ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (13,471)
  • Inorganic Chemistry  (3,066)
  • Aircraft Design, Testing and Performance
  • Aircraft Propulsion and Power
  • 2005-2009  (817)
  • 1955-1959  (13,487)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2009-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diederich, Francois -- England -- Nature. 2009 Jul 2;460(7251):33. doi: 10.1038/460033c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19571863" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry ; Internet ; Periodicals as Topic/*standards/*trends ; Printing/*trends ; Societies, Scientific
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2009 Nov 6;326(5954):788-91. doi: 10.1126/science.326_788.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892956" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes/economics/organization & administration ; Anthropology ; Biology ; Chemistry ; Germany ; Germany, East ; Physics ; Research Personnel ; Universities
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-28
    Description: The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.
    Keywords: Aircraft Propulsion and Power
    Type: More Intelligent Gas Turbine Engines; 4-1 - 4-8; RTO-TR-AVT-128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-28
    Description: Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.
    Keywords: Aircraft Propulsion and Power
    Type: More Intelligent Gas Turbine Engines; 3-1 - 3-16; RTO-TR-AVT-128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-28
    Description: Active Control can help to meet future engine requirements by an active improvement of the component characteristics. The concept is based on an intelligent control logic, which senses actual operating conditions and reacts with adequate actuator action. This approach can directly improve engine characteristics as performance, operability, durability and emissions on the one hand. On the other hand active control addresses the design constrains imposed by unsteady phenomena like inlet distortion, compressor surge, combustion instability, flow separations, vibration and noise, which only occur during exceptional operating conditions. The feasibility and effectiveness of active control technologies have been demonstrated in lab-scale tests. This chapter describes a broad range of promising applications for each engine component. Significant efforts in research and development remain to implement these technologies in engine rig and finally production engines and to demonstrate today s engine generation airworthiness, safety, reliability, and durability requirements. Active control applications are in particular limited by the gap between available and advanced sensors and actuators, which allow an operation in the harsh environment in an aero engine. The operating and performance requirements for actuators and sensors are outlined for each of the gas turbine sections from inlet to nozzle.
    Keywords: Aircraft Propulsion and Power
    Type: More Intelligent Gas Turbine Engines; 2-1 - 2-40; RTO-TR-AVT-128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consistent with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparisons are presented with published experimental data. Some of the data are for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach taken in this analysis is to treat the roughness in a statistical sense, consistent with what would be obtained from blades measured after exposure to actual engine environments. An approach is given to determine the equivalent sand grain roughness from the statistics of the regular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test conditions. Additional comparisons are made with experimental heat transfer data, where the roughness geometries are both regular and statistical. Using the developed analysis, heat transfer calculations are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.
    Keywords: Aircraft Propulsion and Power
    Type: Journal of Turbomachinery; Volume 131; Issue 4; 041020-1 - 041020-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.
    Keywords: Aircraft Propulsion and Power
    Type: Journal of Fluids Engineering; Volume 131; Issue 4; 41104-1 - 41104-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-27
    Description: Damaged aircraft have occasionally had to rely solely on thrust to maneuver as a consequence of losing hydraulic power needed to operate flight control surfaces. The lack of successful landings in these cases inspired research into more effective methods of utilizing propulsion-only control. That research demonstrated that one of the major contributors to the difficulty in landing is the slow response of the engines as compared to using traditional flight control. To address this, research is being conducted into ways of making the engine more responsive under emergency conditions. This can be achieved by relaxing controller limits, adjusting schedules, and/or redesigning the regulators to increase bandwidth. Any of these methods can enable faster response at the potential expense of engine life and increased likelihood of stall. However, an example sensitivity analysis revealed a complex interaction of the limits and the difficulty in predicting the way to achieve the fastest response. The sensitivity analysis was performed on a realistic engine model, and demonstrated that significantly faster engine response can be achieved compared to standard Bill of Material control. However, the example indicates the need for an intelligent approach to controller limit adjustment in order for the potential to be fulfilled.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215668 , AIAA Paper 2009-1876 , E-17010 , Infotech@Aerospace Conference; 9-Jun; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1066 , NASA ARMD Fundamental Aeronautics Program 2009 Annual Review; 29 Sep. 1 Oct. 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The research in Supersonic Cruise Efficiency Propulsion (SCE-P) Technical Challenge area of NASA's Supersonics project is discussed. The research in SCE-P is being performed to enable efficient supersonic flight over land. Research elements in this area include: Advance Inlet Concepts, High Performance/Wider Operability Fan and Compressor, Advanced Nozzle Concepts, and Intelligent Sensors/Actuators. The research under each of these elements is briefly discussed.
