ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (44)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (29)
  • Elsevier  (71)
  • Molecular Diversity Preservation International
  • 2005-2009  (71)
Collection
Years
Year
  • 1
    Publication Date: 2020-10-29
    Description: We present new viscosity measurements for melts spanning a wide range of anhydrous compositions including: rhyolite, trachyte, moldavite, andesite, latite, pantellerite, basalt and basanite. Micropenetration and concentric cylinder viscometry measurements cover a viscosity range of 10−1 to 1012 Pas and a temperature range from 700 to 1650 °C. These new measurements, combined with other published data, provide a high-quality database comprising ∼800 experimental data on 44 well-characterized melt compositions. This database is used to recalibrate the model proposed by Giordano and Dingwell [Giordano, D., Dingwell, D. B., 2003a. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349] for predicting the viscosity of natural silicate melts. The present contribution clearly shows that: (1) the viscosity (η)–temperature relationship of natural silicate liquids is very well represented by the VFT equation [log η=A+B/ (T−C)] over the full range of viscosity considered here, (2) the use of a constant high-T limiting value of melt viscosity (e.g., A) is fully consistent with the experimental data, (3) there are 3 different compositional suites (peralkaline, metaluminous and peraluminous) that exhibit different patterns in viscosity, (4) the viscosity of metaluminous liquids is well described by a simple mathematical expression involving the compositional parameter (SM) but the compositional dependence of viscosity for peralkaline and peraluminous melts is not fully controlled by SM. For these extreme compositions we refitted the model using a temperature-dependent parameter based on the excess of alkalies relative to alumina (e.g., AE/SM). The recalibrated model reproduces the entire database to within 5% relative error (e.g., RMSE of 0.45 logunits).
    Description: Published
    Description: 42–56
    Description: reserved
    Keywords: Viscosity ; Model ; Silicate melts ; Metaluminous ; Peraluminous ; Peralkaline ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 717294 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-29
    Description: Two sets of cooling experiments were run at atmospheric conditions for two anhydrous starting latitic and trachytic melts: 1) five cooling rates (25, 12.5, 3, 0.5, and 0.125 °C/min) between 1300° and 800 °C, and 2) a 11 0.5 °C/min cooling rate from 1300 °C with quench temperatures at 1200°, 1100°, 1000° and 900 °C. Trachytic run-products are invariably glassy. Nucleation is also suppressed in the latitic run-products at the three highest 13 cooling rates. Conversely, in the 0.5 and 0.125 °C/min runs, latites have a crystal content of 90 vol.%. The 14 phases are: plagioclase, clinopyroxene, glass and iron-bearing oxide (in order of abundance). The variable 15 quench temperatures, investigated by coupling experiments with Pt-wire and Pt- capsule sample containers inset 2,again did not produce crystallization of trachyte, whereas latitic samples are characterized by 10 vol.% of oxides, pyroxenes and plagioclase (in order of appearance), at temperature b1000 °C. Effects of (preferential) heterogeneous nucleation on sample holders, of superheating degree, and chemical species loss during cooling are absent for both melt compositions. The difference of solidification paths between these two silicate melts can be ascribed only to their small chemical differences. In comparison with calculated equilibrium conditions all the experimental latitic and trachytic run-products revealed strong kinetic effects, interpretable in the light of the nucleation theory. The glass- forming ability (GFA) of trachyte is higher, whereas their critical cooling rate (Rc) is lower (b0.125 °C/min), in comparison to latitic melts (RcN0.5 °C/min). The experimental results carried out in this study can be applied to lava flows and domes; trachytic lavas are able to flow for longer period with respect to latitic ones in a metastable condition. Glass-rich terrestrial lavas, i.e. obsidians, can be the result of sluggish nucleation kinetics due to the relative high polymerisation of evolved silicate melts.
    Description: Published
    Description: 91-101
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: crystallization ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-07
    Description: The CO2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating gas emissions which characterise the study area. The distribution of the CO2 flux anomalies and the location of high PCO2 springs and gas emissions suggest that the storage and the expulsion of the CO2 toward the atmosphere are controlled by the geological and structural setting of the shallow crust. The average CO2 flux and the total amount of CO2 discharged by the study area were computed using surface heat flow, enthalpy and CO2 molality of the liquid phase circulating in the deep carbonate−evaporite aquifer. The results show that the CO2 flux varies from 1×104 mol y−1 km−2 to 5×107 mol y−1 km−2, with an average value of 4.8×106 mol y−1 km−2, about five times higher than the value of 1×106 mol y−1 derived by Kerrick et al. [Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293] as baseline for terrestrial CO2 emissions. The total CO2 discharged from the study area is 0.9×1011 mol y−1, confirming that Earth degassing from Tyrrhenian central Italy is a globally relevant carbon source
    Description: Published
    Description: 89–102
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth degassing ; carbon dioxide ; CO2 flux ; groundwater ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-29
    Description: Viscosity of hydrous trachytes from the Agnano Monte Spina eruption (Phlegrean Fields, Italy) has been determined at 1.0 GPa and temperatures between 1200 and 1400 °C using the falling sphere method in a piston cylinder apparatus. The H2O content in the melts ranged from 0.18 to 5.81 wt.%. These high-temperature hydrous viscosities, along with previous ones determined at low-temperature (anhydrous and hydrous) and at high-temperature (anhydrous), at 1 atm on the same melt composition, represent the only complete viscosity data set available for K-trachyticmelts, frommagmatic to volcanic conditions.Viscosity decreases with increasing temperature andwater content in the melt.At constant temperature, viscosity appears to significantly decreasewhen the first wt.% ofH2Ois added.At H2O content higher than 3 wt.% the effect of temperature on viscosity is slight. Moreover, the deviation from Arrhenian behaviour towards greater “fragility” occurs with increasing water content. We combined low- and high-temperature viscosities (also from literature) and parameterized themby the use of a modified Vogel–Fulcher–Tamman equation, which accommodates the non-Arrhenian temperature dependence ofmelt viscosity.Moreover, in order to explore the extent to which the improved knowledge of Agnano Monte Spina trachyte viscosity may affect simulation of volcanic eruption at Phlegrean Fields, we included our viscosity models in numerical simulations of magma flow and fragmentation along volcanic conduits. These simulations show that the new parameterizations (and hence the new equations) give stronger predictions in the temperature interval relevant for magmatic and eruptive processes.
    Description: Published
    Description: 124-137
    Description: JCR Journal
    Description: reserved
    Keywords: Viscosity ; Trachyte ; Falling sphere method ; Vogel–Fulcher–Tamman equation ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-25
    Description: We present the first helium isotope data for thermal waters and gas emissions on the islands of Terceira, Graciosa, Faial, Pico and Flores, as well as new data for Sao Miguel. The results allow us to track current mantle degassing associated with the Azores hot spot, to delineate its spatial distribution and to discuss its possible origin. As a general rule, we find that free gases tend to display somewhat higher 3He/4He ratio than groundwaters.We argue that this difference is likely due to radiogenic helium inputs to aquifers duringwater– rock interactions and, therefore, that gas phases are the fluid carriers with the most representative of mantle source signature. The measured 3He/4He ratios (normalized to the air ratio, Ra) range from lower-than-MORB values (5.23–6.07 Ra) on central Sao Miguel, to MORB values on Faial (8.53 Ra) and Flores (8.04 Ra) – located on either side of the Mid-Atlantic Ridge – and to plume-type values on Graciosa (11.2 Ra) and Terceira (13.5 Ra) where free gases also display ten times higher-than-MORB CO2/3He ratios (1.8–2.6×1010). Such a wide He isotopic range and its spatial distribution corroborate with available data for volcanic rocks, indicating that plume's head presently underlies the central part of the archipelago. The plume-type 3He/4He ratios on Terceira and Graciosa agree with geochemical and seismic evidence of a deep-rooted mantle plume feeding the Azores hot spot. Our finding that high 3He/4He ratios correspond to low 3He concentrations and high (arctype) CO2/3He values exclude a simple plume supply of 3He-rich primitive mantle. Instead, the simultaneity of both elevated CO2/3He and 3He/4He ratios is best explained by a 3He-rich contribution from the lower mantle diluted in a CO2-rich feeding plume that contains a recycled altered oceanic plate component. The alternative possibility of an enhanced time-integrated 3He/(U+Th) ratio in the Azores plume due to a greater compatibility of helium relative to U and Th during melting events is difficult to reconcile with the enriched pattern of volcanic rocks from the central islands. In any case, the Azores plume should derive from a mantle reservoir that could escape convective homogenization for a very long period of time, in agreement with subchondritic osmium isotopic ratios in volcanic rocks from the central islands of the archipelago.
    Description: Published
    Description: 70−80
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothemal fluids ; helium isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-27
    Description: The eruptive dynamics of volcanic systems are largely controlled by the viscosity of deforming magma. Here we report the results of a series of high-temperature, high-pressure experiments at conditions relevant for volcanic conduits (250 MPa confining pressure and temperature between 500 °C and 900 °C) that were undertaken to investigate the rheology of magma with crystal fractions varying between 0.5 and 0.8 (50 to 80 wt.%) at different strain-rate conditions. The experiments demonstrate that the presence of crystals increases the relative viscosity (ratio between the viscosity of the mixture and the viscosity of the melt phase) of magmas and additionally induces a decrease of the relative viscosity with increasing strain-rate (shear thinning, non-Newtonian behavior). The experimental results, combined with existing data at low crystal fractions (0–0.3), were used to develop a semi-empirical parameterization that describes the variations of relative viscosity for crystal fractions between 0 and 0.8 and accounts for the complex non-Newtonian rheology of crystal-bearing magmas. The new parameterization, included into numerical models simulating the magma ascent dynamics, reveals that strain-rate-dependent rheology significantly modifies the dynamic behavior inside volcanic conduits, particularly affecting the magma fragmentation conditions.
    Description: Published
    Description: 402-419
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: partially_open
    Keywords: magma rheology ; experimental deformation ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-10-29
    Description: In-situ falling-sphere viscometry using shadow radiography in a multianvil apparatus was conducted on a series of samples along the NaAlSi3O8–H2O join up to 2.8 wt.% H2O at the Spring-8 synchrotron radiation facility (Hyogo, Japan). This allowed us to determine viscosities normally too low to be measured at ambient pressure for hydrous silicate melts at high temperatures due to rapid devolatilization. Pressure was fixed at 2.5 GPa for all experiments allowing us to gauge the effect of chemical composition on viscosity. In particular, the series of samples allowed us to vary the melt's degree of polymerization while maintaining a constant Al to Si ratio. Our results show that, for all samples, viscosity decreases as a function of pressure between 1 atm and 2.5 GPa at 1550 °C, indicating that the pressure anomaly can still be observed as depolymerization of the melt increases from nominally 0 (dry albite liquid) to NBO/T=0.8 (assuming water speciation entirely as hydroxyl groups at experimental conditions). We also find that the magnitude of the decrease in viscosity over this pressure interval does not appear to be dependent on the amount of water in the melt (i.e., NBO/T). An explanation for this behavior might be that the molar volume, at least over this limited compositional range, is nearly constant and the effects of compression of these melts, though different in degree of polymerization, are similar.
