ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (19,158)
  • Nitrification
  • 2010-2014  (10)
  • 1990-1994  (7,109)
  • 1985-1989  (5,691)
  • 1980-1984  (4,344)
  • 1970-1974  (2,129)
  • 1925-1929
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: The stable isotopes, δ15N and δ18O, of nitrite and nitrate can be powerful tools used to interpret nitrogen cycling in the ocean. In order to interpret isotope profiles, the isotope systematics of each process involved must be known. This thesis describes numerous experiments using both cultures of nitrifying organisms as well as natural seawater samples to determine the oxygen isotope systematics of nitrification. These experiments show that the accumulation of nitrite has a large effect on the resulting δ18ONO3. Also, the δ18ONO2 was developed as a unique tracer because it undergoes abiotic equilibration with water δ18O at a predictable rate based on pH, temperature and salinity. This rate, its dependencies, and how the δ18ONO2 values can be used as not only biological source indicators but also indicators of age are described. Finally, using the isotope systematics of nitrification as well as the properties of nitrite oxygen isotope exchange described in this thesis, the final chapter interprets multi-isotope nitrate and nitrite profiles in the Costa Rica Upwelling Dome using a simple 1D model. Overall, this thesis describes new nitrogen and oxygen isotopic tracers and uses them to elucidate the complicated nitrogen biogeochemistry in oxygen deficient zones.
    Description: The work described in this thesis was funded by the National Science Foundation grants OCE 05-26277 and OCE 09-610998 to KLC, the MIT Presidential Fellowship, the WHOI Coastal Ocean Institute, the WHOI Academic Programs Office, and the MIT Houghton fund.
    Keywords: Nitrification ; Nitrogen fixation ; Melville (Ship) Cruise MV1008 ; Melville (Ship) Cruise MV1104 ; Roger Revelle (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2006. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 16 (2006): 2153–2167, doi:10.1890/1051-0761(2006)016[2153:NONADN]2.0.CO;2.
    Description: The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rondônia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: −111‰ ± 12‰ and −31‰ ± 11‰ for a clay-rich Oxisol (TNF), −102‰ ± 5‰ and −45‰ ± 5‰ for a sandier Ultisol (TNF), and −10.4‰ ± 3.5‰ (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (δ15Nα − δ15Nβ, where α indicates the central nitrogen atom and β the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2‰ ± 8.4‰ and 31.6‰ ± 8.1‰, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.
    Description: This work was funded by the National Science Foundation (SET, award #ATM-9905784; SCT, award #EAR- 0312004). We also received support from a National Science Foundation Major Research Instrumentation award (SCT, #ATM-9871077) and an instrumentation award to the University of California–Irvine from the W. M. Keck Foundation.
    Keywords: Amazon forest soils ; Denitrification ; Isotopic enrichment factors ; Isotopomers ; Nitrification ; Nitrous oxide ; Site preference
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2005. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 75 (2005): 139–157, doi:10.1890/04-0988.
    Description: Isotope pool dilution studies are increasingly reported in the soils and ecology literature as a means of measuring gross rates of nitrogen (N) mineralization, nitrification, and inorganic N assimilation in soils. We assembled data on soil characteristics and gross rates from 100 studies conducted in forest, shrubland, grassland, and agricultural systems to answer the following questions: What factors appear to be the major drivers for production and consumption of inorganic N as measured by isotope dilution studies? Do rates or the relationships between drivers and rates differ among ecosystem types? Across a wide range of ecosystems, gross N mineralization is positively correlated with microbial biomass and soil C and N concentrations, while soil C:N ratio exerts a negative effect on N mineralization only after adjusting for differences in soil C. Nitrification is a log-linear function of N mineralization, increasing rapidly at low mineralization rates but changing only slightly at high mineralization rates. In contrast, NH4+ assimilation by soil microbes increases nearly linearly over the full range of mineralization rates. As a result, nitrification is proportionately more important as a fate for NH4+ at low mineralization rates than at high mineralization rates. Gross nitrification rates show no relationship to soil pH, with some of the fastest nitrification rates occurring below pH 5 in soils with high N mineralization rates. Differences in soil organic matter (SOM) composition and concentration among ecosystem types influence the production and fate of mineralized N. Soil organic matter from grasslands appears to be inherently more productive of ammonium than SOM from wooded sites, and SOM from deciduous forests is more so than SOM in coniferous forests, but differences appear to result primarily from differing C:N ratios of organic matter. Because of the central importance of SOM characteristics and concentrations in regulating rates, soil organic matter depletion in agricultural systems appears to be an important determinant of gross process rates and the proportion of NH4+ that is nitrified. Addition of 15N appears to stimulate NH4+ consumption more than NO3− consumption processes; however, the magnitude of the stimulation may provide useful information regarding the factors limiting microbial N transformations.
    Description: This research was supported by a grant from The Andrew W. Mellon Foundation to The Ecosystems Center of the Marine Biological Laboratory, Woods Hole, Massachusetts, and by a grant from the National Science Foundation to Utah State University, Logan, Utah.
    Keywords: Ammonium ; N assimilation ; N immobilization ; N-15 isotope dilution ; N mineralization ; Nitrate ; Nitrification ; Soil carbon ; Soil nitrogen ; Soil organic matter ; Soil pH
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011
    Description: Atmospheric nitrous oxide N2O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N2O production rates of the two major sources of this greenhouse gas, soil and the ocean. Nitrification, and particularly ammonia oxidation, is one of the major processes that produces N2O in the ocean. In this thesis, a series of stable isotopic methods have been used to characterize the biogeochemical controls on N2O production by marine nitrification as well as the natural abundance stable isotopic signatures of N2O produced by marine nitrifiers. This thesis shows that in addition to chemical controls on N2O production rates such as oxygen (O2) and nitrite (NO-2) concentrations, there are also biological controls such as nitrifier cell abundances and coastal phytoplankton blooms that may influence N2O production by ammonia oxidizers as well. Ammonia oxidizers can produce N2O through two separate biochemical mechanisms that have unique isotopic signatures. Using culture- based measurements of these signatures, we conclude that one of these pathways, nitrifier- denitrification, may be a significant source of N2O produced in the South Atlantic Ocean and possibly the global ocean.
    Description: Funding for this work was provided by NSF/OCE 05-26277, the Andrew W. Mellon Founda- tion Awards for Innovative Research, the Cecil H. and Ida M. Green Technology Innovation Awards, and the W. M. Keck Foundation.
    Keywords: Nitrification ; Biogeochemistry ; Knorr (Ship : 1970-) Cruise KN192-05
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2005. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 299 (2005): 123-135, doi:10.3354/meps299123.
    Description: Measurements of N losses by denitrification from saltmarsh sediments have proved difficult because of the importance of plant metabolism and tidal cycles to sediment N cycling. In vitro approaches often do not measure the dominant coupled nitrification–denitrification pathway and/or alter in situ plant growth and redox conditions. We developed an in situ 15NH4+ tracer approach to measure coupled nitrification–denitrification fluxes in an undisturbed New England Spartina alterniflora saltmarsh. The tracer was line-injected into sediments underlying natural S. alterniflora stands and in similar areas receiving long-term N amendment (up to 11.2 mol organic N m–2 yr–1 for 16 to 23 yr), and 15N retention and loss routes were followed for 1 to 5 d. Denitrification losses in unfertilized grass stands ranged from 0.4 to 11.9 mmol N m–2 d–1 (0.77 ± 0.18 mol N m–2 yr–1). Denitrification in unfertilized sediments remained low until late summer, but underwent a ca. 4-fold increase in August and September, although sediment temperatures and respiration rates were high throughout the summer. Plant N uptake may limit the availability of N to support denitrification during the early summer, and denitrification may be released from competition with plant uptake in late summer, when plant growth slows. Denitrification rates in fertilized areas ranged from 22 to 77 mmol N m–2 d–1 (10.5 ± 4.9 mol N m–2 yr–1), and denitrification was likely controlled by the availability of fertilizer N rather than by competition with plants, since N was added in excess of plant demand. Our results emphasize the importance of in situ measurements of denitrification in understanding the dynamics of saltmarsh N cycling.
    Description: This project was supported by funding from the Coastal Systems Program of the School for Marine Science and Technology, University of Massachusetts, and by the Education Department and the Reinhart Coastal Research Center of the Woods Hole Oceanographic Institution.
    Keywords: Saltmarsh ; Denitrification ; Nitrification ; N-15 ; Spartina alterniflora
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 91 (2011): 545–560, doi:10.1016/j.pocean.2011.09.001.
    Description: In the seasonally stratified Gulf of Aqaba Red Sea, both NO2- release by phytoplankton and NH4+ oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, NO2- formation was strongly correlated (R2=0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete NO3- reduction by light limited phytoplankton was a major source of NO2-. However, as stratification progressed, NO2- continued to be generated below the euphotic depth by microbial NH4+ oxidation, likely due to differential photoinhibition of NH4+ and NO2- oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the δ15N and δ18O in the combined NO3- and NO2- pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the δ15N of particulate N below the euphotic depth increased from -5‰ to up to +20‰. N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of NO3-, NO2-, and urea was more rapid in the light (434±24, 94±17, and 1194±48 nmol N L-1 day-1 respectively) than in the dark (58±14, 29±14, and 476±31 nmol N L-1 day-1 respectively). Dark NH4+ assimilation was 314±31 nmol N L-1 day-1, while light NH4+ assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 hour from spike addition. The overall rate of coupled urea mineralization and NH¬4+ oxidation (14.1±7.6 nmol N L-1 day-1) was similar to that of NH¬4+ oxidation alone (16.4±8.1 nmol N L-1 day-1), suggesting that for labile dissolved organic N compounds like urea, mineralization was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for NH4+ and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.