    Keywords: Aircraft Propulsion and Power
    Type: E-17639 , NASA Fundamental Aeronautic Program 2009 Annual Meeting; Sep 29, 2009 - Oct 01, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1
    Keywords: Aircraft Propulsion and Power
    Type: E-18282-1 , AIAA Aerospace Science Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2009-214597/REV , SSPO-MLLHV-TIP-20080506 , ARC-E-DAA-TN556
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: The Rake Airflow Gage Experiment was flown on the Propulsion Flight Test Fixture at NASA Dryden Flight Research Center using one of Dryden s F-15B research testbed aircraft. Propulsion Flight Test Fixture is a modular, pylon-based platform for flight testing propulsion system components, such as the Channeled Centerbody Inlet Experiment, an innovative, variable-geometry, mixed compression supersonic inlet under development at NASA Dryden. The objective of this flight test was to ascertain the flowfield angularity and local Mach number profile of the aerodynamic interface plane that is defined by the planned location of the tip of the inlet centerbody. Knowledge of the flowfield characteristics at this location underneath will be essential to computational modeling of the new inlet as well as future propulsion systems flight testing using the test fixture. This paper describes the preparation for and execution of the flight test, as well as results and validation of the algorithm used to calculate local Mach number and angularity from the rake's pressure measurements.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-928 , 27th AIAA Applied Aerodynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: The Aerostructures Test Wing (ATW) was developed to test unique concepts for flutter prediction and control synthesis. A follow-on to the successful ATW, denoted ATW2, was fabricated as a test bed to validate a variety of instrumentation in flight and to collect data for development of advanced signal processing algorithms for flutter prediction and aviation safety. As a means to estimate flutter speed, a ground vibration test (GVT) was performed. The results of a GVT are typically utilized to update structural dynamics finite element (FE) models used for flutter analysis. In this study, two GVT methodologies were explored to determine which nodes provide the best sensor locations: (i) effective independence and (ii) kinetic energy sorting algorithms. For measurement, ten and twenty sensors were used for three and 10 target test modes. A total of six accelerometer configurations measured frequencies and mode shapes. This included locations used in the original ATW GVT. Moreover, an optical measurement system was used to acquire data without mass effects added by conventional sensors. A considerable frequency shift was observed in comparing the data from the accelerometers to the optical data. The optical data provided robust data for use of the ATW2 finite element model update.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-844 , 27th IMAC Conference and Exposition on Structural Dynamics; Feb 09, 2009 - Feb 12, 2009; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1063 , Congreso "Evolucion 09,"; 28 Sep. 1 Oct. 2009; Puebla; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215839 , ISABE-2009-1125 , E-17099
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-12
    Description: One of the operational modes of the Terminal Area Simulation System (TASS) model simulates the three-dimensional interaction of wake vortices within turbulent domains in the presence of thermal stratification. The model allows the investigation of turbulence and stratification on vortex transport and decay. The model simulations for this work all assumed fully-periodic boundary conditions to remove the effects from any surface interaction. During the Base Period of this contract, NWRA completed generation of these datasets but only presented analysis for the neutral stratification runs of that set (Task 3.4.1). Phase 1 work began with the analysis of the remaining stratification datasets, and in the analysis we discovered discrepancies with the vortex time to link predictions. This finding necessitated investigating the source of the anomaly, and we found a problem with the background turbulence. Using the most up to date version TASS with some important defect fixes, we regenerated a larger turbulence domain, and verified the vortex time to link with a few cases before proceeding to regenerate the entire 25 case set (Task 3.4.2). The effort of Phase 2 (Task 3.4.3) concentrated on analysis of several scenarios investigating the effects of closely spaced aircraft. The objective was to quantify the minimum aircraft separations necessary to avoid vortex interactions between neighboring aircraft. The results consist of spreadsheets of wake data and presentation figures prepared for NASA technical exchanges. For these formation cases, NASA carried out the actual TASS simulations and NWRA performed the analysis of the results by making animations, line plots, and other presentation figures. This report contains the description of the work performed during this final phase of the contract, the analysis procedures adopted, and sample plots of the results from the analysis performed.
