ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Life and Medical Sciences  (8.388)
  • General Chemistry  (6.129)
  • Inorganic Chemistry  (3.613)
  • Aerodynamics
  • Spacecraft Design, Testing and Performance
  • 2005-2009  (1.202)
  • 1990-1994  (18.269)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 101
    Publikationsdatum: 2019-07-13
    Beschreibung: The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.
    Schlagwort(e): Aerodynamics
    Materialart: NASA/TM-2009-215630 , AIAA Paper 2009-919 , E-16942 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 102
    Publikationsdatum: 2019-07-13
    Beschreibung: A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for a Foam-Metal Liner (FML) installed in close proximity to the fan. Two FML designs were tested and compared to the hardwall baseline. Traditional single degree-of-freedom liner designs were also evaluated to provide a comparison. Farfield acoustic levels and limited engine performance results are presented in this paper. The results show that the FML achieved up to 5 dB Acoustic Power Level (PWL) overall attenuation in the forward quadrant, equivalent to the traditional liner design. An earlier report presented the test set-up and conditions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NASA/TM-2009-215666 , AIAA Paper 2009-3141 , E-17008 , 30th Aeroacoustics Conference; May 11, 2009 - May 13, 2009; Miami, Fl; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 103
    Publikationsdatum: 2019-07-13
    Beschreibung: Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8634 , 25th Aerospace Testing Seminar; Oct 13, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 104
    Publikationsdatum: 2019-07-13
    Beschreibung: The standards for materials and processes surrounding spacecraft are discussed. Presentation focused on minimum requirements for Materials and Processes (M&P) used in design, fabrication, and testing of flight components for NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements.Included is information on flammability, offgassing, compatibility requirements, and processes; both metallic and non-metallic materials are mentioned.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18805 , International Organization for Standardization Technical Committee 20, SC14 on Space Systems and Operations; Oct 23, 2009 - Oct 24, 2009; Haifa; Israel
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 105
    Publikationsdatum: 2019-07-13
    Beschreibung: This slide presentation reviews the status and progress made in the Constellation Program's work towards the goal of lunar and Martian exploration flights. It includes views of the various components of the program, and reviews the status of the engine tests, and the development of the Ares I-X towards test launch, the Orion Crew Module, the launch abort system, and the ground operations facilities.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18964 , 60th International Astronautical Congress (IAC); Oct 12, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 106
    Publikationsdatum: 2019-07-13
    Beschreibung: Boeing and a team from Air Force, NASA, Army, DARPA, MIT, UCLA, and U. of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. The Boeing SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing edge flap on each blade. The eleven-week test program evaluated the forward flight characteristics of the active-flap rotor at speeds up to 155 knots, gathered data to validate state-of-the-art codes for rotor aero-acoustic analysis, and quantified the effects of open and closed loop active flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness of the active flap control on noise and vibration was conclusively demonstrated. Results showed significant reductions up to 6dB in blade-vortex-interaction and in-plane noise, as well as reductions in vibratory hub loads up to 80%. Trailing-edge flap deflections were controlled within 0.1 degrees of the commanded value. The impact of the active flap on control power, rotor smoothing, and performance was also demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind-tunnel testing.
    Schlagwort(e): Aerodynamics
    Materialart: ARC-E-DAA-TN592 , American Helicopter Society 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 107
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: From the fall of 1993 to late winter of 1994, NASA Ames and the U.S. Army flew a flight test program using a UH-60A helicopter with extensive instrumentation on the rotor and blades, including 242 pressure transducers. Over this period, approximately 30 flights were made, and data were obtained in level flight, maneuver, ascents, and descents. Coordinated acoustic measurements were obtained with a ground-acoustic array in cooperation with NASA Langley, and in-flight acoustic measurements with a YO-3A aircraft. NASA has sponsored the creation of a "tutorial' which covers the depth and breadth of the flight test program with a mixture of text and graphics. The primary purpose of this tutorial is to introduce the student to what is known about rotor aerodynamics based on the UH-60A measurements. The tutorial will also be useful to anyone interested in helicopters who would like to have more detailed knowledge about helicopter aerodynamics.
    Schlagwort(e): Aerodynamics
    Materialart: ARC-E-DAA-TN517 , AHS 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 108
    Publikationsdatum: 2019-07-13
    Beschreibung: A new generation of spacecraft is now under development by NASA to replace the Space Shuttle and return astronauts to the Moon. These spacecraft will have a manual control capability for several mission tasks, and the ease and precision with which pilots can execute these tasks will have an important effect on mission risk and training costs. This paper focuses on the handling qualities of a spacecraft based on dynamics similar to that of the Crew Exploration Vehicle, during the last segment of the docking task with a space station in low Earth orbit. A previous study established that handling qualities for this task degrade significantly as the level of translation-into-rotation coupling increases. The goal of this study is to evaluate the efficacy of various pilot aids designed to mitigate the handling qualities degradation caused by this coupling. Four pilot tools were ev adluaetead:d-band box/indicator, flight-path marker, translation guidance cues, and feed-forward control. Each of these pilot tools improved handling qualities, generally with greater improvements resulting from using these tools in combination. A key result of this study is that feedforward control effectively counteracts coupling effects, providing solid Level 1 handling qualities for the spacecraft configuration evaluated.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN444 , AIAA Guidance, Navigation, and Control Conference; Aug 10, 2009 - Aug 12, 2009; Chicago, IL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 109
    Publikationsdatum: 2019-07-13
    Beschreibung: This slide presentation reviews selected lessons that were learned during the design, development, assembly and operation of the International Space Station. The critical importance of standards and common interfaces is emphasized to create a common operation environment that can lead to flexibility and adaptability.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18879 , International Organization for Standardization Technical Committee 20, SC14 on Space Systems and Operations; Oct 22, 2009 - Oct 23, 2009; Haifa; Israel
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 110
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-13
    Beschreibung: The ability to predict SMART active trailing edge flap rotor loads is explored in this study. Full-scale wind tunnel data recently acquired in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with analytical results from CAMRAD II. For the 5-bladed rotor, two high-speed forward flight cases are considered, namely, a 0 deg flap deflection case and a 5P, 2 deg flap deflection case. Overall, the correlation is reasonable, with the following exceptions: the torsion moment frequency and the chordwise bending moment are under predicted. In general, the effect of the 5P, 2 deg flap motion is captured by the analysis, though there is over prediction in the neighborhood of the 105 deg and 120 deg azimuthal locations. Changes to the flexbeam torsion stiffness are also briefly considered in this study, as this stiffness will be updated in the future. Finally, the indication is that compressibility effects are important, and this suggests that computational fluid dynamics might improve the current correlation.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN463 , 748 , American Helicopter Society 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 111
    Publikationsdatum: 2019-07-13
    Beschreibung: The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0254 , M09-0560 , MSFC-2229 , M09-0652 , AIAA Modeling and Simulation Technologies Conference; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 112
    Publikationsdatum: 2019-07-13
    Beschreibung: Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8385 , 35th European Rotorcraft Forum 2009; Sep 22, 2009 - Sep 25, 2009; Hamburg; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 113
    Publikationsdatum: 2019-07-13
    Beschreibung: The Tschauner-Hempel equations are widely used to correct the separation distance drifts between a pair of satellites within a constellation in highly elliptical orbits [1]. This set of equations was discretized in the true anomaly angle [1] to be used in a digital steady-state hierarchical controller [2]. This controller [2] performed the drift correction between a pair of satellites within the constellation. The objective of a discretized system is to develop a simple algorithm to be implemented in the computer onboard the satellite. The main advantage of the discrete systems is that the computational time can be reduced by selecting a suitable sampling interval. For this digital system, the amount of data will depend on the sampling interval in the true anomaly angle [3]. The purpose of this paper is to implement the discrete Tschauner-Hempel equations and the steady-state hierarchical controller in the computer onboard the satellite. This set of equations is expressed in the true anomaly angle in which a relation will be formulated between the time and the true anomaly angle domains.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0319 , M09-0316 , 2009 AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2009 - Aug 13, 2009; Pittsburgh, PA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 114
    Publikationsdatum: 2019-07-13
    Beschreibung: Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0512 , 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 115
    Publikationsdatum: 2019-07-13
    Beschreibung: Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-9199 , AIAA Space 2009 Conference and Exposition; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 116
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.