    Description: This research was supported under the North Atlantic Treaty Organization (NATO) Science for Peace Grant SfP 982161 to AP and AFP, a grant from the Koret Foundation to AP, a National Science Foundation Biological Oceanography grant to AP, the Israel Science Foundation grant 135/05 to AFP, and research grant 8330-06 from the Geological Society of America to KRMM.
    Keywords: Nitrogen cycle ; Primary nitrite maximum ; Nitrification ; Light ; Mixing and stratification ; Spring bloom
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 492 (2013): 1-8, doi:10.3354/meps10526.
    Description: Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports have indicated a decrease in oceanic nitrification rates under experimentally lowered pH. How the composition and abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH is unknown. We sampled microbes from 2 different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment, this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems.
    Description: NSF funding to B.B.W. supported the barrel experiments. Funding for the coral experiments came from NSF (GRF to M.H.; OCE-1041106), the Woods Hole Oceanographic Institution’s Ocean Life Institute, and the International Society for Reef Studies.
    Keywords: Ocean acidification ; Ammonia-oxidizing archaea ; Ammonia-oxidizing bacteria ; Nitrification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 55 (2009): 189-201, doi:10.3354/ame01294.
    Description: Pelagic archaeal phylogenetic diversity and the potential for crenarchaeotal nitrification of Group 1.1a were determined in the rivers Rhine and Têt by 16S rRNA sequencing, catalyzed reported deposition-fluorescence in situ hybridization (CARD–FISH) and quantification of 16S rRNA and functional genes. Euryarchaeota were, for the first time, detected in temperate river water even though a net predominance of crenarchaeotal phylotypes was found. Differences in phylogenic distribution were observed between rivers and seasons. Our data suggest that a few archaeal phylotypes (Euryarchaeota Groups RC-V and LDS, Crenarchaeota Group 1.1a) are widely distributed in pelagic riverine environments whilst others (Euryarchaeota Cluster Sagma-1) may only occur seasonally in river water. Crenarchaeota Group 1.1a has recently been identified as a major nitrifier in the marine environment and phylotypes of this group were also present in both rivers, where they represented 0.3% of the total pelagic microbial community. Interestingly, a generally higher abundance of Crenarchaeota Group 1.1a was found in the Rhine than in the Têt, and crenarchaeotal ammonia monooxygenase gene (amoA) was also detected in the Rhine, with higher amoA copy numbers measured in February than in September. This suggests that some of the Crenarchaeota present in river waters have the ability to oxidize ammonia and that riverine crenarchaeotal nitrification of Group 1.1a may vary seasonally.
    Description: The present study is part of the Land–Ocean Interactions in the Coastal Zone (LOICZ) project supported by the Research Council for Earth and Life Science (ALW), with financial aid from the Netherlands Organisation for Scientific Research (NWO) (grant no. 014.27.003 to J.S.S.D.).
    Keywords: Archaea ; River ; Diversity ; Nitrification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 105 (2011): 53-74, doi:10.1007/s10533-010-9540-4.
    Description: Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using 15N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream that were within several km of each other and on similar soils and landscape positions. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO3-) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH4+ uptake length, higher uptake rates into organic matter components and a shorter 15NH4+ residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added 15NH4+) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added 15N in organic matter compartments and exported 53% (15NH4+ =34%; 15NO3- = 19%). In contrast, the second-order pasture stream retained 75% of added 15N, predominantly in grasses (69%) and exported only 4% as 15NH4+. The fate of tracer 15N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported (15NH4+ = 9%; 15NO3- = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.
    Description: This work was supported by grants from the NASA Large-Scale Biosphere and Atmosphere Experiment (NCC5-686), the National Science Foundation (DEB-0315656) and the Fundação de Ámparo à Pesquisa do Estado de São Paulo.
    Keywords: N-15 ; Ammonium uptake length ; Brazil ; Nitrification ; Nitrogen cycling ; Pasture ; Stable isotopes ; Stream ecosystem ; Tropical forest
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 137-142 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Bamboo savanna ; N mineralization ; Nutrient pools ; Temporal variations ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of harvesting bamboo savanna on the dynamics of soil nutrient pools, N mineralization, and microbial biomass was examined. In the unharvested bamboo site NO inf3 sup- -N in soil ranged from 0.37 to 3.11 mg kg-1 soil and in the harvested site from 0.43 to 3.67 mg kg-1. NaHCO3-extractable inorganic P ranged from 0.55 to 3.58 mg kg-1 in the unharvested site and from 1.01 to 4.22 mg kg-1 in the harvested site. Over two annual cycles, the N mineralization range in the unharvested and harvested sites was 0–19.28 and 0–24.0 mg kg-1 soil month-1, respectively. The microbial C, N, and P ranges were 278–587, 28–64, and 12–26 mg kg-1 soil, respectively, with the harvested site exhibiting higher values. Bamboo harvesting depleted soil organic C by 13% and total N by 20%. Harvesting increased N mineralization, resulting in 10 kg ha-1 additional mineral N in the first 1st year and 5 kg ha-1 in the 2nd year following the harvest. Microbial biomass C, N and P increased respectively by 10, 18, and 5% as a result of bamboo harvesting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 335-338 
    ISSN: 1432-0789
    Keywords: Autotrophy ; Lime ; Lolium perenne ; Nitrate reductase ; Nitrification ; Stagnohumic gley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three different nitrification assays (short-term nitrifier activity, assimilatory nitrate reductase activity of Lolium perenne, and nitrate accumulation in the absence of plants) were performed either on soil from a naturally acidic stagnohumic-gley or on leaves from L. perenne grown in this soil. Before the investigation the soil was limed and fertilised in a manner consistent with established agricultural pasture improvement strategies. Short-term nitrifier activity was only detected in soils above pH 5.6. However, nitrate reductase activity and nitrate accumulation both showed a near linear increase between soil pH 3.8 and 6.8. These findings are attributed to the nature of the assays, each of which considers a different component of the soil nitrifier population.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 247-254 
    ISSN: 1432-0789
    Keywords: Nitrification ; Abiotic factors ; Ammonium concentration ; Vmax of nitrification ; Michaelis-Menten constant for ammonium oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of temperature, water potential and ammonium concentrations were studied in field and laboratory experiments on arable soil. The two field experiments used different sampling intervals, one at daily (short-term) and the other at monthly (long-term) intervals. In the short-term field experiment, the numbers and activities of nitrifiers were assessed before and after natural rain or irrigation. The nitrifiers were apparently outcompeted by heterotrophs during the first days after wetting the soil. Potential nitrification was affected only slightly by changes in water potential, whereas the numbers of ammonium and nitrite oxidizers appeared more sensitive to these changes. The numbers of ammonium and nitrite oxidizers correlated strongly during the daily samplings. The potential nitrite-oxidation rates correlated with water potentials whereas the potential ammonium oxidation rates did not. Extractable ammonium decreased in proportion to increasing nitrate concentrations in both the rain-fed and the irrigated plots. In the long-term field experiments, the numbers of ammonium oxidizers correlated with water potentials but not with in situ temperature or with ammonium concentrations. The potential ammonium-oxidation rates correlated with water potentials and with ammonium-oxidizer numbers. The potential nitrite-oxidation rates correlated strongly with the potential ammonium-oxidation rates. The field experiments implied that nitrite oxidizers obtained substrate from ammonium oxidizers but also from nitrate reduction. In laboratory experiments nitrate accumulated at a Q 10 of about 2 and the V max for nitrification was observed at a water potential of −0.11 MPa (65% of water-holding capacity). The K m for ammonium oxidation at pH 8.2 was 1.72 mg l−1 soil water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 9 (1990), S. 283-287 
    ISSN: 1432-0789
    Keywords: Nitrogen transformations ; Flooded soil ; Nitrogen loss ; Nitrification ; Dentitrification ; Urea ; NH3 volatilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Laboratory batch incubation experiments were conducted to determine in fate of urea-15N applied to floodwater of four rice soils with established oxidized and reduced soil layers. Diffusion-dependent urea hydrolysis was rapid in all soils, with rates ranging from 0.0107 to 0.0159 h-1 and a mean rate of 0.0131 h-1. Rapid loss of 53%–65% applied urea-15N occurred during the first 8 days after application, primarily by NH3 volatilization. At the end of 70 days, an additional 20%–30% of applied urea-15N was lost, primarily through nitrification-denitrification processes. The soil types showed significant differences in total applied urea-15 recovery. Conversion of urea-15N to N2-15N provided direct evidence of urea hydrolysis followed by nitrification-denitrification in flooded soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 195-202 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Nitrification ; Organic quality ; New Mexico
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest floor and mineral soil from ponderosa-pine, Douglas-fir, aspen and spruce-fir ecosystems located along a rising gradient in New Mexico were tested with laboratory assays for factors controlling N mineralization and nitrification. We concluded that low pH in combination with factors associated with organic quality controlled N mineralization and almost completely limited nitrification in spruce-fir soils, while N mineralization in the forest floor of ponderosa-pine was limited by low nutrient availability (other than N). Organic quality of the substrate and temporal changes in organic quality appeared to control N-mineralization and nitrification processes in forest-floor and mineral soils from all other sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 65-70 
    ISSN: 1432-0789
