and short-term interactions (H+ efflux activity). An increasing gold concentration inhibited growth and at 〈0.2 mM Au, growth was not observed. Transmission electron microscopy revealed no differences in ultrastructure but fine electron dense particles were observed in unstained preparations from gold-containing medium. After glucose addition (to 10mM) to starved suspensions of S. cerevisiae, glucose-dependent reduction of external pH occurred as the cells extruded protons. In the presence of increasing gold concentrations, the lag time before proton extrusion did not change but the rate and duration decreased significantly with a marked influence on proton efflux rate being observed at ≤ 10 μM. Extension of preincubation time of yeast cells in gold-containing medium resulted in a decreasing proton efflux rate and colloidal phase formation in the cell suspensions, the time between gold addition and the beginning of colloidal phase formation depending on the gold concentration used. Both Ca and Mg enhanced the inhibitory effect of gold on the yeast cells with Ca showing a stronger inhibitory effect than Mg.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Mycopathologia 142 (1998), S. 67-70 
    ISSN: 1573-0832
    Keywords: l-glutamine ; fructose-6-phosphate amidotransferase ; Candida albicans ; fungi ; Saccharomyces cerevisiae ; Schizosaccharomyces pombe ; systemic mycoses chemotherapy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The 3' part of the glucosamine-6-phosphate synthase gene from Histoplasma capsulatum was PCR amplified using degenerate primers designed from the known glucosamine-6-phosphate synthase gene sequences, cloned and sequenced. The computer analysis of the 676 bp sequence revealed the presence of two introns. The identities of the deduced amino acid sequence to the corresponding Saccharomyces cerevisiae and Candida albicans fragment are 65 and 63.8%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1572-9699
    Keywords: growth inhibition ; fatty acid composition ; Saccharomyces cerevisiae ; Yarrowia lipolytica ; Teucrium polium L. extract
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aqueous Teucrium polium extract slightly inhibits the growth of Saccharomyces cerevisiae (Ki=0.029 [g/l]-1) and Yarrovia lipolytica (Ki=0.061 [g/l]-1). However, this extract causes important changes in the unsaturation degree (Δ/mol) of the cellular lipids. It moreover favours the increase of the linolenic acid concentration and the decrease of the oleic one in both species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1423-0127
    Keywords: Acquired immunodeficiency syndrome ; Human immunodeficiency virus ; Nef protein ; Myristylation ; Membrane permeabilisation ; Saccharomyces cerevisiae ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The human immunodeficiency virus type 1 (HIV-1) Nef protein is essential for AIDS pathogenesis, but its function remains highly controversial. During stresses such as growth in the presence of copper or at elevated temperature, myristylated Nef is released from yeast cells and, after extended culture in stationary phase, it accumulates in the supernatant as a dense membranous material that can be centrifuged into a discrete layer above the cell pellet. This material is unique to Nef-producing cells and represents a convenient source of Nef that may have application in further biological studies. Within the yeast cell, electron microscopic examination shows that Nef localises in novel, membrane-bound bodies. These data support the evidence for a role of Nef in membrane perturbation and suggest that there may be a similar localisation for myristylated Nef in HIV-1 infected cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-203X
    Keywords: chloroplast ; mitochondria ; somatic embryogenesis ; tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Somatic hybridization experiments in Citrus that involve the fusion of protoplasts of one parent isolated from either nucellus-derived embryogenic callus or suspension cultures with leaf-derived protoplasts of a second parent, often result in the regeneration of diploid plants that phenotypically resemble the leaf parent. In this study, plants of this type regenerated following somatic fusions of the following three parental combinations were analyzed to determine their genetic origin (nuclear and organelle): (embryogenic parent listed first, leaf parent second) (1) calamondin (C. microcarpa Bunge) + ‘Keen’ sour orange (C. aurantium L.), (2) Cleopatra mandarin (C. reticulata Blanco) + sour orange, and (3) ‘Valencia’ sweet orange (C. sinensis (L.) Osbeck) + ‘Femminello’ lemon (C. limon (L.) Burm. f.). Isozyme analyses of PGI, PGM, GOT, and IDH zymograms of putative cybrid plants, along with RFLP analyses using a nuclear genome-specific probe showed that these plants contained the nucleus of the leaf parent. RFLP analyses using mtDNA-specific probes showed that these plants contained the mitochondrial genome of the embryogenic callus donor, thereby confirming cybridization. RFLP analyses using cpDNA-specific probes revealed that the cybrid plants contained the chloroplast genome of either one or the other parent. These results support previous reports indicating that acquisition of the mitochondria of embryogenic protoplasts by leaf protoplasts is a prerequisite for recovering plants with the leaf parent phenotype via somatic embryogenesis following somatic fusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 11 (1999), S. 323-330 
    ISSN: 1432-2145
    Keywords: Key words Cytoplasmic male sterility ; Pollen development ; Zea mays ; mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Mitochondria play a critical role in the normal development of the plant male gametophyte and in the disruption of normal gametophyte development associated with cytoplasmically inherited male sterility (CMS). To investigate the role of mitochondria in these processes, the accumulation of mitochondrial gene transcripts and the accumulation of nuclear gene transcripts encoding mitochondrial proteins were investigated through male gametophyte development in normal maize and through the course of pollen abortion in CMS-S maize. Male gametophytes differing in developmental stage were isolated from male-fertile or male-sterile plants by sucrose density gradient centrifugation. Mature pollen was collected from dehiscent anthers of male-fertile plants. Aborted pollen, which collapsed during starch accumulation, was isolated from emergent tassels of CMS-S male-sterile plants. Microspores, developing pollen and mature pollen exhibited striking differences in mitochondrial transcript accumulation. Mature pollen lacked detectable mitochondrial transcripts. Aborted pollen of CMS-S plants contained abundant, intact transcripts of all mitochondrial genes studied, but prematurely degraded transcripts of several nuclear genes. Transcripts of the CMS-S associated mitochondrial open reading frames (orf355 and orf77) were detected from the early stages of microspore development through the aborted pollen stage. The implications of these findings are discussed in terms of the mitochondrial requirements for pollen function and the mechanism of pollen abortion in CMS-S maize.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; URS ; FBP1 Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have constructed a plasmid, pOV10, which facilitates the introduction of putative upstream activating sequences (UAS) or upstream repressing sequences (URS) from yeast genes into plasmids containing CYC1-lacZ fusions. We have observed that the insertion of yeast sequences from 155 to 195 bp between the UAS and the TATA box of a CYC1-lacZ fusion gene can block β-galactosidase expression. It is suggested that this block is related to the formation of nucleosomes on the DNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondrial synthesis ; Nuclear control ; F1Fo-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Respiratory-competent nuclear mutants have been isolated which presented a cryosensitive phenotype on a non-fermentative carbon source, due to a dysfunctioning of the mitochondrial F1-Fo ATP synthase which results from a relative defect in subunits 6 and 8 of the Fo sector. Both proteins are mtDNA-encoded, but the defect is due to the simultaneous presence of a mutation in two unlinked nuclear genes (NCA2 and NCA3, for Nuclear Control of ATPase) promoting a modification of the expression of the ATP8-ATP6 co-transcript (formerly denoted AAP1-OLI2). This co-transcript matures at a unique site to give two co-transcripts of 5.2 and 4.6 kb in length: in the mutant, the 5.2-kb co-transcript was greatly lowered. NCA3 was isolated from a wild-type yeast genomic library by genetic complementation. The level of the 5.2-kb transcript, like the synthesis of subunits 6 and 8, was partly restored in the transformed strain. A 1011-nucleotide ORF was identified that encodes an hydrophilic protein of 35417 Da. Disruption of chromosomal DNA within the reading frame promoted a dramatic decrease of the 5.2-kb mRNA but did not abolish the respiratory competence of a wild-type strain. NCA3 is located on chromosome IV and produces a single 1780-b transcript.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-0983
    Keywords: Antimutator ; DDR48 ; Saccharomyces cerevisiae ; Spontaneous mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The antimutator phenotype, reportedly conferred by disruption of the Saccharomyces cerevisiae DDR48 gene, was suggested to affect only a specific spontaneous mutational pathway. We attempted to identify the types of mutation that are DDR48-dependent by determining the specificity of the ddr48 antimutator. However, disruption of DDR48 did not decrease the rates of spontaneous forward mutation in a plasmid-borne copy of the yeast SUP4-o gene, the reversion or suppression of the lys2–1 allele, or forward mutation at the CAN1 locus. Interestingly, the latter gene had been reported previously to be subject to the antimutator effect. DNA sequence analysis of spontaneous SUP4-o mutations arising in DDR48 and ddr48 backgrounds provided no evidence for a reduction in the rates of individual mutational classes. Thus, we were unable to verify that disruption of DDR48 causes an antimutator phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 509-516 
    ISSN: 1432-0983
    Keywords: Yeast ; Maltose fermentation ; MAL63 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mal63p is a transcriptional activator for maltose fermentation in Saccharomyces cerevisiae. We have purified it to homogeneity from a yeast strain in which the MAL63 gene is under the control of the GAL1–GAL10 promoter. Purification included fractionation of a whole-cell extract by ion-exchange chromatography, chromatography using both non-specific DNA-affinity (calf thymus), and sequence-specific DNA-affinity chromatography. Mal63p activity was assayed by its binding to a fragment of the MAL61–MAL62 promoter, using both filter-binding and electrophoretic-mobility shift assays. DNase-I footprinting identified a new binding site (site 3) between the two previously known sites (sites 1 and 2). Mal63p is a dimer, and methylation-protection experiments identify the recognition motif as: c/a GC N9 c/a GC/g.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-0983
    Keywords: Key words Omnipotent suppression ; Microtubules ; Respiratory deficiency ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  SUP35 and SUP45 genes determine the accuracy of translation at the stage of termination. We present indirect evidence indicating that these genes may also control some cellular process mediated by microtubules. A majority of sup35 and sup45 suppressor mutations confer supersensitivity to benomyl, the drug which de-polymerizes microtubules. In addition, data correlating phenotypic manifestations of sup45 suppressor mutations, involving sensitivity to benomyl, respiratory deficiency and a suppressor effect, are also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-0983
    Keywords: Key words D-ribulose-5-phosphate 3-epimerase ; D-ribose-5-phosphate ketol-isomerase ; Pentose-phosphate pathway ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have cloned and characterized the two remaining unknown genes of the non-oxidative part of the pentose-phosphate pathway of Saccharomyces cerevisiae encoding the enzymes D-ribulose-5-phosphate 3-epimerase (Rpe1p) and D-ribose-5-phosphate ketol-isomerase (Rki1p). Rpe1p has an unexpected high specific activity of 2148 mU × (mg protein)–1 in crude extracts. Deletion mutants of RPE1 show no enzyme activity and are unable to grow on D-xylulose. Unexpectedly, haploid rki1 deletion mutants are not viable. Functional expression of RKI1 was demonstrated following an increase of gene dosage in the haploid rki1 deletion mutant, which restored viability and specific D-ribose-5-phosphate ketol-isomerase activity. Both enzymes show high similarity to the deduced protein sequences of various open reading frames, expressed sequence tags or cDNAs from different organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 30 (1996), S. 461-468 
    ISSN: 1432-0983
    Keywords: Keywords DNA repair ; Methylation damage ; Epistasis analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The major genotoxicity of methyl methanesulfonate (MMS) is due to the production of a lethal 3-methyladenine (3MeA) lesion. An alkylation-specific base-excision repair pathway in yeast is initiated by a Mag1 3MeA DNA glycosylase that removes the damaged base, followed by an Apn1 apurinic/ apyrimidinic endonuclease that cleaves the DNA strand at the abasic site for subsequent repair. MMS is also regarded as a radiomimetic agent, since a number of DNA radiation-repair mutants are also sensitive to MMS. To understand how these radiation-repair genes are involved in DNA methylation repair, we performed an epistatic analysis by combining yeast mag1 and apn1 mutations with mutations involved in each of the RAD3, RAD6 and RAD52 groups. We found that cells carrying rad6, rad18, rad50 and rad52 single mutations are far more sensitive to killing by MMS than the mag1 mutant, that double mutants were much more sensitive than either of the corresponding single mutants, and that the effects of the double mutants were either additive or synergistic, suggesting that post-replication and recombination-repair pathways recognize either the same lesions as MAG1 and APN1, or else some differ- ent lesions produced by MMS treatment. Lesions handled by recombination and post replication repair are not simply 3MeA, since over-expression of the MAG1 gene does not offset the loss of these pathways. Based on the above analyses, we discuss possible mechanisms for the repair of methylation damage by various pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; pso4-1 mutant Sporulation ; DNA repair ; Meiotic recombination Induced mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have evaluated the effect of the Saccharomyces cerevisiae pso4-1 mutation in sporulation and DNA repair during meiosis. We have found that pso4-1 cells were arrested in an early step of meiosis, before premeiotic DNA synthesis, and hence did not produce spores. These results suggest that the PSO4 gene may act at the start point of the cell cycle, as do some SPO and CDC genes. The pso4-1 mutant cells are specifically sensitive to 8-MOP- and 3-CPs-photoinduced lesions, and are found to be severely affected in meiotic recombination as well as impaired in the mutagenic response, as previously described for mitosis. This means that the PSO4 gene is important for the repair 8-MOP-photoinduced lesions, mainly double-strand breaks, and the processing of these lesions into recombinogenic intermediates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Chromosome copy numbers ; Ploidy probes ; Industrial yeasts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methods have been devised for analyzing chromosome copy numbers in S. cerevisiae strains that may be polyploid or aneuploid, as is apparent in the case of many industrial strains. The initial step involved transformation of a strain with an integrative “ploidy probe” transplacement fragment that enable the copy number of the targeted chromosomal locus to be determined via genomic Southern blotting and quantitative probe hybridization. Dual probe co-hybridization to Southern genomic DNA blots was used to extend such locus copy number determinations to other loci within the same chromosome, thereby screening for internal consistency along the length of the chromosome. This approach was also used to extend the analysis to other chromosomes in the genome. The method was established and verified with euploid series laboratory strains and then used to examine chromosome copy numbers in three industrial strains. One brewing strain apparently contained three copies of the chromosomes tested, whilst another brewing and a baking strain showed evidence of aneuploidy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1432-0983
