ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The design, development, and operation of long duration spaceflight hardware has become an evolutionary process in which meticulous attention to details and lessons learned from previous experiences play a critical role. Invaluable to this process is the ability to retrieve and examine spaceflight hardware that has experienced a premature failure. While these situations are rare and unfortunate, the failure investigation and recovery from the event serve a valuable purpose in advancing future space mechanism development. Such a scenario began on July 31, 2010 with the premature failure of an ammonia pump on the external active thermal control system of the International Space Station. The ground-based inspections of the returned pump and ensuing failure investigation revealed five potential bearing forces that were un-accounted for in the design phase and qualification testing of the pump. These forces could combine in a number of random orientations to overload the pump bearings leading to solid-surface contact, wear, and premature failure. The recovery plan identified one of these five forces as being related to the square of the operating speed of the pump and this fact was used to recover design life through a change in flight rules for the operation of the pump module. Through the course of the failure investigation, recovery, and follow-on assessment of pump wear life, design guidance has been developed to improve the life of future mechanically pumped thermal control systems for both human and robotic exploration missions.
    Keywords: Space Sciences (General); Spacecraft Design, Testing and Performance; Mechanical Engineering
    Type: The 42nd Aerospace Mechanism Symposium; 451-462; NASA/CP-2014-217519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A supersonic wind tunnel with flow conditions of 3 lbm/s (1.5 kg/s) at a free-stream Mach number of 2.5 was designed and tested to provide an arena for future development work on laser measurement and flow-seeding techniques. The hybrid supersonic nozzle design that was used incorporated the rapid expansion method of propulsive nozzles while it maintained the uniform, disturbance-free flow required in supersonic wind tunnels. A viscous analysis was performed on the tunnel to determine the boundary layer growth characteristics along the flowpath. Appropriate corrections were then made to the contour of the nozzle. Axial pressure distributions were measured and Mach number distributions were calculated based on three independent data reduction methods. A complete uncertainty analysis was performed on the precision error of each method. Complex shock-wave patterns were generated in the flow field by wedges mounted near the roof and floor of the tunnel. The most stable shock structure was determined experimentally by the use of a focusing schlieren system and a novel, laser based dynamic shock position sensor. Three potential measurement regions for future laser and flow-seeding studies were created in the shock structure: deceleration through an oblique shock wave of 50 degrees, strong deceleration through a normal shock wave, and acceleration through a supersonic expansion fan containing 25 degrees of flow turning.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-106588 , E-8852 , NAS 1.15:106588 , AIAA PAPER 94-1825 , Applied Aerodynamics Conference; Jun 20, 1994 - Jun 24, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2012-217262 , E-18016 , Supercritical CO2 Power Cycle Symposium; May 24, 2011 - May 25, 2011; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A novel pin on disc tribometer was designed and constructed to generate a high-speed, wear coefficient database for hydrodynamic bearings that are typically used in canned motors found in the active thermal control circuits of robotic and inhabited spacecraft. The primary motivation for this work was the premature failure of the active external thermal control pump on the International Space Station in 2010. During the failure investigation of this incident, the root cause was postulated to be high speed wear of the bearings. Although a detailed forensic analysis gave credibility to this theory, the lack of wear coefficient data at relevant conditions prevented validation of this finding. The database generated from the new Extreme Environment Tribometer (EET) enabled a closure calculation within 5% of the observed wear from inspections of the failed hardware. Testing in anhydrous ammonia and surrogate fluid was performed to provide a means for simplified testing in the future and to populate a preliminary database for the design of future active thermal control systems on spacecraft. The EET and test techniques developed for the measurement of high-speed wear coefficients are available to future system designers.
    Keywords: Mechanical Engineering
    Type: GRC-E-DAA-TN53046 , Aerospace Mechanisms Symposium; May 16, 2018 - May 18, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211797 , E-13492 , NAS 1.15:211797 , AIAA Paper 2002-3919 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2005-213811 , E-15168 , 2005 Annual Meeting and Exhibition, 60th Society of Tribologists and Lubrication Engineers; May 15, 2005 - May 19, 2005; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2010-216732 , GT2010-22118 , E-17309 , Turbo Expo 2010; Jun 14, 2010 - Jun 18, 2010; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The application of Oil-Free technologies (foil gas bearings, solid lubricants and advanced analysis and predictive modeling tools) to advanced turbomachinery has been underway for several decades. During that time, full commercialization has occurred in aircraft air cycle machines, turbocompressors and cryocoolers and ever-larger microturbines. Emerging products in the automotive sector (turbochargers and superchargers) indicate that high volume serial production of foil bearings is imminent. Demonstration of foil bearings in APU s and select locations in propulsion gas turbines illustrates that such technology also has a place in these future systems. Foil bearing designs, predictive tools and advanced solid lubricants have been reported that can satisfy anticipated requirements but a major question remains regarding the scalability of foil bearings to ever larger sizes to support heavier rotors. In this paper, the technological history, primary physics, engineering practicalities and existing experimental and experiential database for scaling foil bearings are reviewed and the major remaining technical challenges are identified.
    Keywords: Chemistry and Materials (General)
    Type: NASA/TM-2010-216762 , GT2010-22086 , E-17383 , American Society of Mechanical Engineers (ASME); Jun 14, 2010 - Jun 18, 2010; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.
    Keywords: Mechanical Engineering
    Type: GT2008-50174 , ASME Turbo Expo; Jun 09, 2008 - Jun 13, 2008; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2008-215064 , ARL-TR-4398 , E-16290 , American Helicopter Society 63rd Annual Forum and Technology Display; May 01, 2007 - May 03, 2007; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...