    Description: Published
    Description: 2-9
    Description: JCR Journal
    Description: reserved
    Keywords: Viscosity ; Silicate melts ; High pressure ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A review of available and new isotopic data on rocks from Mt. Vesuvius together with geophysical and mineralogical data allow us to define a ‘deep’ complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate, and to constrain a thermal model, which describes the history and present state of the reservoir and its surrounding rocks. The top of the reservoir is located at about 8 km depth, and it extends discontinuously down to 20 km depth. The reservoir is hosted in densely fractured continental crustal rocks, where magmas and crust can interact, and, according to thermal modeling results, has been fed more than once in the last 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the ‘deep’ reservoir magmas rise to form ‘shallow’ magma chambers at different depths, as already known in the literature, where they can undergo low-pressure differentiation and mixing and feed the volcanic activity.
    Description: Published
    Description: 1-12
    Description: partially_open
    Keywords: Magmatic system ; Crustal contamination ; Thermal modeling ; Isotope geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 546764 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: A Conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model is developed by combining the framework of the Toop-Samis polymeric approach with the Flood-Grjotheim theoretical treatment of silicate melts and slags. Electrically equivalent ion fractions are computed over the appropriate matrixes (anionic and cationic) in a Temkin notation for fused salts, and are used to weigh the contribution of the various disproportionation reactions of type: M2/pO(melt)+ 1/2S(gas)+M2/pS(melt)+1/2O2(gas) M2/po(melt)+1/2S2(gas)+3/2O2(gas)-M2/pSO4(melt)v being the charge of the generic Mp-1 cation. The extension of the anionic matrix is calculated in the framework of a previously developed polymeric model (Ottonello et al., 2001), based on a parameterization of Lux-Flood acid-base properties of melt components. Model activities follow the Raoultian behavior implicit in the Temkin notation, without the needs of introducing adjustable parameters. The CTSFG model is based on a large amount of data available in literature and exhibits a satisfactory heuristic capability, with virtually no compositional limits, as long as the structural role given to each oxide holds. The model may be employed to compute gas-melt equilibria involving sulfur and allows computing sulfide and sulfate contents of silicate melts whenever the fugacity of a gaseous sulfur species and oxygen are known. Alternatively, the model calculates the oxidation state of the system (i.e., oxygen fugacity), whenever an analytical determination of either sulfide/sulfate or ferrous/ferric ratios in the melt is provided. Calculated sulfide and sulfate capacities allow the estimates of sulfur abundance in various melts of geological interest, both under anhydrous and hydrous conditions or, alternatively, of fS2, given fO2 and the bulk sulfur content. In this case, fSO2 and fH2S may be eventually computed along the water-sulfur-melt boundary provided fH2O is known.
    Description: Published
    Description: 801-823
    Description: partially_open
    Keywords: sulfur ; silicate melts ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 568 bytes
    Format: 1278538 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma–Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Srisotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation– Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 999– 1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energyconstrained assimilation–fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 1019–1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9–10 km) is a fundamental process controlling magma compositions at Mt. Somma–Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions.
    Description: Published
    Description: 303– 329
    Description: reserved
    Keywords: Mt. Somma–Vesuvius volcano ; Sr isotopes ; Geochemistry ; Crustal contamination ; Mantle source ; Phenocryst entrapment ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 879803 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The Etna 122 BC basaltic eruption had two Plinian phases, each preceded and followed by weak phreatic and phreatomagmatic activity. This study infers changing eruption dynamics from density, grain size, and microtextural data from the erupted pyroclasts. The Plinian clasts show no evidence for quenching by external water; instead, all clasts are microvesicular and have high bubble number densities relative to the products of weaker basaltic explosive eruptions, suggesting that the 122 BC magma underwent coupled degassing linked to rapid ascent and decompression. This coupled degassing was probably enhanced by crystallization of abundant microlites, which increased the magma's effective viscosity during conduit ascent. Detailed measurements of vesicles and microlites show wide variations in number densities, size distributions, and shapes among clasts collected over narrow stratigraphic intervals. For such a diversity of clasts to be expelled together, portions of melt with contrasting ascent and degassing histories must have arrived at the fragmentation surface at essentially the same time. We suggest that a parabolic velocity profile across the conduit ensured that magma near the conduit walls ascended more slowly than magma along the axis, leading to a longer residence time and more advanced degrees of outgassing and crystallization in the marginal magma. In our model, accumulation of this outgassed, viscous magma along conduit walls reduced the effective radius of the shallow conduit and led to blockages that ended the Plinian phases.
    Description: Published
    Description: 333-354
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: basaltic Plinian ; Etna ; vesicles ; microlites ; conduit dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4=0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake,meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009±1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.
    Description: Published
    Description: 237–248
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón volcano ; crater lake–Spring dynamics ; fluid geochemistry ; stable isotopes ; monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultraacidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-tohydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~200 gm−2 day−1.
    Description: Published
    Description: 472-481
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón ; crater lake ; mass-energy budget ; CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Determining consistent sets of vent conditions for next expected eruptions at Vesuvius is crucial for the simulation of the sub-aerial processes originating the volcanic hazard and the eruption impact. Herewerefer to the expected eruptive scales and conditions defined in the frame of the EC Exploris project, and simulate the dynamics of magma ascent along the volcanic conduit for sub-steady phases of next eruptions characterized by intensities of the Violent Strombolian (VS), Sub-Plinian 2 (SP2), and Sub-Plinian 1 (SP1) scale. Sets of conditions for the simulations are determined on the basis of the bulk of knowledge on the past history of Vesuvius [Cioni, R., Bertagnini, A., Santacroce, R., Andronico, D., Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): towards a new classification scheme. Journal of Volcanology and Geothermal Research, this issue.]. Volatile contents (H2O and CO2) are parameterized in order to account for the uncertainty in their expected amounts for a next eruption. In all cases the flow in the conduit is found to be choked, with velocities at the conduit exit or vent corresponding to the sonic velocity in the two-phase non-equilibrium magmatic mixture. Conduit diameters and vent mixture densities are found to display minimum overlapping between the different eruptive scales, while exit gas and particle velocities, as well as vent pressures, largely overlap. Vent diameters vary from as low as about 5 m for VS eruptions, to 35–55 m for the most violent SP1 eruption scale. Vent pressures can be as low as less than 1 MPa for the lowest volatile content employed of 2 wt.% H2O and no CO2, to 7–8 MPa for highest volatile contents of 5 wt.% H2O and 2 wt.% CO2 and large eruptive scales. Gas and particle velocities at the vent range from 100–250 m/s, with a tendency to decrease, and to increase the mechanical decoupling between the phases, with increasing eruptive scale. Except for velocities, all relevant vent quantities are more sensitive to the volatile content of the discharged magma for the highest eruptive scales considered.
    Description: Published
    Description: 359-365
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; Numerical simulations ; Vent conditions ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0 (gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples.We find that dissolved elemental Hg0 (aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0 aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano.
    Description: Published
    Description: 96-106
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: speciation ; volcanic aquifers ; total and dissolved mercury ; mercury cycling ; volatile budget ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: On 27 February 2007, at 12.49 GMT, a new eruption of Stromboli took place with the effusion of a lava flow from a fracture cutting the flank of the NE cone, which rapidly reached the sea. The eruption had been heralded by an increase in the amplitude of tremor and flank movement since at least the 14th of February. Short-term precursors were an increase in the rate of occurrence of small landslides within the “Sciara del Fuoco” scar on the North-western flank of the volcano. A new effusive vent opened at 18.30 GMT on the Sciara del Fuoco at an height of 400 m asl. The new lava emission caused the sudden termination of the summit flow and initiated a period of non-stationary lava outpouring which ended on 2 April, 2007. The eruption has been characterized by a rapid decrease in the eruption rate after the first days and subsequently by episodic pulse increases. On the 15th of March, the increase in lava outpouring, monitored by a thermal camera, heralded by 9 min the occurrence of a violent paroxysmal explosion with the formation of an impulsive eruption column and the emission of small pumices mingled with black scoriae. The pumice had a bulk composition similar to that of the lava and of the black scoriae, but with a distinct lower content of phenocrysts. A similar feature has been repeatedly observed during the major explosive paroxysms of Stromboli. Short term precursors of the paroxysm were recorded by strainmeter and tiltmeter stations. The volcano monitoring activity has been made by a joint team of researchers from the INGV sections of Catania, Napoli, Palermo and Rome, along with researchers from the Universities of Florence, Pisa, Roma Tre, and Palermo. The scientific activity was coordinated by a Synthesis Group made up by scientists responsible for the different monitoring techniques of INGV and Universities and by the volcanic experts of Commissione Nazionale Grandi Rischi of the Prime Minister Office (Civil Protection Department). The group made a daily evaluation of the state of the volcano and transmitted its recommendations to the Civil Protection Department (DPC). Several prevention measures were adopted by DPC, the main of which were the evacuation of the coast zone when strong acceleration of the Sciara del Fuoco slope motion (occurred twice) could led to a dangerous tsunami by flank collapse (as last occurred on 30 December 2002) and four days before the 15 March paroxysm when access was prohibited to the part of the volcano above 290 m asl.