    Keywords: Aircraft Design, Testing and Performance
    Type: LF99-9848 , NWRA-SEA-08-R378
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: A corona discharge device generates an ionic wind and thrust, when a high voltage corona discharge is struck between sharply pointed electrodes and larger radius ground electrodes. The objective of this study was to examine whether this thrust could be scaled to values of interest for aircraft propulsion. An initial experiment showed that the thrust observed did equal the thrust of the ionic wind. Different types of high voltage electrodes were tried, including wires, knife-edges, and arrays of pins. A pin array was found to be optimum. Parametric experiments, and theory, showed that the thrust per unit power could be raised from early values of 5 N/kW to values approaching 50 N/kW, but only by lowering the thrust produced, and raising the voltage applied. In addition to using DC voltage, pulsed excitation, with and without a DC bias, was examined. The results were inconclusive as to whether this was advantageous. It was concluded that the use of a corona discharge for aircraft propulsion did not seem very practical.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215822 , E-17084
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-12
    Description: The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TP-2009-214652 , DFRC-762 , H-3006
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215654 , AHS 2009 080366 , E-16966
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215629 , E-16940
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2009-215699 , L-19371 , LF99-5349
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215521 , E-16800
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.
    Keywords: Aircraft Propulsion and Power
    Type: DFRC-943
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-24
    Description: Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-13
    Description: This slide presentation reviews the development and construction of the wireless acoustic instruments surrounding the space shuttle's main engines in preparation for STS-129. The presentation also includes information on end-of-life processing and the mounting procedure for the devices.
    Keywords: Aircraft Propulsion and Power
    Type: JSC-CN-19417 , 43rd Combustion Meeting; Dec 07, 2009 - Dec 11, 2009; La Jolla, CA; United States|31st Airbreathing Propulsion Meeting; Dec 07, 2009 - Dec 11, 2009; La Jolla, CA; United States|25th Propulsion Systems Hazards Joint Subcommittie Meeting; Dec 07, 2009 - Dec 11, 2009; La Jolla, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: Seminar for Penn State''s Active Structures and Noise Control Group of the Center for Acoustics and Vibration; Dec 01, 2009; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
    Keywords: Aircraft Design, Testing and Performance
    Type: GT2009-59568 , E-16910 , ASME Turbo 2009; Jun 08, 2009 - Jun 12, 2009; Florida; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives.
    Keywords: Aircraft Propulsion and Power
    Type: E-16904 , Fall Acoustics Technical Working Group Meeting; Sep 23, 2008 - Sep 24, 2008; Virginia; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: One goal of the NASA Fundamental Aeronautics Program is the assessment of computational fluid dynamic (CFD) codes used for the design and analysis of many aerospace systems. This paper describes the assessment of the SWIFT turbomachinery analysis code for two similar transonic compressors, NASA rotor 37 and stage 35. The two rotors have identical blade profiles on the front, transonic half of the blade but rotor 37 has more camber aft of the shock. Thus the two rotors have the same shock structure and choking flow but rotor 37 produces a higher pressure ratio. The two compressors and experimental data are described here briefly. Rotor 37 was also used for test cases organized by ASME, IGTI, and AGARD in 1994-1998. Most of the participating codes over predicted pressure and temperature ratios, and failed to predict certain features of the downstream flowfield. Since then the AUSM+ upwind scheme and the k- turbulence model have been added to SWIFT. In this work the new capabilities were assessed for the two compressors. Comparisons were made with overall performance maps and spanwise profiles of several aerodynamic parameters. The results for rotor 37 were in much better agreement with the experimental data than the original blind test case results although there were still some discrepancies. The results for stage 35 were in very good agreement with the data. The results for rotor 37 were very sensitive to turbulence model parameters but the results for stage 35 were not. Comparison of the rotor solutions showed that the main difference between the two rotors was not blade camber as expected, but shock/boundary layer interaction on the casing.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215520 , AIAA Paper-2009-1058 , E-16722 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes the high temperature structural measurements developments for hypersonic airframes applications.