    Schlagwort(e): Aerodynamics
    Materialart: NASA/TM-2009-215641 , E-16952 , 65th Annual Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 117
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper introduces the parachutes that have been drop tested in support of the Ares I first stage deceleration system development. The results of the tests show that the reefing ratios for these quarter spherical ribbon parachutes provide the same reefed drag area as historical conical ribbon parachutes. Two sources are investigated for properly normalizing the parachutes relative to their suspension line length, and one is found to be superior.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0428 , AIAA 20th Aerodynamic Decelerator Systems Technology Conference and Seminar; May 04, 2009; Seattle, WA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 118
    Publikationsdatum: 2019-07-13
    Beschreibung: The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0273 , Space, Propulsion & Energy Sciences International Forum: SPESIF-2009; Feb 24, 2009 - Feb 26, 2009; Huntsville, AL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 119
    Publikationsdatum: 2019-07-13
    Beschreibung: Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8476 , IISc Centenary International Conference and Exhibition on Aerospace Engineering (ICEAE2009); May 18, 2009 - May 22, 2009; Bangalore; India
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 120
    Publikationsdatum: 2019-07-13
    Beschreibung: Nitric oxide (NO) planar laser-induced fluorescence (PLIF) has been use to investigate the hypersonic flow over a flat plate with and without a 2-mm (0.08-in) radius hemispherical trip. In the absence of the trip, for all angles of attack and two different Reynolds numbers, the flow was observed to be laminar and mostly steady. Boundary layer thicknesses based on the observed PLIF intensity were measured and compared with a CFD computation, showing agreement. The PLIF boundary layer thickness remained constant while the NO flowrate was varied by a factor of 3, indicating non-perturbative seeding of NO. With the hemispherical trip in place, the flow was observed to be laminar but unsteady at the shallowest angle of attack and lowest Reynolds number and appeared vigorously turbulent at the steepest angle of attack and highest Reynolds number. Laminar corkscrew-shaped vortices oriented in the streamwise direction were frequently observed to transition the flow to more turbulent structures.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-7115 , AIAA Paper 2009-0394 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 121
    Publikationsdatum: 2019-07-13
    Beschreibung: The Glory observatory is the current incarnation of the Vegetation Canopy Lidar (VCL) mission spacecraft bus. The VCL spacecraft bus, having been cancelled for programmatic reasons in 2000, was nearly integrated when it was put into storage for possible future use. The Glory mission was a suitable candidate for using this spacecraft and in 2006 an effort to recertify the two axis solar array gimbal drive after its extended storage was begun. What was expected to be a simple performance validation of the two dual axis gimbal stepper motors became a serious test, diagnosis and repair task once questions arose on the flight worthiness of the hardware. A significant test program logic flow was developed which identified decisions that could be made based on the results of individual recertification tests. Without disassembling the bi-axial gimbals, beginning with stepper motor threshold voltage measurements and relating these to powered drive torque measurements, both performed at the spacecraft integrator s facility, a confusing picture of the health of the actuators came to light. Tests at the gimbal assembly level and tests of the disassembled actuators were performed by the manufacturer to validate our results and torque discrepancies were noted. Further disassembly to the component level of the actuator revealed the source of the torque loss.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: 13th European Space Mechanisms and Tribology Symposium/European Space Agency; Sep 23, 2009 - Sep 25, 2009; Vienna; Austria
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 122
    Publikationsdatum: 2019-07-13
    Beschreibung: During the past decade, within the United States, NASA Marshall Space Flight Center (MSFC) was heavily engaged in the development of revolutionary new technologies for in-space propulsion. One of the major in-space propulsion technologies developed was a solar sail propulsion system. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems have been designed for large spacecraft in the tens to hundreds of kilograms mass range. Recently, however, MSFC has been investigating the application of solar sails for small satellite propulsion. Likewise, NASA Ames Research Center (ARC) has been developing small spacecraft missions that have a need for amass-efficient means of satisfying deorbit requirements. Hence, a synergistic collaboration was established between these two NASA field Centers with the objective of conducting a flight demonstration of solar sail technologies for small satellites. The NanoSail-D mission flew onboard the ill-fated Falcon Rocket launched August 2, 2008, and, due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. Both the original sailcraft and the flight spare are hereafter referred to as NanoSail-D. The sailcraft consists of a sail subsystem stowed in a three-element CubeSat. Shortly after deployment of the NanoSail-D, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary technical objectives: (1) to successfully stow and deploy the sail and (2) to demonstrate deorbit functionality. Given a near-term opportunity for launch on Falcon, the project was given the challenge of delivering the flight hardware in 6 mo, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization of the spacecraft will be achieved using permanent magnets to detumble and orient the body with the magnetic field lines and then rely on atmospheric drag to passively stabilize the sailcraft in an essentially maximum drag attitude. This paper will present an introduction to solar sail propulsion systems and an overview of the NanoSail-D spacecraft.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0505 , M09-0506 , 6th IAA Symposium on Realistic Near-Term Advanced Scientific Space Missions; Jul 06, 2009 - Jul 09, 2009; Aosta; Italy
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 123
    Publikationsdatum: 2019-07-13
    Beschreibung: The constraint force equation (CFE) methodology provides a framework for modeling constraint forces and moments acting at joints that connect multiple vehicles. With implementation in Program to Optimize Simulated Trajectories II (POST 2), the CFE provides a capability to simulate end-to-end trajectories of launch vehicles, including stage separation. In this paper, the CFE/POST2 methodology is applied to the Shuttle-SRB separation problem as a test and validation case. The CFE/POST2 results are compared with STS-1 flight test data.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-9267 , AIAA Paper 2009-5842 , AIAA Atmospheric Flight Mechanics Conference; Aug 10, 2009 - Aug 13, 2009; Chicago, Il; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 124
    Publikationsdatum: 2019-07-13
    Beschreibung: In the past, the orbital debris environment was modeled as consisting entirely of aluminum particles. As a consequence, most of the impact test database on spacecraft micro-meteoroid and orbital debris (MMOD) shields, and the resulting ballistic limit equations used to predict shielding performance, has been based on using aluminum projectiles. Recently, data has been collected from returned spacecraft materials and other sources that indicate higher and lower density components of orbital debris also exist. New orbital debris environment models such as ORDEM2008 provide predictions of the fraction of orbital debris in various density bins (high = 7.9 g/cu cm, medium = 2.8 g/cu cm, and low = 0.9-1.1 g/cu cm). This paper describes impact tests to assess the effects of projectile density on the performance capabilities of typical MMOD shields. Updates to shield ballistic limit equations are provided based on results of tests and analysis.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18674 , 11th Hypervelocity Impact Symposium; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 125
    Publikationsdatum: 2019-07-13
    Beschreibung: There is often skepticism about the need for Conjunction Assessment from mission operators that invest in the "big sky theory", which states that the likelihood of a collision is so small that it can be neglected. On 10 February 2009, the collision between Iridium 3; and Cosmos 2251 provided an indication that this theory is invalid and that a CA process should be considered for all missions. This paper presents statistics of the effect of the Iridium/Cosmos collision on NASA's Earth Science Constellation as well as results of analyses which characterize the debris environment for NASA's robotic missions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AAS 09-369 , 2009 AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2009 - Aug 13, 2009; Pittsburgh, PA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 126
    Publikationsdatum: 2019-07-13
    Beschreibung: The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: 2009 AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2009 - Aug 13, 2009; Pittsburgh, PA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 127
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: The modeling of porous bleed regions as boundary conditions in computational fluid dynamics (CFD) simulations of supersonic inlet flows has been improved through a scaling of sonic flow coefficient data for 90deg bleed holes. The scaling removed the Mach number as a factor in computing the sonic flow coefficient and allowed the data to be fitted with a quadratic equation, with the only factor being the ratio of the plenum static pressure to the surface static pressure. The implementation of the bleed model into the Wind-US CFD flow solver was simplified by no longer requiring the evaluation of the flow properties at the boundary-layer edge. The quadratic equation can be extrapolated to allow the modeling of small amounts of blowing, which can exist when recirculation of the bleed flow occurs within the bleed region. The improved accuracy of the bleed model was demonstrated through CFD simulations of bleed regions on a flat plate in supersonic flow with and without an impinging oblique shock. The bleed model demonstrated good agreement with experimental data and three-dimensional CFD simulations of bleed holes.