    Keywords: Key words Transcriptional regulation ; Phospholipid biosynthesis ; Saccharomyces cerevisiae ; INO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-0983
    Keywords: Biocontrol ; Secretion ; Chitinase ; Expression cloning ; Saccharomyces cerevisiae ; Trichoderma harzianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A novel endochitinase agar-plate assay has been developed and used to identify 11 full-length cDNAs encoding endochitinase I (ENC I) from aTrichoderma harzianum cDNA library by expression in yeast. The 1473-bpchil cDNA encodes a 424-residue precursor protein including both a signal sequence and a propeptide. The deduced ENC I amino-acid sequence is homologous to other fungal and bacterial chitinases, and the enzyme cross-reacts with a polyclonal antiserum raised against chitinase A1 fromBacillus circulans. TheT. harzianum endochitinase I was secreted into the culture medium by the yeastSaccharomyces cerevisiae in a functionally active form. The purified recombinant enzyme had a molecular mass of 44 kDa, an isoelectric point of 6.3, a pH optimum of 7.0 and a temperature optimum of 20 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1432-0983
    Keywords: Aspergillus kawachii ; β-xylanase ; Expression ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract First-strand cDNA was prepared from mRNA isolated from Aspergillus kawachii IFO4308 and the β-xylanase gene (xynC) amplified by using the polymerase chain reaction (PCR) technique. This gene was inserted between the yeast phosphoglycerate kinase (PGK1) gene promoter (PGK1 p) and terminator (PGK1 T) sequences. The PGK1 P-xynC-PGK1 T construct (designated XYN3) was cloned into a multicopy episomal plasmid and the XYN3 gene was expressed in Saccharomyces cerevisiae. Functional β-xylanase (Xyn3) was produced and secreted by the recombinant yeast. Xyn3 was stable between 30 and 50°C, and the optimum temperature and pH were shown to be at 60°C and lower than pH3, respectively. An autoselective fur1::LEU2 XYN3 recombinant strain was developed that allowed β-xylanase production at a level of 300 nkat/ml in a non-selective complex medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1432-0983
    Keywords: Key words Cysteine uptake ; Amino-acid permeases ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Uptake by Saccharomyces cerevisiae of the sulphur-containing amino acid L-cysteine was found to be non-saturable under various conditions, and uptake kinetics suggested the existence of two or more transport systems in addition to the general amino-acid permease, Gap1p. Overexpression studies identified BAP2, BAP3, AGP1 and GNP1 as genes encoding transporters of cysteine. Uptake studies with disruption mutants confirmed this, and identified two additional genes for transporters of cysteine, TAT1 and TAT2, both very homologous to BAP2, BAP3, AGP1 and GNP1. While Gap1p and Agp1p appear to be the main cysteine transporters on the non-repressing nitrogen source proline, Bap2p, Bap3p, Tat1p, Tat2p, Agp1p and Gnp1p are all important for cysteine uptake on ammonium-based medium. Furthermore, whereas Bap2p, Bap3p, Tat1p and Tat2p seem most important under amino acid-rich conditions, Agp1p contributes significantly when only ammonium is present, and Gnp1p only contributes under the latter condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 34 (1998), S. 269-279 
    ISSN: 1432-0983
    Keywords: Key words Double-strand breaks ; Heteroduplex DNA ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spontaneous and double-strand break (DSB)-induced gene conversion in Saccharomyces cerevisiae was assayed using non-tandem chromosomal direct repeat crosses and plasmid × chromosome crosses. Each cross involved identical ura3 alleles marked with phenotypically silent restriction fragment length polymorphic (RFLP) mutations at approximately 100-bp intervals. DSBs introduced in vivo at HO sites in one allele stimulated recombination to Ura+ by more than two orders of magnitude. Spontaneous gene-conversion products were isolated from a related strain lacking a functional HO nuclease gene. The multiple markers did not appear to influence the frequency of direct repeat deletions for spontaneous or DSB-induced events. DSB-induced conversion reflected efficient mismatch repair of heteroduplex DNA. Conversion frequencies of equidistant markers on opposites sides of the DSB were similar in the direct repeat cross. In contrast, markers 5′ of the DSB (promoter-proximal) converted more often than 3′ markers in plasmid × chromosome crosses, a possible consequence of crossing-over associated with long conversion tracts. With direct repeats, bidirectional tracts (extending 5′ and 3′ of the DSB) occurred twice as often as in a plasmid × chromosome cross in which DSBs were introduced into the plasmid-borne allele. A key difference between the direct-repeat and plasmid×chromosome crosses is that the ends of a broken plasmid are linked, whereas the ends of a broken chromosome are unlinked. We tested whether linkage of ends influenced tract directionality using a second plasmid × chromosome cross in which DSBs were introduced into the chromosomal allele and found few bidirectional tracts. Thus, chromosome environment, but not linkage of ends, influences tract directionality. The similar tract spectra of the two plasmid × chromosome crosses suggest that similar mechanisms are involved whether recombination is initiated by DSBs in plasmid or chromosomal alleles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 306-308 
    ISSN: 1432-0983
    Keywords: Gene deletion ; Open reading frame ; Saccharomyces cerevisiae ; Polymerase chain reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The classical disruption method for yeast genes is by using in vitro deletion of the gene of interest, or of a part of it, with restriction enzymes. We are now routinely using a strategy that takes advantage of polymerase chain reactions (PCRs) which amplify large pieces of DNA. Since this approach results in a complete, precise deletion of the open reading frame, which is replaced by a unique restriction site, the ligated PCR can be used for the insertion of different markers of for two-step gene disruptions without an inserted marker. As we have now used this strategy for the deletion of more than ten genes we have in this report included some hints based on our experience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1432-0983
    Keywords: Multidrug resistance ; Candida albicans ; Saccharomyces cerevisiae ; ABC transporters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of a PDR5 null mutant of Saccharomyces cervisiae, we have cloned and sequenced the multidrug-resistance gene CDR1 of Candida albicans. Transformation by CDR1 of a PDR5-disrupted host hypersensitive to cycloheximide and chloramphenicol resulted in resistance to cycloheximide, chloramphenicol and other drugs, such as the antifungal miconazole, with collateral hypersensitivity to oligomycin, nystatin and 2,4 dinitrophenol. Our results also demonstrate the presence of several PDR5 complementing genes in C. albicans, displaying multidrug-resistance patterns different from PDR5 and CDR1. The nucleotide sequence of CDR1 revealed that, like PDR5, it encodes a putative membrane pump belonging to the ABC (ATP-binding cassette) superfamily. CDR1 encodes a 1501-residue protein of 169.9 kDa whose predicted structural organization is characterized by two homologous halves, each comprising a hydrophobic region with a set of six transmembrane stretches, preceded by a hydrophilic nucleotide binding fold.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1432-0983
    Keywords: Heat-shock response ; Multidrug resistance ; AP-1 homolog ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined whether the stress-induced transcriptional activation ofYDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in ayap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained withSNQ2, a close homologue ofPDR5. A set of 5′-truncation derivatives of thePDR5 gene identified the region from −484 to −434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5′-flanking sequences ofSNQ2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1432-0983
    Keywords: Autonomously replicating sequence ; Auxotrophy ; Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; Cloning vector ; Selectable marker ; HIS/his ; LYS/lys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three new S. pombe plasmids are described. Plasmids pSP3 and pSP4 are two Schizosaccharomyces pombe ars1 multicopy vectors with the Saccharomyces cerevisiae HIS3 or LYS2 genes as selectable markers. They complement the S. pombe his5-303 or lys1-131 mutations, respectively. Plasmid pSPars1 is a vector carrying the S. pombe ars1 and a unique NdeI site which allows the introduction of any selectable marker therefore bringing a unified vector backbone for the construction of new S. pombe/S. cerevisiae/E. coli shuttle vectors. These plasmids permit classical molecular genetic techniques to be performed directly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1432-0983
    Keywords: Key words Biocontrol ; Secretion ; Chitinase ; Expression cloning ; Saccharomyces cerevisiae ; Trichoderma harzianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A novel endochitinase agar-plate assay has been developed and used to identify 11 full-length cDNAs encoding endochitinase I (ENC I) from a Trichoderma harzianum cDNA library by expression in yeast. The 1473-bp chi1 cDNA encodes a 424-residue precursor protein including both a signal sequence and a propeptide. The deduced ENC I amino-acid sequence is homologous to other fungal and bacterial chitinases, and the enzyme cross-reacts with a polyclonal antiserum raised against chitinase A1 from Bacillus circulans. The T. harzianum endochitinase I was secreted into the culture medium by the yeast Saccharomyces cerevisiae in a functionally active form. The purified recombinant enzyme had a molecular mass of 44 kDa, an isoelectric point of 6.3, a pH optimum of 7.0 and a temperature optimum of 20 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 35 (1999), S. 77-81 
    ISSN: 1432-0983
    Keywords: Key words Adaptive mutations ; 6-N-hydroxylaminopurine ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The frequency of reversion in a histidine-requiring mutant of Saccharomyces cerevisiae increases about ten-fold in stationary cells during histidine starvation. Histidine starvation enhances a similar frequency of reversion in a tryptophan-requiring mutant. Starvation, therefore, enhances mutation frequencies in a non-adaptive manner. The base analogue 6-N-hydroxylaminopurine (HAP) added prior to plating on medium with limited histidine strongly increases reversion of the histidine mutant. HAP-induced reversion increases further in stationary starving cells with the same kinetics as that which increases spontaneous reversion. Adding HAP to the stationary starving cells does not produce any effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1432-0983
    Keywords: Key words Heteroduplex repair ; Strand discrimina-tion ; Strand interruptions ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Site-directed mutagenesis was used to construct yeast centromere plasmids in which a strand nick or gap could be placed 5′ or 3′, on either strand, to a reporter gene (SUP4-o) carrying defined base mismatches. The plasmids were then transformed into yeast cells and the direction and efficiency of mismatch repair were assayed by scoring colouring of the transformant colonies. Strands that were nicked were consistently corrected more often than intact strands, but the effect was very small. However, placement of a small gap at the same positions as the nicks resulted in a marked increase in selection for the gapped strand and an enhanced efficiency of mismatch repair. Both the preference for the gapped strand and correction of the mismatch were offset by deletion of the mismatch repair gene PMS1. Together, the results suggest that strand interruptions can direct intracellular mismatch correction of plasmid-borne base mispairs in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 36 (1999), S. 256-261 
    ISSN: 1432-0983
    Keywords: Key wordsFLO8 ; Transcriptional regulation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It is thought that the FLO8 gene encodes a transcriptional activator of the dominant flocculation gene FLO1 in Saccharomycescerevisiae. To determine other genes which are regulated by FLO8, a detailed comparison of the transcripts from the FLO8 and Δflo8 strains was carried out. In addition to the FLO1 gene, it was found that transcription of the FLO11 and STA1 genes is positively regulated by FLO8. In flo8 strains, not only transcripts of the FLO11, STA1, and FLO1 genes but also invasive growth, extracellular glucoamylase production, and flocculation were undetected. From these results, it is suggested that FLO8 regulates these characteristics via the transcriptional regulation of the FLO11, STA1, and FLO1 genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1432-0983
    Keywords: Calmodulin ; Calmodulin-dependent protein kinase II ; Heat shock response ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We show here that yeast mutants lacking calmodulin-dependent protein kinase II fail to fully acquire induced thermotolerance. A similar result was also obtained with mutants depending solely on either the N-terminal half or the C-terminal half of calmodulin. These findings indicate that both calmodulin-dependent protein kinase II and calmodulin are required for induced thermotolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1432-0983
    Keywords: Glycolysis ; Transcriptional activation ; Saccharomyces cerevisiae ; Chromatin structure ; Glucose induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 31 (1997), S. 401-407 
    ISSN: 1432-0983