    Description: Published
    Description: 123–130
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli volcano ; 2007 eruption ; scientific emergency management ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: While the eruptive record of Mount Etna is reasonably complete for the past 400 years, the activity of the early and late 1960s, which took place at the summit, is poorly documented in the scientific literature. From 1955 to 1971, the Central and Northeast Craters were the sites of long-lived mild Strombolian and effusive activity, and numerous brief episodes of vigorous eruptive activity, which led to repeated overflows of lava onto the external flanks of the volcano. A reconstruction of the sequence of the more important of these events based on research in largely obscure and nearly inaccessible sources permits a better understanding of the eruption dynamics and rough estimates of erupted volumes and of the changes to the morphology of the summit area. During the first half of 1964, the activity culminated in a series of highly dynamic events at the Central Crater including the opening of a fissure on the E flank of the central summit cone, lava fountains, voluminous tephra emission, prolonged strong activity with continuous lava overflows, and growth of large pyroclastic intracrater cones. Among the most notable processes during this eruption was the breaching of a section of the crater wall, which was caused by lateral pressure of lava ponding within the crater. Comparison with the apparently similar summit activity of 1999 allows us to state that (a) lava overflows from large pit craters at the summit are often accompanied by breaching of the crater walls, which represents a significant hazard to nearby observers, and that (b) eruptive activity in 1999 was much more complex and voluminous than in 1964. For 1960s standards however, the 1964 activity was the most important summit eruption in terms of intensity and output rates for about 100 years, causing profound changes to the summit morphology and obliterating definitively the former Central Crater.
    Description: Published
    Description: 203-218
    Description: partially_open
    Keywords: Mount Etna ; Summit eruption ; Crater morphology and Lava overflows ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1832340 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Effusion rate and degassing data collected at Mt. Etna volcano (Italy) in 2001 show variations occurring on time scales of hours to months. We use both long- and short-term data sets spanning January to August to identify this variation. The long data sets comprise a satellite- and ground-based time series of effusion rates, and the latter include field-based effusion rate and degassing data collected May 29–31. The satellite-derived effusion rates for January through August reveal four volumetric pulses that are characterized by increasing mean effusion rate values and lead up to the 2001 flank eruption. Peak effusion rates during these 23–57 day pulses were 1.2 m3 s-1 in Pulse 1 (1 Jan–4 Mar), 1.1 m3 s-1 in Pulse 2 (5 Mar–21 Apr), 4.2 m3 s-1 in Pulse 3 (24 Apr–18 Jun), 8.8 m3 s-1 in Pulse 4 (23 Jun–16 Jul), and 22.2 m3 s-1 during the flank eruption (17 Jul–9 Aug). Rank-order analysis of the satellite data shows that effusion rate values during the 2001 flank eruption define a statistically different trend than Etna's persistent activity from Jan 1 to Jul 17. Data prior to the flank eruption obey a power-law relationship that may define an effusion rate threshold of ~3–5 m3 s-1 for Etna's typical persistent activity. Our short-term data coincide with the satellite-derived peak effusion period of Pulse 3. Degassing (at-vent puff frequency) shows a general increase from May 29 to 31, with hour-long variations in both puff frequency and lava flow velocity (effusion rate). We identify five 3–14 h degassing periods that contain 26 shorter (19–126 min-long) oscillations. This variation shows some positive correlation with effusion rate measurements during the same time period. If a relationship between puff frequency and effusion rate is valid, we propose that their short-term variation is the result of changes in the supply rate of magma to the near-vent conduit system. Therefore, these short-term data provide some evidence that the clear weeks- to months-long variation in Etna's effusive activity (January–August 2001) was overprinted by a minutes- to hour-scale oscillation in shallow supply.
    Description: Published
    Description: 231-246
    Description: partially_open
    Keywords: effusion rate ; degassing ; oscillation ; shallow supply and Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1186376 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high CO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol) with an appreciable content of H2S (0.8). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February-March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8/25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.
    Description: - GNV funded research project Gas Hazard of Colli Albani
    Description: Published
    Description: 81^94
    Description: partially_open
    Keywords: Colli Albani ; CO2 flux ; H2S ; gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 660932 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas,as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Description: Published
    Description: 138-158
    Description: partially_open
    Keywords: Bubble growth ; MORB ; Noble gas ; Kinetic fractionation ; Modeling ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 695380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Description: Published
    Description: 87-101
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Introduction of a special issue of the journal
    Description: no abstract
    Description: Published
    Description: 1-4
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth's degassing ; volcanic areas ; seismic areas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The diffusion of the halogens fluorine, chlorine, and bromine was measured in a hawaiitic melt from Mt. Etna at 500 MPa and 1.0 GPa, 1250 to 1450 ºC at anhydrous conditions; the diffusion of F and Cl in the melt was also studied with about 3 wt% of dissolved water. Experiments were performed using the diffusion-couple technique in a piston cylinder. Most experiments were performed with only one halogen diffusing between the halogen-enriched and halogen-poor halves of the diffusion couple, but a few experiments with a mixture of halogens (F, Cl, Br) were also performed in order to investigate the possibility of interactions between the halogens during diffusion. Fluorine and chlorine diffusivity show a very similar behavior, slightly diverging at low temperature. Bromine diffusion is a factor of about 2 to 5 lower than the other halogens in this study. Diffusion coefficients for fluorine range between 2.3x10−11 and 1.4x10−10 m2s−1, for chlorine between 1.1x10−11 and 1.3x10−10 and for bromine between 9.4x10−12 and 6.8x10−11 m2s−1. No pressure effect was detected at the conditions investigated. In experiments involving mixed halogens, the diffusivities appear to decrease slightly (by a factor of ~ 3), and are more uniform among the three elements. However, activation energies for diffusion do not appear to differ between experiments with individual halogens or when they are all mixed together. The effect of water increases the diffusion coefficients of F and Cl by no more than a factor of 3 compared to the anhydrous melt (DF = 4.0x10−11 to 1.6x10−10 m2s−1; DCl = 3.0x10−11 to 1.9x10−10 m2s−1). Comparing our results to the diffusion coefficients of other volatiles in nominally dry basaltic melts, halogen diffusivities are about one order of magnitude lower than H2O, similar to CO2, and a factor of ~5 higher than S. The contrasting volatile diffusivities may affect the variable extent of volatile degassing upon melt depressurization and vesiculation, and can help our understanding of the compositions of rapidly grown magmatic bubbles.
    Description: NSERC Discovery grant INGV-DPC 2004-2006 Projects (V3_6 – Etna)
    Description: Published
    Description: 3570-3580
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Diffusion ; Halogens ; Basalt ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: Metamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/ Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids. Garnets from the Crown Jewel deposit range from Adr30Grs70 to almost pure andradite (Adr〉99). Fe-rich garnets (Adr〉90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of RREE3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show ‘‘typical’’ HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr〉90) have much lower RREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE3+ following a coupled, YAG-type substitution mechanism ð½ X2þ VIII 1 ½REE3þ VIII þ1 ½ Si4þ IV 1½Z3þ IV þ1Þ, whereas Eu2+ substitutes for X2+ cations. Thermodynamic data (e.g., Hmixing) in grossular– andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions. Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system that shifts dynamically between internally and externally buffered fluid chemistry driven by fracturing. Al-rich garnets formed by diffusive metasomatism, at low W/R ratios, from host-rock buffered metasomatic fluids. Fe-rich garnets grow rapidly by advective metasomatism, at higher W/R ratios, from magmatic-derived fluids, consistent with an increase in porosity by fracturing.
    Description: Published
    Description: 185-205
    Description: 3.6. Fisica del vulcanismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: A LA-ICP-MS ; Crown Jewel ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: During an eruption at the Bocca Nuova, one of the summit craters of Mt. Etna, in October-November 1999 a part of the crater floor near its WNW rim was uplifted to form a dome-shaped feature that consisted of older lava and pyroclastics filling the crater. This endogenous dome grew rapidly over the crater rim, thus being perched precariously over the steep outer slope of the Bocca Nuova, and near-continuous collapse of its steep flanks generated swiftly moving pyroclastic avalanches over a period of several hours. These avalanches advanced at speeds of 10-20 m s-1 and extended up to 0.7 km from their source on top of lavas emplaced immediately before. Their deposits were subsequently covered by lava flows that issued from vents below the front of the dome and from the Bocca Nuova itself. Growth of the dome was caused by the vertical intrusion of magma in the marginal W part of the crater, which deformed and uplifted previously emplaced, still hot and plastically deformable eruptive products filling the crater. The resulting avalanches had all characteristics of pyroclastic flows spawned by collapse of unstable flanks of lava domes, but in this case the magma involved was of mafic (hawaiitic) composition and would have, under normal circumstances, produced fluid lava flows. The formation of the dome and the generation of the pyroclastic avalanches owe their occurrence to the rheological properties of the eruptive products filling the crater, which were transformed into the dome, and to the morphological configuration of the Bocca Nuova and its surroundings. The density contrast between successive erupted products may also have played a role. Although events of this type are to be considered exceptional at Etna, their recurrence might represent a serious hazard to visitors to the summit area.
    Description: Published
    Description: 115-128
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Bocca Nuova ; endogenous lava dome ; pyroclastic avalanches ; magma ascent ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH≈6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH≈2) saline (10 g/kg of Cl) water with a much lower outflow rate (b10 l/s). Water–rock interaction modeling of main types of the El Chichón thermal waters using regular log Q/K graphs (saturation indices vs temperature) showed maximum equilibrium temperature slightly higher than 200 °C. Acidic waters are equilibrated with some clay minerals at about 120 °C. Three main sources of the salinity of thermal water are suggested on the basis of mixing plots and isotopic data: a magmatic source for CO2, boron, sulfur and a limited part of Cl; volcanic rock source for the major cations and trace elements; the oil-bearing evaporitic basement source (oil-field brine?) for NaCl, Br, a part of Ca and some trace elements. All flank thermal springs end up in the river Rio Magdalena that has a variable seasonal flow rates from 4 to 20 m3/s. Any changes in the chemistry of springs must notably change the composition of the streams draining hot springs and eventually, Rio Magdalena. A monthly geochemical monitoring of Rio Magdalena and streams draining main hot springs would be a useful tool for surveying the activity of the volcano.