    Schlagwort(e): Aerodynamics
    Materialart: NASA/TM-2009-215597 , AIAA-2009-0710 , E-16888 , 47th Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 128
    Publikationsdatum: 2019-07-13
    Beschreibung: The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis actuator gimbal systems. HGAS required additional boom heaters to cool the approximately 10 W of RF losses thru the rotary joints and wave guides from the 40 W Ka system. By design this module needed a fair amount of heater, blanketing, and radiator complexity. The SAS system required a separate cable wrap radiator to help cool the Solar Array harness which dissipated 30 W thru the actuators and cable wraps. This module also was complex.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: Heatpipes for Space Applications International Conference; Sep 15, 2009 - Sep 18, 2009; Moscow; Russia
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 129
    Publikationsdatum: 2019-07-13
    Beschreibung: The NASA Engineering and Safety Center (NESC) is developing the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is dedicated to Max Faget, the renowned NASA spacecraft designer. The MLAS flight test vehicle consists of boost skirt, coast skirt and the MLAS fairing which houses a full scale boilerplate Orion Crew Module (CM). The objective of the flight test is to prove that the CM can be released from the MLAS fairing during pad abort conditions without detrimental recontact between the CM and fairing, achieving performance similar to the Orion launch abort system. The boost and coast skirts provide the necessary thrust and stability to achieve the flight test conditions and are released prior to the test -- much like the Little Joe booster was used in the Apollo Launch Escape System tests. To achieve the test objective, two parachutes are deployed from the fairing to reorient the CM/fairing to a heatshield first orientation. The parachutes then provide the force necessary to reduce the total angle of attack and body angular rates required for safe release of the CM from the fairing. A secondary test objective after CM release from the fairing is to investigate the removal of the CM forward bay cover (FBC) with CM drogue parachutes for the purpose of attempting to synchronously deploying a set of CM main parachutes. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft D(sub 0) ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft D(sub 0) ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; and a brief description of how the evolution of the program affected parachute usage and analysis. An overview of the Objective system, rationale for the MLAS approach and the future of the program will also be presented. We hope to have flight test results to report at the time of the Conference Presentation.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-9091 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Seattle, WA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 130
    Publikationsdatum: 2019-07-13
    Beschreibung: The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained engineering team. The engineers on the team are capable of functioning in two to three engineering disciplines which allows highly efficient interdisciplinary engineering collaboration. NASA Ames is actively proposing mission concepts to use the COTSAT platform to accomplish science. If the COTSAT team validates this approach, it will allow the possibility for remote sensing missions to produce a high science yield for minimal cost and reduced schedule. Another aim of this approach is to yield an accelerated pathway from a Phase A study to mission launch. Leaders in the aerospace industry have shown interest in this methodology. Several visits and tours have been given in the lab. Although the concept of low-cost development is initially met with skepticism from some within the prohibitive aerospace industry, the project's efforts have been highly praised for the accomplishments met within a limited time and budget. Overall the development has progressed tremendously well and the team is answering critical questions for current and future low-cost small satellite developments. COTSAT subsystems are not limited to a specific weight class and could be adapted to produce smaller platforms and to fit various launch vehicles.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: SSC08-IV-7 , ARC-E-DAA-TN-155 , 22nd Annual AIAA/USU Conference on Small Satellites; Aug 11, 2008; Utah; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 131
    Publikationsdatum: 2019-07-13
    Beschreibung: The Orion Crew Exploration Vehicle is America s next generation of human rated spacecraft. The Orion Launch Abort System will take the astronauts away from the exploration vehicle in the event of an aborted launch. The pad abort mode of the Launch Abort System will be flight-tested in 2009 from the White Sands Missile Range in New Mexico. This paper examines some of the efforts currently underway at the NASA Dryden Flight Research Center by the Controls & Dynamics group in preparation for the flight test. The concept of operation for the pad abort flight is presented along with an overview of the guidance, control and navigation systems. Preparations for the flight test, such as hardware testing and development of the real-time displays, are examined. The results from the validation and verification efforts for the aerodynamic and atmospheric models are shown along with Monte Carlo analysis results.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: DFRC-949 , DFRC-1049 , AIAA Atmospheric Flight Mechanics Conference; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 132
    Publikationsdatum: 2019-07-13
    Beschreibung: The stability and receptivity of three-dimensional supersonic boundary layers over a 7deg sharp tipped straight cone at an angle of attack of 4.2deg is numerically investigated at a free stream Mach number of 3.5 and at two high Reynolds numbers, 0.25 and 0.50x10(exp 6)/inch. The generation and evolution of stationary crossflow vortices are also investigated by performing simulations with three-dimensional roughness elements located on the surface of the cone. The flow fields with and without the roughness elements are obtained by solving the full Navier-Stokes equations in cylindrical coordinates using the fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for spatial discretization and using the third-order total-variation-diminishing (TVD) Runge-Kutta scheme for temporal integration. Stability computations reveal that the azimuthal wavenumbers are in the range of m approx. 25-50 for the most amplified traveling disturbances and in the range of m approx. 40-70 for the stationary disturbances. The N-Factor computations predicted that transition would occur further forward in the middle of the cone compared to the transition fronts near the windward and the leeward planes. The simulations revealed that the crossflow vortices originating from the nose region propagate towards the leeward plane. No perturbations were observed in the lower part of the cone.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8151 , 39th AIAA Fluid Dynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 133
    Publikationsdatum: 2019-07-13
    Beschreibung: Whipple shields were first proposed as a means of protecting spacecraft from the impact of micrometeoroids in 1947 [1] and are currently in use as micrometeoroid and orbital debris shields on modern spacecraft. In the intervening years, the function of the thin bumper used to shatter or melt threatening particles has been augmented and enhanced by the use of various types and configurations of intermediate layers of various materials. All shield designs serve to minimize the threat of a spall failure or perforation of the main wall of the spacecraft as a result of the impact of the fragments. With increasing use of Whipple shields, various ballistic limit equations (BLEs) for guiding the design and estimating the performance of shield systems have been developed. Perhaps the best known and most used are the "new" modified Cour-Palais (Christiansen) equations [2]. These equations address the three phases of impact: (1) ballistic (〈3 km/s), where the projectile is moving too slowly to fragment and essentially penetrates as an intact projectile; (2) shatter (3 to 7 km/s), where the projectile fragments at impact and forms an expanding cloud of debris fragments; and (3) melt/vaporization (〉7 km/s), where the projectile melts or vaporizes at impact. The performance of Whipple shields and the adequacy of the BLEs have been examined for the first two phases using the results of impact tests obtained from two-stage, light-gas gun test firings. Shield performance and the adequacy of the BLEs has not been evaluated in the melt/vaporization phase until now because of the limitations of launchers used to accelerate projectiles with controlled properties to velocities above 7.5 km/s. A three-stage, light-gas gun, developed at the University of Dayton Research Institute (UDRI) [3], is capable of launching small, aluminum spheres to velocities above 9 km/s. This launcher was used to evaluate the ballistic performance of two Whipple shield systems, various thermal protection system materials, and other spacecraft-related materials to the impact of 1.6-mm- to 2.6-mm-diameter, 2017-T4 aluminum spheres at impact velocities ranging from 8.91 km/s to 9.28 km/s. Test results, details of the shield systems, and nominal ballistic limits for the two Whipple shields are shown in Figures 1 and 2.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18485 , Hypervelocity Impact Symposium 2010; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 134
