ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 11th Hypervelocity Impact Symposium; 11-15 Apr. 20120; Frieburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
    Keywords: Space Transportation and Safety
    Type: JSC 66540 , JSC-CN-29235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA 2007-1847 , LAR-17295 , LAR-17294 , 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Apr 23, 2007 - Apr 26, 2007; Waikiki, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Spacecraft are subject to micro-meteoroid and orbital debris (MMOD) impact damage which have the potential to degrade performance, shorten the mission, or result in catastrophic loss of the vehicle. Specific MMOD protection requirements are established by NASA for each spacecraft early in the program/project life, to ensure the spacecraft meets desired safety and mission success goals. Both the design and operations influences spacecraft survivability in the MMOD environment, and NASA considers both in meeting MMOD protection requirements. The purpose of this handbook is to provide spacecraft designers and operations personnel with knowledge gained by NASA in implementing effective MMOD protection for the International Space Station, Space Shuttle, and various science spacecraft. It has been drawn from a number of previous publications [10-14], as well as new work. This handbook documents design and operational methods to reduce MMOD risk. In addition, this handbook describes tools and equations needed to design proper MMOD protection. It is a living report, in that it will be updated and re-released periodically in future with additional information. Providing effective and efficient MMOD protection is essential for ensuring safe and successful operations of spacecraft and satellites. A variety of shields protect crew modules, external pressurized vessels and critical equipment from MMOD on the International Space Station (ISS). Certain Space Shuttle Orbiter vehicle systems are hardened from MMOD impact, and operational rules are established to reduce the risk from MMOD (i.e., flight attitudes are selected and late inspection of sensitive thermal protection surfaces are conducted to reduce MMOD impacts). Science spacecraft include specific provisions to meet MMOD protection requirements in their design (for example, Stardust & GLAST). Commercial satellites such as Iridium and Bigelow Aerospace Genesis spacecraft incorporate MMOD protection. The development of low-weight, effective MMOD protection has enabled these spacecraft missions to be performed successfully. This handbook describes these shielding techniques. For future exploration activities to the Moon and Mars, implementing high-performance MMOD shielding will be necessary to meet protection requirements with minimum mass penalty. A current area of technology development in MMOD shielding is the incorporation of sensors to detect and locate MMOD impact damage. Depending on the type of sensor the signals from the sensor can be processed to infer the location of the impact and the extent of damage. The objective of the sensors is to locate critical damage that would endanger the spacecraft or crew immediately or during reentry (such as an air leak from crew module or critical damage to thermal protection system of reentry vehicles). The information from the sensors can then be used with repair kits, patch kits, hatch closure or other appropriate remedial techniques to reduce MMOD risk.
    Keywords: Space Transportation and Safety
    Type: JSC-64399, Version A , JSC-17763
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: In the past, the orbital debris environment was modeled as consisting entirely of aluminum particles. As a consequence, most of the impact test database on spacecraft micro-meteoroid and orbital debris (MMOD) shields, and the resulting ballistic limit equations used to predict shielding performance, has been based on using aluminum projectiles. Recently, data has been collected from returned spacecraft materials and other sources that indicate higher and lower density components of orbital debris also exist. New orbital debris environment models such as ORDEM2008 provide predictions of the fraction of orbital debris in various density bins (high = 7.9 g/cu cm, medium = 2.8 g/cu cm, and low = 0.9-1.1 g/cu cm). This paper describes impact tests to assess the effects of projectile density on the performance capabilities of typical MMOD shields. Updates to shield ballistic limit equations are provided based on results of tests and analysis.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-18674 , 11th Hypervelocity Impact Symposium; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper documents the data collected from two hypervelocity micro-meteoroid orbital debris (MMOD) impact events where the shuttle payload bay door radiator sandwich panel was completely perforated. Scanning Electron Microscope/Energy-Dispersive x-ray Spectroscopy (SEM/EDS) analysis of impact residue provided evidence to identify the source of each impact. Impact site features that indicate projectile directionality are discussed, along with hypervelocity impact testing on representative samples conducted to simulate the impact event. The paper provides results of a study of impact risks for the size of particles that caused the MMOD damage and the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile
    Keywords: Space Transportation and Safety
    Type: JSC-CN-18068 , 50th AIAA/ASME/ASCE/AHS/ASC Structures; May 04, 2009 - May 07, 2009; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the definition of the penetration criteria of the propellant tanks surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.
    Keywords: Space Sciences (General)
    Type: NASA/TM-2010-216804 , E-17435 , 11th Hypervelocity Impact Symposium 2010; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...