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-945 , 33rd Annual Conference on Composites, Materials, and Structures, Session: Hi-Temperature Sensing Materials and Devices; Jan 26, 2009 - Jan 29, 2009; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: Comparison metrics can be established to reliably and repeatedly establish the health of the joggle region of the Orbiter Wing Leading Edge reinforced carbon carbon (RCC) panels. Using these metrics can greatly reduced the man hours needed to perform, wing leading edge scanning for service induced damage. These time savings have allowed for more thorough inspections to be preformed in the necessary areas with out affecting orbiter flow schedule. Using specialized local inspections allows for a larger margin of safety by allowing for more complete characterizations of panel defects. The presence of the t-seal during thermographic inspection can have adverse masking affects on ability properly characterize defects that exist in the joggle region of the RCC panels. This masking affect dictates the final specialized inspection should be preformed with the t-seal removed. Removal of the t-seal and use of the higher magnification optics has lead to the most effective and repeatable inspection method for characterizing and tracking defects in the wing leading edge. Through this study some inadequacies in the main health monitoring system for the orbiter wing leading edge have been identified and corrected. The use of metrics and local specialized inspection have lead to a greatly increased reliability and repeatable inspection of the shuttle wing leading edge.
    Keywords: Aircraft Design, Testing and Performance
    Type: KSC-2010-097 , 2010 Aircraft Airworthiness and Sustainment Conference; May 10, 2010 - May 14, 2010; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215487 , E-16693
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible role of facility effects will thus be documented. Although the comparisons that can be accomplished within the limited resources of this task are not comprehensive, they provide a broad enough sampling to enable NASA to make an informed decision on how much further effort should be expended on such comparisons. The improved finalized model is incorporated into the FOOTPR code. MTC has also supported the adaptation of this code for incorporation in NASA s Aircraft Noise Prediction Program (ANOPP).
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215524 , E-16805
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: A request was submitted on September 2, 2004 concerning the uncertainties regarding the acoustic environment within the Stratospheric Observatory for Infrared Astronomy (SOFIA) cavity, and the potential for structural damage from acoustical resonance or tones, especially if they occur at or near a structural mode. The requestor asked for an independent expert opinion on the approach taken by the SOFIA project to determine if the project's analysis, structural design and proposed approach to flight test were sound and conservative. The findings from this assessment are recorded in this document.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2009-215730 , NESC-RP-05-98/04-073-E , L-19668 , LF99-8783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-213827/PART2 , E-16951
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2009-215563 , LF99-8162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-27
    Description: In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.
    Keywords: Aircraft Design, Testing and Performance
    Type: PB2010-115148 , NASA SP-2009-4544
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN815 , 16th International Space Planes and Hypersonic Systems; Oct 19, 2009 - Oct 22, 2009; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN697 , Twenty-first International Joint Conference on Artificial; Jul 11, 2009 - Jul 13, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: Objectives: a) Regain Stable Platform: 1) Metrics analogous to stability margins needed for adaptive control systems; 2) Avoid adverse structural interactions. b) Maneuverability: 1) Control vehicle within new constraints; 2) Respect structural limitations; 3) Inform pilot of new performance limitations. c) Provide ability to safely land airplane: 1) Develop safest recovery trajectory.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1078 , NASA Aviation Safety Technical Conference; Nov 17, 2009 - Nov 19, 2009; McLean, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215674 , AIAA Paper 2009-3378 , E-17036 , 30th AIAA Aeroacoustics Conference; May 11, 2009 - May 13, 2009; Miami, FL; United States|15th Aeroacoustics Conference; May 11, 2009 - May 13, 2009; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews several projects that NASA Dryden personnel are involved with: Integrated Resilient Aircraft Controls Project (IRAC), NASA G-III Research Aircraft, X-48B Blended Wing Body aircraft, Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Orion CEV Launch Abort Systems Tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1073 , Aerospace Control and Guidance Sub-committee Meeting 104; Oct 01, 2009; Charlottesville, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: This video, accompanying material for a talk, shows portions of the F-15 flight test. It shows the in-flight movement of the plane, and the landing.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1045 , NESC GN&C Face-to-face Meeting; Aug 09, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Presentation for Aging Aircraft conference covering chafing fault diagnostics using Time Domain Reflectometry. Laboratory setup and experimental methods are presented, along with initial results that summarize fault modeling and detection capabilities.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN572 , Aging Aircraft 2009; May 04, 2009 - May 07, 2009; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN196 , AIAA Infotech at Aerospace Conference; Apr 06, 2009 - Apr 09, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the preliminary Flight tests of the X-48B development program. The X-48B is a blended wing body aircraft that is being used to test various features of the BWB concept. The research concerns the following: (1) Turbofan Development, (2) Intelligent Flight Control and Optimization, (3) Airdata Calibration (4) Parameter Identification (i.e., Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response.)