    Publikationsdatum: 2019-07-13
    Beschreibung: An experimental investigation of the DLR-F6 generic transport configuration was conducted in the NASA NTF for use in the Drag Prediction Workshop. As data from this experimental investigation was collected, a large difference in drag values was seen between the NTF test and an ONERA test that was conducted several years ago. After much investigation, it was determined that this difference was likely due to a sting effect correction applied to the ONERA data which NTF does not use. This insight led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the DLR-F6 transport configuration. The configurations computed during this investigation were the isolated wing-body, the wing-body with the full support system (blade and sting), the wing-body with just the blade, and the wing-body with just the sting. The results from this investigation show the same trends that ONERA saw when they conducted a similar experimental investigation in the S2MA tunnel. Computational results suggest that the blade contributed an interference type of effect, the sting contributed a general blockage effect, and the full support system combined these effects.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8897 , 27th AIAA Applied Aerodynamics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 135
    Publikationsdatum: 2019-07-13
    Beschreibung: Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-7826 , AHS International 65th Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 136
    Publikationsdatum: 2019-07-13
    Beschreibung: A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-7824 , AHS International 65th Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 137
    Publikationsdatum: 2019-07-13
    Beschreibung: The STS-125 mission, launched May 11, 2009, is the final servicing mission to the Hubble Space Telescope. The repair mission's EVA tasks are described, including: installing a new wide field camera; installing the Cosmic Origins Spectrograph; repairing the Space Telescope Imaging Spectrograph; installing a new outer blanket layer; adding a Soft Capture and Rendezvous System for eventual controlled deorbit in about 2014; replacing the 'A' side Science Instrument Command and Data Handling module; repairing the Advanced Camera for surveys; and, replacing the rate sensor unit gyroscopes, fine guidance sensors and 3 batteries. Additionally, the Shuttle crew cabin thermal environment is described. A CFD model of per person CO2 demonstrates a discrepancy between crew breathing volume and general mid-deck levels of CO2. A follow-on CFD analysis of the mid-deck temperature distribution is provided. Procedural and engineering mitigation plans are presented to counteract thermal exposure upon reentry to the Earth atmosphere. Some of the procedures include: full cold soak the night prior to deorbit; modifying deck stowage to reduce interference with air flow; and early securing of avionics post-landing to reduce cabin thermal load prior to hatch opening. Engineering mitigation activities include modifying the location of the aft starboard ICUs, eliminating the X3 stack and eliminating ICU exhaust air directed onto astronauts; improved engineering data of ICU performance; and, verifying the adequacy of mid-deck temperature control using CFD models in addition to lumped parameter models. Post-mitigation CFD models of mid-deck temperature profiles and distribution are provided.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18263 , 80th Annual Scientific Meeting of the Aerospace Medical Association (AsMA); May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 138
    Publikationsdatum: 2019-07-13
    Beschreibung: An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AIAA Paper 2009-2963 , LF99-8622 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Washington; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 139
    Publikationsdatum: 2019-07-13
    Beschreibung: The supersonic aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator were investigated by wind tunnel testing. Two sets of tests were conducted: one using rigid models and another using textile models. Tests using rigid models were conducted over a Mach number range from 1.65 to 4.5 at angles of attack from -12 to 20 degrees. The axial, normal, and pitching moment coefficients were found to be insensitive to Mach number over the tested range. The axial force coefficient was nearly constant (C(sub A) = 1.45 +/- 0.05) with respect to angle of attack. Both the normal and pitching moment coefficients were nearly linear with respect to angle of attack. The pitching moment coefficient showed the model to be statically stable about the reference point. Schlieren images and video showed a detached bow shock with no evidence of large regions of separated flow and/or embedded shocks at all Mach numbers investigated. Qualitatively similar static aerodynamic coefficient and flow visualization results were obtained using textile models at a Mach number of 2.5. Using inflatable textile models the torus pressure required to maintain the model in the fully-inflated configuration was determined. This pressure was found to be sensitive to details in the structural configuration of the inflatable models. Additional tests included surface pressure measurements on rigid models and deployment and inflation tests with inflatable models.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AIAA Paper 2009-2967 , LF99-8534 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Seattle, WA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 140
    Publikationsdatum: 2019-07-13
    Beschreibung: Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8607 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Seattle, WA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 141
    Publikationsdatum: 2019-07-13
    Beschreibung: Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8566 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Washington; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 142
    Publikationsdatum: 2019-07-13
    Beschreibung: An investigation into the development of flow unsteadiness in impinging axisymmetric underexpanded jets has been conducted at NASA Langley Research Center. The study has examined the effect of an impingement target placed at various distances and angles on transitional behavior of such jets. Two nozzles, with exit Mach numbers of 1.0 and 2.6, were used in this investigation. Planar laser-induced fluorescence of nitric oxide (NO PLIF) has been used to identify flow unsteadiness and to image transitional and turbulent flow features. Measurements of the location of the onset of various degrees of unsteady flow behavior have been made using these PLIF images. Both qualitative and quantitative comparisons are presented to demonstrate the observed effects of impingement and flow parameters on the process of the transition to turbulence. The presence of the impingement target was found to significantly shorten the distance to transition to turbulence by up to a factor of approximately three, with closer targets resulting in slightly shorter distance to transition and turbulence. The location at which the flow first exhibits unsteadiness was found to have a strong dependence on the presence and location of key flow structures. This paper presents quantitative results on transition criteria for free and impinging jets.
