ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1969-02-05
    Print ISSN: 0031-899X
    Electronic ISSN: 1536-6065
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1964-06-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA. Langley Research Center, International Symposium on Magnetic Suspension Technology, Part 2; p 595-613
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: A magnetic bearing operating without a bias field has supported a shaft rotating at speeds up to 12,000 rpm with the usual four power supplies and with only two. A magnetic bearing is commonly operated with a bias current equal to half of the maximum current allowable in its coils. This linearizes the relation between net force and control current and improves the force slewing rate and hence the band width. The steady bias current dissipates power, even when no force is required from the bearing. The power wasted is equal to two-thirds of the power at maximum force output. Examined here is the zero bias idea. The advantages and disadvantages are noted.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Langley Research Center, Aerospace Applications of Magnetic Suspension Technology, Part 1; p 165-182
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA, Lewis Research Center, Lewis Structures Technology, 1988. Volume 1: Structural Dynamics; p 53-64
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: An overall picture of the impact damper is obtained by using time-history solutions of the system motion for the oscillator in free decay. The impactor behavior depends very strongly on oscillator amplitude, and free decay can sample the full range of behavior from an infinite number of impacts per cycle at high amplitude to no impacts at low amplitude. The overall picture cannot be obtained by analysis of steady-state forced response. Yet, the predictions are relevant to forced response behavior when the damping is relatively light. Three major regimes of impact behavior are shown to exist: low, middle and high amplitude ranges.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA, Lewis Research Center, Lewis Structures Technology, 1988. Volume 1: Structural Dynamics; p 3-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-05
    Description: Various disturbances that are synchronous with the shaft speed can complicate radial magnetic bearing control. These include position sensor target irregularities (runout) and shaft imbalance. The method presented here allows the controller to ignore all synchronous harmonics of the shaft position input (within the closed-loop bandwidth) and to respond only to asynchronous motions. The result is reduced control effort.
    Keywords: Mechanical Engineering
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.
    Keywords: Mechanical Engineering
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-05
    Description: For magnetic-bearing-supported high-speed machines with significant gyroscopic effects, it is necessary to stabilize both forward and backward tilt whirling modes. Instability or the low damping of these modes can prevent the attainment of desired shaft speeds. Previous work elsewhere showed that cross-axis derivative gain in the magnetic bearing control law can improve the stability of the forward whirl mode, but it is commonly recognized that derivative gains amplify high-frequency noise and increase the required control effort. At the NASA Glenn Research Center, it has been shown previously that a simple cross-axis proportional gain can add stability (without adding noise) to either forward whirl or backward whirl, depending on the sign of the gain, but that such a gain destabilizes the other mode. It has been predicted by Glenn analysis that both modes can be stabilized by cross-axis proportional gains by utilizing the large-frequency separation of the two modes at speeds where the gyroscopic effects are significant. We use a modal controller that decouples the tilt and center-of-mass-translation modes. Only the tilt modes exhibit speed-dependent gyroscopic effects. The key to controlling them by the present method is to stabilize the backward whirl tilt mode with the appropriate sign of cross-axis proportional gain in the control law, but to include a low-pass filter on that gain term to restrict its effect only to the low-frequency backward-whirl mode. A second cross-axis term with the opposite sign and a high-pass filter stabilizes the forward whirl, which can have a frequency one or two orders of magnitude higher than the backward whirl, permitting very independent action of the two terms. Because the physical gyroscopic torques are proportional to the spinning speed of the shaft, it is convenient to gain-schedule the cross-axis control terms by making them proportional to shaft speed. This has the added benefit of avoiding a somewhat awkward zero-speed splitting of the tilt-mode eigenvalues.
    Keywords: Mechanical Engineering
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-02
    Description: Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...