    Keywords: Fertilized soil ; Nitrification ; Denitrification ; N2O production ; C2H2 blockage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A sandy soil amended with different forms and amounts of fertilizer nitrogen (urea, ammonium sulphate and potassium nitrate) was investigated in model experiments for N2O emission, which may be evolved during both oxidation of ammonia to nitrate and anaerobic respiration of nitrate. Since C2H2 inhibits both nitrification and the reduction of N2O to N2 during denitrification, the amount of N2O evolved in the presence and absence of C2H2 represents the nitrogen released through nitrification and denitrification. Results show that amounts of N2O-N lost from soils incubated anaerobically with 0.1% C2H2 and treated with potassium nitrate (23.1 µg N-NO 3 − /g dry soil) exceeded those from soils incubated in the presence of 20% oxygen and treated with even larger amounts of nitrogen as urea and ammonium sulphate. This indicates that nitrogen losses by denitrification may potentially be higher than those occurring through nitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 77-82 
    ISSN: 1432-0789
    Keywords: Ecosystem production ; Mineralization ; Nitrification ; Ion exchange resin bag method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Estimates of ammonium and nitrate availability in conifer and hardwood forests using an ion exchange resin (IER) bag method and with on-site incubations of soil cores in buried bags were compared. Correlations between the two methods were generally high. Correlation coefficients (r) between IER nitrate and buried-bag mineralized nitrate ranged from 0.87 to 0.92. Both methods also correlated well with aboveground net primary production, litter fall N content, and fine root biomass. The major differences between the methods related to the relative importances of ammonium and nitrate forms of available N. The IER method indicated that both ammonium and nitrate were important on all sites, with nitrate predominating in most soils. The buried-bag results indicated that available N was primarily in the form of nitrate (all ammonium was oxidized), but that nitrate was insignificant on infertile sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 97-104 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Nitrification ; Water-soluble inhibitors ; Allelochemic control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Bioassay experiments were performed to test for inhibition of the processes of nitrogen mineralization and nitrification by organics in the forest floor of a ponderosa pine ecosystem. Water-extractable organics in the forest floor were tested by applying filtered extracts to the assay soil. The extract decreased nitrate production by 17.0% and decreased net mineralization by 4.1%. Inhibition by volatile organics was tested by placing vials containing forest floor or selected terpenoids of ponderosa pine in sealed jars containing the assay soil. Nitrate production was inhibited by 87.4% and 100%, and net nitrogen mineralization was inhibited by 73.3% and 67.7% in the jars with forest floor and terpenoids, respectively. Organics which are partially water-soluble and are volatile (such as terpenoids) would be very effective inhibitors of nitrogen cycling processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 87-95 
    ISSN: 1432-0789
    Keywords: Fire effects on mineralization ; Ammonification ; Nitrification ; Ponderosa pine soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of a prescribed fire in a ponderosa pine ecosystem on the rates of decomposition and nitrogen mineralization (including ammonification and nitrification) in the forest floor and mineral soil horizons were evaluated. The prescribed fire immediately increased the rates of nitrogen mineralization and nitrification in the forest floor of all burned plots and in the mineral soil of one plot. The rates of decomposition, as measured by CO2 evolution, in both the forest floor and mineral soil were not significantly different immediately after the burn when expressed on an organic matter basis. The rates of nitrogen mineralization in the forest floor and mineral soil were higher 6 and 10 months after the burn. The rate of decomposition (as measured by respiration) was lower in the forest floor but not in the mineral soil 6 and 10 months after the burn. Volatile organics that may inhibit rates of nitrogen mineralization may have been consumed by prescribed fire.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 33-38 
    ISSN: 1432-0789
    Keywords: Microbial activity ; Nitrification ; Taiga ; Tillage system ; Crop residue management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C and N mineralization potentials were determined, in a 12-week laboratory incubation study, on soil samples obtained from recently cleared land which had been cropped to barley for 4 years (field soils) and from nearby undisturbed taiga (forest soils). Treatments for the cropped soils were conventional and no-tillage with and without crop residues removed. An average of about 3% of the total C was evolved as CO2 from the field soils compared with 〉 10% and 4% for the upper (Oie) and lower (Oa) forest-floor horizons, respectively. Significantly more C was mineralized from the Ap of the no-till treatment with residue left on the surface than from the other field Ap horizons. Both forest-floor horizons showed rather long lag periods for net mineralization compared with the field soils, but at the end of the incubation, more mineral N was recovered from the forest Oie despite a rather wide C:N ratio, than from the field soils. After 12 weeks about 115, 200 and 20 μg mineral N/g soil were recovered from the field Ap, the forest Oie and the forest Oa horizons, respectively. Very little C or N was mineralized from the B horizon of the forest or the field soils. Nitrification was rapid and virtually complete for the field soils but was negligible for both forest-floor O horizons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 201-204 
    ISSN: 1432-0789
    Keywords: Fertilizer ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha−1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha−1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha−1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O. Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha−1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 195-199 
    ISSN: 1432-0789
    Keywords: Fertilizer N ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha−1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils. Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 μg NH4OH-N g−1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 μg NH4OH-N g−1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1988), S. 344-349 
    ISSN: 1432-0789
    Keywords: Nitrification ; Deamination ; Grassland ; N fertilisers ; pH ; Denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil nitrification was compared in soils from 89-year-old grassland experimental plots with diverse chemical characteristics. Measurements of NaClO3-inhibited short-term nitrifier activity (SNA) and deamination of 1,2-diamino-4-nitrobenzene were used to study nitrification and deamination activities, respectively, in soil from each of 12 plots. Using multiple regression analysis, an expression for the relationship between SNA, soil pH and fertiliser N additions was derived which indicated that both the frequency and the quantity of farmyard manure additions were important in determining the rate of nitrification. SNA was greatest where there were large and frequent additions of farmyard manure. In soil with pH below 5.2 SNA was very low or insignificant. The effect of (NH4)2SO4 additions could not be assessed because they acidified the soil. We suggest that additions of farmyard manure increase the potential for NO3 − leaching or for denitrification. Deaminase assays indicated that soils with a higher pH showed greater N mineralisation than soils with a lower pH, except at the low extreme. There was no obvious relationship between SNA and deaminase activity at higher levels of pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 1432-0789
    Keywords: Ammonium ; Nitrate ; N-mineralization ; Nitrification ; Fertilization ; Irrigation ; Forest ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest-floor and 0–10 cm depth mineral soil horizons in two stands of Douglas fir were sampled for available NH4 +-N and NO3 −-N, N-mineralization potentials, and nitrification potentials for 2 years. The plots in each stand were sampled for 1 year, treated with either ammonium sulfate, carbohydrate (sawdust-sucrose), irrigation, carbohydrate plus irrigation, or no treatment (control), and then sampled for 1 year following treatment. In general, the direction of change following the treatments was the same for both the forest-floor and the mineral soils. Fertilization increased the NH4 +-N and NO3 −-N pools, nitrification potential, and N-mineralization potential, while treatment with carbohydrate decreased all of these characteristics. Irrigation generally increased NH4 +-N pools, nitrification potential, and N-mineralization potential, but decreased these characteristics in the soil at one site. Irrigation plus carbohydrate gave similar results to those of carbohydrate alone. Treatments altered pool sizes and/or potentials, but did not reduce within-year variance in any of these characteristics. Distinct seasonal patterns occurred in all measurements, suggesting that control of short-term variation in N-transformation processes is by factors which are dynamic in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 106-111 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil water content ; N2O production ; Acetylene ; Ammonium fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of soil water content [60%–100% water-holding capacity (WHC)] on N2O production during autotrophic nitrification and denitrification in a loam soil was studied in a laboratory experiment by selectively inhibiting nitrification with a low C2H2 concentration (2.1 Pa). Nitrifiers usually produced more N2O than denitrifiers. During an initial experimental period of 0–6 days the nitrifiers produced more N2O than the denitrifiers by a factor ranging from 1.4 to 16.5, depending on the water content and length of incubation. The highest N2O production rate by nitrifiers was observed at 90% WHC, when the soil had become partly anaerobic, as indicated by the high denitrification rate. At 100% WHC there were large gaseous losses from denitrification, while nitrification losses were smaller except for the first period of measurement, when there was still some O2 remaining in the soil. The use of 10 kPa C2H2 to inhibit reduction of N2O to N2 stimulated the denitrification process during prolonged incubation over several days; thus the method is unsuitable for long-term studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-0789
    Keywords: Denitrification ; Nitrification ; Selective inhibitors ; Nitrapyrin ; Acetylene ; Nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1988), S. 79-87 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Mineralization ; Nitrification ; Subarctic ; Volcanic ash