    Schlagwort(e): Aerodynamics
    Materialart: AIAA Paper 2009-591 , LF99-7089 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, Fl; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 143
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This slide presentation reviews the study done on alternate attitudes for the Orion project's crew exploration vehicle. The analysis focused on the thermal performance of the vehicle with the alternate attitudes. The pressure vessel heater power, other vehicle heaters and radiator sink temperatures were included in the analysis.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18526 , TFAWS 2009; Jan 01, 2009 - Jan 14, 2009; Huntsville, AL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 144
    Publikationsdatum: 2019-07-13
    Beschreibung: The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extend outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that Orion design will meet or exceed the stringent MicroMeteoroid and Orbital Debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18500 , 11th Hypervelocity Impact Symposium; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 145
    Publikationsdatum: 2019-07-13
    Beschreibung: Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule backshell and parachute cone. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux) design entry trajectories from a 2009 launch. Transient interference effects from reaction control system thruster plumes were included in the design environments when necessary. The limiting backshell design heating conditions of 6.3 W/sq cm for heat flux and 377 J/sq cm for total heat load are not influenced by thruster firings. Similarly, the thrusters do not affect the parachute cover lid design environments (13 W/sq cm and 499 J/sq cm). If thruster jet firings occur near peak dynamic pressure, they will augment the design environments at the interface between the backshell and parachute cone (7 W/sq cm and 174 J/sq cm). Localized heat fluxes are higher near the thruster fairing during jet firings, but these areas did not require additional thermal protection material. Finally, heating bump factors were developed for antenna radomes on the parachute cone
    Schlagwort(e): Aerodynamics
    Materialart: AIAA Paper 2009-4078 , LF99-8725 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 146
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18591 , Aerospace Test Seminar; Oct 12, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 147
    Publikationsdatum: 2019-07-13
    Beschreibung: An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this report is focused on the Flight 5 configuration, one in a series of flight experiments. This report documents experimental measurements made over a range of Reynolds numbers and angles of attack on several scaled ceramic heat transfer models of the Flight 5 vehicle. The heat transfer rate was measured using global phosphor thermography and the resulting images and heat transfer rate distributions were used to infer the state of the boundary layer on the windside, leeside and side surfaces. Boundary layer trips were used to force the boundary layer turbulent, and a study was conducted to determine the effectiveness of the trips with various heights. The experimental data highlighted in this test report were used determine the allowable roughness height for both the windside and side surfaces of the vehicle as well as provide for future tunnel-to-tunnel comparisons.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8053 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 148
    Publikationsdatum: 2019-07-13
    Beschreibung: The carbon wall oxidation technique coupled with a CFD technique was employed to study the flow in the expanding crack channel caused by the oxidation of the channel carbon walls. The recessing 3D surface morphing procedure was developed and tested in comparison with the arcjet experimental results. The multi-block structured adaptive meshing was used to model the computational domain changes due to the wall recession. Wall regression rates for a reinforced carbon-carbon (RCC) samples, that were tested in a high enthalpy arcjet environment, were computationally obtained and used to assess the channel expansion. The test geometry and flow conditions render the flow regime as the transitional to continuum, therefore Navier-Stokes gas dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with bare carbon. The predicted channel growth was found to agree with arcjet observations. Local gas flow field results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18365 , AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 149
    Publikationsdatum: 2019-07-13
    Beschreibung: Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0534 , National Space and Missile Materials Symposium; Jun 22, 2009 - Jun 26, 2009; Henderson, NV; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 150
    Publikationsdatum: 2019-07-13
    Beschreibung: The Floating Potential Measurement Unit (FPMU) has detected high negative amplitude rapid charging events (RCEs) on the International Space Station (ISS) at the morning terminator. These events are larger and more rapid than the ISS morning charging events first seen by the Floating Potential Probe (FPP) on ISS in 2001. In this paper, we describe a theory for the RCEs that further elucidates the nature of spacecraft charging in low Earth orbit (LEO) in a non-equilibrium situation. The model accounts for all essential aspects of the newly discovered phenomenon, and is amenable to testing on-orbit. Predictions of the model for the amplitude of the ISS RCEs for the full set of ISS solar arrays and for the coming solar cycle are given, and the results of modeling by the Environments WorkBench (EWB) are compared to the observed events to show that the phenomenon can be explained by solar array driven charging. The situation is unique because the coverglasses have not yet reached equilibrium with the surrounding plasma during the RCEs. Finally, a prescription for further use of the ISS for investigating fundamental plasma physics in LEO is given. Already, plasma and charging monitoring instruments on ISS have taught us much about spacecraft interactions with the dense LEO plasma, and we expect they will continue to yield more valuable science when the Japanese Experiment Module (JEM) is in place.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0483 , 1st AIAA Atmospheric and Space Environments Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 151
    Publikationsdatum: 2019-08-14
    Beschreibung: The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have a replenishment strategy as some satellites age and eventually leave the constellation. This will ensure overlap of observations, thus providing continuous, calibrated science data over a much longer time period. Thoughts on the evolution of the A-Train will also be presented.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: IGARSS 2009, A Train Invited Session; Jul 13, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 152
    Publikationsdatum: 2019-07-12
    Beschreibung: Analyzing the remains of Space Shuttle Columbia has proven technically beneficial years after the vehicle breakup. This investigation focused on charred deposits on fragments of Columbia overhead windowpanes. Results were unexpected relative to the engineering understanding of material performance in a reentry environment. The TEM analysis demonstrated that the oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicate that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reaction, expectedly metal combustion of a Ti structure, had to be present for oxide formation. Results are significant for aerospace vehicles where thermal protection system (TPS) breaches cause substructures to be in direct path with the reentry plasma. 1
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: KSC-2009-303
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 153
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-12
    Beschreibung: The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-21016 , JS-2010-001
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 154
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-12
    Beschreibung: This slide presentation reviews the proposed design for the Xenia mission spacecraft. The goal of this study is to perform a mission concept study for the mission. Included in this study are: the overall ground rules and assumptions (GR&A), a mission analysis, the configuration, the mass properties, the guidance, Navigation and control, the proposed avionics, the power system, the thermal protection system, the propulsion system, and the proposed structures. Conclusions from the study indicate that the observatory fits within the Falcon 9 mass and volume envelope for launching from Omelek, the pointing, slow slewing, and fast slewing requirements and the thermal requirements are met.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0347
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 155
    Publikationsdatum: 2019-07-12
    Beschreibung: An experimental wind tunnel program is being conducted in support of a NASA wide effort to develop a Space Shuttle replacement and to support the Agency s long term objective of returning to the Moon and Mars. This article documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle Crew Module. The experimental data highlighted in this article are to be used to assess numerical tools that will be used to generate the flight aerothermodynamic database. Global heat transfer images and heat transfer distributions were obtained over a range of freestream Reynolds numbers and angles of attack with the phosphor thermography technique. Heat transfer data were measured on the forebody and afterbody and were used to infer the heating on the vehicle as well as the boundary layer state on the forebody surface. Several model support configurations were assessed to minimize potential support interference. In addition, the ability of the global phosphor thermography method to provide quantitative heating measurements in the low temperature environment of the capsule base region was assessed. While naturally fully developed turbulent levels were not obtained on the forebody, the use of boundary layer trips generated fully developed turbulent flow. Laminar and turbulent computational results were shown to be in good agreement with the data. Backshell testing demonstrated the ability to obtain data in the low temperature region as well as demonstrating the lack of significant model support hardware influence on heating.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-7103
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 156
    Publikationsdatum: 2019-07-12
    Beschreibung: Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.
    Schlagwort(e): Aerodynamics
    Materialart: ARC-15422-1 , NASA Tech Briefs, August 2009; 17
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 157
    Publikationsdatum: 2019-07-12
    Beschreibung: Spacecraft design is a very difficult and time consuming process because requirements and criteria are often changed or modified as the design is refined. Accounting for these adjustments in the design constraints plays a significant role in furthering the overall progress. There are numerous aspects and variables that hold significant influence on various characteristics of the design. This can be especially frustrating when attempting to conduct rapid trade space analysis on system configurations. Currently, the data and designs considered for trade space evaluations can only be displayed by using the traditional interfaces of Excel spreadsheets or CAD (Computer Aided Design) models. While helpful, these methods of analyzing the data from a systems engineering approach can be rather complicated and overwhelming. As a result, a proof of concept was conducted on a dynamic data visualization software called Thinkmap SDK (Software Developer Kit) to allow for better organization and understanding of the relationships between the various aspects that make up an entire design. The Orion Crew Module Aft Bay Subsystem was used as the test case for this study because the design and layout of many of the subsystem components will be significant in ensuring the overall center of gravity of the capsule is correct. A simplified model of this subsystem was created and programmed using Thinkmap SDK to create a preliminary prototype application of a Trade Space Configuration Tool. The completed application ensures that the core requirements for the Tool can be met. Further development is strongly suggested to produce a full prototype application to allow final evaluations and recommendations of the software capabilities.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-22482
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 158
    Publikationsdatum: 2019-07-12
    Beschreibung: The relevance of geometric details to the generation and propagation of noise from leading-edge slats is considered. Typically, such details are omitted in computational simulations and model-scale experiments thereby creating ambiguities in comparisons with acoustic results from flight tests. The current study uses two-dimensional, computational simulations in conjunction with a Ffowcs Williams-Hawkings (FW-H) solver to investigate the effects of previously neglected slat "bulb" and "blade" seals on the local flow field and the associated acoustic radiation. The computations show that the presence of the "blade" seal at the cusp in the simulated geometry significantly changes the slat cove flow dynamics, reduces the amplitudes of the radiated sound, and to a lesser extent, alters the directivity beneath the airfoil. Furthermore, the computations suggest that a modest extension of the baseline "blade" seal further enhances the suppression of slat noise. As a side issue, the utility and equivalence of FW-H methodology for calculating far-field noise as opposed to a more direct approach is examined and demonstrated.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8604
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 159
    Publikationsdatum: 2019-08-26
    Beschreibung: The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.