    Keywords: Key words Cytochrome oxidase ; Mitochondrial localization ; PET1402/OXA1 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast PET1402/OXA1 gene encoding a 44.8-kDa protein is required for mitochondrial biogenesis. Substitution of Leu240 to serine in the protein results in an accumulation of the precursor form of the mitochondrially encoded subunit 2 of cytochrome oxidase (Cox2) and temperature-sensitive respiration. This temperature sensitivity can be suppressed by a mutation in the cox2 gene changing Ala189 of the Cox2 protein to proline. In the cox2-ts1402 double mutant respiration is restored without removal of the Cox2 pre-sequence. The suppression suggests an interaction of the Pet1402 protein with the cytochrome oxidase complex. Antibodies raised against the predicted C-terminus and the tagged N-terminus of the Pet1402 protein reacted with a 37-kDa polypeptide. This protein, present in the mitochondrial fraction, is localized within the inner membrane. The difference in size can be explained by the removal of the predicted mitochondrial-targeting sequence from the Pet1402 protein. The mitochondrial localization of the protein points to a direct interaction with the cytochrome oxidase complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Omnipotent suppression ; Nonsense suppression ; SUP45
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using a plasmid-based termination-read-through assay, the sal4-2 conditional-lethal (temperature-sensitive) allele of the SUP45 (SAL4) gene was shown to enhance the efficiency of the weak ochre suppressor tRNA SUQ5 some 10-fold at 30°C. Additionally, this allele increased the suppressor efficiency of SRM2-2, a weak tRNAGln ochre suppressor, indicating that the allosuppressor phenotype is not SUQ5-specific. A sup + sal4-2 strain also showed a temperature-dependent omnipotent suppressor phenotype, enhancing readthrough of all three termination codons. Combining the sal4-2 allele with an efficient tRNA nonsense suppressor (SUP4) increased the temperature-sensitivity of that strain, indicating that enhanced nonsense suppressor levels contribute to the conditional-lethality conferred by the sal4-2 allele. However, UGA suppression levels in a sup + sal4-2 strain following a shift to the non-permissive temperature reached a maximum significantly below that exhibited by a non-temperature sensitive SUP4 suppressor strain. Enhanced nonsense suppression may not therefore be the primary cause of the conditional-lethality of this allele. These data indicate a role for Sup45p in translation termination, and possibly in an additional, as yet unidentified, cellular process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 427-434 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Oxidative stress ; Osmotic stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although oxidative stress is involved in many human diseases, little is known of its molecular basis in eukaryotes. In a genetic approach, S. cerevisiae was used to identify elements involved in oxidative stress. By using hydrogen peroxide as an agent for oxidative stress, 34 mutants were identified. All mutants were recessive and fell into 16 complementation groups (pos1 to pos16 for peroxide sensitivity). They corresponded to single mutations as shown by a 2:2 segregation pattern. Enzymes reportedly involved in oxidative stress, such as glucose-6-phosphate dehydrogenase, glutathione reductase, superoxide dismutase, as well as glutathione concentrations, were investigated in wild-type and mutant-cells. One complementation group lacked glucose-6-phosphate dehydrogenase and was shown to be allelic to the glucose-6-phosphate dehydrogenase structural gene ZWF1/MET19. In other mutants all enzymes supposedly involved in oxidative-stress resistance were still present. However, several mutants showed strongly elevated levels of glutathione reductase, gluconate-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase. One complementation group, pos9, was highly sensitive to oxidative stress and revealed the same growth phenotype as the previously described yap1/par1 mutant coding for the yeast homologue of mammalian transcriptional activator protein, c-Jun, of the proto-oncogenic AP-1 complex. However, unlike par1 mutants, which showed diminished activities of oxidative-stress enzymes and glutathion level, the pos9 mutants did not reveal any such changes. In contrast to other recombinants between pos mutations and par1, the sensitivity did not further increase in par1 pos9 recombinants, which may indicate that both mutations belong to the same regulating circuit. Interestingly, ten complementation groups were, in parallel, sensitive to osmotic stress, and one mutant allele revealed increased heat sensitivity. Our results indicate that a surprisingly large number of genes seem to be involved in oxidative-stress resistance and a possible overlap exists between osmotic stress and other stress reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1432-0983
    Keywords: Key wordsPSO5/RAD16 ; Saccharomyces cerevisiae ; Nucleotide excision repair ; Oxidative stress ; Ribonucleotide reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The expression of β-galactosidase from DNA damage-inducible RNR2-lacZ and RNR3-lacZ fusion constructs was compared in wild-type (WT) and pso5/rad16 mutant strains after treatment with five mutagens/oxidative stressors. While exposure to the mutagens UVC, 4NQO and H2O2 induced expression of the RNR2-lacZ and RNR3-lacZ fusion constructs in two WT strains, treatment with the two oxidative stressors tBOOH and paraquat did not. In the pso5-1 mutant induction of RNR2-lacZ was largely reduced after UVC and H2O2 while there was no significant induction of β-galactosidase expression after 4NQO treatment for this construct. For RNR3-lacZ there was strongly reduced expression of pso5-1 after UVC and 4NQO while H2O2 failed to induce expression of β-galactosidase. In the WT strains the ranking of the inducing power of the mutagens at 90% survival (as measured in the pso5-1 mutant) was 4NQO〉UVC〉H2O2. Though the WT strains were clearly more resistant that the pso5-1 mutant to the two oxidative stressors paraquat and tBOOH, these substances failed to significantly enhance expression of the RNR2-lacZ and RNR3-lacZ fusion constructs in both the WT and the pso5-1 mutant. Our data suggest that Pso5p/Rad16p has a function in the signal transducing pathway controlling DNA damage-inducible components of nucleotide excision repair.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1432-0983
    Keywords: Key words Zinc-finger protein ; Nuclear localization ; Immuno electron microscopy ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In previous studies the AZF1 gene has been identified as a second high-copy number suppressor for a special mutant of the gene for the mitochondrial core enzyme of RNA polymerase. The first high-copy number suppressor of this mutant turned out to be the specificity factor MTF1 for mitochondrial transcription. Up to now, the influence of AZF1 on mitochondrial transcription, its precise localization in the cell and the regulation of its expression has not been determined. The putative protein contains a long stretch of poly-asparagine amino acids and a typical zinc-finger domain for DNA binding. These characteristic structural features were used to create the abbreviation AZF1 (Asparagine-rich Zinc Finger protein). An initial computer analysis of the sequence gave no conclusive results for the presence of a mitochondrial import sequence or a typical nuclear-targeting sequence. A recent more-detailed analysis identified a possible nuclear localization signal in the middle of the protein. Disruption of the gene shows no effect on plates with glucose-rich medium or glycerol. In this report a specific polyclonal antibody against Azf1p was prepared and used in cell-fractionation experiments and in electron-microscopic studies. Both of these clearly demonstrate that the AZF1 protein is localized exclusively in the nucleus of the yeast cell. Northern analysis for the expression of the AZF1 messenger RNA under different growth conditions was therefore performed to obtain new insights into the regulation of this gene. Together with the respective protein-expression analysis these data demonstrate that Azf1p is preferentially synthezised in higher amounts under non-fermentable growth conditions. Over-expression of Azf1p in the yeast cell does not influence the expression level of the mitochondrial transcription factor Mtf1p, indicating that the influence of Azf1p on the suppression of the special mitochondrial RNA polymerase mutant is an indirect one. Subcellular investigation of the deletion mutant by electron microscopy identifies specific ultrastructural cell-division defects in comparison to the wild-type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1432-0983
    Keywords: Key words Psoralen sensitivity ; Cytochrome oxidase ; Saccharomyces cerevisiae ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast gene PSO7 was cloned from a genomic library by complementation of the pso7-1 mutant's sensitivity phenotype to 4-nitroquinoline-1-oxide (4NQO). Sequence analysis revealed that PSO7 is allelic to the 1.1-kb ORF of the yeast gene COX11 which is located on chromosome XVI and encodes a protein of 28-kDa localized in the inner mitochondrial membrane. Allelism of PSO7/COX11 was verified by non-complementation of 4NQO-sensitivity in diploids homo- and hetero-allelic for the pso7-1 and cox11::TRP1 mutant alleles. Sensitivity to 4NQO was the same in exponentially growing cells of the pso7-1 mutant and the cox11::TRP1 disruptant. Allelism of COX11 and PSO7 indicates that the pso7 mutant's sensitivity to photoactivated 3-carbethoxypsoralen and to 4NQO is not caused by defective DNA repair, but rather is due to an altered metabolism of the pro-mutagen 4NQO in the absence of cytochrome oxidase (Cox) in pso7-1/cox11::TRP1 mutants/disruptants. Lack of Cox might also lead to a higher reactivity of the active oxygen species produced by photoactivated 3-carbethoxypsoralen. The metabolic state of the cells is important for their sensitivity phenotype since the largest enhancement of sensitivity to 4NQO between wild-type (WT) and the pso7 mutant occurs in exponentially growing cells, while cells in stationary phase or growing cells in phosphate buffer have the same 4NQO resistance, irrespective of their WT/mutant status. Strains containing the pso7-1 or cox11::TRP1 mutant allele were also sensitive to the oxidative stress-generating agents H2O2 and paraquat. Mutant pso7-1, as well as disruptant cox11::TRP1, harboured mitochondria that in comparison to WT contained less than 5% and no detectable Cox activity, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1432-0983
    Keywords: Key words Mitotic recombination ; DNA double-strand breaks ; Saccharomyces cerevisiae ; 8-Methoxypsoralen plus UVA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitotic recombination within the ARG4 gene of Saccharomyces cerevisiae was analysed after treatment of cells with the recombinogenic agent 8-methoxypsoralen (8-MOP) plus UVA. The appearance of DNA double-strand breaks (DSBs) in the ARG4 region during post-treatment incubation was also tested. The results obtained after 8-MOP plus UVA treatment indicate that in mitotic cells: (1) recombination at the ARG4 locus is increased 30 – 500 fold per survivor depending on the strains and the doses employed, (2) the increase of recombination results essentially from gene conversion events which involve the RV site located in the 5′ region of the ARG4 gene twice as often as the Bgl site at the 3′ end, (3) depending on 8-MOP/UVA dose, ectopic gene conversion is associated with reciprocal translocation, (4) DSBs occur preferentially in the ARG 5′ region during post-treatment incubation, as well as in other intergenic regions containing both promoters or/and terminators of transcription, and (5) changes in sequence content in the 5′ region of ARG4, which influences positions and frequencies of DSBs formed during repair, are correlated with a modification of the local chromatin structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1432-0983
    Keywords: 2-deoxyglucose ; 2-deoxyglucose-6P phosphatase ; Catabolite repression ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 2-deoxyglucose (2-DOG), a non-metabolize analogue of glucose, is taken up by yeast using the same transporter(s) as glucose and is phosphorylated by hexokinases producing 2-deoxyglucose-6-P. We found that in DOG R yeasts, 2-DOG was not able to trigger glucose repression, even at concentrations of 0.5%. This result suggests that the specific 2-DOG-6P phosphatase, the enzyme responsible for the DOG R phenotype, may be involved in inhibiting the process of catabolite repression mediated by 2-DOG
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Kluyveromyces lactis ; Transcriptional regulation ; Catabolite repression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Promoter regions of the KlQCR7, KlQCR8 and KlCYC1 genes, coding for subunits of the bc 1-complex and cytochrome c respectively, in the shortterm Crabtree-negative yeast Kluyveromyces lactis differ markedly in sequence from their Saccharomyces cerevisiae counterparts. They have, however, conserved very similar configurations of binding-site motifs for various transcription factors known to be involved in global and carbon-source regulation in S. cerevisiae. To investigate the carbon source-dependent expression of these genes in K. lactis, we have carried out medium-shift experiments and determined transcript levels during the shifts. In sharp contrast to the situation in S. cerevisiae, the level of expression in K. lactis is not affected when glucose is added to a non-fermentable carbon-source medium. However, the genes are not constitutively expressed, but become significantly induced when the cells are shifted from glucose to a nonfermentable carbon source. Finally, induction of transcriptional activation does not occur in media containing both glucose and non-femmentable carbon sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1432-0983
    Keywords: Key words Cytochrome b ; Mutants ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nucleotide changes present in a group of five cytochrome b mit– mutants were analyzed at the sequence level. Two single-base changes were found: one (M10-152) generated a nonsense codon in the first exon while the other (M8-181) created a missense substitution in the second exon. The other mutants all have multiple (three) substitutions that either resulted in a missense mutation in a coding region (M17-162) or else changed nucleotides in the last intron of the gene, so blocking its excision (M6-200 and M8-53). The synthesis of mitochondrial polypeptides and the steady state concentration of the complex-III subunits were examined. The Rieske protein and the core-4 and core-5 subunits were much reduced in all mutants. Consequently the overall stability of complex III is very sensitive even to amino-acid substitutions in the cytochrome b protein. Mutant M8-53 provides direct evidence for the proposed role of the P9.1 stem in the core structure of the group-I type last intron of this gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1432-0983