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C and N pool sizes and rates of mineralization were studied in volcanic-ash deposits found in different subarctic habitats in southwestern Alaska. Surface ash samples were taken from white-spruce, alder, and moist- and dry-tundra habitats and were analysed for total and microbial C and N. C and N dynamics were studied using a 28-day aerobic laboratory incubation, with weekly measurement of evolved CO2 and determination of inorganic-N pools initially and after 10 and 28 days. Total and microbial C and N and cumulative respired CO2 all followed a similar pattern among the different habitats, with the moist-tundra habitat having the highest values and the spruce site the lowest. The size of the microbial biomass C and N pool in the spruce habitat was among the lowest reported for any ecosystem. Little net N mineralization occurred in the spruce-forest and dry-tundra ash over 28 days. Ash from the moist-tundra habitat immobilized a significant amount of N during the first 10 days of incubation, yet showed a large net release of N after 28 days. In contrast, the ash from the alder site exhibited net mineralization after both periods, with N production after 28 days being about 3.5 times that after 10 days. In addition, the alder-habitat ash was the only soil that showed net nitrification. Rates of total C and N accretion in the tundra and alder habitats were rapid relative to rates found for primary successions. The results of this study show that habitat has a profound effect on C and N cycling in subarctic environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1989), S. 254-258 
    ISSN: 1432-0789
    Keywords: N-mineralisation ; Nitrification ; Arginine ammonification ; Inorganic pollutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Long-term effects of 12 inorganic pollutants on N transformations were studied in a sandy cambisol. As, Be, Br, Cd, Cr, F, Pb, Hg, Se, Sn, and V were added to the soil as inorganic salts in 1975 and 1976. Soil samples were taken in 1984 to determine total N mineralisation and nitrification. All pollutants except Se and Sn inhibited N mineralisation. The most toxic elements under investigation were Be and Hg. Nitrification was reduced to a lower degree than total N mineralisation. As, Be, Cd, Cr, F, Pb, Se, and Sn failed to inhibit this process at all. It is assumed that nitrifying bacteria became adapted to these pollutants in the course of time. The arginine-ammonification method was less sensitive in detecting the effects of pollutants on N transformation than the N mineralisation test.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 204-211 
    ISSN: 1432-0789
    Keywords: Nitrification ; Heterocyclic N compounds ; Pyrazoles ; Triazoles ; Pyridines ; Thiadiazoles ; 2-Ethynylpyridine ; Nitrapyrin ; Etridiazole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The relationship between the structures of diverse heterocyclic nitrogen (N) compounds and the effectiveness of these compounds for the inhibition of nitrification in soil was studied by determining the effects of different amounts of 12 unsubstituted and 33 substituted heterocyclic N compounds on the production of (NO 2 − +NO 3 − )-N in soils incubated at 25 °C for 21 days after treatment with ammonium sulfate. The results showed that unsubstituted heterocyclic N compounds containing two adjacent ring N atoms inhibit nitrification in soil and that two of these compounds, pyrazole and 1,2,4-triazole, are potent inhibitors. They also showed that several substituted pyrazoles and thiadiazoles are good inhibitors of nitrification in soil (e.g., 3-methylpyrazole and 3,4-dichloro-1,2,5-thiadiazole).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 205-212 
    ISSN: 1432-0789
    Keywords: Nitrate production ; Nitrification ; Humisol ; Methane oxidation ; Methanotrophs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The coexistence of chemoautotrophic nitrifiers and methanotrophs in a cultivated humisol was investigated. Under laboratory conditions which supported the growth and activity of methanotrophs, the nitrifiers were partially or completely inhibited. The inhibition was related to a competition for available oxygen and a high assimilatory requirement for inorganic nitrogen by the Methanotrophs. Dissolved methane concentrations as high as 250 μM had no direct effect on the oxidation of ammonium. Simultaneous nitrification and methane oxidation was observed only if relatively high levels of ammonium and oxygen were maintained. Coupled nitrification-assimilatory/dissimilatory nitrate reduction resulted from the high oxygen demand of the actively growing methanotrophs. This study suggests that the potential competitive effects of methanotrophs may influence nitrification by chemoautotrophic nitrifiers in certain environmental systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 341-346 
    ISSN: 1432-0789
    Keywords: Nitrification ; Phosphatase ; Dehydrogenase ; Aerosol ; Soil thickness ; Soil enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil was exposed to red phosphorous/butyl rubber (RP/BR) aerosols at various relative humidities in a recirculating environmental wind tunnel. Soil microbial and enzymatic activities were measured immediately after exposure and periodically thereafter for 56 days. The nitrification potential was significantly reduced in soil amended with ammonium sulfate and exposed to RP/BR smoke, and could be related to a decline in soil pH. The rate of nitrate formation in unamended soil with time was also reduced, but by 57 days postexposure, concentrations were similat to those of unexposed controls in all but the thinnest soil lense. Soil dehydrogenase and phosphatase enzyme activities were sensitive to RP/BR smoke and in some treatments no activity was detected. The measured activities did not recover within the 56-day postexposure period and in some cases declined. Soil lense thickness was the greatest factor controlling the degree of RP/BR effects, indicating that injury to soil microbial and enzymatic activities may be surficial. Deposition of smoke particles increased with increasing relative humidity, which had a significant impact on the activities measured.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-0867
    Keywords: Nitrification ; nitrate movement ; urea ; ammonium sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two successive applications of urea and ammonium sulphate (AS) at varying intervals were given in two soils, one of which was salt affected. The nitrification and nitrate leaching after both the applications of fertilizers was studied. The nitrification of first application of AS was faster than urea on both soils. However, the nitrification rate of both fertilizers was slow in salt effected soil. The same trend of results was observed with second application of fertilizers. However, the nitrification of second application given within 6 weeks of the first application proceeded at a much faster rate than that of the first application. The amount of NO 3 - that moved down with periodic water application was related with nitrification rate and the amount of fertilizer nitrified at the time of water application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 17 (1988), S. 177-188 
    ISSN: 1573-0867
    Keywords: Ammonium concentration ; Incubation experiments ; Kinetic model ; Lysimeter experiments ; Nitrification ; Maize (Zea mays)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Lysimeter experiments with maize and incubation experiments showed that increased ammonium concentrations in soil reduced nitrification rates. A modified Lees and Quastel kinetic model was proposed for predicting the relation between initial ammonium concentration in soil and nitrification rate. A term Mi strongly dependent on initial ammonium concentration ([NH40]) was introduced into the model which took the form: dy/dt = R(A − y)(Mi + y), where R is a rate constant, y represents the concentration of formed nitrate and A is an asymptotic value of initial ammonium concentration. Mi was obtained by a curve fitting procedure applied to experimental data. An exponential decay of Mi with [NH4]0 was formulated. The modified model thus obtained provides an effective tool for predicting nitrification rates related to a wide range of ammonium concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 29 (1991), S. 191-196 
    ISSN: 1573-0867
    Keywords: Nitrification ; nitrification inhibitor ; 15N-labelled N-fertilizer ; non extractable N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of the nitrification inhibitor dicyandiamide (DCD) on the turnover of15N-labelled ammonium sulfate (AS) was investigated in two soils under aerobic and waterlogged conditions. Nitrification of ammonium sulfate was markedly inhibited by addition of DCD in both soils. Up to 45% of the supplied N was transformed into a non-extractable N form, which only slowly released nitrogen over 147 or 264 days. This immobilization was higher in the presence of DCD than without DCD. In all aerobic experiments, the recovery was 100% ± max. 2.4%, indicating that no gaseous losses of N occurred. If aerobic preincubation of 28 or 42 days was followed by water-logging with H2O or a solution of glucose, considerable N losses occurred only in presence of the carbohydrate. DCD retarded nitrification and thus reduced losses by denitrification from 61 to 15%. DCD application resulted in an increased immobilization of labelled N into the non-exchangeable soil N fraction. This amounted to more than 50% of the applied N, compared to 39% without DCD.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 189-196 
    ISSN: 1432-1939
    Keywords: N mineralization ; Nitrification ; Microbial biomass ; Denitrification ; Spatial variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Nitrogen mineralization, nitrification, denitrification, and microbial biomass were evaluated in four representative ecosystems in east-central Minnesota. The study ecosystems included: old field, swamp forest, savanna, and upland pin oak forest. Due to a high regional water table and permeable soils, the upland and wetland ecosystems were separated by relatively short distances (2 to 5 m). Two randomly selected sites within each ecosystem were sampled for an entire growing season. Soil samples were collected at 5-week intervals to determine rates of N cycling processes and changes in microbial biomass. Mean daily N mineralization rates during five-week in situ soil incubations were significantly different among sampling dates and ecosystems. The highest annual rates were measured in the upland pin oak ecosystem (8.6 g N m−2 yr−1), and the lowest rates in the swamp forest (1.5 g N m−2 yr−1); nitrification followed an identical pattern. Denitrification was relatively high in the swamp forest during early spring (8040 μg N2O−N m−2 d−1) and late autumn (2525 μg N2O−N m−2 d−1); nitrification occurred at rates sufficient to sustain these losses. In the well-drained uplands, rates of denitrification were generally lower and equivalent to rates of atmospheric N inputs. Microbial C and N were consistently higher in the swamp forest than in the other ecosystems; both were positively correlated with average daily rates of N mineralization. In the subtle landscape of east-central Minnesota, rates of N cycling can differ by an order of magnitude across relatively short distances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 507-512 
    ISSN: 1432-1939
    Keywords: Forest soils ; Nitrification ; Nitrogen loading ; Cation leaching ; Norway spruce