    Schlagwort(e): Aerodynamics
    Materialart: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; May 04, 2009 - May 07, 2009; Palm Springs, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 160
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-24
    Beschreibung: A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.
    Schlagwort(e): Aerodynamics
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 161
    Publikationsdatum: 2019-07-19
    Beschreibung: The design of a human rated spacecraft is a complex and costly process requiring the integrated assessment of many individual criteria. Historically, it has been difficult to include in that integrated assessment the design s full impact on the flight operations community and its costs. The unique "operability requirements" have not been well understood, nor has there been a well-defined set of criteria for assessing operability. As a result, flight operations organizations and program managers are often faced with difficult and costly operations phase implementations. In response, the Mission Operations Directorate at NASA s Lyndon B. Johnson Space Center has established a formal technique to evaluate and communicate the operational characteristics of spacecraft system designs for the Constellation Program. This process is not intended to replace or replicate other critical assessments such as risk, reliability and safety assessments. Instead, this new technique adds to the assessment toolset a means to address the concerns and potential cost drivers that are unique to the operational phase of a program and the flight operations community. This paper describes the implementation and application of this "Spacecraft Flight Operability Assessment Scale" in supporting vehicle design efforts. The six key factors of flight operability are defined, with guiding principles and goals stated for each factor. A standardized rating technique provides feedback that is useful to both the operations and program management communities. Sample assessments of legacy spacecraft, including the Space Shuttle and International Space Station systems, are provided to provide real world examples of this technique s application.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18650 , SpaceOps 2010; Apr 25, 2010 - Apr 30, 2010; Huntsville, AL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 162
    Publikationsdatum: 2019-07-19
    Beschreibung: Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18501 , Hypervelocity Impact Symposium 2010; Apr 11, 2010; Freiburg; Germany
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 163
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-19
    Beschreibung: In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented, which may be enabling to future space missions never before attempted like a crewed mission to Mars.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-17560
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 164
    Publikationsdatum: 2019-07-19
    Beschreibung: Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode during low lunar orbit for Altair and possibly Orion, which represents a new mode of operation for sublimators. In this mission phase, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the sink temperature exceeds the system setpoint temperature. This paper will investigate the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. The X-38 sublimator, which represents the state of the art in sublimator technology, was used to understand this behavior and to quantify the feedwater performance. Data from various scenarios will be analyzed to investigate feedwater utilization under the cyclical conditions. This paper will also provide recommendations for future sublimator designs and/or feedwater control.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-19170 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 165
    Publikationsdatum: 2019-07-19
    Beschreibung: The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial control is a 0.1 micron point of use filter that will be used at the outlet of the Potable Water Dispenser (PWD). Because this may be the first time NASA is considering a stored water system for longterm missions that does not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point of use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform testing to help alleviate those concerns related to the CEV water system. Results from the test plans laid out in the paper presented to SAE last year (Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination, 2008012083) will be detailed in this paper. Additionally, recommendations for the CEV verification will be described for risk mitigation in meeting the physicochemical and microbiological requirements on the CEV PWS.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 166
    Publikationsdatum: 2019-07-19
    Beschreibung: We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN-297 , TSM-0003 , 2009 National Space and Missile Materials Symposium; Jun 28, 2009 - Jul 01, 2009; Scottsdale, AZ; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 167
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-19
    Beschreibung: As part of NASA s Intelligent Flight Control Systems program, parameter identification experiments were carried out with NASA Dryden s F-15B TN 837 aircraft. The canard control surfaces, whose movement is highly correlated with aircraft angle of attack, and the aircraft s aerodynamic instability in the pitch axis contribute to making parameter identification challenging. The equation-error method of analysis is applied to several longitudinal parameter identification maneuvers and a new approach for compensating for flight-data signal time lags is developed, which improves the accuracy and consistency of the results.
    Schlagwort(e): Aerodynamics
    Materialart: DFRC-952 , AIAA Atmospheric Flight Mechanics Conference; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 168
    Publikationsdatum: 2019-07-13
    Beschreibung: The obvious advantages of small spacecraft - their lower cost structure and the rapid development schedule - have enabled a large number of missions in the past. However, most of these missions have been focused on Earth observation from low Earth orbits. In 2006, the Small Spacecraft Division at the NASA Ames Research Center began the development of the Modular Common Bus, a spacecraft capable of delivering scientifically and technically useful payloads to a variety of destinations within 0.1 AU around the Earth. The core technologies used in the Common Bus design are a composite structure with body-mounted solar cells, an integrated avionics unit, and a high performance bipropellant propulsion system. Due to its modular approach, the Common Bus can be adapted to fit specific mission needs while still using a standardized and qualified set of components. Additionally a number of low cost launch vehicles are supported, resulting in overall mission costs of around $150M including the launch vehicle but excluding the science payloads. This significant reduction in cost and the shorter development time would enable NASA to conduct more frequent exploration missions within its budget and timeframe constraints, compared to the status quo. In this paper the suitability of the Common Spacecraft Bus for four different exploration scenarios is analyzed. These scenarios include a lunar orbiter, a lunar lander, a mission to a Sun-Earth Libration Point, and a rendezvous mission to a Near Earth Object. For each scenario, a preliminary design reference mission is developed and key design parameters for the spacecraft are determined.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN654 , AIAA and Utah State University 23rd Annual Conference; Oct 11, 2009 - Oct 15, 2009; Logan, UT; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 169
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: The Altair lunar lander is scheduled to return humans to the moon in the year 2020. Keeping the crew of 4 and the vehicle functioning at their best while minimizing lander mass requires careful budgeting and management of consumables and cooperation with other constellation elements. Consumables discussed here include fluids, gasses, and energy. This paper presents the lander's missions and constraints as they relate to consumables and the design solutions that have been employed in recent Altair conceptual designs.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0322 , M09-0697 , Space 2009; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 170
    Publikationsdatum: 2019-07-13
    Beschreibung: This slide presentation reviews the power requirements for the space exploration and the lunar surface mobility programs. It includes information about the specifications for high energy batteries and the power requirements for lunar rovers, lunar outposts, lunar ascent module, and the lunar EVA suit.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-19128 , First International Symposium on Nanotechnology, Energy and Space; Oct 26, 2009 - Oct 28, 2009; Houston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 171
    Publikationsdatum: 2019-07-13
    Beschreibung: Results of an experiment on the characteristics of an excess noise occurring with convergent-divergent (C-D) nozzles in the overexpanded regime are presented in this paper. Data are obtained with five C-D nozzles and a convergent nozzle, all having the same exit diameter. The results clearly establish that the C-D nozzles are noisier in the low Mach number range of the overexpanded regime. This is evidenced from the directivity patterns as well as overall radiated sound power calculations. The excess noise is broadband in nature and is found to be more pronounced with nozzles having a larger half-angle of the divergent section. It appears to occur when a shock resides within the divergent section and results from random unsteady motion of the shock.