    Keywords: Key wordsβ-glucosidase ; Candida wickerhamii ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast Candida wickerhamii exports a cell-associated β-glucosidase that is active against cellobiose and all soluble cellodextrins. Because of its unique ability to tolerate end-product inhibition by glucose, the bglB gene that encodes this enzyme was previously cloned and sequenced in this laboratory. Using several different promoters and constructs, bglB was expressed in the hosts Escherichia coli, Pichia pastoris, and Saccharomyces cerevisiae. Expression was initially performed in E. coli using either the lacZ or tac promoter. This resulted in intracellular expression of the BglB protein with the protein being rapidly fragmented. Secretion and glycosylation of active β-glucosidase was achieved with several different S. cerevisiae constructs utilizing either the adh1 or the gal1 promoter on 2-µ replicating plasmids. When either the invertase (Suc2) or the BglB secretion signal was used, BglB protein remained associated with the cell wall and appeared to be hyperglycosylated. Expression in P. pastoris was also examined to determine if higher activity and expression could be achieved in a yeast host that usually does not hyperglycosylate. Using the alcohol oxidase promoter in conjunction with either the pho1 or the α-factor secretion signal, the recombinant enzyme was successfully secreted and glycosylated in P. pastoris. However, levels of protein expression from the chromosomally integrated vector were insufficient to detect activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1432-0983
    Keywords: Key words Bleomycin hydrolase ; Saccharomyces cerevisiae ; Thiol proteases ; Protein amphitropism ; Processing of glycosyl-phosphatidylinositol (GPI) anchor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bleomycin hydrolase, Blh1p, from yeast was co-purified with Gce1p, a cAMP-binding ectoprotein, anchored to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Blh1p is a hydrophilic thiol protease lacking transmembrane domains. We have used polyclonal antibodies to study the topology of the over-expressed protein in yeast and have found that it is amphitropic. Part of Blh1p is associated with plasma membranes, and most of the rest occurs in the cytosol. Both the growth conditions and calcium were found to have minor influences on the topology of Blh1p, in that glucose and the earth-alkali ion slightly enhanced recruitment to the membrane. We have examined the possibility that co-purification of Blh1p with Gce1p has a functional basis, and have observed that over-expression of BLH1 in yeast leads to an acceleration of the glucose-induced amphiphilic to hydrophilic conversion of Gce1p, wherein Blh1p could either directly catalyse the proteolytic removal of the polar headgroup of the GPI anchor subsequent to an initial lipolytic cleavage by a GPI-specific phospholipase C or indirectly modulate the reaction. The data show that a thiol protease is involved, but point to an indirect role of Blh1p in GPI processing. Proteases with similar or overlapping substrate specificity are likely to exist, since deletion of BLH1 neither entails a growth defect on any carbon source tested, nor the loss of proteolytic processing of the GPI anchor of Gce1p. Reduced proteolytic GPI processing is, however, observed in the blh1 mutant and the corresponding acceleration in the respective BLH1 multi-copy transformant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0983
    Keywords: Key wordsSaccharomyces bayanus ; Saccharomyces cerevisiae ; Translocation ; Speciation ; Duplicated gene ; RPL2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By a genomic comparison of two sibling yeasts, Saccharomyces bayanus and S. cerevisiae, we previously demonstrated that chromosomes II and IV of S. cerevisiae were rearranged into chromosomes 12 and 14 of S. bayanus or vice versa. In the present study we have delimited the translocation break sites in chromosomes II and IV by Southern hybridization using DNA fragments of S. cerevisiae cosmid clones as probes. The results suggest that the reciprocal translocation of chromosomes II and IV had occurred at duplicated RPL2 loci. Furthermore, the translocation sites in S. bayanus were confirmed by the cloning and sequence analysis of the regions flanking RPL2 loci. Several genes in the regions flanking the RPL2 loci were present in the order expected for a translocation at these loci between the two species. These results indicated that the reciprocal translocation between chromosomes II and IV was generated by homologous recombination at duplicated RPL2 loci on the two chromosomes. Therefore, we propose that duplicated genes or duplicated regions play an important role in altering genomic organization during the speciation of S. bayanus and S. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 1432-0983
    Keywords: Key words Fructose-1 ; 6-bisphosphatase ; Catabolite repression ; Gluconeogenesis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have investigated the effect of different carbon sources and of different mutations on the capacity of two elements, UAS1 and UAS2, from the promoter of the FBP1 gene to form specific DNA-protein complexes and to activate expression of a reporter gene. The complexes are observed with nuclear extracts from yeast derepressed on glycerol or ethanol. When hxk2 mutants are grown on glucose the nuclear extracts are able to complex UAS1 but not UAS2, while for wild-type cells grown on galactose only the complex with UAS2 is formed. In contrast, in vivo the operation of both UASs is high in ethanol, moderate to low in glycerol, and negligible in galactose; no expression is observed in glucose even in a hxk2 background. There is no effect of a MIG1 deletion, either in the formation of DNA-protein complexes or on the expression of reporter genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; HEM13 regulation ; Heme and oxygen ; CYP1, ROX1, SSN6, TUP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae HEM13 gene codes for coproporphyrinogen oxidase (CPO), an oxygen-requiring enzyme catalysing the sixth step of heme biosynthesis. Its transcription is increased 40–50-fold in response to oxygen- or heme-deficiency. We have analyzed CPO activity and HEM13 mRNA levels in a set of isogenic strains carrying single or double deletions of the CYP1 (HAP1), ROX1, SSN6, or TUPI genes. The cells were grown in the presence or absence of oxygen and under heme-deficiency (hem1Δ background). Both Rox1p and Cyp1p partially repressed HEM13 in aerobic heme-sufficient cells, probably in an independent manner. In the absence of heme, Cyp1p activated HEM13 and strongly repressed ROX1, allowing de-repression of HEM13. Cyp1p had no effect on HEM13 expression in anaerobic cells. Deletions of SSN6 or TUP1 dramatically de-repressed HEM13 in aerobic cells. A series of deletions in the HEM13 promoter identified at least four regulatory regions that are required for HEM13 regulation. Two regions, containing motifs similar to the Rox1p consensus sequences, act as repression sites under aerobic growth. The two other sites act as activation sequences required for full induction under oxygen- or heme-deficiency. Taken together, these results suggest that induction of HEM13 occurs in part through relief of repression exerted by Rox1p and Cyp1p, and in part by activation mediated partly by Cyp1p under heme-deficiency and by unknown factors under oxygen-deficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 1432-0983
    Keywords: α-Amylase ; Lipomyces kononenkoae ; LKA1 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A highly active α-amylase (76 250 Da) secreted by the raw starch-degrading yeast Lipomyces kononenkoae strain IGC4052B was purified and characterized. Using high performance liquid chromatography (HPLC), end-product analysis indicated that the L. kononenkoae α-amylase acted by endo-hydrolysis on glucose polymers containing α-1,4 and α-1,6 bonds, producing mainly maltose, maltotriose and maltotetraose. The following NH2-terminal amino acids were determined for the purified enzyme: Asp-Cys-Thr-Thr-Val-Thr-Val-Leu-Ser-Ser-Pro-Glu-Ser-Val-Thr-Gly. The L. kononenkoae α-amylase-encoding gene (LKA1), previously cloned as a cDNA fragment, was expressed in Saccharomyces cerevisiae under the control of the PGK1 promoter. The native signal sequence efficiently directed the secretion of the glycosylated protein in S. cerevisiae. De-glycosylation of the enzyme indicated that post-translational glycosylation is different in S. cerevisiae from that in L. kononenkoae. Zymogram analysis indicated that glycosylation of the protein in S. cerevisiae had a negative effect on enzyme activity. Southern-blot analysis revealed that there is only a single LKA1 gene present in the genome of L. kononenkoae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 29 (1996), S. 227-233 
    ISSN: 1432-0983
    Keywords: Trichoderma reesei ; β-Glucosidase ; Cellulase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An intronless form of thebgl1 gene encoding an extracellularβ-glucosidase fromTrichoderma reesei was expressed in the yeast Saccharomyces cerevisiae under the control of the yeast GAL 1 promoter. Transformation of a yeast strain with this vector resulted in transformants that produce and secrete activeβ-glucosidase into the growth medium. Additionally, active recombinantβ-glucosidase protein was shown to be localized predominantly in the periplasmic space by using ap-nitrophenylβ-D-glycoside hydrolysis assay against fractionated yeast cells. The apparent size of the recombinant enzyme was 10–15 kDa larger than that of the native form. Treatment of the recombinantβ-glucosidase with endoglycosidase-H indicated the apparent increase in size was due to N-linked glycosylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 29 (1996), S. 227-233 
    ISSN: 1432-0983
    Keywords: Key words  Trichoderma reesei ; β-Glucosidase ; Cellulase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   An intronless form of the bgl1 gene encoding an extracellular β-glucosidase from Trichoderma reesei was expressed in the yeast Saccharomyces cerevisiae under the control of the yeast GAL1 promoter. Transformation of a yeast strain with this vector resulted in transformants that produce and secrete active β-glucosidase into the growth medium. Additionally, active recombinant β-glucosidase protein was shown to be localized predominantly in the periplasmic space by using a p-nitrophenyl β-D-glycoside hydrolysis assay against fractionated yeast cells. The apparent size of the recombinant enzyme was 10–15 kDa larger than that of the native form. Treatment of the recombinant β-glucosidase with endoglycosidase-H indicated the apparent increase in size was due to N-linked glycosylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1432-0983
    Keywords: Key words Adenine biosynthesis ; ade8-18 ; ade2 mutations ; Red/white colony color assay ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the yeast Saccharomyces cerevisiae the ade2, and/or the ade1, mutation in the adenine biosynthetic pathway leads to the accumulation of a cell-limited red pigment, while epistatic mutations in the same pathway, i.e. ade8, preclude this phenomenon, resulting in normal white colonies. The shift in color from red to white (or vice versa) with a combination of appropriate wild-type and mutant alleles of the adenine-pathway genes has been widely utilized as a non-selective phenotype to visualise and quantify the occurrence of various genetic events such as recombination, conversion and aneuploidy. It has provided an invaluable tool for the study of gene dosage and plasmid stability. In competition experiments between disrupted ade2, ade8-18 transformants carrying either a functional or non-functional episomal ADE8 gene, we verified that white ade8 ade2 cells show a remarkable selective advantage over red ade2 cells, with important implications on the use of this assay for the monitoring of genetic events. The accumulation of the red pigment in ade2 cells is likely to be the cause for impaired growth in these cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 34 (1998), S. 138-145 
    ISSN: 1432-0983
    Keywords: Key words Cytochrome c oxidase ; Saccharomyces cerevisiae ; Complex assembly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We report on the molecular and biochemical analysis of a set of 13 respiratory deficient mutants of Saccharomyces cerevisiae which are specifically altered in COX1, the gene encoding the subunit Cox1p of cytochrome c oxidase. DNA sequence analysis shows that three are due to frameshift mutations, two to nonsense mutations, and eight to missense mutations. All, except the missense mutant S157L, have impaired electron transfer and respiratory activity. Analysis of the mitochondrial translation products shows that when Cox1p is absent, Cox2p and Cox3p are still synthesized. In the missense mutants, the steady state levels in the mitochondrial membranes of the three mitochondrially encoded subunits Cox1p, Cox2p and Cox3p and the nuclear-encoded subunit Cox4p are reduced. In the frameshift and nonsense mutants, Cox1p is absent and Cox2p, Cox3p and Cox4p are considerably decreased or undetectable. A comparison of the steady state levels of Cox1p through Cox4p in the COX1, COX2, COX3 and COX4 mutants shows the interdependance of the accumulation of these four subunits in the mitochondrial membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0983
    Keywords: Key words RAD6 ; Ubiquitin-conjugating enzymes ; Saccharomyces cerevisiae ; Arabidopsis thaliana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract AtUBC2 of Arabidopsis thaliana encodes a structural homolog of the RAD6 gene of Saccharomyces cerevisiae with approximately 65% identical amino acids. Like structural homologs from other organisms, AtUBC2 lacks the carboxyl-terminal extension of mostly acidic amino acids which is present in Rad6p. AtUBC2 was expressed in S. cerevisiae rad6 mutants. It was found to partially complement the UV sensitivity and reduced growth rate of rad6 mutants at elevated temperatures. AtUBC2 however, has no apparent influence on the degradation of N-end rule substrates in the heterologous host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1432-072X
    Keywords: Isocitrate lyase ; n-Alkane-utilizable yeast ; Candida tropicalis ; Saccharomyces cerevisiae ; Promoters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at-394 to-379 and regulated gene expression in S. cerevisiae; the other was tocated near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-072X
    Keywords: Key words Isocitrate lyase ; n-Alkane-utilizable yeast ; Candida tropicalis ; Saccharomyces cerevisiae ; Promoters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at –394 to –379 and regulated gene expression in S. cerevisiae; the other was located near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-072X
    Keywords: Key words Plasma membrane H+-ATPase ; Saccharomyces cerevisiae ; Low pH ; PMA1 gene expression ; PMA2 gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of Saccharomyces cerevisiae grown in media with an initial pH of 2.5–6.0, acidified with a strong acid (HCl), exhibited the highest plasma membrane H+-ATPase-specific activity at an initial pH of 6.0. At a lower pH (above pH 2.5) ATPase activity (62–83% of the maximum level) still allowed optimal growth. At pH 2.5, ATPase activity was about 30% of the maximum value and growth was impaired. Quantitative immunoassays showed that the content of ATPase protein in the plasma membrane was similar across the entire pH range tested, although slightly lower at pH 2.5. The decrease of plasma membrane ATPase activity in cells grown at low pH was partially accounted for by its in vitro stability, which decreased sharply at pH below 5.5, although the reduction of activity was far below the values expected from in vitro measurements. Yeast growth under acid stress changed the pattern of gene expression observed at optimal pH. The level of mRNA from the essential plasma-membrane-ATPase-encoding gene PMA1 was reduced by 50% in cells grown at pH 2.5 as compared with cells grown at the optimal pH 5.0, although the content of ATPase in the plasma membrane was only modestly reduced. As observed in response to other kinds of stress, the PMA2 promoter at the optimal pH was up to eightfold more efficient in cells grown at pH 2.5, although it remained several hundred times less efficient than that of the PMA1 gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-072X