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During July 1988 rooted and non-rooted experimental chambers were established in a Norway spruce (Picea abies. Karst) stand in south Devon U.K. Replicates were supplemented with ammonium and nitrate. The leachates were analysed to monitor the release of mineral-N species and cations over the 17-week experimental period. Ammonium treatments leached 300% more calcium and magnesium than controls. The onset of nitrification resulted in a decrease in sodium losses from ammonium treatments reflecting a decrease in the exchanging capacity of the soil solution. These results are discussed in relation to mineral ion leaching in soils subjected to increesed N-loading, and the ability of soils to buffer these perturbations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 3-7 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil profile
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha−1 (330 kg N ha−1) and NH4NO3 (80 kg N ha−1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m−2s−1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 131-140 
    ISSN: 1432-0789
    Keywords: Nitrification ; MPN of ammonium oxidizers ; Chlorate inhibition ; Arable soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The number of ammonium-oxidizing bacteria was measured with the most probable number (MPN) method while potential ammonium oxidation rates were determined with a chlorate inhibition technique in two arable soils. A new method for measuring actual in situ ammonium oxidation in soil cores is presented. One soil was cropped for 4 years with one of four crop-fertilizer combinations: Unfertilized lucerne ley, unfertilized barley, nitrate-fertilized grass ley, or nitrate-fertilized barley. The highest ammonium oxidizer numbers and potential rates were found in the grass ley. The unfertilized barley had one-third the number and activity of the grass ley. Actual rates were in general 5–25 times lower than potential rates. The other soil was that undergoing a 27-year-old field trial with a fallow and four different cropping treatments: No addition, nitrate, nitrate + straw, or manure. Ammonium oxidizer numbers were highest in the manure and straw treatments. MPN numbers and potential rates were lowest in the fallow treatment. Typical specific potential rates were 30 ng N oxidized cell−1 h−1. Actual rates were in general 40 times lower than potential rates. Actual ammonium oxidation measurements seem to correspond to actual in situ activity at the moment of sampling, whereas the MPN technique and the potential measurements reflect events that occurred weeks to months before the sampling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 10 (1990), S. 35-44 
    ISSN: 1432-0789
    Keywords: Pinus edulis ; Juniperus osteosperma ; Carbon ; Nitrogen ; Nitrification ; Microbial N ; N immobilization ; Fire ecology ; Nitrifying bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest floor litter, duff, and underlying soils were assembled in laboratory microcosms representing pinyon, juniper, and interspace field conditions. Burning removed more than 95% of both N and C from the litter, with losses from the duff dependent on soil moisture conditions. No significant changes in total N or C were noted in the soil. Immediate increases were observed in soil NH inf4 sup+ , decreasing with depth and related to soil heating. The greatest increases were noted in both the pinyon and juniper soils that were dry at the time of the burn, with interspace soils exhibiting the least changes. Soil NH inf4 sup+ closely approximated the controls on day 90 after the burns in all treatments. Ninety days after the burn microbial biomass N was highest in the controls, followed by the wet and then the dry-burned soils, in both the pinyon and juniper microcosms. This was inversely related to the levels of accumulated NO inf3 sup- . Nitrifying bacteria populations were indirectly correlated to soil temperatures during the burn. Population levels 90 days after the burn showed increases in both the wet- and the dry-burn treatments, with those in the pinyon treatments exceeding those found in the nitial controls of pinyon soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 10 (1990), S. 145-151 
    ISSN: 1432-0789
    Keywords: Nitrification ; Soil acidification ; Carbonate dissolution ; Available P ; Phosphate precipitation ; Intensive agriculture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary It is often proposed that soil acidification by microorganisms dissolves unavailable soil phosphates, especially crystalline Ca phosphates. Unavailable phosphates, it is suggested, could thus become available to crops. Microorganisms that oxidize one ammonium ion to one nitrate ion excrete two protons into the soil solution. In the present study, this universal biological process of soil acidification was used to measure, in neutral and calcareous soils, the effect of acidification on available soil phosphate and on the rate of phosphate fixation when water-soluble phosphate fertilizers are added to soils. During nitrification the Ca2+ and Mg2+ ion concentrations in soil solutions increase but the phosphate ion concentration remains constant. The excreted protons preferentially dissolve soil Ca and Mg carbonates. Soil Ca phosphates are not dissolved; they remain unavailable. When P fertilizers were applied, the rate of fixation of phosphate ions was not slowed down by acidification associated with nitrification. This biological acidification may have a long term effect, over many years, on the slow accumulation of available phosphate in soils under native grasslands, but it cannot have a significant effect on the availability of soil P under intensive agricultural practices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 10 (1990), S. 139-144 
    ISSN: 1432-0789
    Keywords: Denitrification ; Nitrification ; Chemodenitrification ; Ammonium ; Nitrite ; Nitrate ; Nitric oxide ; Nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary NO and N2O release rates were measured in an acidic forest soil (pH 4.0) and a slightly alkaline agricultural soil (pH 7.8) after the pH was adjusted to values ranging from pH 4.0 to 7.8. The total release of NO and N2O during 20 h of incubation was determined together with the net changes in the concentrations of NH 4 + , NO 2 − and NO 3 − in the soil. The release of NO and N2O increased after fertilization with NH 4 + and/or NO 3 − ; it strongly decreased with increasing pH in the acidic forest soil; and it increased when the pH of the alkaline agricultural soil was decreased to pH 6.5. However, there was no simple correlation between NO and N2O release or between these compounds and activities such as the NO 2 − accumulation, NO 3 − reduction, or NH 4 + oxidation. We suggest that soil pH exerts complex controls, e.g., on microbial populations or enzyme activities involved in nitrification and denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 105-110 
    ISSN: 1432-0789
    Keywords: Compost ; Sawdust ; Bark ; Cellulolysis ; Ammonification ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The decomposition of coniferous sawdust and bark with added N and P was studied in relation to its capacity to serve as a substrate for plant growth. With sawdust as a substrate, there was more microbial biomass, greater CO2 evolution, more ammonification and more actinomycetes but less nitrification and less fungi compared with bark. All groups and activities were greater in sawdust and bark compared with soil used as the substrate. Inoculation with cellulolytic strains of Bacillus sp. Cephalosporium sp. and Streptomyces sp. sometimes increased these activities but only marginally. The derived sawdust and bark composts increased the yields of tomato compared with soil to which the same nutrients had been added.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1432-0789
    Keywords: Carbon ; Denitrification ; Immobilisation ; Mineralisation ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A potato crop (Solanum tuberosum L. cv. Maris piper) was grown in a soil to which N was added, as NH4NO3, with or without added C, as sucrose or straw. Shortly after amendment the soil, in all treatments, contained only relatively low levels of mineral N. However, these levels increased later. The increase, which was greatest in the absence of added C and least with added sucrose, occurred before the emergence of the plant canopy. The addition of C to the soil had no effect on plant yield, measured either as dry matter or total N content. The potential nitrification rate was high early in the season, and decreased significantly as the plants developed. The potential denitrification rate showed two significant peaks in activity, possibly related to plant development, the first to the development of new roots and the second to root senescence. It seems probable that the amount of C released by the potato plants was only about one-quarter of that required for the maximum microbial activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 231-233 
    ISSN: 1432-0789
    Keywords: Nitrification ; Hydrocarbons ; Methane ; Ethane ; Ethylene ; Acetylene ; Nitrosomonas europaea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Recent work has shown that gaseous hydrocarbons such as methane, ethane, and ethylene are competitive inhibitors of the monooxygenase enzyme responsible for oxidation of ammonia by chemoautotrophic nitrifying microorganisms such as Nitrosomonas europaea. Because methane, ethane, and ethylene are produced by microbial activity in soil, we studied the possibility that they may inhibit oxidation of ammonia by the nitrifying soil microorganisms. We found that all three of these gaseous hydrocarbons inhibited nitrification in soil and that their ability to inhibit nitrification decreased in the order: ethylene 〉 ethane 〉 methane. Ethylene was much more effective than ethane or methane for inhibiting nitrification of ammonium in soil, but it was much less effective than acetylene, and it seems unlikely that the amounts of ethylene produced in soils will be sufficient to cause significant inhibition of nitrification by soil microorganisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1432-0789
    Keywords: Microbial activity ; Gas chromatographic analysis ; Soil atmosphere ; N2O release ; CO2 evolution ; O2 uptake ; Denitrification ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We have developed a simple method for the determination of gaseous compounds that reflect microbial activity in soil, as affected by factors such as the presence of an organic amendment (peat) or a variation in soil moisture. The method is based on a gas chromatographic analysis of the headspace of vials containing the soil under examination. A single gas chromatograph can detect up to 10 different gases. As expected, after peat was added to the soil, CO2 evolution and O2 uptake increased significantly. Positive relationships were found between the evolution of N2O, and soil moisture and the amount of peat added to the soil. Both the these variables influenced the CO2:O2 ratio. The results given by this method show high reproducibility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 19-27 
    ISSN: 1432-0789