    Description: Published
    Description: 224–236
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: volcano–hydrothermal system ; crater lake ; acidic water ; trace elements ; thermochemical modeling ; El Chichón volcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: In this paper we will discuss a simplified thermodynamic description for the saturation of FeS, either liquid or solid, in magmatic melts. The Conjugated-Toop–Samis–Flood–Grjotheim model [Moretti R. and Ottonello G., 2005. Solubility and speciation of sulfur in silicate melts, the Conjugated-Toop–Samis–Flood–Grjotheim (CTSFG) model. Geochimica et Cosmochimica Acta, 69, 801–823] has furnished the theoretical reference frame, since it already accounts for the solubility of gaseous sulfur and the speciation and oxidation state of sulfur in silicate melts. We provide a new model to predict the saturation of magmatic silicate melts with an FeS phase that is internally consistent with these previous parameterizations. The derived model provides an effective sulfogeobarometer, which is superior with respect to previous models. For magmas rising from depth to surface, our appraisal of molar volumes of sulfur-bearing species in silicate melts allows us to model oxidation–reduction processes at different pressures, and sulfur concentrations for saturationwith either liquid or solid phases. In this respect, the nature of the oxygen fugacity buffer is critical. On the basis of model results on some typical compositions of volcanological interest, the sulfur contents at sulfide saturation (SCSS) have been calculated and the results duplicate the experimental observations that the SCSS is positively correlatedwith pressure forwatersaturated acidic melts and negatively correlated with pressure for water-poor basaltic melts. This new model provides fO2–fS2 pairs of FeS saturation of natural silicatemelts. In caseswhere the redox constraint is lacking, the model can be used to investigate whether the dissolved sulfur content approaches SCSS or not, and if so, to estimate at which fO2 value the silicate melt is saturated with a sulfide phase
    Description: Published
    Description: 286–298
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Sulfur ; Silicate melt ; Iron sulfide ; Chemical thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: A Digital Terrain Model derived from high resolution Lidar data allows the determination of the morphometric and physical parameters of a lava flow erupted from the Somma–Vesuvius volcano in 1944. The downstream variation of morphometric parameters including slope, aspect, relative relief, thickness, width, and cross sectional area is analyzed, and the changes in viscosity, velocity and flow rate are estimated. The aims of the analyses are to recognize different flow surfaces, to reconstruct the flow kinematics, and to obtain information on the mechanism of emplacement. The results indicate that the 1944 lava flow can be divided in three sectors: a near vent sector (NVS) characterized by a toe-like surface, an intermediate sector (IS) with an ‘a’ātype brittle surface, and a distal sector (DS) with a sheet-like ductile surface. Lateral leveés and channels do not occur in NVS, whereas they are well developed in IS. In DS, leveés increase with an increasing distance from the vent. Fold-like surfaces occur in NVS and DS, reflecting local shortening processes due to a decrease in the slope of the substratum and overflows from the main channel. IS and DS emplaced between March 18 and 21, 1944, whereas NVS emplaced on March 19 and partly covered IS. The morphometric and physical parameters indicate that IS moved in a ‘tube’-like regime, whereas DS emplaced in a 'mobile crust' regime. The IS to DS transition is marked by an increase in velocity and the flow rate, and by a decrease in thickness, width, cross sectional area, and viscosity. This transition is due to an abrupt increase in the slope of the substratum. The estimated velocity values are in good agreement with the measurements during the 1944 eruption. The analysis used here may be extended to other lava flows. Some gravity flows (debris/mud flows, floods, and avalanches) have rheological properties and shapes similar to those of lavas, and the same process-form relationships may apply to these flows. The approach used here may be therefore useful for evaluating hazards from various gravity currents.
    Description: Published
    Description: 223–235
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Gravity flow ; Lidar ; Digital Terrain Model (DTM) ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Dynamic accumulation chamber methods have been extensively used to estimate the total output of CO2 released from active volcanic area. In order to asses the performance and reliability of a closed dynamic system several tests were carried out with different soil permeabilities and soil CO2 fluxes. A special device was used to create a constant one-dimensional CO2 flux through a soil column with a known permeability. Three permeabilities were investigated, ranging between 3.6 × 10− 2 and 3.5 × 10 μm2, as were several CO2 fluxes (ranging between 1.1 × 10− 6 and 6.3 × 10− 5 kg m− 2 s− 1). The results highlight that the accuracy of soil CO2 flux measurements strictly depends on the soil gas permeability and the soil CO2 flux regimen. Generally chamber measurements underestimate CO2 fluxes at low soil permeability and low soil CO2 fluxes, whereas appreciable overestimations occur for high permeability soil, especially for high soil CO2 fluxes. Other tests carried out with different settings for the measurement device, such as the chamber volume and the flux of the pump used to recirculate air through the chamber and the gas analyzer (recirculation flux), revealed a strong dependence of the closed dynamic chamber measurements on the recirculation flux. Low recirculation fluxes (0.2–0.4 l min− 1) decreased the performance of the measurement system, causing underestimations of the actual soil CO2 flux, whereas higher values (0.6–1.0 l min− 1) resulted in overestimations, especially for elevated soil CO2 fluxes. An empirical equation was deduced to allow accumulation chamber fluxes to be calculated very accurately based on soil gas permeabilities measured in the field.
    Description: Published
    Description: 387-393
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux measuraments ; Closed dynamic chamber ; soil gas permeability ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Intrusive degassing and recycling of degassed and dense magma at depth have been proposed for a long time at Stromboli. The brief explosive event that occurred at the summit craters on 9 January 2005 threw out bombs and lapilli that could be good candidates to illustrate recycling of shallow degassed magma at depth. We present an extensive data set on both the textures and the mineral, bulk rock and glassy matrix chemistry of the “9 Jan” products. The latter have the common shoshonitic–basaltic bulk composition of lavas and scoriae issued from typical strombolian activity. In contrast they differ by the heterogeneous chemistry of their matrix glasses and their crystal textures that testify to crystal dissolution event(s) just prior magma crystallization upon ascent and eruption. Comparison between mineral paragenesis of the natural products and experimental phase equilibria suggest water-induced magma re-equilibration. We propose that mineral dissolution is related to water enrichment of the recycled degassed magma, via differential gas bubble transfer and to some extents its physical mixing with volatile-rich magma blobs. However, all these features illustrate transient processes. Even though evidence of mineral dissolution is ubiquitous at Stromboli, its effect on the bulk magma chemistry is minor because of the subtle interplay between mineral dissolution and crystallization in magmas having comparable bulk chemistry.
    Description: Published
    Description: 325-336
    Description: JCR Journal
    Description: reserved
    Keywords: mineral dissolution ; magma chemistry ; volatiles ; trace elements ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: We have undertaken detailed observations of the formation of the `Laghetto´ cinder cone, a new cone that formed during a 2-week period of intense activity in Piano del Lago, on the upper slopes of Mount Etna in summer 2001. We describe the events leading to the formation of a small graben, the formation of pit craters on the base of the graben, the onset of phreatomagmatic activity, a transition to intense Strombolian activity, and a return to phreatomagmatic activity as the eruption came to an end. We discuss the reasons for these transitions, and describe the morphological development of the cone during these events. Arcuate cracks on the southern part of the cone were related to withdrawal of magma at the end of the eruption. Other slope instabilities that developed during the eruption include the formation of small radial grain flows on the outer flanks of the cone and the collapse into the crater of part of the crater rim. Some of the failure planes we observed were first identified using a FLIR TM 695 thermal infrared camera. This is the first time that infrared thermography has been used to detect instability of volcanic structures. Results obtained during this test case demonstrate that thermal cameras are a very useful tool for studies of volcanic instability.
    Description: Published
    Description: 225-239
    Description: partially_open
    Keywords: Etna volcano ; cinder cone ; volcano instability ; thermal images ; phreatomagmatic activity ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 871290 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: Since the early 1970s enhanced eruptive activity of Mount Etna has been accompanied by selective geochemical changes in erupted lavas, among which a gradual increase of alkalis whose origin is still debated. Here we provide further insight into the origin of this recent evolution, based on a detailed study of the chemistry and dissolved volatile content of melt inclusions trapped in olivine crystals of unusual plagioclase-poor primitive basalt that was extruded during a highly explosive flank eruption in July–August 2001. Two types of lava were erupted simultaneously along a N–S fracture system. Trachybasalts from the upper vents (2950–2700 m) were simply drained out by fracturing of the central volcanic conduit. They are identical to summit crater lavas and contain Mg-poor olivines (Fo70–72) with evolved and volatile-poor melt inclusions that represent late-stage crystallisation during shallow open conduit degassing. In contrast, plagioclase-poor basalt (80% of total) extruded through the lower vents (2550–2100 m) derived from lateral dyke intrusion of a more primitive and volatile-rich magma across the sedimentary basement. This primitive melt is best preserved in rare Fo82.4–80.5 skeletal olivines present in lapilli deposits from the most powerful activities at the 2550 m vent. Its high dissolved contents of H2 O (3.4 wt.%), CO2 (0.11 to 0.41 wt.%), S (0.32 wt.%), Cl (0.16 wt.%) and F (0.094 wt.%) point to its closed system ascent from ∼400 to 250 MPa (∼12 to 6.5 km depth b.s.l.). However, the predominance of euhedral olivine phenocrysts with common reverse zoning (cores Fo76–78 and rims Fo78–80) and decrepited inclusions shows that most of the erupted basalt derived from a slightly more evolved, crystallizing body of the same magma that was invaded by the uprising primitive melt prior to erupting. The few preserved inclusions in these olivines indicate pre-eruptive storage of that magma body at about 5 km depth b.s.l., in coherence with seismic data. We propose that the 2001 flank eruption resulted from gradual overpressuring of Etna's shallow plumbing system due to the influx of volatile-rich primitive basalt that may have begun several months in advance. We find that this basalt is much richer in alkalis (2.0 wt.% K2 O) and has higher S/Cl (2.0) but lower Cl/K and Cl/F ratios than all pre-1970s Etnean lavas (1.4 wt.% K2 O, S/Cl=1.5), as further exemplified by melt inclusions in entrained olivine xenocrysts. Combining these new observations with previously published data, we argue that the 2001 basalt represents a new alkali-rich basic end-member feeding Mt. Etna, only few amount of which had previously been extruded during a 1974 peripheral eruption and, more recently, during brief paroxysmal summit events. Over the last three decades this new magma has progressively mixed with and replaced the former K-poorer trachybasalts filling the plumbing system, leading to extrusion of gradually more primitive and alkali-richer lavas. Its geochemical singularities cannot result from shallow crustal contaminations. Instead, they suggest the involvement of an alkali-richer but Cl-poorer arc-type component during recent magma genesis beneath Etna.