    Keywords: Key words Plasma membrane H+-ATPase ; PMA1 ; ATPase ; PMA2 ATPase ; Saccharomyces cerevisiae ; Copper stress ; Copper tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The major yeast plasma membrane H+-ATPase is encoded by the essential PMA 1 gene. The PMA 2 gene encodes an H+-ATPase that is functionally interchangeable with the one encoded by PMA 1 , but it is expressed at a much lower level than the PMA 1 gene and it is not essential. Using genetically manipulated strains of Saccharomyces cerevisiae that exclusively synthesize PMA1 ATPase or PMA2 ATPase under control of the PMA1 promoter, we found that yeast cultivation under mild copper stress leads to a similar activation of PMA2 and PMA1 isoforms. At high inhibitory copper concentrations (close to the maximum that allowed growth), ATPase activity was reduced from maximal levels; this decrease in activity was less important for PMA2 ATPase than for PMA1 ATPase. The higher tolerance to high copper stress of the artificial strain synthesizing PMA2 ATPase exclusively, as compared to that synthesizing solely PMA1 ATPase, correlated both with the lower sensitivity of PMA2 ATPase to the deleterious effects of copper in vivo and with its higher apparent affinity for MgATP, and suggests that plasma membrane H+-ATPase activity plays a role in yeast tolerance to copper.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 1432-072X
    Keywords: Key words Plasma membrane H+-ATPase ; Saccharomyces cerevisiae ; Copper stress ; PMA1 ; PMA2 ; Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of Saccharomyces cerevisiae exibited a more active plasma membrane H+-ATPase during growth in media supplemented with CuSO4 concentrations equal to or below 1 mM than did cells cultivated in the absence of copper stress. Maximal specific activities were found with 0.5 mM CuSO4. ATPase activity declined when cells were grown with higher concentrations up to 1.5 mM (the maximal concentration that allowed growth), probably due to severe disorganization of plasma membrane. Cu2+-induced maximal activation was reflected in an increase of V max (approximately threefold) and in the slight decrease of the K m for MgATP (from 0.93 ± 0.13 to 0.65 ± 0.16 mM). The expression of the gene encoding the essential plasma membrane ATPase (PMA1) was reduced with a dose-dependent pattern in cells grown with inhibitory concentrations of copper, while the weakly expressed PMA2 gene promoter was moderately more efficient in cells cultivated under mild copper stress (1.5-fold maximal activation). ATPase was activated by copper despite the slightly lower content of ATPase protein in the plasma membrane of Cu2+-grown cells and the powerful inhibitory effect of Cu2+ in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 14 (1995), S. 514-522 
    ISSN: 1476-5535
    Keywords: Saccharomyces cerevisiae ; Molecular taxonomy ; Classification ; Alcoholic fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Archaic speculations and firmly established legends regarding the origin of the yeastSaccharomyces cerevisiae and related species are revisited in light of past and recent ecological evidence pointing to a strict association with artificial, man-made environments such as wineries and fermentation plants. The nomenclature within this industrially important group is also discussed in view of the modifications imposed from application of molecular techniques to classification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 16 (1996), S. 102-109 
    ISSN: 1476-5535
    Keywords: Millet ; Pennisetum typhoides ; liquefaction ; saccharification ; baker's yeast ; Saccharomyces cerevisiae ; fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4-α-d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4-α-d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h−1, biomass yield coefficient of 0.5 g g−1 and feed substrate concentration of 200 g L−1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L−1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g−1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1573-4919
    Keywords: argininosuccinate synthetase ; mitochondria ; hormones ; rat liver ; urea cycle ; perinatal period
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The urea cycle takes place in the hepatocyte of ureothelic animals. The conversion of ammonia into urea involves five reactions. The first 2 take place in the matrix of the mitochondria, the last 2 occur in the cytosol. Argininosuccinate synthetase (AS) is the third reaction of the urea cycle. It catalyses the condensation of citrulline and aspartate into arginonosuccinate. We have previously reported that rat AS activity was present in the cytosol and the outer membrane of the mitochondria. We have shown that, at the activity level, the colocation of AS was changing during fetal and neonatal development and was under the control of corticosteroid and pancreatic hormones. However, an unresolved issue was whether both AS had the same specific activity and that their location was changing during ontogenesis or that the specific activities of mitochondrial and cytosolic enzymes were different and/or modified during this period. In the present report, we compared the compartmentalization of AS activity and protein level in the fetus, the new-born and the adult rat and the role of corticosteroid and pancreatic hormones. Specific activities of both AS remained unchanged during ontogenesis. Glucocorticoids induced an increase in mitochondrial AS while glucagon appeared to induce a concomitant decrease in the level of mitochondrial AS and an increase in cytosolic AS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1573-4919
    Keywords: mitochondria ; thyroid hormone ; skeletal muscle ; cardiac muscle ; cytochrome c ; development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The effect of thyroid hormone on the expression of mitochondrial proteins was evaluated during development by measuring cytochrome c oxidase (CYTOX) activity and cytochrome c protein and mRNA levels in heart and skeletal muscle of control and hypothyroid rats. Animals were killed at the late fetal, early, and late postnatal stages up to 56 days of age. In heart, CYTOX activity increased 2.3-fold above the fetal level throughout development, most of which occurred prior to 2 days of age. No increase was observed in muscle. CYTOX activity was reduced in hypothyroid animals throughout development in heart compared to controls (by 50% at 56 days), but in muscle no effect of hypothyroidism was observed. In muscle and heart 4- and 1.5-fold increases in cytochrome c above the fetal level were evident by 1 day of age, with further increases to 8.5- and 2.7-fold by 56 days, respectively. The increase in cytochrome c differed from the increase in CYTOX, indicating changes in mitochondrial composition. Hypothyroidism reduced cytochrome c in muscle by 30–35% at 56 days, but had no effect in heart, indicating a muscle type-specific effect of thyroid hormone on cytochrome c protein expression. Cytochrome c mRNA increased rapidly to 4–5 fold above the fetal level in both heart and muscle by 6 h post-partum. Between 7 and 56 days of age, further increases to 6- and 25-fold were observed in muscle and heart, respectively. In muscle, the 6-fold developmental increase in mRNA paralleled that of the protein, suggesting transcriptional regulation. In heart, the large 25-fold increase in cytochrome c mRNA far exceeded that of cytochrome c protein between the fetal stage and 56 days (2.7-fold), indicating post-transcriptional regulation. Hypothyroidism reduced cytochrome c protein in muscle, but had no effect on mRNA. In contrast, hypothyroidism reduced cytochrome c mRNA in heart, without a change in cytochrome c protein. Thus, both transcriptional and post-transcriptional effects of thyroid hormone on the expression of mitochondrial proteins in the two types of striated muscle were evident. These effects were tissue-specific, developmentally-regulated, and uncoordinated among nuclear-encoded proteins. Further, large developmental increases in cytochrome c mRNA and protein levels can occur between the fetal stage and early post-natal time points (6–24 h) in both heart and muscle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1573-4919
    Keywords: muscular diseases ; mitochondria ; MTDNA ; ATP synthase ; human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The expression of several mitochondrial and nuclear genes involved in ATP production was examined in cells cultured from muscle biopsies of patients harboring mitochondrial pathologies. The transcript patterns in muscle cells from the patients affected by carnitine palmitoyl transferase II or 2-ketoglutarate dehydrogenase deficiencies were almost similar to control patterns. In the opposite, patterns were strikingly abnormal in all the other cell cultures from patients with defects in enzymatic complexes involved in oxidative phosphorylation: mitochondrial complex II and III deficiencies, two MELAS syndromes (myopathy, encephalopathy, lactic acidosis and stroke like episodes), a case of Kearns-Sayre syndrome and a case of chronic progressive external ophthalmoplegia. In cultured muscle cells from patients with mtDNA mutations, the percentage of mutated mtDNA was low as compared with those determined in the corresponding skeletal muscle biopsy. Moreover, the complex II defect resulting of a nuclear mutation was not expressed in the cell cultures. Thus, an undetermined transcriptional event, transmitted from muscle biopsies to cultured muscle cells, should be involved to account for such abnormal transcript patterns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1573-4919
    Keywords: porphyrin derivative ; mitochondria ; ascites ; singlet oxygen ; photosensitization ; lipid peroxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract With a view to locate porphyrins for use in photodynamic therapy (PDT), the new modality of cancer treatment we have evaluated the ability of a novel water soluble porphyrin meso-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (T4CPP) to induce damage to mitochondria during photosensitization. T4CPP, when exposed to visible light, induced lipid peroxidation in rat liver mitochondria as assessed by the formation of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and lipid hydroperoxides (LOOH). The effect on mitochondrial function was assessed by estimating the activity of succinate dehydrogenase (SDH). The peroxidation induced was observed to be time- and concentration- dependent. Analysis of product formation and selective inhibition by scavengers of reactive oxygen species showed that the oxidative damage observed was mainly due to singlet oxygen (1O2) and partly due to other reactive species. T4CPP plus light also caused significant lipid peroxidation in Sarcoma 180 ascites tumour mitochondria. Our studies indicate that T4CPP has the potential to photoinduce damage in hepatic and ascites mitochondria, a crucial site of damage in PDT. (Mol Cell Biochem 166: 25-33, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 169 (1997), S. 95-106 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; N-glycosylation ; dolichol pathway ; ALG7 ; post-transcriptional regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The yeast ALG7 gene functions by initiating the synthesis of the dolichol-linked oligosaccharide precursor and plays an important role in the control of protein N-glycosylation. The levels of ALG7 multiple transcripts are modulated by the physiological status of the cell and environmental cues, and deregulation of their abundance is deleterious to several cellular functions. Since ALG7 mRNAs are unstable, we investigated the role of these transcripts' half-lives in determining their steady-state levels. Using a temperature-sensitive RNA polymerase II mutant, we demonstrate that increased stability was the primary determinant of higher ALG7 mRNA abundance in response to glucose limitation or treatment with tunicamycin. In contrast, at the G1/G0 transition point, changes in the decay rates were inversely related to ALG7 transcript accumulation: the decreased abundance of ALG7 mRNAs following exit from the mitotic cycle was associated with lengthening of the decay rates, while their increased accumulation after growth stimulation correlated with decreased stability. This suggests that, depending on the circumstance, mRNA half-lives can either directly determine the level of ALG7 transcript accumulation or oppose regulatory changes at other control levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 174 (1997), S. 325-328 
    ISSN: 1573-4919
    Keywords: ageing ; theory ; mitochondria ; respiratory chain ; mitochondrial DNA mutations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Mitochondria are believed to be involved in human ageing. Whilst it is clear that various mitochondrial DNA mutations do accumulate in human tissues with age, whether or not they interfere with respiratory chain function is uncertain. We question the results of previous studies which have measured respiratory chain function in human skeletal muscle with age. Whilst cytochrome c oxidase deficient fibres are a real finding in skeletal muscle, the contribution of mitochondrial DNA mutations to human ageing is still controversial. Our results show for mitochondria to be involved in ageing then it must be through a more subtle mechanism than a global decline in respiratory chain function. (Mol Cell Biochem 174: 325–328, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 149-150 (1995), S. 203-212 
    ISSN: 1573-4919
    Keywords: calcium ; mitochondria ; FAD-glycerol 3-phosphate dehydrogenase ; pyruvate dehydrogenase ; oxoglutarate dehydrogenase ; isocitrate dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In mammalian cells, increases in calcium concentration cause increases in oxidative phosphorylation. This effect is mediated by the activation of four mitochondrial dehydrogenases by calcium ions; FAD-glycerol 3-phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol 3-phosphate dehydrogenase, being located on the outer surface of the inner mitochondrial membrane, is exposed to fluctuations in cytoplasmic calcium concentration. The other three enzymes are located within the mitochondrial matrix. While the kinetic properties of all of these enzymes are well characterised, the molecular basis for their regulation by calcium is not. This review uses information derived from calcium binding studies, analysis of conserved calcium binding motifs and comparison of amino acid sequences from calcium sensitive and non-sensitive enzymes to discuss how the recent cloning of several subunits from the four dehydrogenases enhances our understanding of the ways in which these enzymes bind calcium. FAD-glycerol 3-phosphate dehydrogenase binds calcium ions through a domain which is part of the polypeptide chain of the enzyme. In contrast, it is possible that the calcium sensitivity of the other dehydrogenases may involve separate calcium binding subunits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 1573-4919