    Keywords: Manure ; Nitrification ; Denitrification ; Silica gel ; Phospholipids ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Following the application of liquid manure to soil, the development of the two processes, nitrification and denitrification, was studied in a two-phase model system. A saturated mixture of manure and soil, stabilized with silica gel, was overlain by an aerobic soil phase. Profiles of the redox potential pH, inorganic N, dissolved organic C, nitrification and denitrification potentials, and phospholipid concentrations for an estimate of microbial biomass were measured during a 20-day period. NH 4 + diffusing into the aerobic soil was oxidized within 10 mm of the interface, but with only a small accumulation of NO 2 - and NO 3 - . It was estimated that N equivalent to approximately 70% of the NH 4 + originally present in the manure was lost through coupled nitrification-denitrification. The potentials for nitrification and denitrification increased 40-and 20-fold, respectively, around the interface. Maximum values were recorded after 14 days. Within 0–5 mm of the anaerobic zone, apparent generation times for NH 4 + -oxidizing bacteria of 1.1–1.8 days were estimated between day 1 and day 7. The phospholipid concentration profiles suggested that the biomass within 2 mm on either side of the interface was stimulated throughout the 20-day period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 147-153 
    ISSN: 1432-0789
    Keywords: Nitrification ; Integrated farming ; Conventional farming ; Ammonification ; Fluorescence antibody microscopy ; Nitrobacter spp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The production of nitrate by the process of nitrification is highly dependent on other N-transforming processes in the soil. Hence, changes in the type of N compound applied to enrich agricultural soils may affect the production of nitrate. The size and activity of the chemolithotrophic bacterial community were studied in an integrated farming system, with increased inputs of organic manure and reduced inputs of mineral nitrogenous fertilizer, versus conventional farming. The integrated farming had a positive effect on potential nitrifying activity, but not on the numbers of chemolithotrophic nitrifying bacteria as determined by a most probable number technique or by fluorescence antibody microscopy. Cells of the recently described nitrite-oxidizing species Nitrobacter hamburgensis and Nitrobacter vulgaris were just as common as the cells of the well known species Nitrobacter winogradskyi. It was concluded that nitrification is stimulated by integrated farming, presumably by an increased mineralization of ammonium which is not immediately consumed by the crop or immobilized in the heterotrophic microflora of the soil. Since nitrifying bacteria are involved in the production of NO and N2O, integrated farming with the application of manure may favour the production of noxious N-oxides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0789
    Keywords: Ammonia loss ; CO2-C evolution ; Combined first- and zero-order kinetics ; N-immobilization ; Nitrification ; Non-linear regression ; Priming effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the decomposition of aerobically and anaerobically treated pig manure during a 2-month incubation with soil. The manure samples had not been in contact with straw or with animal urine. The aerobically decomposed manure proved to be the most stable (23% C mineralization), followed by fresh (75%) and anaerobically treated manure (105%, priming effect). The course of mineralization fitted combined first- and zeroorder kinetics. In the anaerobically treated manure, 76% of NH 4 + -N was immobilized during the initial incubation phase, followed by a slow linear mineralization. In the aerobically treated manure there was a slow linear mineralization after 5 days, and in the fresh material, a slightly faster linear mineralization after 6 days. Total mineralized N was very similar after 2 months (12%) in all treatments. Total NH3 losses were highest from the anaerobically treated manure (14%), reflecting a higher NH 4 + content with N mineralization following first-order kinetics. Relating NH3 losses to the initial NH 4 + content showed that all NH3 in the aerobically treated manure was volatilized, whereas only 28% was volatilized from the fresh and the anaerobically treated manure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 187-191 
    ISSN: 1432-0789
    Keywords: Dehydrogenase activity ; DHA ; Microbial biomass ; Microbial populations ; 2,4-D ; Nitrification ; Soil respiration ; Urease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of 15 years of field applications of 2,4-dichlorophenoxy acetate (2,4-D) on soil microbial population and biochemical processes were studied in a field cropped with maize followed by potatoes. Amine or ester formulations at the rate of 0.95 kg 2,4-D per hectare applied in May and October every year. Fungal, bacterial, and actinomycete populations, and microbial biomass C and N were reduced by the 2,4-D treatment, the reduction being more marked where the ester was used. N mineralization, nitrification, and potentially mineralizable N were reduced by the 2,4-D ester only, while urease activity was depressed by both formulations. Dehydrogenase activity and soil microbial respiration tended to be temporarily increased by the amine, but were reduced substantially by the ester, indicating that the ester probably interfered with nutrient cycling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 14 (1992), S. 230-236 
    ISSN: 1432-0789
    Keywords: N mineralization ; Assimilation ; Nitrification ; NO in3 sup- reduction ; Riparian fen ; 15N substrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Gross rates of N mineralization, assimilation, nitrification, and NO in3 sup- reduction were determined in soil from a wet riparian fen by 1-day incubations of soil cores and slurries with 15N-labelled substrates. N mineralization transformed 0.1% of the total organic N pool daily in the soil cores, of which 25% was oxidized through autotrophic nitrification and 53%–70% was incorporated into microorganisms. N mineralization and nitrification were markedly inhibited below 5 cm in soil depth. At least 80% of the NO in3 sup- reduction in aerated cores occurred through dissimilatory processes. Dissimilatory reduction to NH in4 sup+ (DNRA) occurred only below 5 cm in depth. The results show that NH in4 sup+ oxidation was limited by available substrate and was itself a strong regulator of NO in3 sup- -reducing activity. NO in3 sup- reduction was significantly increased when the soil was suspended under anaerobiosis; adding glucose to the soil slurries increased NO in3 sup- reduction by 2.4–3.7 times. Between 3% and 9% (net) of the added NO in3 sup- was reduced through DNRA in the soil slurries. The highest percentage was observed in soil samples from deeper layers that were pre-incubated anaerobically.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 21-27 
    ISSN: 1432-0789
    Keywords: NO production ; NO consumption ; Chemodenitrification ; Nitrification ; Denitrification ; Activation energy ; Temperature optimum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The temperature dependence of the NO production rate and the NO consumption rate constant was measured in an Egyptian soil, a soil from the Bavarian Forest, and a soil from the Donau valley, together with the temperature dependence of the potential rates of ammonium oxidation, nitrite oxidation, and denitrification, and the temperature dependence of the growth of NH inf4 sup+ -oxidizing, NO inf2 sup- -oxidizing, and NO inf3 sup- -reducing bacteria in most probable number assays. In the acidic Bavarian Forest soil, NO production was only stimulated by the addition of NO inf3 sup- but not NH inf4 sup+ . However, NO production showed no temperature optimum, indicating that it was due to chemical processes. Most probable numbers and potential activities of nitrifiers were very low. NO consumption, in contrast, showed a temperature optimum at 25°C, demonstrating that consumption and production of NO were regulated individually by the soil temperature. In the neutral, subtropical Egyptian soil, NO production was stimulated only by the addition of NH inf4 sup+ but not NO inf3 sup- . All activities and most probable numbers showed a temperature optimum at 25° or 30°C and exhibited apparent activation energies between 61 and 202 kJ mol-1. However, a few nitrifiers and denitrifiers were also able to grow at 8° or 50°C. Similar temperature characteristics were observed in the Donau valley soil, although it originated from a temperate region. In this soil NO production was stimulated by the addition of NH inf4 sup+ or of NO inf3 sup- . Both NO production and consumption were stimulated by drying and rewetting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0789
    Keywords: Plant forest litters ; Biodegradation ; Nitrification ; Nitrogen mineralization ; Litter decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The biodegradation of litter from Festuca silvatica, Abies pectinata, Fagus silvatica, Calluna vulgaris, Picea abies associated with forest brown acid soils or with podzolic soils was studied in field lysimeters filled with granite sand. Analysis of the leachates collected during 2 years made it possible to determine NO inf3 sup- , NH inf4 sup+ , and soluble organic N production in order to investigate the specific influence of the different species of litter on the mineralization of organic N and the variations in nitrification. With Festuca silvatica (grass), active nitrification was observed after the addition of fresh litter in autumn (fall of leaves). Nitrification remained significant in winter, reached a maximum in spring until early summer, and then decreased after mineralization of the easily mineralizable organic N. Nitrification was the major N transformation process in this litter. The addition of fresh litter of Abies pectinata (fir), Fagus silvatica (beech), Calluna vulgaris (heather), and Picea abies (spruce) in autumn induced an inhibition of nitrification during winter and spring. With these litter species, nitrification started again by the end of spring and was at a maximum in summer and autumn until leaf fall. By comparison with Festuca, inhibition observed in winter and spring with the other litter species was definitely due to the chemical composition of the leaves. Simultaneously, a lower C mineralization of these plant material occured. These litter species, in particular Calluna and Picea released leachates containing significant amounts of soluble organic N that were only slightly decomposed. We conclude that NO inf3 sup- production outside of the plant growth period can definitely be involved in soil acidification and weathering processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 87-90 
    ISSN: 1432-0789
    Keywords: Nitrification ; Tropical soil ; Subtropical soil ; Nitrifying population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrification was measured in five different soils (slate alluvial soil, sandstone shale alluvial soil, sandstone shale and slate alluvial soil, red soil, and Taiwan clay). In these soils different lag periods were recorded before the onset of nitrification. Nitrifying activity was highest in sandstone shale alluvial soil and the lowest in acidic red soil. A part from those in the red soil, the numbers of nitrifying bacteria detected were all higher than numbers reported in temperate soils. However, there were no clear relationships between the numbers of nitrifying bacteria and the rate of nitrification in these soils. When soil cores were incubated for 3 weeks, no NO inf2 sup- or NO inf3 sup- was defected in the slate alluvial soil. This was ascribed to denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1432-0789