    Schlagwort(e): Aerodynamics
    Materialart: NASA/TM-2009-215603 , AIAA Paper 2009-0289 , E-16893 , 47th Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Florida; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 172
    Publikationsdatum: 2019-07-13
    Beschreibung: An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
    Schlagwort(e): Aerodynamics
    Materialart: AIAA Paper 2009-3802 , LF99-8941 , 19th AIAA Computational Fluid Dynamics; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 173
    Publikationsdatum: 2019-07-13
    Beschreibung: The novel structure of metallic foams is of interest in the design of next-generation debris shields as it introduces physical mechanisms that are advantageous to hypervelocity impact shielding (e.g. increased fragmentation/melt/vaporization, energy dissipation, etc.). Preliminary investigations have shown improved shielding capability over traditional spacecraft primary structures. In this paper, the results of a current hypervelocity impact test program on metallic open-cell foam core sandwich panels are reported. A preliminary ballistic limit equation has been derived from the experimental results, and is presented in a form suitable for implementation in risk assessment software codes.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18440 , The 2009 APS SCCM Conference; Jun 28, 2009 - Jul 03, 2009; Tennessee; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 174
    Publikationsdatum: 2019-07-13
    Beschreibung: NASA has performed entry flight testing related to boundary layer transition and turbulent heating environments during 2009. Two projects are involved in implementing the activities and acquiring flight data: 1) Orbiter BLT Flight Experiment during STS-119; and 2) Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) during STS-119 and STS-125. Orbiter BLT FE has implemented tile surface thermocouples in order to provide in-situ data downstream of a fixed geometry tile protuberance. HYTHIRM has developed a framework of mission planning and aircraft based telescopic infrared measurements to provide quantitative surface temperature distributions.
    Schlagwort(e): Aerodynamics
    Materialart: JSC-CN-18475 , AIAA Transition Study Group Open Forum; Jun 21, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 175
    Publikationsdatum: 2019-07-13
    Beschreibung: The Project Orion Crew Exploration Vehicle aerothermodynamic experimentation strategy, as it relates to flight database development, is reviewed. Experimental data has been obtained to both validate the computational predictions utilized as part of the database and support the development of engineering models for issues not adequately addressed with computations. An outline is provided of the working groups formed to address the key deficiencies in data and knowledge for blunt reentry vehicles. The facilities utilized to address these deficiencies are reviewed, along with some of the important results obtained thus far. For smooth wall comparisons of computational convective heating predictions against experimental data from several facilities, confidence was gained with the use of algebraic turbulence model solutions as part of the database. For cavities and protuberances, experimental data is being used for screening various designs, plus providing support to the development of engineering models. With the reaction-control system testing, experimental data were acquired on the surface in combination with off-body flow visualization of the jet plumes and interactions. These results are being compared against predictions for improved understanding of aftbody thermal environments and uncertainties.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8092 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 176
    Publikationsdatum: 2019-07-13
    Beschreibung: The Hypersonic International Flight Research and Experimentation (HIFiRE) 5 flight experiment by Air Force Research Laboratories and Australian Defense Science and Technology Organization is designed to provide in-flight boundary-layer transition data for a canonical 3D configuration at hypersonic Mach numbers. This paper outlines the progress, to date, on boundary layer stability analysis for the HIFiRE-5 flight configuration, as well as for selected test conditions from the wind tunnel experiments supporting the flight test. At flow conditions corresponding to the end of the test window, rather large values of linear amplification factor are predicted for both second mode (N〉40) and crossflow (N〉20) instabilities, strongly supporting the feasibility of first in-flight measurements of natural transition on a fully three-dimensional hypersonic configuration. Additional results highlight the rich mixture of instability mechanisms relevant to a large segment of the flight trajectory, as well as the effects of angle of attack and yaw angle on the predicted transition fronts for ground facility experiments at Mach 6.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8080 , 39th AIAA Fluid Dynamics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 177
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This viewgraph presentation describes Orion mission's automation Guidance, Navigation and Control (GNC) architecture and interfaces. The contents include: 1) Orion Background; 2) Shuttle/Orion Automation Comparison; 3) Orion Mission Sequencing; 4) Orion Mission Sequencing Display Concept; and 5) Status and Forward Plans.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18622 , AIAA Guidance, Navigation, and Control Conference and Exhibit; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 178
    Publikationsdatum: 2019-07-13
    Beschreibung: An unstructured overset-grid Reynolds Averaged Navier-Stokes (RANS) solver, FUN3D, is used to simulate an isolated tiltrotor in hover. An overview of the computational method is presented as well as the details of the overset-grid systems. Steady-state computations within a noninertial reference frame define the performance trends of the rotor across a range of the experimental collective settings. Results are presented to show the effects of off-body grid refinement and blade grid refinement. The computed performance and blade loading trends show good agreement with experimental results and previously published structured overset-grid computations. Off-body flow features indicate a significant improvement in the resolution of the first perpendicular blade vortex interaction with background grid refinement across the collective range. Considering experimental data uncertainty and effects of transition, the prediction of figure of merit on the baseline and refined grid is reasonable at the higher collective range- within 3 percent of the measured values. At the lower collective settings, the computed figure of merit is approximately 6 percent lower than the experimental data. A comparison of steady and unsteady results show that with temporal refinement, the dynamic results closely match the steady-state noninertial results which gives confidence in the accuracy of the dynamic overset-grid approach.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-7835 , AHS International 65th Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 179
    Publikationsdatum: 2019-07-13
    Beschreibung: Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AIAA Paper 2009-2969 , LF99-8617 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Washington; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 180
    Publikationsdatum: 2019-07-13
    Beschreibung: With the negative grounding of the 160V Photovoltaic (PV) arrays, the International Space Station (ISS) can experience varied and interesting charging events. Since August 2006, there has been a multi-probe p ackage, called the Floating Potential Measurement Unit (FPMU), availa ble to provide redundant measurements of the floating potential of th e ISS as well as the density and temperature of the local plasma environment. The FPMU has been operated during intermittent data campaigns since August 2006 and has collected over 160 days of information reg arding the charging of the ISS as it has progressed in configuration from one to three PV arrays and with various additional modules such as the European Space Agency?s Columbus laboratory and the Japan Aeros pace Exploration Agency's Kibo laboratory. This paper summarizes the charging of the ISS and the local environmental conditions that contr ibute to those charging events, both as measured by the FPMU.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0218 , M09-0245 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 181
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This viewgraph presentation describes the Space Shuttle Main Engine (SSME) weight growth history and lessons learned from SSME weight imbalances.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0271 , NASA PM Challenge 2009; Feb 24, 2009 - Feb 25, 2009; Daytona Beach, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 182
    Publikationsdatum: 2019-07-13
    Beschreibung: ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: 09ICES-0014 , JSC-18178 , International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 183
    Publikationsdatum: 2019-07-13
    Beschreibung: This slide presentation reviews the different types of docking types. The objective is the pressurized vehicle connection and crew transfer. Androgynous Docking is defined as the joining or coming together of two free flying space vehicles with alike interfaces. Androgynous mating allows for collaboration between any two vehicles. The subsytems of an androgynous mating system are reviewed, including: Hard docking subsystems: latch system, tunnel housing, alignment system and seal.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-18072 , Interoperability of Future Docking Systems; Mar 31, 2009 - Apr 03, 2009; Noordwijk; Netherlands
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 184
    Publikationsdatum: 2019-07-13
    Beschreibung: The Orion Crew Exploration Vehicle Module (CM) is being designed to operate in an atmosphere of up to 30% oxygen at a pressure of 10.2 psia for lunar missions. Spacecraft materials selection is based on an upward flammability test conducted in a closed chamber under the worst expected conditions of pressure and oxygen concentration. Material flammability depends on both oxygen concentration and pressure but, since oxygen concentration is the primary driver, all materials are certified in the 30% oxygen, 10.2 psia environment. Extensive data exist from the Shuttle Program at this condition which used relatively the same test methodology as currently used in the Constellation Program. When the CM returns to Earth, a snorkel device will be activated after splashdown to provide outside air to the crew; however, for operational reasons, it is desirable to maximize the time the crew is able to breathe cabin air before the snorkel device is activated. To maximize this time, it has been proposed to raise the partial pressure of oxygen in the CM immediately before reentry while maintaining the total cabin pressure at 14.7 psia. In addition, it has been proposed to leak-test the Orion CM with ambient air at a maximum pressure of 17.3 psia. No data exist to assess how high the cabin oxygen concentration can be at 14.7 psia or 17.3 psia. One is to re-test a large number of materials at these pressures at a significant cost. However, since the maximum oxygen concentration (MOC) at which a material will self-extinguish has been determined for a variety of spacecraft materials as a function of pressure, a second alternative is to use existing data to estimate the MOC at 14.7 psia and 17.3 psia. This data will be examined in this paper and an analysis presented to determine the oxygen concentrations at the increased pressures that will result in self-extinguishment of a material. This analysis showed that the oxygen concentration for the Orion CM at 14.7 psia cannot be set higher than 25.6% without potentially invalidating the materials flammability certification in 30% oxygen at 10.2 psia for some materials. Materials certified under these conditions would still be self-extinguishing in ambient air at 17.3 psia. alternative
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: 09ICES-0267 , JSC-17943 , (ISSN 0148-7191)|International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 185
    Publikationsdatum: 2019-07-13
    Beschreibung: Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.