    Keywords: mitochondria ; oxygen consumption ; top-down elasticity analysis ; energy dense diet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We studied the relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. We conceptually divided the system into blocks of reactions that produced or consumed mitochondrial membrane potential and then measured the kinetic response of these blocks of reactions to this potential using NAD-linked and FAD-linked substrates. We show that decreased respiration rate with an NAD-linked substrate is accounted for by decreased kinetic response of the substrate oxidation pathway to the potential. No variation in the kinetic response of the above blocks of reactions to the potential was found using an FAD-linked substrate. These results indicate that FAD-linked and NAD-linked pathways are differently affected in rats fed an energy dense diet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1573-4919
    Keywords: mitochondria ; respiration ; metabolism ; adenosine triphosphate ; calories ; diet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In this work the protonmotive force (Δp), as well as the subcellular distribution of malate, ATP, and ADP were determined in perfused liver from rats fed a low fat or high fat diet, using density gradient fractionation in non acqueous solvents. Rats fed a high fat diet, despite an enhanced hepatic oxygen consumption, exhibit similar Δp to that found in rats fed a low fat diet, but when we consider the two components of Δp, we find a significant decrease in mitochondrial/cytosolic pH difference (ΔpHm) and a significant increase in mitochondrial membrane potential (ΔΨm) in rats fed a high fat diet compared to rats fed a low fat diet, which tend to compensate each other. In rats fed a high fat diet the concentration ratio of malate and ATP/ADP does not reflect the changes in ΔpHm and ΔΨm, which represent the respective driving force for their transport. The findings are in line with an increase in substrate supply to the respiratory chain which is, however, accompanied by a higher energy turnover in livers from HFD rats. By this way the liver could contribute to the lack of weight gain from the high caloric intake in HFD rats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 1573-4919
    Keywords: oxidative phosphorylation ; leak ; slip ; almitrine mechanistic change in stoichiometry ; fatty acid ; yeast ; rat liver ; mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The purpose of this work was to show how the quantitative definition of the different parameters involved in mitochondrial oxidative phosphorylation makes it possible to characterize the mechanisms by which the yield of ATP synthesis is affected. Three different factors have to be considered: (i) the size of the different forces involved (free energy of redox reactions and ATP synthesis, proton electrochemical difference); (ii) the physical properties of the inner mitochondrial membrane in terms of leaks (H+ and cations); and finally (iii) the properties of the different proton pumps involved in this system (kinetic properties, regulation, modification of intrinsic stoichiometry). The data presented different situations where one or more of these parameters are affected, leading to a different yield of oxidative phosphorylation. (1) By manipulating the actual flux through each of the respiratory chain units at constant protonmotive force in yeast mitochondria, we show that the ATP/O ratio decreases when the flux increases. Moreover, the highest efficiency was obtained when the respiratory rate was low and almost entirely controlled by the electron supply. (2) By using almitrine in different kinds of mitochondria, we show that this drug leads to a decrease in ATP synthesis efficiency by increasing the H+/ATP stoichiometry of ATP synthase (Rigoulet M et al. Biochim Biophys Acta 1018: 91-97, 1990). Since this enzyme is reversible, it was possible to test the effect of this drug on the reverse reaction of the enzyme i.e. extrusion of protons catalyzed by ATP hydrolysis. Hence, we are able to prove that, in this case, the decrease in efficiency of oxidative phosphorylation is due to a change in the mechanistic stoichiometry of this proton pump. To our knowledge, this is the first example of a modification in oxidative phosphorylation yield by a change in mechanistic stoichiometry of one of the proton pumps involved. (3) In a model of polyunsaturated fatty acid deficiency in rat, it was found that non-ohmic proton leak was increased, while ohmic leak was unchanged. Moreover, an increase in redox slipping was also involved, leading to a complex picture. However, the respective role of these two mechanisms may be deduced from their intrinsic properties. For each steady state condition, the quantitative effect of these two mechanisms in the decrease of oxidative phosphorylation efficiency depends on the values of different fluxes or forces involved. (4) Finally the comparison of the thermokinetic data in view of the three dimensional-structure of some pumps (X-ray diffraction) also gives some information concerning the putative mechanism of coupling (i.e. redox loop or proton pump) and their kinetic control versus regulation of mitochondrial oxidative phosphorylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 67-79 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; spheroplast ; permeabilization ; mitochondria ; oxidative phosphorylation ; porin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In this work, we first compared yeast mitochondrial oxidative metabolism at different levels of organization: whole cells (C), spheroplasts (S), permeabilized spheroplasts (PS) or isolated mitochondria (M). At present, S are more suitable for use than C for biochemical techniques such as fast extraction of metabolises and permeabilization. We show here that respiratory rates of S with various substrates are similar to C, which demonstrate that they are adapted to yeast bioenergetic studies. It appeared from ethanol metabolism ± NAD++ or NADH respiratory rates on PS that ethanol metabolism was largely cytosolic; moreover, the activity of NADH dehydrogenase was lesser in the case of PS than in S. By comparing PS and M, the biggest difference concerned the respiratory rates of pyruvate and pyruvate-malate, which were much lower for M. Thus mitochondria preparation caused an unidentified loss involved directly in pyruvate metabolism. When the respiratory rate was lowered as a consequence of a high kinetic control of oxidative activity upstream from the respiratory chain, a similar correlation between the increase in ATP/O and decrease in respiratory rate was observed. So, the intrinsic uncoupling of proton pumps is not a particularity of M. Secondly, we demonstrate the existence of a mechanism of retarded diffusion in yeast similar to that already observed in permeabilized mammalian cells for ADP. Such a mechanism also occurs in yeast for several respiratory substrates: the K0.5 for each substrate toward the respiration rate in PS always exceeds that for M. It is proposed that such a discrepancy is due to a restriction of metabolite movement across the outer mitochondrial membrane in permeabilized cells, i.e. regulation of the substrate permeability through porin channels. In the porin-deficient yeast mutant, the K0.5 for NADH is not significantly different in either M or PS and is comparable to that of the parent strain PS. This result confirms that this retarded diffusion is essentially due to the opening-closing of the porin channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 231-247 
    ISSN: 1573-4919
    Keywords: mitochondria ; compartmentation ; myofilaments ; contraction ; ATPase ; translocase ; ventricle ; atria ; calcium sensitivity ; oxygen consumption ; oxidative capacity ; creatine ; rigor tension ; active tension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Creatine kinase (CK) isoenzymes are present in all vertebrates. An important property of the creatine kinase system is that its total activity, its isoform distribution, and the concentration of guanidino substrates are highly variable among species and tissues. In the highly organized structure of adult muscles, it has been shown that specific CK isoenzymes are bound to intracellular compartments, and are functionally coupled to enzymes and transport systems involved in energy production and utilization. It is however, not established whether functional coupling and intracellular compartmentation are present in all vertebrates. Furthermore, these characteristics seem to be different among different muscle types within a given species. This study will review some of these aspects. It has been observed that: (1) In heart ventricle, CK compartmentation and coupling characterize adult mammalian cells. It is almost absent in frogs, and is weakly present in birds. (2) Efficient coupling of MM-CK to myosin ATPase is seen in adult mammalian striated muscles but not in frog and bird heart where B-CK is expressed instead of M-CK. Thus, the functional efficacy of bound MM-CK to regulate adenine nucleotide turnover within the myofibrillar compartment seems to be specific for muscles expressing M-CK as an integral part of the sarcomere. (3) Mi-CK expression and/or functional coupling are highly tissue and species specific; moreover, they are subject to short term and long term adaptations, and are present late in development. The mitochondrial form of CK (mi-CK) can function in two modes depending on the tissue: (i) in an ≪ADP regeneration mode≫ and (ii) in an ≪ADP amplification mode≫. The mode of action of mi-CK seems to be related to its precise localization within the mitochondrial intermembrane space, whereas its amount might control the quantitative aspects of the coupling. Mi-CK is highly plastic, making it a strong candidate for fine regulation of excitation-contraction coupling in muscles and for energy transfer in cells with large and fluctuating energy demands in general. (4) Although CK isoforms show a binding specificity, the presence of a given isoform within a tissue or a species only, does not predict its functional role. For example, M-CK is expressed before it is functionally compartmentalized within myofibrils during development. Similarly, the presence of ubiquitous or sarcomeric mi-CK isoforms, is not an index of functional coupling of mi-CK to oxidative phosphorylation. (5) Amongst species or muscles, it appears that a large buffering action of the CK system is associated with rapid contraction and high glycolytic activity. On the other hand, an oxidative metabolism is associated with isoform diversity, increased compartmentation, a subsequent low buffering action and efficient phosphotransfer between mitochondria and energy utilization sites. It can be concluded that, in addition to a high variation of total activity and isoform expression, the role of the CK system also critically depends on its intracellular organization and interaction with energy producing and utilizing pathways. This compartmentation will determine the high cellular efficiency and fine specialization of highly organized and differentiated muscle cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1573-4919
    Keywords: heart ; oxidative phosphorylation ; dynamic responses ; metabolic wave ; creatine kinase ; compartmentation ; mitochondria ; adenine nucleotides ; oxygen consumption ; NMR stunning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Although usually steady-state fluxes and metabolite levels are assessed for the study of metabolic regulation, much can be learned from studying the transient response during quick changes of an input to the system. To this end we study the transient response of O2 consumption in the heart during steps in heart rate. The time course is characterized by the mean response time of O2 consumption which is the first statistical moment of the impulse response function of the system (for mono-exponential responses equal to the time constant). The time course of O2 uptake during quick changes is measured with O2 electrodes in the arterial perfusate and venous effluent of the heart, but the venous signal is delayed with respect to O2 consumption in the mitochondria due to O2 diffusion and vascular transport. We correct for this transport delay by using the mass balance of O2, with all terms (e.g. O2 consumption and vascular O2 transport) taken as function of time. Integration of this mass balance over the duration of the response yields a relation between the mean transit time for O2 and changes in cardiac O2 content. Experimental data on the response times of venous [O2] during step changes in arterial [O2] or in perfusion flow are used to calculate the transport time between mitochondria and the venous O2 electrode. By subtracting the transport time from the response time measured in the venous outflow the mean response time of mitochondrial O2 consumption (tmito) to the step in heart rate is obtained. In isolated rabbit heart we found that tmito to heart rate steps is 4-12 s at 37°C. This means that oxidative phosphorylation responds to changing ATP hydrolysis with some delay, so that the phosphocreatine levels in the heart must be decreased, at least in the early stages after an increase in cardiac ATP hydrolysis. Changes in ADP and inorganic phosphate (Pi) thus play a role in regulating the dynamic adaptation of oxidative phosphorylation, although most steady state NMR measurements in the heart had suggested that ADP and Pi do not change. Indeed, we found with 31P-NMR spectroscopy that phosphocreatine (PCr) and Pi change in the first seconds after a quick change in ATP hydrolysis, but remarkably they do this significantly faster (time constant ~2.5 s) than mitochondrial O2 consumption (time constant 12 s). Although it is quite likely that other factors besides ADP and Pi regulate cardiac oxidative phosphorylation, a fascinating alternative explanation is that the first changes in PCr measured with NMR spectroscopy took exclusively place in or near the myofibrils, and that a metabolic wave must then travel with some delay to the mitochondria to stimulate oxidative phosphorylation. The tmito slows with falling temperature, intracellular acidosis, and sometimes also during reperfusion following ischemia and with decreased mitochondrial aerobic capacity. In conclusion, the study of the dynamic adaptation of cardiac oxidative phosphorylation to demand using the mean response time of cardiac mitochondrial O2 consumption is a very valuable tool to investigate the regulation of cardiac mitochondrial energy metabolism in health and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 445-455 
    ISSN: 1573-4919
    Keywords: mitochondria ; transplantable tumors ; rat liver ; near-infrared spectroscopy ; light absorption ; light scattering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In this study, the detailed dependence of light scattering on tissue architecture and intracellular composition has been investigated. Firstly, we simulated the reduced scattering coefficient (μs′) of the rat liver using the Mie theory, the Rayleigh-Debye-Gans approximation and electron microscopy data. Then, the reduced scattering coefficient of isolated rat liver mitochondria, isolated hepatocytes and various rat tissues (i.e. perfused liver, brain, muscle, tumors) was measured at 780 nm by using time-resolved spectroscopy and a sample-substitution protocol. The comparison of the isolated mitochondria data with the isolated hepatocyte and whole liver measurements suggests that the mitochondrial compartment is the primary factor for light propagation in hepatic tissue, thus strengthening the relevance of the preliminary theoretical study. Nevertheless, the possibility that other intracellular components, such as peroxisomes and lysosomes, interfere with light propagation in rat liver is discussed. Finally, we demonstrate that light scattering in normal rat tissues and tumors is roughly proportional to the mitochondrial content, according to estimates of the mitochondrial protein content of the tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 190 (1999), S. 47-54 