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-E-DAA-TN2400 , DFRC-1060 , 2009 Annual Meeting, NASA Fundamenta Aeronautics Program, Subsonic Fixed Wing Project; Sep 29, 2009 - Oct 01, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN453 , ARC-E-DAA-TN776 , 35th European Rotorcraft Forum; Sep 22, 2009 - Sep 25, 2009; Hamburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.
    Keywords: Aircraft Propulsion and Power
    Type: LF99-8327 , 9th AIAA Aviation Technology, Integration, and Operations Conference; Sep 21, 2009 - Sep 24, 2009; Hilton Head, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1044 , NASA IRAC RFI Response Workshop; Aug 09, 2009; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
    Keywords: Aircraft Propulsion and Power
    Type: JSC-CN-18506 , 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14,000 mirror segments. The operating temperature requirement of the SXT FMA is 20 C. The spatial temperature gradient requirement between the FMA modules is 1 C or smaller. The spatial temperature gradient requirement within a module is 0.5 C. This paper presents thermal design considerations to meet these stringent thermal requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: 2009-01-2391 , 39th International Conference on Environmental Systems/SAE International; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Scientists have eagerly anticipated the performance capability of the National Aeronautics and Space Administration (NASA) Global Hawk for over a decade. In 2009 this capability becomes operational. One of the most desired performance capabilities of the Global Hawk aircraft is very long endurance. The Global Hawk aircraft can remain airborne longer than almost all other jet-powered aircraft currently flying, and longer than all other aircraft available for airborne science use. This paper describes the NASA Global Hawk system, payload accommodations, concept of operations, and the first scientific data-gathering mission: Global Hawk Pacific 2009.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-920 , 33rd International Symposium on Remote Sensing of Environment; May 04, 2009 - May 08, 2009; Stresa; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1002 , International Test and Evaluation (TEA) 2009 Test Instruinentation Workshop; May 12, 2009 - May 14, 2009; California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2009-215594 , AIAA Paper 2009-0620 , E-16885 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Florida; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.
    Keywords: Aircraft Design, Testing and Performance
    Type: LF99-7993 , 15th AIAA/CEAS Aeroacoustics Conference; May 11, 2009 - May 13, 2009; Florida; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the failure of the Helios solar aircraft failure. Included are pictures of the aircraft, inflight, and after the mishap, analysis of the root causes of the mishap, contributing factors, recommendations and lessons learned in respect to crew training, and assessing the level of risk.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-990 , 2009 Flight Test Safety Workshop/Society of Experimental Test Pilots; Apr 28, 2009 - Apr 30, 2009; Ottawa, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN729 , AIAA Atmospheric Flight Mechanics; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the practices that Dryden uses for qualification of the prototypes of aircraft. There are many views of aircraft that Dryden has worked with. Included is a discussion of basic considerations for strength, a listing of standards and references, a discussion of typical safety of flight approaches, a discussion of the prototype design, using the X-29A as an example, and requirements for new shapes (i.e., the DAST-ARW1 , F-8 Super Critical Wing, AFTI/F-111 MAW), new control laws (i.e., AAW F-18), new operating envelope (i.e., F-18 HARV), limited sope add-on or substitute structure (i.e., SR-71 LASRE, ECLIPSE, F-16XL SLFC), and extensively modified or replaced structure (i.e., SOFIA, B747SP). There is a listing of causes for the failure of the prototype.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1071 , NATO Research and Techology Organization AVT-174 (Applied Vehicle Technology) Meeting; Oct 19, 2009; Bonn; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
    Keywords: Aircraft Propulsion and Power
    Type: E-17089-1 , Annual Conference of the Prognostices and Health Management Society 2009; Sep 27, 2009 - Oct 01, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Twenty-four air transport-rated pilots participated as subjects in a fixed-based simulation experiment to evaluate the use of Synthetic/Enhanced Vision (S/EV) and eXternal Vision System (XVS) technologies as enabling technologies for future all-weather operations. Three head-up flight display concepts were evaluated a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of the display type and AOA condition being evaluated or whether or not there were peripheral cues in the side windows. Longitudinal touchdown and glideslope tracking were affected by the display concepts. Larger FOV display concepts showed improved longitudinal touchdown control, superior glideslope tracking, significant situation awareness improvements and workload reductions compared to smaller FOV display concepts.
