ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-06-01
    Print ISSN: 0021-9142
    Electronic ISSN: 2195-0571
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: While a reduction in weight is always desirable for any space vehicle, it is crucial for vehicles to be used in the proposed Manned Mars Mission (MMM). One such way to reduce a spacecraft's weight is through aeroassist braking which is an alternative to retro-rockets, the traditional method of slowing a craft approaching from a high energy orbit. In this paper aeroassist braking was examined for two blunt vehicle configurations and one streamlined configuration. For each vehicle type, a range of lift-to-drag ratios was examined and the entry angle windows, bank profiles, and trajectory parameters were recorded here. In addition, the sensitivities of velocity and acceleration with respect to the entry angle and bank angles were included. Also, the effect of using different atmosphere models was tested by incorporating several models into the simulation program.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-101669 , NAS 1.15:101669
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.
    Keywords: Astrodynamics
    Type: AIAA Paper 2004-4829 , AIAA Atmospheric Flight Mechanics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.
    Keywords: Launch Vehicles and Launch Operations
    Type: AIAA Paper 2004-5382 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An integrated analysis is presented for ascent, stage separation and glide back performance of a small, partially reusable launch vehicle sized for a payload of about 330 lbs to a 150 nm polar orbit. The altitude margin was used a performance metric for the glideback performance. Aerodynamic databases for each of these three phases of flight were developed using a combination of engineering level code, free stream and proximity wind tunnel test data and Euler CFD results. The ascent and glideback trajectories were generated using POST and the stage separation simulation was done using the in-house software Sep-Sim as a front end to the commercially available multi-body dynamic simulation code ADAMS. The payload to the designated polar orbit was optimized subject to the constraints imposed by stage separation and adequate performance reserve for the glideback booster in addition to the usual ascent trajectory constraints.
    Keywords: Launch Vehicles and Launch Operations
    Type: AIAA Paper 2004-0876 , 42nd AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: An independent twelve degree-of-freedom simulation of the X-43A separation trajectory was created with the Program to Optimize Simulated trajectories (POST II). This simulation modeled the multi-body dynamics of the X-43A and its booster and included the effect of two pyrotechnically actuated pistons used to push the vehicles apart as well as aerodynamic interaction forces and moments between the two vehicles. The simulation was developed to validate trajectory studies conducted with a 14 degree-of-freedom simulation created early in the program using the Automatic Dynamic Analysis of Mechanics Systems (ADAMS) simulation software. The POST simulation was less detailed than the official ADAMS-based simulation used by the Project, but was simpler, more concise and ran faster, while providing similar results. The increase in speed provided by the POST simulation provided the Project with an alternate analysis tool. This tool was ideal for performing separation control logic trade studies that required the running of numerous Monte Carlo trajectories.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2003-5819 , AIAA Modeling and Simulation Technologies Conference and Exhibit; Aug 11, 2003 - Aug 14, 2003; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Mars 2001 Odyssey Orbiter successfully completed the aerobraking phase of its mission on January 11, 2002. This paper discusses the support provided by NASA's Langley Research Center to the navigation team at the Jet Propulsion Laboratory in the planning and operational support of Mars Odyssey Aerobraking. Specifically, the development of a three-degree-of-freedom aerobraking trajectory simulation and its application to pre-flight planning activities as well as operations is described. The importance of running the simulation in a Monte Carlo fashion to capture the effects of mission and atmospheric uncertainties is demonstrated, and the utility of including predictive logic within the simulation that could mimic operational maneuver decision-making is shown. A description is also provided of how the simulation was adapted to support flight operations as both a validation and risk reduction tool and as a means of obtaining a statistical basis for maneuver strategy decisions. This latter application was the first use of Monte Carlo trajectory analysis in an aerobraking mission.
    Keywords: Computer Systems
    Type: AIAA Paper 2002-4537 , AIAA Atmospheric Flight Mechanics Conference and Exhibit; Aug 05, 2002 - Aug 08, 2002; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2000-1045 , Aerospace Sciences; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The present study performs a six degree-of-freedom entry dispersion analysis for the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) mission. METEOR offered the capability of flying a recoverable science package in a microgravity environment. However, since the Recovery Module has no active control system, an accurate determination of the splashdown position is difficult because no opportunity exists to remove any errors. Hence, uncertainties in the initial conditions prior to deorbit burn initiation, during deorbit burn and exo-atmospheric coast phases, and during atmospheric flight impact the splashdown location. This investigation was undertaken to quantify the impact of the various exo-atmospheric and atmospheric uncertainties. Additionally, a Monte-Carlo analysis was performed to statistically assess the splashdown dispersion footprint caused by the multiple mission uncertainties. The Monte-Carlo analysis showed that a 3-sigma splashdown dispersion footprint with axes of 43.3 nm (long), -33.5 nm (short), and 10.0 nm (crossrange) can be constructed. A 58% probability exists that the Recovery Module will overshoot the nominal splashdown site.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-TM-112913 , NAS 1.26:112913 , AIAA Paper 96-0903 , Aerospace Sciences; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectories
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-11076 , AIAA Modeling and Simulation Technologies Conference and Exhibit; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...