    ISSN: 1573-4919
    Keywords: calmodulin ; yeast calmodulin ; Ca2+ binding ; Ca2+ binding protein ; Saccharomyces cerevisiae ; interdomain interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Calmodulin of Saccharomyces cerevisiae has different Ca2+ binding properties from other calmodulins. We previously reported that the maximum number of Ca2+ binding was 3 mol/mol and the fourth binding site was defective, which was different from 4 mol/mol for others. Their macroscopic dissociation constants suggested the cooperative three Ca2+ bindings rather than a pair of cooperative two Ca2+ bindings of ordinary calmodulin. Here we present evidence for yeast calmodulin showing the intramolecular close interaction between the N-terminal half domain and the C-terminal half domain, while the two domains of ordinary calmodulin are independent of each other. We will discuss the relationship of the shape and the shape change caused by the Ca2+ binding to the enzyme activation in yeast. The functional feature of calmodulin in yeast will also be considered, which might be different from the one of vertebrate calmodulin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 196 (1999), S. 163-168 
    ISSN: 1573-4919
    Keywords: Fe(II)citrate ; free radicals ; iron ; lipid peroxidation ; mitochondria ; reactive oxygen species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In this report we study the effect of Fe(III) on lipid peroxidation induced by Fe(II)citrate in mitochondrial membranes, as assessed by the production of thiobarbituric acid-reactive substances and antimycin A-insensitive oxygen uptake. The presence of Fe(III) stimulates initiation of lipid peroxidation when low citrate:Fe(II) ratios are used (≤ 4:1). For a citrate:total iron ratio of 1:1 the maximal stimulation of lipid peroxidation by Fe(III) was observed when the Fe(II):Fe(III) ratio was in the range of 1:1 to 1:2. The lag phase that accompanies oxygen uptake was greatly diminished by increasing concentrations of Fe(III) when the citrate:total iron ratio was 1:1, but not when this ratio was higher. It is concluded that the increase of lipid peroxidation by Fe(III) is observed only when low citrate:Fe(II) ratios were used. Similar results were obtained using ATP as a ligand of iron. Monitoring the rate of spontaneous Fe(II) oxidation by measuring oxygen uptake in buffered medium, in the absence of mitochondria, Fe(III)-stimulated oxygen consumption was observed only when a low citrate:Fe(II) ratio was used. This result suggests that Fe(III) may facilitate the initiation and/or propagation of lipid peroxidation by increasing the rate of Fe(II)citrate-generated reactive oxygen species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-4919
    Keywords: mitochondria ; oxidative stress ; iron ; lipid peroxidation ; membrane permeability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract It is well established that several iron complexes can induce oxidative damage in hepatic mitochondrial membranes by catalyzing the formation of ·OH radicals and/or by promoting lipid peroxidation. This is a relevant process for the molecular basis of iron overload diseases. The present work demonstrates that Fe(II)ATP complexes (5–50μM) promote an oxygen consumption burst in a suspension of isolated rat liver mitochondria (either in the absence or presence of Antimycin A), caused mainly by lipid peroxidation. Fe(II)ATP alone induced small levels of oxygen uptake but no burst. The time course of Fe(II)ATP oxidation to Fe(III)ATP in the extramitochondrial media also reveals a simultaneous ‘burst phase’. The iron chelator Desferal (DFO) or the chain-break antioxidant butylated hydroxytoluene (BHT) fully prevented both lipid peroxidation (quantified as oxygen uptake burst) and mitochondrial swelling. DFO and BHT were capable of stopping the ongoing process of peroxidation at any point of their addition to the mitochondrial suspension. Conversely, DFO and BHT only halted the Fe(II)ATP-induced mitochondrial swelling at the onset of the process. Fe(II)ATP could also cause the collapse of mitochondrial potential, which was protected by BHT if added at the onset of the damaging process. These results, as well as correlation studies between peroxidation and mitochondrial swelling, suggest that a two phase process is occurring during Fe(II)ATP-induced mitochondrial damage: one dependent and another independent of lipid peroxidation. The involvement of lipid peroxidation in the overall process of mitochondrial membrane injury is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 165 (1996), S. 127-133 
    ISSN: 1573-4919
    Keywords: Trypanosoma cruzi ; rat heart ; mitochondria ; oxidative phosphorylation ; FoF1-ATPase ; ATP hydrolysis ; ATP synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The kinetic properties of ATP hydrolysis and synthesis by FoF1-ATPase of heart mitochondria were evaluated during the acute phase of T. cruzi infection in rats. Mitochondria and submitochondrial particles were isolated 7 days (early stage) and 25 days (late stage) following infection of rats with 2 × 105 trypomastigote forms of the Y strain of T. cruzi. The kinetic properties for ATP hydrolysis were altered for the early but not the late stage, showing a changed pH profile, increased K0.5 values, and a decreased total Vmax. The Arrhenius' plot for membrane-associated enzyme showed a higher transition temperature with a lower value for the activation energy in body temperature. For the Triton X-100 - solubilized enzyme, the plot was similar to the control. A decrease in the efficiency of ADP phosphorylation by mitochondria, measured by the firefly-luciferase luminescence, was observed only during the late stage and appeared to be correlated with a decrease in the affinity of the FoF1-ATPase for ADP. It is proposed that in the early stage, during the acute phase of T. cruzi infection in rats, heart FoF1-ATPase undergoes a membrane-dependent conformational change in order to maintain the phosphorylation potential of mitochondria, which would compensate for the uncoupling of mitochondrial function. Also, during both the early and late stages, the enzyme seems to be under the regulation of the endogenous inhibitor protein for the preservation of cellular ATP levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1573-4919
    Keywords: outlet obstruction ; bladder ; mitochondria ; transcription ; RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Using the rabbit model, we showed that partial outlet obstruction of theurinary bladder causes significant changes in the status and expression ofthe mitochondrial (mt) genetic system in bladder smooth muscle immediatelyafter obstruction is initiated. Here we investigate quantitatively theseverity of the mt genetic response to partial outlet obstruction in bothshort- and long-term obstructed rabbits. Based on previous functionalstudies, bladders with mass 〈 6 fold greater than control were consideredcompensated; bladders with mass 〉 6 fold that of control were considereddecompensated. Analyses of DNA from compensated rabbit bladders showed thatrelative mt genome copy number decreased to 30% of control values.Transcript analyses for these samples showed that mt RNA levels increased 3fold to compensate for lower template copy number. Analysis of decompensatedbladders demonstrated that mt genome copy number increased to approximately90% of control levels; mt transcripts progressively decreased inthese samples by as much as 30 fold. In contrast, transcription of amt-related nuclear gene decreased 3-9 fold in compensated bladders butincreased 10-30 fold in decompensated bladders. Activity for the cytochromeoxidase complex, and for the mt enzyme citrate synthase, decreased steadilywith increasing bladder hypertrophy. These data suggest that bladderdysfunction following partial outlet obstruction is mediated partly by asignificant loss in mt and mt-related nuclear gene coordination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1573-4919
    Keywords: calorimetry ; cardiac muscle ; mitochondria ; oxidative phosphorylation ; atractyloside ; dinitrophenol ; ectonucleotidase ; respiratory control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract A novel flow calorimetric technique was developed to study the energy turnover of myocardial mitochondria. Cylindrical strands of cardiac muscle (trabeculae) weighing 100–500 µg were isolated from guinea-pig heart and mounted in a tubular recording chamber which was continuously perfused with physiological salt solution at 37°C. The temperature difference between the upstream and the downstream side of the chamber, which is proportional to the rate of heat production of the trabecula, was measured at high resolution. In this way the rate of energy expenditure of isolated cardiac muscle could be recorded continuously for several hours. When the preparations were superfused with an 'intracellular' solution containing 5 mM pyruvate and 2 mM malate as substrates, permeabilization of the sarcolemma with 25 µM digitonin induced a marked increase in the measured heat rate in the presence of 2 mM ADP. The major fraction of the ADP sensitive heat production (83%) could be blocked with 400 µM at ractyloside, an inhibitor of the adeninenucleotide translocase, and by 600 µM α-cyano-4-hydroxycinnamate, an inhibitor of monocarboxylate/H+ co-transport. The atractyloside sensitive heat production was abolished in anoxic solution. These results suggest that the atractyloside-sensitive heat production (21.8 ± 3.5 mW cm-3 of tissue) was attributable to oxidative phosphorylation. The mitochondria apparently remained intact after treatment with digitonin, since application of the uncoupler 2,4-dinitrophenol (DNP) produced a very large increase in heat rate. A minor fraction of the heat rate induced by ADP in permeabilized cardiac muscle preparations (17%) was not sensitive to atractyloside. This component was also seen before application of digitonin and was probably related to ectonucleotidases. In conclusion, our calorimetric technique allows investigation of the energy metabolism of myocardial mitochondria 'in situ', i.e. without destroying the microarchitecture of cardiac muscle cells. (Mol Cell Biochem 174: 101–113, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 1573-4919
    Keywords: mitochondria ; cyclosporin ; cyclophilin ; channels ; permeability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Mitochondria possess an inner membrane channel, the permeability transition pore, which is inhibited by cyclosporin A (CBA) and by matrix protons. As suggested recently by our laboratory, pore closure by these inhibitors may be due to dissociation of mitochondrial cyclophilin (CyP-M), a matrix peptidyl-prolyl-cis-trans isomerase, from its putative binding site on the pore. Unbinding of CyP-M would follow a CsA-dependent or proton-dependent change in conformation of the CyP-M molecule. It is interesting that upon binding of CsA the enzymatic activity of CyP-M is inhibited, but it is not clear whether this event plays a role in pore inhibition. Here we report experiments designed to further test the role of CyP-M in pore function. Our results indicate that CyP-M-dependent and independent mechanisms of pore activation may exist, and that the peptidylprolyl-cis-trans-isomerase activity of CyP-M is not necessarily involved in pore modulation by CyP-M. (Mol Cell Biochem 174: 181–184, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 1573-4919
    Keywords: mitochondria ; calcium ; permeability transition ; vasopressin ; glucagon ; thapsigargin ; protein kineses and phosphatases ; rat hepatocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Ca2+ functions as an intracellular signal to transfer hormonal messages to different cellular compartments, including mitochondria, where it activates intramitochondrial Ca2+-dependent enzymes. However, excessive mitochondrial Ca2+ uptake can promote the mitochondrial permeability transition (MPT), a process known to be associated with cell injury. The factors controlling mitochondrial Ca2+ uptake and release in intact cells are poorly understood. In this paper, we investigate mitochondrial Ca2+ accumulation in intact hepatocytes in response to the elevation of cytosolic Ca2+ levels ([Ca2+]c) induced either by a hormonal stimulus (vasopressin), or by thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump. After stimulation, cells were rapidly permeabilized for the determination of the mitochondrial Ca2+ content (Ca2+_m) and to analyze the susceptibility of the mitochondria to undergo the MPT. Despite very similar levels of [Ca2+]c elevation, vasopressin and thapsigargin had markedly different effects on mitochondrial Ca2+ accumulation. Vasopressin caused a rapid (〈 90 sec), but modest (〈 2 fold) increase in Ca2+m that was not further increased during prolonged incubations, despite a sustained [Ca2+]c elevation. By contrast, thapsigargin induced a net Ca2+ accumulation in mitochondria that continued for up to 30 min and reached Ca2+_m levels 10–20 fold over basal. Accumulation of mitochondrial Ca2+ was accompanied by a markedly increased susceptibility to undergo the MPT. Both mitochondrial Ca2+ accumulation and MPT activation were modulated by treatment of the cells with inhibitors of protein kineses and phosphatases. The results indicate that net mitochondrial Ca2+ uptake in response to hormonal stimulation is regulated by processes that depend on protein kinase activation. These controls are inoperative when the cytosol is flooded by Ca2+ through artificial means, enabling mitochondria to function as a Ca2+ sink under these conditions. (Mol Cell Biochem 174: 173–179, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 174 (1997), S. 215-219 
    ISSN: 1573-4919
    Keywords: MERRF ; mitochondria ; mtDNA ; genetics ; tRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract MERRF (myoclonic epilepsy with ragged-red fibers) is a severe, multisystem disorder characterized by myoclonus, seizures, progressive cerebellar syndrome, muscle weakness, and the presence of ragged-red fibers in the muscle biopsy. MERRF is associated with heteroplasmic point mutations, either A8344G or T8356C, in the gene encoding the mitochondrial tRNALys. The human ro cell system was utilized to examine the phenotypic consequences of these mutations, and to investigate their molecular genetic causes. Wild-type and mutant transmitochondrial cell lines harboring a pathogenic point mutation at either A8344G or T8356C in the human mitochondrial tRNALys gene were isolated and examined. Mitochondrial transformants containing 100% mutated mitochondrial DNAs (mtDNAs) exhibited severe defects in respiratory chain activity, in the rates of protein synthesis, and in the steady-state levels of mitochondrial translation products as compared with mitochondrial transformants containing 100% wild-type mtDNAs. In addition, both mutant cell lines exhibited the presence of aberrant mitochondrial translation products. These results demonstrate that two different mtDNA point mutations in tRNALys result in fundamentally identical defects at the cellular level, and that these specific protein synthesis abnormalities contribute to the pathogenesis of MERRF. (Mol Cell Biochem 174: 215–219, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1573-4919