    Keywords: Aircraft Design, Testing and Performance
    Type: LF99-9240 , 28th (DASC) Digital Avionics Systems Conference; Oct 25, 2009 - Oct 29, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-26
    Description: The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: This paper presents a system-level perspective on the operational issues and constraints that limit departure capacity at large metropolitan airports in today's air transportation system. It examines the influence of constraints evident in en route airspace, in metroplex operations, and at individual airports from today's perspective and with a view toward future gate-to-cruise operations. Cross cutting organizational and technological challenges are discussed in relation to their importance in addressing the constraints.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2009-215763 , LF99-8900
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-12
    Description: Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2009-214645 , H-2921 , DFRC-911
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-12
    Description: This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.
    Keywords: Aircraft Propulsion and Power
    Type: PB2010-103421 , DOT/FAA/AR-08/37,P2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TP-2009-215402 , ARC-E-DAA-TN762
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-12
    Description: A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.
    Keywords: Aircraft Propulsion and Power
    Type: PB2010-103422 , DOT/FAA/AR-08/37,P3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.
    Keywords: Aircraft Design, Testing and Performance
    Type: 60th Annual International Astronautical Congress; Oct 12, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: Several areas of scientific interest have been identified that would significantly benefit from using Unmanned Aircraft Systems (UAS) for gathering remote sensing data. UAS are uniquely suited for applications that require long dwell times and/or in locations that are generally too dangerous for manned aircraft. Sea ice characterization, mapping of fault lines, hurricane monitoring, and satellite validation are some examples of applications that are benefited by the use of UAS. UAS are not without their challenges, however. Instruments must be automated and miniaturized, and be able to operate in extreme conditions (i.e. high altitude environments). However, because UAS currently lack a see-and-avoid capability, the greatest challenge is getting access to the airspace required to accomplish science missions. The ability for UAS to access airspace varies from country to country. This paper will give a brief overview of different UAS remote sensing applications, and will address general world airspace issues and challenges with a specific look at the United States.
    Keywords: Aircraft Design, Testing and Performance
    Type: ISPRS ICWG I/V Third International Workshop - The Future of Remote Sensing; Oct 20, 2009 - Oct 21, 2009; Antwerp; Belgium
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: Aircraft structures are designed to guarantee safety of flight in some required operational envelope. When the aircraft becomes structurally impaired, safety of flight may not be guaranteed within that previously safe operational envelope. In this case the safe operational envelope must be redefined in-flight and a means to prevent excursion from this new envelope must be implemented. A specific structural failure mode that may result in a reduced safe operating envelope, the exceedance of which could lead to catastrophic structural failure of the aircraft, will be addressed. The goal of the DFEAP program is the detection of this failure mode coupled with flight controls adaptation to limit critical loads in the damaged aircraft structure. The DFEAP program is working with an F/A-18 aircraft model. The composite wing skins are bonded to metallic spars in the wing substructure. Over time, it is possible that this bonding can deteriorate due to fatigue. In this case, the ability of the wing spar to transfer loading between the wing skins is reduced. This failure mode can translate to a reduced allowable compressive strain on the wing skin and could lead to catastrophic wing buckling if load limiting of the wing structure is not applied. The DFEAP program will make use of a simplified wing strain model for the healthy aircraft. The outputs of this model will be compared in real-time to onboard strain measurements at several locations on the aircraft wing. A damage condition is declared at a given location when the strain measurements differ sufficiently from the strain model. Parameter identification of the damaged structure wing strain parameters will be employed to provide load limiting control adaptation for the aircraft. This paper will discuss the simplified strain models used in the implementation and their interaction with the strain sensor measurements. Also discussed will be the damage detection and identification schemes employed and the means by which the damaged aircraft parameters will be used to provide load limiting that keeps the aircraft within the safe operational envelope.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1000 , AIAA Guidance, Navigation, and Control Conference; Aug 10, 2009 - Aug 14, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN697 , Twenty-first International Joint Conference on Artificial Intelligence; Jul 11, 2009 - Jul 13, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.