    Keywords: Lime ; Forest soil ; Nitrification ; N mineralization ; Nitrate leaching ; Pinus sylvestris ; Pseudotsuga menziesii ; Quercus robur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of liming on in-situ N transformations was studied in two stands of different ages of each of Scots pine (Pinus sylvestris L.), Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], and common oak (Quercus robur L.). The stands were located on acid sandy soils in an area with high atmospheric N input. The organic matter of the upper 10-cm layer of the soil, including the forest floor, had a relatively high N content (C: N ratio 〈25) in all stands. Using a sequential core technique, N transformations were measured in both control plots and plots that had been limed 3 years previously with 3 t ha-1 of dolomitic lime. Limed plots had a higher net NO inf3 sup- production and a higher potential for NO inf3 sup- leaching than the controls in all stands except that of the younger oak. Net N mineralization did not differ significantly between limed and control plots in oak stands and younger coniferous stands but was significantly lower in the limed plots of the older coniferous stands. It is concluded that long-term measurements of net N mineralization in limed forest soils are needed to evaluate the effect of liming with respect to the risk of groundwater pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 249-252 
    ISSN: 1432-0789
    Keywords: N fertilizer requirement ; Nitrification ; Zea mays ; N mineralization ; Lime ; Soil pH ; Nitrate-N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The application of NH inf4 su+ -based fertilizers to soils slowly lowers soil pH, which in turn decreases nitrification rates. Under these conditions nitrification and N mineralization may be reduced. We therefore investigated the impact of liming fertilizer-acidified soils on nitrification and N mineralization. Soil samples were collected in the spring of 1987 from a field experiment, initiated in 1980, investigating N, tillage, and residue management under continuous corn (Zea mays L.). The pH values (CaCl2) in the surface soil originally ranged from 6.0 to 6.5. After 6 years the N fertilizer and tillage treatments had reduced the soil pH to values that ranged between 3.7 and 6.2. Incubation treatments included two liming rates (unlimed or SMP-determined lime requirement), two 15N-labeled fertilizer rates (0 or 20 g N m-2), and three replicates. Field-moist soil was mixed with lime and packed by original depth into columns. Labeled-15N ammonium sulfate in solution was surface-applied and columns were leached with 1.5 pore volumes of deionized water every 7 days over a 70-day period. Nitrification occurred in all pH treatments, suggesting that a ferilizer-acidified soil must contain a low-pH tolerant nitrifier population. Liming increased soil pH values (CaCl2) from 3.7 to 6.2, and increased by 10% (1.5 g N m-2) the amount of soil-derived NO3 --N that moved through the columns. This increase was the result of enhanced movement of soil-derived NO3 --N through the columns during the first 14 days of incubation. After the initial 14-day period, the limed and unlimed treatments had similar amounts of soil N leaching through the soil columns. Lime increased the nitrification rates and stimulated the early movement of fertilizer-derived NO3 --N through the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 173-176 
    ISSN: 1432-0789
    Keywords: Ammonification ; Cyfluthrin ; Nitrification ; Nitrogen ; N mineralization ; N transformations ; Pesticides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory incubation experiments were conducted in soil to study the influence of the insecticide Baythroid on immobilization-remineralization of added inorganic N, mineralization of organic N, and nitrification of added NH inf4 su+ -N. Baythroid was applied at 0, 0.4, 0.8, 1.6, 3.2, and 6.4 μg g-1 soil (active ingredient basis). The treated soils were incubated at 30°C for different time intervals depending upon the experiment. The immobilization and mineralization of N were significantly increased in the presence of Baythroid, the effect being greater with higher doses of the insecticide. Conversely, nitrification was retarded at lower doses of Baythroid and significantly inhibited at higher doses. The results of these studies suggest that excessive amonts of insecticide residues affect different microbial populations differently, leading to changes in nutrient cycling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 243-248 
    ISSN: 1432-0789
    Keywords: Nitrification ; Mineralization ; Immobilization ; Forest floor ; Subarctic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A knowledge of the nutrient dynamics that occur with land use changes, e.g., in clearing forests for farmland, is useful in choosing the most efficient soil and fertilizer management practices. To determine net in situ P and N mineralization and nitrification rates of forest floor materials and their nutrient value for agricultural crops, plastic bags containing different materials (moss, O horizon, and A horizon) collected from a subarctic black spruce (Picea mariana Mill.) forest were incubated for 2 years in their respective forest horizons and at 7.5 cm depth in a nearby fallow field. Net amounts of P and N mineralized were highest in moss and were similar in forest and field when the temperature and moisture content were similar, but smaller in forest when the water content was higher. Net nitrification was negligible in O and A horizon material but significant in moss during the 2nd year, occurring sooner and producing higher NO inf3 sup- levels in the field (171 mg ha-1) than in the forest (13 mg ha-1). Moss P and N mineralization rates were correlated in the fallow field. Temperature, moisture content, and substrate quality were important factors controlling P and N dynamics of forest floor materials in a subarctic fallow field and native forest. In subarctic regions, incorporation and mineralization of forest floor materials could provide an early source of N and P (70 and 17 kg ha-1, respectively) for succeeding agricultural crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 249-254 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Soil enzymes ; Nitrification ; Cattle slurry ; Grassland soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We examined the long-term effects of cattle slurry, applied at high rates, on microbial biomass, respiration, the microbial quotient (qCO2) and various soil enzyme activities. In March, June, July, and October 1991, slurry-amended grassland soils (0–10 cm) contained significantly higher levels of microbial biomass, N mineralization and enzyme activities involved in N, P, and C cycling. With microbial biomass as the relative value, the results revealed that the slurry treatment influenced enzyme production by the microbial biomass. High levels of urease activity were the result not only of a larger microbial biomass, but also of higher levels of enzmye production by this microbial biomass. The ratio of alkaline phosphatase and xylanase to microbial biomass was nearly constant in the different treatments. The metabolic quotient (qCO2) declined with increased levels of slurry application. Therefore it appears that microorganisms in slurry-amended soils require less C and energy if there is no competition for nutrients. The results of this study suggest that urease activity, nitrification, and respiration (metabolic quotient) can be used as indicators of environmental stress, produced by heavy applications of cattle slurry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 309-313 
    ISSN: 1432-0789
    Keywords: Herbicides ; Urea hydrolysis ; Nitrification ; Ammonia toxicity ; Nitrification inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of 5 and 50 mg active ingredient kg-1 soil of nine preemergence and nine postemergence herbicides on transformations of urea N in soil was studied in samples of two coarse-textured and two fine-textured soils incubated aerobically at 20°C. The effects of each herbicide on soil urea transformations was measured by determining the amounts of urea hydrolyzed and the amounts of NO inf3 sup- and NO inf2 sup- produced at various times after treatment with urea. Applied at the rate of 5 mg active ingredient kg-1 soil, none of the herbicides retarded urea hydrolysis in the four soils used, but four of the postemergence herbicides (acifluorfen, diclofop methyl, fenoxaprop ethyl) retarded urea hydrolysis in the two coarse-textured soils. All the herbicides tested except siduron retarded nitrification in the two coarse-textured soils when applied at 50 mg of urea N active ingredient kg-1 soil, and fenoxaprop ethyl and tridiphane markedly retarded nitrification of urea N in all four of the soils when applied at this rate. One-way analysis of variance and correlation analyses indicated that the inhibitory effects of the 18 herbicides tested on nitrification of urea N in soil increased with a decrease in the organic-matter content and an increase in the sand content of the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 1-6 
    ISSN: 1432-0789
    Keywords: Ammonium ; Denitrification ; Nitrification ; Nitrous oxide ; Organic carbon ; Acetylene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We observed that soil cores collected in the field containing relatively high NH inf4 sup+ and C substrate levels produced relatively large quantities of N2O. A series of laboratory experiments confirmed that the addition of NH inf4 sup+ and glucose to soil increase N2O production under aerobic conditions. Denitrifying enzyme activity was also increased by the addition of NH inf4 sup+ and glucose. Furthermore, NH inf4 sup+ and glocose additions increased the production of N2O in the presence of C2H2. Therefore, we concluded that denitrification was the most likely source of N2O production. Denitrification was not, however, directly affected by NH inf4 sup+ in anaerobic soil slurries, although the use of C substrate increased. In the presence of a high substrate C concentration, N2O production by denitrifiers may be affected by NO inf3 sup- supplied from NH inf4 sup+ through nitrification. Alternatively, N2O may be produced during mixotrophic and heterotrophic growth of nitrifiers. The results indicated that the NH inf4 sup+ concentration, in addition to NO inf3 sup- , C substrate, and O2 concentrations, is important for predicting N2O production and denitrification under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Nitrification inhibitors ; 15N balance ; Nitrous oxide ; Greenhouse gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with ∼ 43% for the nitrapyrin and control treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-0789
    Keywords: Nitrogen immobilization ; Mineralization ; Nitrification ; Nitrification inhibitor ; Acetylene ; CaC2 ; 15N enrichment ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of acetylene (provided by wax-coated calcium carbide, CaC2) on N transformations in a red-brown earth was measured in a field experiment with irrigated wheat by determining the change in the concentration and 15N enrichment of the organic N and mineral N pools with time. The study was conducted in the Goulburn-Murray Irrigation region of south-eastern Australia using 0.3 m by 0.3 m microplots fertilized with 15N-labelled urea (10 g N m-2; 5 atom% 15N). Acetylene was effective in slowing the nitrification of both unlabelled and labelled N. Nitrate derived from the added fertilizer reached a maximum 19 days after sowing in the treatment without CaC2, whereas little nitrate accumulated in the 8 g CaC2 m-2 treatment. There was significant immobilization of the urea N by 19 days after sowing in all treatments, but the extent of immobilization was not affected by the acetylene. The addition of acetylene slowed net mineralization of labelled and unlabelled N from the organic N pool, and resulted in increased accumulation of both unlabelled and labelled N in wheat tops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-0789