    Keywords: diabetes ; carbon tetrachloride ; liver toxicity ; glutathione ; mitochondria ; Schisandra chinensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 158 (1996), S. 161-169 
    ISSN: 1573-4919
    Keywords: heart ; ischemia ; mitochondria ; oxidative phosphorylation ; energy wasting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The purpose of this study was to evaluate the oxidative capacities and the rate of energy synthesis in isolated mitochondria extracted from normal and post-ischemic myocardium. Isolated rat hearts were perfused according to the working mode with a Krebs Heinseleit buffer containing glucose (11 mM), insulin (10 IU/1) and caprylic acid (25 μM). After a 15 min perfusion in normoxic conditions, the hearts were subjected to a 20 min local zero-flow ischemia followed by a 20 min reperfusion. During the perfusion, the aortic and coronary flows, the aortic pressure and the electrocardiogram were monitored. At the end of the reperfusion period, the non-ischemic and ischemic zones (NIZ and IZ, respectively) were separated and the mitochondria were harvested from each zone. The oxygen uptake and the rate of energy production of the NIZ and IZ mitochondria were then assessed with palmitoylcarnitine as substrate in 2 buffers differing in their free calcium concentration (0.041 and 0.150 μM). Ischemia provoked a 50% reduction of coronary and aortic flows. The reperfusion of the IZ allowed the partial recovery of coronary flow, but the aortic flow decreased beneath its ischemic value because of the occurrence of severe arrhythmias, stunning and probably hibernation. The IZ mitochondria displayed a lower rate of oxygen consumption, whatever the buffer free calcium concentration. Conversely, their rate of energy production was increased, indicating that their metabolic efficiency was improved as compared to NIZ mitochondria. This might be due to the mitochondrial calcium overload persisting during reperfusion, to the activation of the inner membrane Na+/Ca2+ exchange and to a significant mitochondrial swelling. On the other hand, the presence of an elevated free calcium concentration in the respiration buffer provoked some energy wasting characterized by a constant AMP production. This was attributed to some accumulation of acetate and the activation of the energy-consuming acetylCoA synthetase. In conclusion, ischemia and reperfusion did not alter the membrane integrity of the mitochondria but improved their metabolic efficiency. Nevertheless, these in vitro results can not reflect the mitochondrial function in the reperfused myocardium. The mitochondrial calcium overload reported to last during reperfusion in the cardiomyocytes might mimic the free calcium-induced reduction of metabolic efficiency observed in vitro in the present study. The resulting energy wasting might be responsible for the contractile abnormalities noticed in the reperfused myocardium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 178 (1998), S. 87-94 
    ISSN: 1573-4919
    Keywords: myocyte ; nonmuscle cell ; myofibril ; mitochondria ; Arrhenius plot ; activation energy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The degree to which developmentally related alterations in cardiac creatine kinase (CK) activity reflect modification of CK isoenzyme gene expression remains uncertain. The present studies addressed this question by assessing multiple aspects of CK in rat heart during the perinatal to adult transition. In addition to whole tissue, isolated and purified muscle and nonmuscle cells were studied, as well as myofibrillar, mitochondrial, and cytosolic subcellular fractions. Whole homogenate CK enzyme specific activity nearly doubled during the weanling to adult developmental period. Muscle cell CK activity increased by a similar magnitude. Nonmuscle cell activity decreased. In the adult heart, both myofibrillar and mitochondrial CK activities were augmented versus the weanling heart. The cytoplasmic fraction activity held constant during development. Electrophoretic isoenzyme analyses of both weanling and adult cardiac muscle cells indicated the presence of mitochondrial CK and MM-CK isoforms. Weanling heart nonmuscle cells contained mitochondrial, MM, MB, and BB isoforms; however, BB isoform was not detected in the adult heart nonmuscle cells. Arrhenius plots provided information regarding heart muscle and nonmuscle cell alterations during development. CK activation energies were also determined for whole tissue, muscle/nonmuscle cells, myofibrils, mitochondria, and cytosol. Results demonstrate that heterogeneous muscle/nonmuscle cellular composition and differential myofibrillar/mitochondrial subcellular composition account for normal, developmentally related changes in heart CK enzyme activity. CK isoenzyme gene expression changes were not detected in cardiac muscle cells, and transition of CK-B to CK-M gene expression is limited to nonmuscle cells during normal, weanling to adult development in the rat heart.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1573-4919
    Keywords: outlet obstruction ; bladder ; mitochondria ; transcription ; RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Partial outlet obstruction of the rabbit urinary bladder causes increased tissue hypertrophy and decreased contractility of that organ; we showed that, in an experimental rabbit model, both correlate closely with alterations in the status and expression of mitochondrial (mt), and mt-related nuclear, genetic parameters in bladder smooth muscle. Here we investigate the rate and overall level of recovery of mt and nuclear genetic function following reversal of outlet obstruction in the same animal model. Release from outlet obstruction at 28 days resulted in improvement in both level of hypertrophy and contractile function in all bladders studied. However, bladders fell into two groups based on whether relative copy mt genome number per cell was above or below that of unobstructed controls. Bladders with high mt DNA content adjusted organellar genome copy number toward normal post-reversal but did not properly adjust mt transcript levels; mt-related nuclear transcripts in these samples showed recovery. Bladders with low mt DNA content showed no adjustment of those levels toward normal post-reversal but did show some adjustment in other mt and nuclear genetic parameters. Thus, a limiting factor for return of normal bladder function following reversal of outlet obstruction may be recovery of normal mt genetic performance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 202 (1999), S. 109-118 
    ISSN: 1573-4919
    Keywords: NF1 mutations ; IRA1 ; Saccharomyces cerevisiae ; RAS2 ; GAP activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The 2818 amino acids of neurofibromin, the product of the human NF1 gene, include a 230 amino acid Ras-GAP related domain (GRD). Functions which may be associated with the rest of the protein remain unknown. However, many NF1 mutations in neurofibromatosis 1 patients are found downstream of the GRD, suggesting that the C-terminal region of the protein is also functionally important. Since the C-terminal region of neurofibromin encompassing these mutations is homologous with the corresponding regions in the two Saccharomyces cerevisiae Ras-GAPs, Ira1p and Ira2p, we chose yeast as a model system for functional exploration of this region (Ira-C region). Three missense mutations that affect the Ira-C region of NF1 were used as a model for the mutagenesis of IRA1. The yeast phenotypes of heat shock sensitivity, iodine staining, sporulation efficiency, pseudohyphae formation, and GAP activity were scored. Even though none of the mutations directly affected the Ira1p-GRD, mutations at two of the three sites resulted in a decrease in the GAP activity present in ira1 cells. The third mutation appeared to disassociate the phenotypes of sporulation ability and GAP activity. This and other evidence suggest an effector function for Ira1p.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 154 (1996), S. 77-82 
    ISSN: 1573-4919
    Keywords: Vitamin A ; rat liver ; microsomes ; mitochondria ; peroxidation chemiluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In the present study we investigated if administration of vitamin A could protect rat liver microsomes and mitochondria from in vitro peroxidation. Appreciable decrease of chemiluminescence and lipid peroxidation was measured in microsomal membranes from rats receiving vitamin A, with respect to control animals. In membranes derived from control animals, the fatty acid composition was profoundly modified when subjected to in vitro peroxidation mediated by ascorbate-Fe++, with a considerable decrease of 20:4 n6 and 22:6 n3 in mitochondria and 18:2 n6 and 20:4 n6 in microsomes. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in supplemented animals than in control group when both kind of membranes were analyzed. These changes were less pronounced in membranes derived from rats receiving vitamin A. These results are in agreement with previous results that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    ISSN: 1573-4919
    Keywords: ATP synthase β-subunit gene ; mitochondria ; thyroid hormone ; (human)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The action of thyroid hormones on the expression of the mitochondrial ATP synthase β-subunit gene (ATPsynβ) is controversial. We detected a binding site for the thyroid hormone receptor between-366 and-380 in the human ATPsynβ gene by DNase I footprint analysis and band-shift assays. However, expression vectors in which the chloramphenicol acetyl transferase (CAT) reporter gene is driven by the 5′ upstream region of ATPsynβ gene were unresponsive to T3 when transiently transfected to HepG2 or GH4C1 cells. CAT constructs driven by the rat phosphoenolpyruvate carboxykinase (PEPCK) or the growth hormone (GH) promoters were stimulated several fold by T3 in parallel experiments. It is proposed that the biological effects of thyroid hormones on the ATPsynβ expression occur through indirect mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1573-4919
    Keywords: heart ; vascular endothelium ; vascular smooth muscle ; confocal microscopy ; pH ; calcium ; sodium ; voltage probe ; heart ; endothelin-1 ; Angiotensin II ; PAF ; nucleus ; mitochondria ; SR ; cardiomyopathy ; cells interaction ; R-type Ca2+ channel ; excitation-contraction coupling ; dystrophic mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In recent years, fluorescence microscopy imaging has become an important tool for studying cell structure and function. This non invasive technique permits characterization, localisation and qualitative quantification of free ions, messengers, pH, voltage and a pleiad of other molecules constituting living cells. In this paper, we present results using various commercially available fluorescent probes as well as some developed in our laboratory and discuss the advantages and limitations of these probes in confocal microscopy studies of the cardiovascular system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1573-4919
    Keywords: thiamine deficiency ; mitochondria ; energy metabolism ; necrosis ; neuroblastoma cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Culture of neuroblastoma cells in the presence of low thiamine concentration (6 nM) and of the transport inhibitor amprolium leads to the appearance of signs of necrosis: the chromatin condenses, the oxygen consumption decreases and is uncoupled, the mitochondrial cristae are disorganized, the thiamine diphosphate-dependent dehydrogenase activities are impaired. When 10 µM thiamine are added to these cells, the basal respiration increases, the coupled respiration is restored and mitochondrial morphology is recovered within 1 h. Addition of succinate, which is oxidized via a thiamine diphosphate-independent dehydrogenase, to digitonin-permeabilized cells immediately restores a coupled respiration. Our results suggest that the slowing of the citric acid cycle is the cause of the biochemical lesion induced by severe thiamine deficiency and that part of the mitochondria remain functional. (Mol Cell Biochem 174: 121–124, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 174 (1997), S. 189-192 
    ISSN: 1573-4919
    Keywords: nitric oxide ; mitochondria ; inflammation ; respiration ; astrocytes ; cytochrome oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Nitric oxide (NO) at high levels is cytotoxic, and may be involved in a range of inflammatory, neurodegenerative, and cardiovascular/ischaemic pathologies. The mechanism of NO-induced cytotoxicity is unclear. Recently we and others have found that low (nanomolar) levels of NO reversibly inhibit mitochondrial respiration by binding to the oxygen binding site of cytochrome oxidase in competition with oxygen. This raises the apparent Km for oxygen of mitochondrial respiration into the physiological range, potentially making respiration sensitive to the oxygen level. The NO inhibition of oxygen consumption was seen in isolated cytochrome oxidase, mitochondria, brain nerve terminals, and cultured cells. Cultured astrocytes activated to express the inducible form of NO synthase produced up to 1 µM NO and strongly inhibited their own cellular respiration rate. This respiratory inhibition was rapidly reversed by removing the NO, and was due to the inhibition of cytochrome oxidase. These results suggest that any cell producing high levels of NO will inhibit its own respiration and that of surrounding cells, and make the respiration rate sensitive to the oxygen level. This inhibition of energy metabolism may contribute to cytotoxity or cytostasis in some pathologies. (Mol Cell Biochem 174: 189–192, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1573-4919
    Keywords: mitochondria ; mitochondrial myopathies ; oxidative phosphorylation ; principal component analysis (PCA) ; biplot
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The mitochondrial pathologies are a heterogeneous group of metabolic disorders that are characterized by anomalies of oxidative phosphorylation, especially in the respiratory chain. The diagnosis of these pathologies involves many investigations among which biochemical study is at present the main tool. However, the analysis of the results obtained during such study remains complex and often does not make it possible to conclude clearly if a patient is affected or not by a biochemical and/or bioenergetic deficiency. This arises from two main problems: 1. The determination of control values from the whole set of variable values (affected and unaffected people). 2. The small size of the population studied and the large number of variables collected which present a rather large variability. To cope with these problems, the principal component analysis method is applied to the results obtained during our biochemical studies. This analysis makes it possible for each respiratory chain complex, to distinguish clearly two subsets of the whole population (affected and unaffected people) as well as to detect the variables which are the most discriminative. (Mol Cell Biochem 174: 149–156, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...