    Description: Published
    Description: 1-17
    Description: partially_open
    Keywords: Mt. Etna ; volatiles ; degassing ; eruptive mechanism ; magma geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1082506 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: A number of tumuli formed on the aa-dominated lava fan complex which developed in the medial zone of the 1983 flow-field of Mount Etna during the later stages of the eruption. This complex flow-field formed on shallow sloping ground below a scarp between 1900 and 1700 m asl. A major tube system fed a branching tube network in the fan complex. Numerous tumuli and break-outs of lava formed in the fan. Three main types of tumulus are identified: (1) Focal tumuli, which are formed from the break-up and uplift of `old´, thick lava crust and themselves become sustained sites for the distribution of lava both as flows and within distributary tubes. These focal tumuli are significant centres associated with major tubes. (2) Satellite tumuli, which are typically elongate, whale-back shaped features that branch out from focal tumuli. These satellite tumuli were initially lava flows erupted from a focal tumulus. The crust of the flow slowed or came to a halt and the rigid crust became uplifted and fractured, forming a dome-shaped ridge feature. These satellite tumuli continued to be fed from the focal tumulus and became sites of lava emission with numerous break-outs. (3) Distributary tumuli formed on the fan associated with short-lived break-outs from tubes and are relatively simple structures formed from limited effusion of toey lobes and pahoehoe lava. The major tumuli on the fan complex show distinct dilation fractures. The fracture surfaces provide good exposure of the crust and three distinct zones are recognised – an upper zone showing columnar jointing, a middle zone consisting of planar fracture surfaces and a basal zone with distinctive banded planar fracture surfaces showing evidence of both brittle and ductile formation. Using these data a model is proposed for tumulus growth. Field analysis of the fan complex shows how it was fed by a branching tube system, leading to flow thickening, formation of tumuli and numerous ephemeral boccas.
    Description: Published
    Description: partially_open
    Keywords: aa lava flow-field ; Mount Etna ; tumulus ; lava crust and lava tubes. ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1046276 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the P^T conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na^Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl,lowering the pH of the water. The increasing water^rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.
    Description: Published
    Description: 137-150
    Description: partially_open
    Keywords: chlorine ; sulphur ; hydrothermal system ; genetic processes ; Vulcano Island ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 498111 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Description: Published
    Description: 1^18
    Description: partially_open
    Keywords: Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma mixing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (K, Rb, Ba), REE (Ce, Sm) and Y, show small Nb–Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11–12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs, and an uppermost crustal level that probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and δO18 8‰ that typically erupted both during interplinian (i.e. 1906 AD) and sub-plinian (472 AD, 1631 AD) events. The shallowest level of magma storage at about 5 km was the site of magma chambers for the Pompei and Avellino eruptions. New investigations are necessary to verify the proposed magma feeding system.
    Description: Published
    Description: 183-204
    Description: open
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 1180996 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: We investigated chemical and isotopic compositions of clinopyroxene crystals from well age-constrained juvenile scoria clasts, lava flows, and hypoabyssal magmatic ejecta representative of the whole eruptive history of the Alban Hills Volcanic District. The Alban Hills is a Quaternary ultra-potassic district that was emplaced into thick limestone units along the Tyrrhenian margin of Italy. Alban Hills volcanic products, even the most differentiated, are characterised by low SiO2 content. We suggest that the low silica activity in evolving magmas can be ultimately due to a decarbonation process occurring at the magma/limestone interface. According to the liquid line of descent we propose, the differentiation process is driven by crystallisation of clinopyroxene+leuciteFapatiteFmagnetite coupled with assimilation of a small amount of calcite and/or with interaction with crustal CO2. By combining age, chemical data, strontium and oxygen isotopic compositions, and REE content of clinopyroxene, we give insights into the evolution of primitive ultrapotassic magmas of the Alban Hills Volcanic District over an elapsed period of about 600 kyr. Geochemical features of clinopyroxene crystals, consistent with data coming from other Italian ultrapotassic magmas, indicate that Alban Hills primary magmas were generated from a metasomatized lithospheric mantle source. In addition, our study shows that the 87Sr / 86Sr and LREE/HREE of Alban Hills magmas continuously diminished during the 600–35 ka time interval of the Alban Hills eruptive history, possibly reflecting the progressive depletion of the metasomatized mantle source of magmas.
    Description: Published
    Description: 330–346
    Description: JCR Journal
    Description: reserved
    Keywords: Clinopyroxene ; 87Sr / 86Sr ; REE ; Ultrapotassic rocks ; Alban Hills ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: A physical model based on the advective–diffusion theory was developed in order to describe the mixing between a deep gas source and the atmosphere. The model was used to predict the isotopic fractionation of carbon in soil CO2. Gas samples were collected at different depths in areas characterized by different geological settings and CO2 fluxes. The relative theoretical and experimental isotopic profiles were compared and a good agreement was found. These profiles show how the isotopic composition of CO2 changes through the upper few decimeters of soil and how the amount of the isotopic fractionation is strongly influenced by soil CO2 flux. Finally, the model was used to derive the carbon isotopic composition of unfractioned deep CO2 source for all the investigated sites
    Description: Published
    Description: 3016–3027
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon isotope fractionation ; soil degassing ; gas transport ; D13C(CO2) ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 C was inferred by methanebased chemical–isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200–240 C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (dD 20&, d18O 10&) and a CO2-rich composition ðXCO2 0:4Þ has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to 0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system
    Description: Published
    Description: 3040-3055
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: origin of the fumaroles ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: The Alban Hills ultrapotassic volcanic district is one of the main districts emplaced during Quaternary time along the Tyrrhenian margin of Italy. Alban Hills lava flows and scoria clasts are made up essentially of clinopyroxenes and leucites and their chemical composition is mostly K-foiditic. Differentiated products (MgO〈3 wt%) are characterized by low SiO2 concentration (〈50 wt%) and geochemical features indicate that this unique differentiation trend is driven by crystal fractionation plus carbonate crust interaction. Notably, the Alban Hills Volcanic District was emplaced into thick limestone units. With the aim of constraining the magmatic differentiation, we performed experiments on the Alban Hills parental composition (plagioclase-free phono-tephrite) under anhydrous, hydrous, and hydrous-carbonated conditions. Experiments were carried out at 1 atm, 0.5 GPa and 1 GPa, temperatures ranging from 1050 to 1300 °C, and H2O and CaCO3 in the starting material up to 2 and 7 wt%, respectively. The experiments performed at 0.5 GPa resulted to be the most representative of the Alban Hills plumbing system. Clinopyroxene and leucite are the main phases occurring under all the investigated conditions and the liquidus phases. Nevertheless, our experimental results demonstrate that the occurrence of CaCO3 in the starting material strongly affects phase relations. Experiments performed under hydrous conditions crystallize magnetite and phlogopite at relatively high temperature. This early crystallization drives the glass composition towards a silica enrichment, resulting in a differentiation trend moving from phono-tephritic (Alban Hills parental composition) to phonolitic compositions. This is in contrast with micro-textural evidences showing late crystallization of magnetite and phlogopite in the natural products and with the composition of the juvenile products. On the contrary, in the CaCO3-bearing experiments (i.e., simulating magma-carbonate interaction) the magnetite and phlogopite stability fields are strongly reduced. As a consequence, the melt differentiation is mainly controlled by the cotectic crystallization of clinopyroxene and leucite, resulting in a differentiation trend moving towards K-foiditic compositions. These experimental results are in agreement with micro-textural features and chemical compositions of Alban Hills natural products and with the magmatic differentiation model inferred by geochemical data. Magma-carbonate interaction is not a rare process and its occurrence has been demonstrated for different plumbing systems. However, the uniqueness of the Alban Hills liquid line of descent suggests that the efficacy of the carbonate contamination process is controlled by different factors, the dynamics of the plumbing system being one of the most important.
    Description: INGV-DPC Project V3_1 Colli Albani Project FIRB MIUR “Development of innovative technologies for the environmental protection from natural events”.
    Description: Published
    Description: On line First
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Alban Hills ; ultrapotassic rocks ; experimental petrology ; magma-carbonate interaction ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: During 2001–2005, Mount Etna was characterized by intense eruptive activity involving the emission of petrologically different products from several vents, which involved at least two types of magma with different degrees of evolution. We investigated the ratios and abundances for noble-gas isotopes in fluid inclusions trapped in olivines and pyroxenes in the erupted products. We confirm that olivine has the most efficient crystalline structure for preserving the pristine composition of entrapped gases, while pyroxene can suffer diffusive He loss. Both the minerals also experience noble gas air contamination after eruption. Helium isotopes of the products genetically linked to the two different magmas fall in the isotopic range typical of the Etnean volcanism. This result is compatible with the metasomatic process that the Etnean mantle is undergoing by fluids from the Ionian slab during the last ten kyr, as previously inferred by isotope and trace element geochemistry. Significant differences were also observed among olivines of the same parental magma that erupted throughout 2001–2005, with 3He/4He ratios moving from about 7.0 Ra in 2001 volcanites, to 6.6 Ra in 2004–2005 products. Changes in He abundances and isotope ratios were attributed to variations in protracted degassing of the same magma bodies from the 2001 to the 2004–2005 events, with the latter lacking any contribution of undegassed magma. The decrease in 3He/4He is similar to that found from measurements carried out every fifteen days during the same period in gases discharged at the periphery of the volcano. To our knowledge this is the first time that such a comparison has been performed so in detail, and provides strong evidence of the real-time feeding of peripheral emissions by magmatic degassing.
    Description: Published
    Description: 683-690
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: fluid inclusions ; noble gases ; helium isotopes ; magma degassing ; olivine ; pyroxene ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: Research article
    Description: Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0 (gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples.We find that dissolved elemental Hg0 (aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0 aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano.
    Description: In press
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Fluid geochemistry ; volcanic mercury ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Methane, the most abundant hydrocarbon in the atmosphere, plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after CO2. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (Kvenvolden and Rogers, 2005). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Among natural sources the volcanic/geothermal emissions are probably the least constrained. Recent estimations for volcanic and geothermal systems in Europe (Etiope et al. 2007) gave a rather large provisional range (4-16 kt/a) that claims for much more field measurements in order to widen the current database and decrease the present uncertainties. Pantelleria is an active volcanic complex, at present in quiescent status, hosting a high enthalpy geothermal system. Explorative geothermal wells tapped an exploitable water-dominated reservoir at 600-800 m depth with maximum measured temperatures of 250 °C. While some data are available on diffuse CO2 fluxes, data on CH4 are available only for fumarolic fluids. In the present study we measured CH4 fluxes in the area of Favara Grande characterized by intense diffuse degassing and widespread signs of geothermal activity (fumaroles, steaming grounds and large zones devoid of vegetation). Values range from negative (-43 to 0 mgCH4 m2 day), typical of soils with methanotrophic activity, up to 3500 mgCH4 m2 day in the most thermalized area. The preliminary estimate of the methane release from the area of Favara Grande is about 2.5 t/a. Extrapolation to the whole volcanic/geothermal system of Pantelleria gives about 10 t/a.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil gases ; methane output ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: The island of Vulcano (Aeolian arc, Southern Italy) has displayed several periods of volcanic unrest since the end of the last eruption (1890). We report here results obtained from a long-term survey concerning variations of both the steam output and the exhaling surface area at the sun~mit crater fumarolic field of La Fossa. The field measurements analysed in a Geographiciil Information System (GIS: show a highly dynamic volcanic system in which deep variations in the geochemishy and the temperature of the released fluids were accompanied by fluctuations in the mass output of steam and the topography of the crater field. The use of a GIS facilitated digitized reconstructions of maps of the crater field in addition to analysis (of the steam flux data. The furnarolic field expanded its surface area from 50 m2 in 1983 to more than 2400 m* in 1995, accompanied by an increase in steam output from 152 to about 1400 tonnes per day. The possibility that the observed phenomena are related to volcano-tectonic activity and to magma uprising is taken into consideration.