    Keywords: Aircraft Propulsion and Power
    Type: E-17142-V , P-SAR Conference; Mar 24, 2009 - Mar 26, 2009; Myrtle Beach, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215826 , GT2009-60118 , E-17088 , ASME Turbo Expo 2009; Jun 08, 2009 - Jun 12, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215585 , AIAA Paper 2009-1641 , E-16825 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Objectives: a) Develop an asymmetric handling qualities metric to predict cross coupling effects of a damaged aircraft: 1) Initial use of U.S Army Aeronautical Design Specification ADS-33; 2) Modification as required based on flight test results. b) Simulation and Flight Validation of proposed metric: 1) F-16 VISTA (March 2010); 2) F-18 Full Scale Test bed (Potential Early Experiment); and 3) Flight Simulators (GTM, ACFS, F-18 HILS). c) Provide flight validated metric and tool box to control law designers.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1083 , NASA ARMD/Aviation Safety Technical Conference; Nov 17, 2009 - Nov 19, 2009; McLean, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.
    Keywords: Aircraft Propulsion and Power
    Type: 09ATC-0241 , DFRC-1074 , SAE 2009 Aerotech Congress and Exhibition; Nov 10, 2009 - Nov 12, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability known as flutter. ATW was a small-scale airplane wing comprised of an airfoil and wing tip boom. This wing was formulated based on a NACA-65A004 airfoil shape with a 3.28 aspect ratio. The wing had a span of 18 inch with root chord length of 13.2 inch and tip chord length of 8.7 inch. The total area of this wing was 197 square inch. The wing tip boom was a 1 inch diameter hollow tube of length 21.5 inch. The total weight of the wing was 2.66 lbs.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-933 , International Forum on Aeroelasticity and Structural Dynamics (IFASD) 2009; Jun 21, 2009 - Jun 25, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the TF-1 (later designated as an F-15B) aircraft, which was delivered as an F-15 trainer. The aircraft was used as a test aircraft for various programs. The aircraft was later renamed to NASA 837 in 2001. Prior to its retirement it was used to test various features and concepts. Some of these tests were: (1) Canopy Off Testing, (2) STOL and Maneuvering Technology Demonstrator (S/MTD), (3) 2D Nozzles (4) Autonomous landing guidance, (5) Advanced Control Technology for Integrated Vehicles (ACTIVE), (6) Intelligent Flight Control System (IFCS), (7) Structural Loads Model Validation (SLMV), (8) Enhanced Communication and Navigation System (ECANS), (9) QuietSpike Probing, and (10) Lift and Nozzle Effects on Tail Shocks (LaNCETS)
    Keywords: Aircraft Design, Testing and Performance
    Type: DRFC-1040 , Experimental Aircraft Association (EAA) Air Venture; Jul 27, 2009 - Aug 02, 2009; Oshkosh, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the flight operations of Ikhana and Global Hawk Fire missions. The Ikhana fire missions modifications, ground systems, flight operations, range safety zones, primary and secondary emergency landing sites, and the Ikhana western states fire missions of 2007 are described, along with The Global Hawk specs, a description of the Global Hawk Pacific Science Campaign (GloPac '09) and GloPac payloads.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1033 , EAA AirVenture 2009; Jul 27, 2009 - Aug 02, 2009; Oshkosh, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215651/PART1 , E-16964-1 , 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.