    Schlagwort(e): Aerodynamics
    Materialart: E-17141 , 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition; Jan 05, 2009 - Jan 08, 2009; Orlando, Fl; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 186
    Publikationsdatum: 2019-07-13
    Beschreibung: The base forces in the GLAST X- and Z-axis sine vibration tests were similar to those derived using generic inputs (from users guide and handbook), but the base forces in the sine test were generally greater than the flight data. Basedrive analyses using envelopes of flight acceleration data provided more accurate predictions of the base force than generic inputs, and as expected, using envelopes of both the flight acceleration and force provided even more accurate predictions The GLAST spacecraft interface accelerations and forces measured during the MECO transient were relatively low in the 60 to 150 Hz regime. One may expect the flight forces measured at the base of various spacecraft to be more dependent on the mass, frequencies, etc. of the spacecraft than are the corresponding interface acceleration data, which may depend more on the launch vehicle configuration.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: The Spacecraft and Launch Vehicle Dynamic Environments Workshop; Jun 09, 2009 - Jun 11, 2009; California; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 187
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This slide presentation reviews the efforts at analyzing the Crew Module (CM) for the Orion Project. The Integrated Thermal Model is described, and the on-orbit analysis for the 4 different mission phases is also described. The four mission phases are: Mission phase (1) Low Earth Orbit (LEO) International Space Station (ISS) mission (2) ISS docked (3) LEO, lunar mission and (4) Low Lunar Orbit (LLO).
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-18688 , Thermal and Fluids Analysis Conference; Aug 11, 2009 - Aug 13, 2009; Huntsville, Al; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 188
    Publikationsdatum: 2019-07-13
    Beschreibung: The aerodynamic contours for two new nozzles have been designed for the NASA Langley Research Center 8-Foot High Temperature Tunnel. The new Mach-4 and Mach-6 contours have 54.5-inch exit-diameters allowing for testing at high dynamic pressures. The Mach-4 nozzle will extend the test capability of the facility and allow turbine-based combined-cycle propulsion systems to be tested at conditions appropriate for the transition from the turbine to the scramjet flowpath. The Mach-6 nozzle will serve a dual purpose; to provide a Mach-6 test capability at high dynamic pressure and to be used in conjunction with an existing mixer section for testing at lower enthalpy conditions. This second use will extend the life of the existing Mach-7 nozzle which has been used for this purpose. The two new nozzles, in conjunction with existing nozzles, will allow for testing at Mach numbers of 3, 4, 5 and 6 at high dynamic pressures, and Mach 4, 5 and 7 at lower dynamic pressures but larger scales.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-8150 , 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Aug 03, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 189
    Publikationsdatum: 2019-07-13
    Beschreibung: Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
    Schlagwort(e): Aerodynamics
    Materialart: IFASD-2009-030 , LF99-8136 , 2009 International Forum on Aeroelasticity and Structural Dynamics (IFASD); Jun 21, 2009 - Jun 25, 2009; Washington; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 190
    Publikationsdatum: 2019-07-13
    Beschreibung: A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
    Schlagwort(e): Aerodynamics
    Materialart: AIAA Paper 2009-4105 , LF99-8082 , 27th AIAA Applied Aerodynamics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 191
    Publikationsdatum: 2019-07-13
    Beschreibung: An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8065 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 192
    Publikationsdatum: 2019-07-13
    Beschreibung: Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AIAA Paper 2009-4075 , LF99-7164 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 193
    Publikationsdatum: 2019-07-13
    Beschreibung: The analysis of effects of the reaction control system jet plumes on aftbody heating of Orion entry capsule is presented. The analysis covered hypersonic continuum part of the entry trajectory. Aerothermal environments at flight conditions were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code and Data Parallel Line Relaxation (DPLR) algorithm code. Results show a marked augmentation of aftbody heating due to roll, yaw and aft pitch thrusters. No significant augmentation is expected due to forward pitch thrusters. Of the conditions surveyed the maximum heat rate on the aftshell is expected when firing a pair of roll thrusters at a maximum deceleration condition.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-7144 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonia, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 194
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-7906 , 15th AIAA/CEAS Aeroacoustics Conference; May 11, 2009 - May 13, 2009; Miami, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 195
    Publikationsdatum: 2019-07-13
    Beschreibung: Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8546 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Washington; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 196
    Publikationsdatum: 2019-07-13
    Beschreibung: Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: LF99-8552 , Systems and Information Engineering Design Symposium; Apr 24, 2009; Virginia; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 197
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.
    Schlagwort(e): Aerodynamics
    Materialart: LF99-7385 , Journal of Aircraft 2009 (ISSN 0021-8669); 46; 2; 354
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 198
    Publikationsdatum: 2019-07-13
    Beschreibung: The Advanced Video Guidance Sensor (AVGS) was the primary docking sensor for the Orbital Express mission. The sensor performed extremely well during the mission, and the technology has been proven on orbit in other flights too. Parts obsolescence issues prevented the construction of more AVGS units, so the next generation of sensor was designed with current parts and updated to support future programs. The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been tested as a breadboard, two different brassboard units, and a prototype. The testing revealed further improvements that could be made and demonstrated capability beyond that ever demonstrated by the sensor on orbit. This paper presents some of the sensor history, parts obsolescence issues, radiation concerns, and software improvements to the NGAVGS. In addition, some of the testing and test results are presented. The NGAVGS has shown that it will meet the general requirements for any space proximity operations or docking need.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AAS 09-064 , M09-0274 , 32nd Annual AAS Guidance and Control Conference; Jan 30, 2009 - Feb 04, 2009; Breckenridge, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 199
    Publikationsdatum: 2019-07-13
    Beschreibung: Over the last three decades, NASA has been diligent in qualifying systems for human space flight. As the Agency transitions from operating the Space Shuttle, its employees must learn to accept higher risk levels to generate the data needed to certify its next human space flight system. The Marshall Center s Engineering workforce is developing the Ares I crew launch vehicle and designing the Ares V cargo launch vehicle for safety, reliability, and cost-effective operations. This presentation will provide a risk retrospective, using first-hand examples from the Delta Clipper-Experimental Advanced (DC-XA) and the X-33 single-stage-to-orbit flight demonstrators, while looking ahead to the upcoming Ares I-X uncrewed test flight. The DC-XA was successfully flown twice in 26 hours, setting a new turnaround-time record. Later, one of its 3 landing gears did not deploy, it tipped over, and was destroyed. During structural testing, the X-33 s advanced composite tanks were unable to withstand the forces to which it was subjected and the project was later cancelled. These are examples of successful failures, as the data generated are captured in databases used by vehicle designers today. More recently, the Ares I-X flight readiness review process was streamlined in keeping with the mission's objectives, since human lives are not at stake, which reflects the beginning of a cultural change. Failures are acceptable during testing, as they provide the lessons that actually lead to mission success. These and other examples will stimulate the discussion of when to accept risk in aerospace projects.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M09-0293 , NASA Project Management Challenge; Feb 24, 2009 - Feb 25, 2009; Daytona Beach, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 200
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-18161 , Hatchfest 2009; Apr 15, 2009 - Apr 19, 2009; Asheville, NC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...