    Description: Published
    Description: 253-263
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic surveillance ; Steam output ; tectonic lines ; flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: Eruptions are fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: Partly fundedwith DPC-INGVfunds (LAVAProject).
    Description: Published
    Description: 67–77
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Two strong flank eruptions occurred in July–August 2001 and from late October 2002 to late January 2003 at Mt. Etna volcano. The two eruptions mainly involved the upper southern flank of the volcano, a particularly active area during the last 30 years, damaging several tourist facilities and threatening some villages. The composite eruptive activity on the upper southern flank of Mt. Etna during 2001–2003 has confirmed “a posteriori” the results of a multidisciplinary study, started well before its occurrence by combining geological, seismic and geochemical data gathered in this part of the volcano. We were able, in fact, to highlight fractured zones likely to be re-activated in the near future in this area, where the largest majority of eruptive fissures in the recent past opened along N120° to N180° ranging directions. The spatial distribution of earthquake epicentres during the period June 30th 2000–June 30th 2001 showed the greatest frequency in a sector compatible with both the direction of the main fissures of the pre-2001 period and that of the 2001 and 2002 lateral eruptions. Soil CO2 and soil temperature surveys carried out in the studied area during the last 3 years have revealed anomalous release of magmatic fluids (mainly CO2 and water vapour) along some NNW–SSE-trending volcano-tectonic structures of the area even during inter-eruptive periods, indicating persistent convective hydrothermal systems at shallow depth connected with the main feeder conduits of Etna. The temporal changes in both seismic and geochemical data from June 30th, 2000 to June 30th, 2001 were compared with the evolution of volcanic activity. The comparison allowed to recognize at least two sequences of anomalous signals (August to December 2000 and April to June 2001), likely related to episodes of step-like magma ascent towards the surface, as indicated by the following eruptive episodes. The N120° to N180° structural directions are in accord with one of the main structural lines affecting eastern Sicily; they would be important pathways for magma uprise to the surface that will keep on feeding the eruptive activity of Etna in the near future. This study also pointed out the high instability of the southern slope of Etna, a sector where the potential hazard by lava flow invasion will remain high also in the near future.
    Description: Published
    Description: 20
    Description: partially_open
    Keywords: Mt. Etna ; fault detection ; soil gas ; historical eruptive fissures ; eruptive activity ; local seismicity ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1211633 bytes
    Format: 520 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas–water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80–1008 C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO2 in the springs was also detected and associated with high CO2 degassing.
    Description: Published
    Description: 91– 108
    Description: partially_open
    Keywords: Popocatepetl volcano ; helium isotope composition ; carbon isotope composition ; dissolved gases ; gas–water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 899823 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: We describe the reactivation and the successive evolution of the shallow plumbing system of Mt. Etna between the end of the largest flank eruption of the last three centuries (1991–1993) and the subterminal eruption from South-East Crater (SEC), which occurred between February and mid-November 1999. Our analysis is based on observations of the volcanic activity and petrological studies of the erupted volcanics. Bulk rock, mineral and glass compositions have been determined for more than 80 samples erupted from the four summit craters between October 1995 and February 1999. These data allow us to recognise significant compositional variations among the products of different craters. In particular, volcanics produced between 1995 and 1999 by Bocca Nuova (BN), Voragine (VOR) and North-East Crater (NEC) show limited compositional variations and are similar to those observed during recent eruptions (e.g., 1991–93). More primitive magmas have been produced during the more vigorous fire fountains episodes. On the contrary, the South-East Crater produced slightly more differentiated volcanics than those of the other summit craters following its reactivation (November 1996) until the end of 1998. Whole rock compositions of products from this crater show low CaO/Al2O3, whereas interstitial glasses have lower MgO and higher alkali contents than those from the other craters. However, since the beginning of 1999, and just before the start of the subterminal eruption from SEC, the volcanics erupted from this crater progressively changed in composition, becoming similar to those of the other craters. This trend indicates that within the conduits of the summit craters, distinct thermal and fluid-dynamical regimes can evolve, controlling the cooling and crystallisation of Etna magmas.
    Description: Published
    Description: 55-71
    Description: partially_open
    Keywords: Mount Etna ; crystal fractionation ; petrologic monitoring and magmatic process ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 461466 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result,the H2O and CO2 content and the dD, d18O, and d13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The d13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -35‰ vs. standard mean ocean water [SMOW]), as well as the above d13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the dD and d13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (dDH2O 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.
    Description: Published
    Description: 759–772
    Description: partially_open
    Keywords: isotope geochemistry ; volcanic gases ; mixing modeling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 593620 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: The results of the 7 years (1994-2000) of monthly monitoring of spring water before and during eruptions show response to volcanic activity. Low salinity and temperature characterize most of the springs, which are located on the flanks of Popocatepetl Volcano. The pH ranges from 5.8 to 7.8 and temperature from 3 to 36 jC. Oxygen and hydrogen isotopic data show that the water is of meteoric origin, but SO4 2 , Cl , F , HCO3 , B, and SO4 2- /Cl- variations precede main eruptive activity, which is considered linked to influx of magmatic gases and acid fluids that react with sublimates and host rock and mix with the large water system. Na +, Ca2 + , SiO2 and Mg2 + concentrations in the water also increased before eruptive activity. The computed partial pressure of CO2 in equilibrium with spring waters shows values higher than air-saturated water (ASW), with the highest values up to 0.73 bar of pCO2. Boron is detected in the water only preceding the larger eruptions. When present, boron concentration is normally under health standard limits, but in two cases the concentration was slightly above. Other components are within health standard limits, except for F- in one spring.
    Description: Published
    Description: 207– 229
    Description: partially_open
    Keywords: Volcano monitoring ; Spring water chemistry ; Popocatepetl ; Mexico ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1584175 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Elsevier
    In:  Taran Y. A., Inguaggiato S., Marin M., and Yurova L. M. (2002) Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico. J. Volcanol. Geoth. Res. 115, 329-338.
    Publication Date: 2017-04-04
    Description: We thank R.M. Prol-Ledesma for her comment on the paper by Taran et al. (2002a) and the new data presented on the water composition of the Punta de Mita (PM) submarine springs. Prol-Ledesma (2003) comments refer to a supposedly wrong citation, superficial description of the geological background, incorrect method of water sampling, wrong approach for the estimation of the end-member composition, irrelevant discussion on the origin of fluids and, lastly, the using of someone else’s ideas and conclusions. In addition, she claims that our data on the fluid chemistry of the springs are not the first (original)ones. The Comment is supported by numerous references to publications by Prol-Ledesma et al. The text below follows the rubrics in the Comment.
    Description: Published
    Description: 319-322
    Description: partially_open
    Keywords: submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 164856 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: Our knowledge of the degassing pattern of sulphur, chlorine and fluorine during ascent and eruption of basaltic magmas is still fragmental and mainly limited to water-poor basalts. Here we model and discuss the pressure-related degassing behaviour of S, Cl and F during ascent, differentiation and extrusion of H2O–CO2-rich alkali basalt on Mount Etna (Sicily) as a function of eruptive styles. Our modelling is based on published and new melt inclusion data for dissolved volatiles (CO2, H2O, S, Cl, F) in quenched explosive products from both central conduit (1989–2001) and lateral dyke (2001 and 2002) eruptions. Pressures are obtained from the dissolved H2O and CO2 concentrations, and vapour–melt partition coefficients of S, Cl and F are derived from best fitting of melt inclusion data for each step of magma evolution. This allows us to compute the compositional evolution of the gas phase during either open or closed system degassing and to compare it with the measured composition of emitted gases. We find that sulphur, chlorine and fluorine begin to exsolve at respective pressures of ∼140 MPa, ∼100 MPa and ≤10 MPa during Etna basalt ascent and are respectively degassed at 〉95%, 22–55%, and ∼15% upon eruption. Pure open system degassing fails to explain gas compositions measured during either lateral dyke or central conduit eruptions. Instead, closed-system ascent and eruption of the volatile-rich basaltic melt well accounts for the time-averaged gas composition measured during 2002-type lateral dyke eruptions (S/Cl molar ratio of 5±1, 35% bulk Cl loss). Extensive magma fragmentation during the most energetic fountaining phases enhances Cl release (55%) and produces a lower S/Cl ratio of 3.7, as actually measured. Comparatively slower magma rise in the central conduits of Etna favours both sulphide saturation of the melt and greater chlorine release (55%), resulting in a distinct S/Cl evolution path and final ratio in eruptive gas. In both eruption types, any previous bubble–melt separation at depth leads to increased S/Cl and S/F ratios in emitted gas. High S/Cl ratios measured during some discrete eruptive events can thus be explained by transitions from closed (deep) to open (shallow) system degassing, with differential gas transfer extending down to ∼2 km depth below the vents. This depth coincides with the base of the volcanic pile where structural discontinuities and the high magma vesicularity (60%) may favour separate gas flow. Finally, the excess S–Cl–F gas discharge through Etna summit craters during non-eruptive periods requires a mixed supply from shallow magma degassing in the volcanic conduits and deeper-derived SO2-rich bubbles from the sub-volcano plumbing system. Our modelling provides a useful reference framework for interpreting the monitored variations of S, Cl and F in Mount Etna gas emissions as a function of volcanic activity. More broadly, the observations made for S, Cl and F degassing on Etna may apply to other basaltic volcanoes with water-rich magmas, such as in arcs.