    Keywords: Aircraft Propulsion and Power
    Type: LF99-8034 , 15th AIAA/CEAS Aeroacoustics Conference; May 11, 2009 - May 13, 2009; Florida; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: M09-0203 , M09-0507 , Spacecraft and Launch Vehicle Dynamic Environments Workshop; Jun 09, 2009 - Jun 11, 2009; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC #971 , AIAA Infotech@Aerospace Conference and Exhibit; Apr 06, 2009 - Apr 09, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing. The paper also includes the verification of a medium-fidelity aerodynamic tool used for the aerodynamic database generation with a steady and unsteady high-fidelity CFD analysis tool for a folding wing example.
    Keywords: Aircraft Design, Testing and Performance
    Type: LF99-7551 , NATO RTO AVT-168 Symposium; Apr 20, 2009 - Apr 24, 2009; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.
    Keywords: Aircraft Propulsion and Power
    Type: E-16952-1 , American Helicopter Society 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: F/A-18 testbed development and flight research are highlighted in this presentation. The current focus is on stability, specifically adaptive flight control, but soon the focus will move towards stability and maneuverability, examining flight planning and guidance, adaptive flight control, engine control and airframe and structures. Later research will additionally review V and V methods. Current and future IRAC plans are highlighted.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-954 , NAVAIR; Feb 12, 2009; Edwards, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN675 , 2nd International Forum on Rotorcraft Multidisciplinary Technology; Oct 19, 2009 - Oct 20, 2009; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215656 , GT2008-50062 , E-916428-1 , Gas Turbine Technical Congress and Exposition (Turbo Expo 2008); Jun 09, 2008 - Jun 13, 2008; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined.
    Keywords: Aircraft Propulsion and Power
    Type: E-17140-V , 2009 Annual Meeting Fundamental Aeronautics Program; Sep 29, 2009 - Oct 01, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow becomes unsteady due to this interaction. The LES simulation also calculates the total pressure rise deficit near the hub and it agrees well with the measured data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215627 , E-16939 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division
    Keywords: Aircraft Design, Testing and Performance
    Type: LF99-8230 , AUVSI''s Unmanned Systems North America 2009; Aug 10, 2009 - Aug 13, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215651/PART2 , E-16964-2 , 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2009-2528 , DFRC-856 , DFRC-985 , 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; May 04, 2009 - May 07, 2009; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.
    Keywords: Aircraft Design, Testing and Performance
    Type: LF99-8639 , RTO-MP-AVT-168 , NATO RTO AVT-168 Symposium; Apr 20, 2009 - Apr 24, 2009; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215301 , AIAA Paper-2008-4743 , E-16570 , 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 21, 2008 - Jul 23, 2008; Connecticut; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: This slide presentation discusses a method of inverse design for low sonic boom using adjoint-based gradient computations. It outlines a method for shaping a configuration in order to match a prescribed near-field signature.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN1000 , MS S4.03.002 - Adjoint-Based Design for Configuration Shaping; Nov 30, 2009; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A metric is proposed to characterize airspace complexity with respect to an automated separation assurance function. The Maneuver Option metric is a function of the number of conflict-free trajectory change options the automated separation assurance function is able to identify for each aircraft in the airspace at a given time. By aggregating the metric for all aircraft in a region of airspace, a measure of the instantaneous complexity of the airspace is produced. A six-hour simulation of Fort Worth Center air traffic was conducted to assess the metric. Results showed aircraft were twice as likely to be constrained in the vertical dimension than the horizontal one. By application of this metric, situations found to be most complex were those where level overflights and descending arrivals passed through or merged into an arrival stream. The metric identified high complexity regions that correlate well with current air traffic control operations. The Maneuver Option metric did not correlate with traffic count alone, a result consistent with complexity metrics for human-controlled airspace.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN1001 , 28th Digital Avionics Systems Conference; Oct 25, 2009 - Oct 29, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations.
    Keywords: Aircraft Design, Testing and Performance
    Type: 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The Hyper-X project (X-43A) provides a number of "lessons learned" which can be applied to other aerospace project. The specific areas examined were the selection of the goals of the Hyper-X. How the technical unknowns and assumptions were handled. The final lesson was the ambiguous nature of risk assessment, and how trying to remove a technical unknown can have unintended consequences.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-924 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.
    Keywords: Aircraft Design, Testing and Performance
    Type: E-16530-1 , AHS 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...