    Description: Published
    Description: 772-786
    Description: reserved
    Keywords: Mt Etna ; volatiles ; magma degassing ; eruptive mechanisms ; modelling ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 663124 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: The exceptionally persistent activity of Stromboli volcano has lasted for at least 1400 years. The normal strombolian activity is periodically interrupted by more energetic explosions (1–2 per year) and by sporadic effusive episodes (every 10–20 years). Normal activity and effusive episodes are characterized by crystal-rich high-K to shoshonitic basalts issuing from a volatile-poor shallow system. Crystal-poor pumice are emitted only during more violent explosions, and are thought to derive from deep pulses of volatile-rich magma. Shallow level degassing induces massive crystallization of deep pulses of feeding magma that, continuously mixing with the resident one, produces the crystal-rich shoshonite of the persistent activity. We examined the crystallization history of the crystal-rich, shallow reservoir using plagioclase Crystal Size Distribution (CSD) analysis of scoriae and lavas emitted in the past twenty years. CSDs show a linear dependence from crystal size in the size interval 0.06–1.2 mm; number density of larger crystals is biased by right hand truncation effects. CSDs slopes and intercepts are quite constant during the whole considered time span revealing a system that is close to the equilibrium also from a kinetic point of view. The linear crystal size distribution are reached by the system through episodes of growth and resorption, respectively occurring in the degassed and undegassed magma during the continuous mixing in the feeding system. Plagioclase net growth rate (2*10−11 cm/s) results from a balance of growth (10−10 cm/s) and resorption episodes which induce spectacular zoning and resorption textures in crystals larger than 200 μm. CSDs of mafic phases cannot be accurately acquired on each single sample due to poor counting statistics; the evaluation of pyroxene and olivine CSD on the whole data set, however, confirms the conclusions acquired from plagioclase CSDs.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: crystal size distribution ; plagioclase growth ; magma residence time ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: Three lava flows (hereafter, flows A, B, and C) from Salina Island (Italy) consist of basaltic andesitic enclaves dispersed in a dacitic matrix. Enclaves represent 8–12 vol.% of the erupted magma. The number of enclaves and the surface covered by the enclaves at each outcrop do not vary significantly with the distance from the vent in the flows A and B. These feature reflect the dynamics of magma mingling within the reservoir and not the kinematics of the lava flow. In the flow C, these parameters vary irregularly. The statistical entropy S(t) of the enclaves, which is a measure of their spatial distribution (dispersion), is estimated in outcrops located at different distance from the vent. The Kolmogorov–Sinai entropy rate k, which describes the variations of S(t) with time, is also determined. In the lava flow A, S(t) increases linearly with time t for 0btb0.4; k is 0.04. For tN0.5, S(t) attains its maximum value and maintains constant with increasing t. In the lava flow B, S(t) linearly increases with t, and k is 0.01. In the lava flow C, there is not correlation between S(t) and t. The comparison between the results from the analysis of the Porri enclaves and those from numerical experiments on the variation of S(t) in chaotic advective mixing systems and from previous experimental models on magma mixing, allow us to draw some conclusions on dynamics of the basaltic andesite– dacite mingling in the magma chamber. Fully chaotic magma mingling systems show three evolution stages. An initial stage, which is unknown because of the disruption of the initial configuration of the interacting magmas, a second stage characterized by a linear increase of the statistical entropy with time, and a third stage, in which the uniformity of the system is reached, and the entropy does not vary with increasing time. A system in which the uniformity is never attained, is characterized by irregular variations of S(t) with time. In the flows A and B, the relations between S(t) and t are consistent with those of a fully chaotic dynamics possibly associated to convection. The basaltic andesite was uniformly distributed in the dacitic host due to the occurrence of convective movements driven by the injection of the basaltic andesite within the dacitic chamber. The mingling system recorded by the lava flow A evolved with a higher rate with respect to that of the flow B. This suggests that chaotic advection (stirring and folding) is more efficient in the magmatic system A than in B. On the contrary, the mingling system C is characterized by a non-uniform distribution of the basaltic andesite within dacite. This reflects the occurrence of a dynamics in which stirring and folding processes do not operate efficiently and are unable to uniformly distribute the dispersed phase within the continuous one. The decrease of k from A to B, and the lack of a measurable k in C, along with the observation that A and B were emitted before C, indicate that the efficiency of advective movements within the Porri magma chamber declined with decreasing time. Mingled magmas characterized by a homogeneous spatial distribution of enclaves or an initially inhomogeneous distribution evolving towards a homogeneous one are indicative of efficient advection processes that may favor magma mixing. Mingled magmas characterized by an inhomogeneous distribution of enclaves suggest low dynamical interaction between the two end-members. Magma mixing is not allowed.
    Description: Published
    Description: 128–140
    Description: JCR Journal
    Description: reserved
    Keywords: volcanology ; petrology ; magma mingling ; enclaves ; lava flows ; entropy ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: On 28 December 2002, the persistent Strombolian activity at Stromboli was interrupted by the sudden onset of lava emission onto the Sciara del Fuoco slope, a horseshoe-shaped depression on the NW flank of the volcano. The effusive episode went on until 22 July 2003 and produced a cumulative volume of lavas of 11×106 m3 ranking the event as the largest occurred in the past 30 years. The eruptive vents were mainly located in the NE sector of the Sciara del Fuoco depression, at an elevation of 550–600 m a.s.l. On 30 December, the eastern portion of the Sciara del Fuoco collapsed producing a tsunamigenic landslide. On 5 April 2003, a paroxysmal eruption occurred at the summit craters during which crystal-poor pumiceous products were emitted. The paroxysm did not interrupt the lava emission. The Strombolian activity at the summit craters gradually resumed starting from March 2003 and fully recovered by the end of July. Periodic sampling of the lava at the active vents was carried out during the entire effusive event. All the analysed samples are shoshonitic basalts (SiO2 48.5–50.4 wt.%; K2O 2.1–2.4 wt.%) in the range of composition observed in the products erupted during the past 20 years. They bear about 50 vol.% zoned crystals of plagioclase An90–60, diopside–augite and olivine Fo70–73 in a compositionally homogeneous shoshonitic groundmass. Bulk rock major and trace element contents measured with different methodologies at different laboratories show only minor variations. Sr and Nd isotope ratios are close to those of the crystal-rich scoriae erupted in the previous years. Despite of small compositional variations related to the emptying of the zoned topmost portion of the conduit, the data show that the switch from Strombolian explosive to effusive activity is not associated with changes of the textures and composition of the erupted products. Slight but somehow systematic variation of trace elements and isotope ratios between products erupted before and after the 5 April eruption are likely accounted by limited mixing between the fresh, volatile-rich, crystal-poor, magma erupted as pumice during the paroxysm, and the volatile-poor, crystal-rich magma feeding the lava flow. The uniform composition of the erupted lava indicates the presence of a large volume of well-mixed, crystal-rich, homogeneous magma residing in the shallow plumbing system of the volcano. Two possible trigger mechanism of the effusive event are here proposed: (i) a discrete input of fresh magma into the lower part of the shallow magmatic system occurred some months before the eruption and was followed by crystallisation, degassing and mixing with the crystal-rich shallow magma which re-homogenised the system. These processes eventually led to the rise of the magma at a higher level and failure of the conduit walls. (ii) The onset of the effusion may represent the consequence of a gradual rise of the magma level in the conduits occurred in the past two decades. The process of progressive refilling, initiated after the 1985 effusive eruption, ultimately culminated on 28 December 2002 with the failure of the conduit wall and the opening of vents 100–150 m below the summit craters
    Description: Published
    Description: 263-284
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli volcano ; Aeolian Islands ; 2002–2003 eruption ; Mineralogy ; Geochemistry ; Sr isotope ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: The exceptionally persistent activity of Stromboli volcano has lasted for at least 1400 years. The normal strombolian activity is periodically interrupted by more energetic explosions (1–2 per year) and by sporadic effusive episodes (every 10–20 years). Normal activity and effusive episodes are characterized by crystal-rich high-K to shoshonitic basalts issuing from a volatile-poor shallow system. Crystal-poor pumice are emitted only during more violent explosions, and are thought to derive from deep pulses of volatile-rich magma. Shallow level degassing induces massive crystallization of deep pulses of feeding magma that, continuously mixing with the resident one, produces the crystal-rich shoshonite of the persistent activity. We examined the crystallization history of the crystal-rich, shallow reservoir using plagioclase Crystal Size Distribution (CSD) analysis of scoriae and lavas emitted in the past twenty years. CSDs show a linear dependence from crystal size in the size interval 0.06–1.2 mm; number density of larger crystals is biased by right hand truncation effects. CSDs slopes and intercepts are quite constant during the whole considered time span revealing a system that is close to the equilibrium also from a kinetic point of view. The linear crystal size distribution are reached by the system through episodes of growth and resorption, respectively occurring in the degassed and undegassed magma during the continuous mixing in the feeding system. Plagioclase net growth rate (2 × 10− 11 cm/s) results from a balance of growth (10− 10 cm/s) and resorption episodes which induce spectacular zoning and resorption textures in crystals larger than 200 μm. CSDs of mafic phases cannot be accurately acquired on each single sample due to poor counting statistics; the evaluation of pyroxene and olivine CSD on the whole data set, however, confirms the conclusions acquired from plagioclase CSDs.
    Description: Published
    Description: 86-98
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: crystal size distribution ; plagioclase growth ; magma residence time ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: A new method combining measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux was developed in order to qualitatively and quantitatively characterise the CO2 source feeding the soil CO2 diffuse degassing. The method was tested in March 2007 at the Solfatara of Pozzuoli volcano degassing area (Naples, Italy) where more than 300 measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux were performed, surveying Solfatara crater and its surroundings. The wide range of CO2 flux and CO2 isotopic composition values (from 8.4 g m−2 d−1 to 28,834 g m−2 d−1, and from 0.73‰ to −33.54‰, respectively), together with their statistical distributions suggests the occurrence of multiple CO2 sources feeding soil degassing. The combined interpretation of flux and isotopic data allows us to identify and characterise two distinct gas sources: a hydrothermal and a biogenic source. The soil CO2 from the hydrothermal source is characterised by a mean δ13CCO2 of −2.3‰±0.9‰, hence close to the isotopic composition of the fumarolic CO2 (δ13CCO2=−1.48‰± 0.22‰) and by a mean CO2 flux of 2875 g m−2 d−1. The CO2 from the biogenic source is characterised by a mean δ13CCO2 of −19.4‰±2.1‰, and by a mean CO2 flux of 26 g m−2 d−1, which are both in the range of the typical values for biologic CO2 soil degassing. This reliable characterisation of the biogenic CO2 flux would not have been possible by solely applying a statistical analysis of the CO2 flux values, which is commonly applied in volcanological studies for the partitioning between background fluxes and anomalous CO2 fluxes. A map of the Solfatara diffuse degassing structure was derived from the estimated threshold for the biogenic CO2 flux, highlighting that soil degassing of hydrothermal CO2 mixed in different proportion with biogenic CO2 occurs over a large area (~0.8 km2), which extends over the inner part of the Solfatara crater as well as the eastern periphery, corresponding with a NW–SE fault system. The presented method and data analysis are important means of surveillance of the volcanic activity.
    Description: Published
    Description: 372–379
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 soil degassing ; CO2 flux ; carbon dioxide ; carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: Lake Averno is situated in the homonymous crater in the northwestern sector of the Campi Flegrei active volcanic system in Campania region, Italy. In February 2005 a fish kill event was observed in the lake, prompting a geochemical survey to ascertain the possible cause. In February 2005 a geochemical survey revealed that the lake water was unstratified chemically and isotopically, presumably, as a result of lake overturn. This fish kill phenomenon was recorded at least two other times in the past. In contrast to the February 2005 results, data collected in October 2005, shows the Lake Averno to be stratified, with an oxic epilimnion (surface to 6 m) and an anoxic hypolimnion (6 m to lake bottom at about 33 m). Chemical and isotopic compositions of Lake Averno waters suggest an origin by mixing of shallow waters with a Na–Cl hydrothermal component coupled with an active evaporation process. The isotopic composition of Dissolved Inorganic Carbon, as well as the composition of the non-reactive dissolved gas species again supports the occurrence of this mixing process. Decreasing levels of SO4 and increasing levels of H2S and CH4 contents in lake water with depth, strongly suggests anaerobic bacterial processes are occurring through decomposition of organic matter under anoxic conditions in the sediment and in the water column. Sulfate reduction and methanogenesis processes coexist and play a pivotal role in the anaerobic environment of the Lake Averno. The sulfate reducing bacterial activity has been estimated in the range of 14–22 μmol m−2 day−1. Total gas pressure of dissolved gases ranges between 800 and 1400 mbar, well below the hydrostatic pressure throughout the water column, excluding the possibility, at least at the survey time, of a limnic eruption. Vertical changes in the density of lake waters indicate that overturn may be triggered by cooling of epilimnetic waters below 7 °C. This is a possible phenomenon in winter periods if atmospheric temperatures remain frosty for enough time, as occurred in February 2005. The bulk of these results strongly support the hypothesis that fish kill was caused by a series of events that began with the cooling of the epilimnetic waters with breaking of the thermal stratification, followed by lake overturn and the rise of toxic levels of H2S from the reduced waters near the lake bottom.
    Description: Published
    Description: 305–316
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: lake Averno ; dissolved gases ; stable isotopes ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: The recent eruption of Stromboli in February–April 2007 offered a unique chance to test our current understanding of processes driving the transition from ordinary (persistent Strombolian) to effusive activity, and the ability of instrumental geophysical and geochemical networks to interpret and predict these events. Here, we report on the results of two years of in-situ sensing of the CO2/SO2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption. We show that large variations of the plume CO2/SO2 ratio (range, 0.9–26) preceded the onset of the eruption (since December 2007), interrupting a period of relatively-steady and low ratios (time-averaged ratio, 4.3) lasting from at least May to November 2006. By contrasting our observations with numerical simulations of volcanic degassing at Stromboli, derived by use of an equilibrium saturation model, we suggest that the pre-eruptive increase of the ratio reflected an enhanced supply of deeply-derived CO2-rich gas bubbles to the shallowplumbing system. This larger-than-normal ascent of gas bubbles was likely sourced by a 1–3 km deep gas– melt separation region (probably a magma storage zone), and caused faster convective overturning of magmas in the shallow conduit; an increase in the explosive rate and in seismic tremor, and finally the collapse of the la Sciara del Fuoco sector triggering the effusive phase. The high CO2/SO2 ratios (up to 21) observed during the effusive phase, and particularly in the days and hours before a paroxysmal explosion on March 15, 2007, indicate the persistence of the same gas source; and suggest that de-pressurization of the same 1–3 km deep magma storage zone could have been the trigger mechanism for the paroxysm itself
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; plume chemistry ; magma degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: Viscosity of silicate melts is a critical property for understanding volcanic and igneous processes in the Earth. We investigate the pressure effect on the viscosity of rhyolitic melts using two methods: indirect viscosity inference from hydrous species reaction in melts using a piston cylinder at pressures up to 2.8 GPa and direct viscosity measurement by parallel-plate creep viscometer in an internally-heated pressure vessel at pressures up to 0.4 GPa. Comparison of viscosities of a rhyolitic melt with 0.8 wt% water at 0.4 GPa shows that both methods give consistent results. In the indirect method, viscosities of hydrous rhyolitic melts were inferred based on the kinetics of hydrous species reaction in the melt upon cooling (i.e., the equivalence of rheologically defined glass transition temperature and chemically defined apparent equilibrium temperature). The cooling experiments were carried out in a piston-cylinder apparatus using hydrous rhyolitic samples with 0.8–4 wt% water. Cooling rates of the kinetic experiments varied from 0.1 K/s to 100 K/s; hence the range of viscosity inferred from this method covers 3 orders of magnitude. The data from this method show that viscosity increases with increasing pressure from 1 GPa to 3 GPa for hydrous rhyolitic melts with water content 0.8 wt% in the high viscosity range. We also measured viscosity of rhyolitic melt with 0.13 wt% water using the parallel-plate viscometer at pressures 0.2 and 0.4 GPa in an internally-heated pressure vessel. The data show that viscosity of rhyolitic melt with 0.13 wt% water decreases with increasing pressure. Combining our new data with literature data, we develop a viscosity model of rhyolitic melts as a function of temperature, pressure and water content.
    Description: NSF Grants EAR-0537598 and EAR-0711050
    Description: Published
    Description: 3680-3693
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: viscosity ; rhyolite ; water species ; pressure ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: Chemical and isotopic analyses of the main gas manifestations of the island of Pantelleria (Italy) were used to gain insight on the origin of the released methane. Results indicate that the most probable origin is through abiogenic reactions within the hydrothermal system. Methane and CO2 flux measurements from the soils were made with the accumulation chamber method in an area of about 0.015 km2 within the main fumarolic area of the island (Favara Grande). The 23 measurements range from –34 to 3550 mg m-2 d-1 for CH4 and from 0.6 to 379 g m-2 d-1 for CO2. The relationships between CH4 and CO2 fluxes and the CH4/CO2 ratios in the gases collected between 25 and 100 cm depth provide evidence for methanotrophic processes within the soils. Methane output for the surveyed area was calculated in 2.5 t a-1 and extrapolated to about 5-10 t a-1 for the entire volcanic/hydrothermal system of the island. Previous higher estimates of the CH4 output at Pantelleria (Etiope et al., 2007 - J. Volcanol. Geotherm. Res., 165, 76 – 86) were based on soil CO2 output and CH4/CO2 ratios in fumarolic gases; the present work provides the first direct CH4 flux data and it suggests that methanotrophic activity in the soil could be substantial in reducing the CH4 emission to the atmosphere.
    Description: Published
    Description: 147-157
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothermal systems ; gas geochemistry ; isotope composition ; methane output ; methanotrophic consumption ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: The Astroni volcano was built through seven eruptions that generated pyroclastic deposits and lava domes within the Campi Flegrei caldera (southern Italy) 4.1–3.8 ka BP. Whole-rock geochemical and B–Sr–Nd isotopic investigations were carried out on representative samples of all seven eruptions. The products vary from tephriphonolites to phonolites, and from latites to trachytes. They show textural, mineralogical and isotopic evidence of disequilibrium, including distinct clinopyroxene populations, rounded and/or resorbed plagioclase and alkali-feldspar, and reverse-zoned phenocrysts of all these mineral phases. The Sr, Nd and B isotopic composition of whole rocks is variable and correlated with the degree of chemical evolution, suggesting open-system processes in addition to fractional crystallisation. Moreover, significant Sr-isotopic disequilibrium between the phenocrysts and glass has been documented for one sample. The chemostratigraphy of the products indicates that Astroni eruptions 1 through 5 were fed by magmas of trachytic to phonolitic composition that were less enriched in radiogenic Sr and 11B up-section. This variability has been interpreted as the result of mingling between at least two distinct magmatic endmembers, one more evolved and the other less evolved. Another heterogeneous batch of magma, resulting from almost complete mixing between the same two end-members, was drained during eruptions 6 and 7. The more evolved end-member, characterised by 87Sr/86Sr≥0.7075, 143Nd/144Nd≤0.51247 and δ11B≥−8‰, was very similar to the magma that fed the final phases of the Agnano–Monte Spina eruption, which occurred a few centuries earlier in the Astroni vent area. The less evolved end-member had 87Sr/ 86Sr≤0.70726, 143Nd/144Nd≥0.51251 and δ11B≤10‰, and was likely derived by fractional crystallisation of a mantle-derived magma. An abrupt decrease in both the Sr isotope ratio and the Th content, detected at the transition between Unit 4 and 5, suggests that another magma with a 87Sr/86Sr ratio intermediate between those of the two identified end-members may have been involved in Astroni activity. The more evolved endmember is interpreted as a residue of the Agnano–Monte Spina eruption that was invaded by either the intermediate or the less evolved magmatic end-member, promoting mingling and triggering Astroni activity. This study of Astroni provides insights for both short- and long-term volcanic hazard assessment, as the Astroni volcano is the best example of a very close sequence of eruptions from the same vent area in the Campi Flegrei caldera.
    Description: Published
    Description: 135–151
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; B–Sr–Nd isotope geochemistry ; Magma mingling/mixing ; Chemostratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-05-09
    Description: A geochemical survey of thermal waters collected from submarine vents at Panarea Island (Aeolian Islands, southern Italy) was carried out from December 2002 to March 2007, in order to investigate i) the geochemical processes controlling the chemical composition of the hydrothermal fluids and ii) the possible relations between the chemical features of the hydrothermal reservoir and the activity of the magmatic system. Compositional data of the thermal water samples were integrated in a hydrological conceptual model, which describes the formation of the vent fluid by mixing of seawater, seawater concentrated by boiling, and a deep, highly-saline end-member, whose composition is regulated by water-rock interactions at relatively high temperature and shows clear clues of magmatic-related inputs. The chemical composition of concentrated seawater was assumed to be represented by that of the water sample having the highest Mg content. The composition of the deep end-member was instead calculated by extrapolation assuming a zero-Mg end-member. The Na–K–Ca geothermometer, when applied to the thermal end-member composition, indicated an equilibrium temperature of approximately 300 °C, a temperature in agreement with the results obtained by gas-geothermometry.
    Description: Published
    Description: 246-254
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: low-pH waters; shallow submarine hydrothermal springs; Panarea Island ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...