    Keywords: Coniferous humus ; Ergosterol ; Soil respiration ; Substrate induced respiration ; Metabolic quotient ; Nitrification ; Pinus sylvestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied the reactions of humus layer (F/H) microbial respiratory activity, microbial biomass C, and the fungal biomass, measured as the soil ergosterol content, to the application of three levels of wood ash (1000, 2500, and 5000 kg ha-1) and to fire treatment in a Scots pine (Pinus sylvestris L.) stand. Physicochemical measurements (pH, organic matter content, extractable and total C content, NH 4 + and total N content, cation-exchange capacity, base saturation) showed similarity between the fire-treated plots and those treated with the lowest dose of wood ash (1000 kg ha-1). The ash application did not change the level of microbial biomass C or fungal ergosterol when compared to the control, being around 7500 and 350 μg g-1 organic matter for the biomass C and ergosterol, respectively. The fire treatment lowered the values of both biomass measurements to about half that of the control values. The fire treatment caused a sevenfold fall in the respiration rate of fieldmoist soil to 1.8 μl h-1 g-1 organic matter compared to the values of the control or ash treatments. However, in the same soils adjusted to a water-holding capacity of 60%, the differences between the fire treatment and the control were diminished, and the ash-fertilized plots were characterized by a higher respiration rate compared to the control plots. The glucose-induced respiration reacted in the same way as the water-adjusted soil respiration. The metabolic quotient, qCO2, gradually increased from the control level with increasing applications of ash, reaching a maximum in the fire treatment. Nitrification was not observed in the treatment plots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 42-48 
    ISSN: 1432-0789
    Keywords: N2O ; Coated Calcium Carbide ; Acetylene ; Nitrification ; Denitrification ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 97 (1974), S. 283-301 
    ISSN: 1432-072X
    Keywords: Nitrification ; Herbicides ; Simulation ; Inhibitors ; Soil ; Mathematical Model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of 35 herbicides on the nitrification process was tested both by experiment, and by simulation of possible mechanisms of inhibition in a mathematical model. The model consists of nine equations with six coordinated constant and seven measurable parameters (or initial values), depending on the specific soil. The only free parameters are the initial values of the oxidative enzyme systems, and the parameters which determine the course of possible inhibition effects. For the majority of the herbicides, the inhibitory effects on the NH4 + or NO2 - oxidation were found negligible in the range of practical application. Hypotheses of a completely reversible or partially reversible inhibition of the oxidase systems gave the best correspondence between the model and reality, while an alteration of the growth parameters of the nitrifying populations in the model (death rate, proliferation rate, initial kill) due to the application of herbicides led to strong contrasts between simulated and experimental curves. Significant inhibitory effects became evident only when the hydrogen ion concentration in the soil fell below pH 7. Results with several herbicides indicated that the process of NO2 - oxidation was more sensitive than that of NH4 + oxidation. With a number of herbicides, an accumulation of NO2 - ions was noticed during the course of soil percolation. In consideration of the buffering capacity, the model is applicable to other soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 147 (1987), S. 73-79 
    ISSN: 1432-072X
    Keywords: Nitrosomonas europaea ; Nitrobacter ; Nitrification ; Continuous culture ; Transient growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth of the autotrophic nitrifying bacteria Nitrosomonas europaea and Nitrobacter sp. was studied in continuous culture. Steady state growth kinetics of both organisms conformed with that predicted by chemostat theory, modified to account for maintenance energy requirement. Steady state data were used to calculate the maximum specific growth rate, the saturation constant for growth, the true growth yield and the maintenance coefficient. Transient growth was studied by imposing step changes in dilution rate. Step increases resulted in overshoots and oscillations in substrate concentration before establishment of a new steady state while step decreases in dilution rate were followed by monotonic changes in substrate concentration. The size of overshoots in substrate concentration following step increases in dilution rate was dependent on both the magnitude of the increase and of the dilution rate prior to the change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 132 (1982), S. 37-40 
    ISSN: 1432-072X
    Keywords: Nitrosococcus oceanus ; Methylamine ; Nitrification ; Chemoautotrophic CO2 assimilation ; RUBPCase ; Growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methylamine (CH3NH 3 + ) appeared to utilize the same transport mechanism as ammonium (NH 4 + ) to enter cells ofNitrosococcus oceanus. Methylamine uptake did not show clear evidence of saturable kinetics and was not fully saturated at 20 mM. Assimilated CH3NH 3 + was not incorporated into macromolecular constituents, but inhibited rates of nitrification, chemoautotrophic CO2 fixation and growth. The degree of inhibition was dependent on the relative concentrations of NH 4 + and CH3NH 3 + . Rates of CO2 fixation and growth were inhibited four times more than the rate of nitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1432-072X
    Keywords: Nitrosomonas marina ; Nitrosococcus oceanus ; Nitrococcus mobilis ; Nitrification ; Chemoautotrophic carbon production ; Growth in batch and chemostat cultures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rates of nitrification and organic C production were determined in batch and chemostat cultures of marine nitrifying bacteria; two NH 4 + -oxidizing species and one NO 2 − -oxidizing spezies. With increasing age in batch cultures and with decreasing flow rates in chemostats, cellular organic C and N concentrations declined while the intracellular ratio of C:N remained constant. With decreasing flow rates in chemostats, there was a reduction in (a) carboxylating enzyme activity per unit of cellular organic C (the potential for chemoautotrophic CO2 fixation), and (b) the yield of organic C. For both NH 4 + and NO 2 − oxidizers, rates of nitrification and C yield were lowest at very slow chemostat growth rates, when compared with optimal growth rates in batch cultures. For both NH 4 + and NO 2 − -oxidizing species, the stoichiometric relationship between nitrification and organic C production did not remain constant and appeared to be dependent on the availability of the inorganic N substrate. The organic C yield from NH 4 + oxidation and hence the free energy efficiency declined with increasing age in batch cultures and with decreasing flow rates in chemostats. The C yield from NO 2 − oxidation and the free energy efficiency at slow chemostat growth rates was also lower than that at the optimal growth rate in batch culture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1432-072X
    Keywords: Phormidium uncinatum ; Hydrogen peroxide production ; Nitrification ; Ammonia oxidation ; Hydroxylamine metabolism ; Detoxification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract On transition from nitrogen starvation to ammonia or ammonia/glutamine sufficiency Phormidium uncinatum produces high amounts of H2O2, which is consumed by several oxidative reactions catalyzed by thylakoid membrane bound enzymes. These include: oxidation of glutamine to free hydroxylamine, of ammonia to nitrite, of bound hydroxylamine to nitrite, and dismutation of free hydroxylamine to ammonia and nitrite. A possible role of these transformations for detoxification is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 154 (1990), S. 187-191 
    ISSN: 1432-072X
    Keywords: Nitrosomonas ; Nitrosovibrio ; Nitrous oxide ; Nitric oxide ; Hydrazine ; Chlorite ; Nitrification ; Denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrosomonas europaea and Nitrosovibrio sp. produced NO and N2O during nitrification of ammonium. Less then 15% of the produced NO was due to chemical decomposition of nitrite. Production of NO and especially of N2O increased when the bacteria were incubated under anaerobic conditions at decreasing flow rates of air, or at increasing cell densities. Low concentrations of chlorite (10 μM) inhibited the production of NO and N2, but not of nitrite indicating that NO and N2O were not produced during the oxidative conversion of ammonium to nitrite. NO and N2O were produced during reduction of nitrite with hydrazine as electron donor in almost stoichiometric quantities indicating that reduction of nitrite was the main source of NO and N2O.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 153 (1990), S. 105-110 
    ISSN: 1432-072X
    Keywords: New Nitrobacter ; Nitrification ; Denitrification ; Genetical-immunological-morphological-biochemical investigations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A total of 17 facultatively lithoautotrophic strains of Nitrobacter were investigated. They all were found to be related on the species level by DNA hybridizations. The G+C content of DNA ranged between 58.9 and 59.9 mol %. The isolates originated from divers environments. The cells were 0.5−0.8×1.2−2.0 μm in size and motile by one polar to subpolar flagellum. Cell-division normally occurred by budding. Polar caps of intracytoplasmic membranes as well as carboxysomes were present. The cells tended to excrete extracellular polymers forming aggregates or biofilms. Heterotrophic growth was slower than mixotrophic but often faster than litoautotrophic growth. In the presence of nitrite and organic substances the organisms often showed diphasic growth. First nitrite and then the organic material was oxidized. In the absence of oxygen growth was possible by dissimilatory nitrate reduction. Nitrite, nitric and nitrous oxide as well as ammonia were formed. Depending on growth conditions the generation times varied from 12 to 140 h. The new Nitrobacter spec. may be one of the most abundant nitrite-oxidizing bacteria in soils, fresh waters and natural as well as artificial stones. For this organism the name Nitrobacter vulgaris is proposed. The type strain is filed with the culture collection of the Institut für Allgemeine Botanik, Universität Hamburg, FRG.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 152 (1989), S. 178-181 
    ISSN: 1432-072X
    Keywords: Urea hydrolysis ; Nitrification ; Nitrosospira sp. ; pH-stat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An ureolytic ammonium-oxidizing chemolithotroph belonging to the genus Nitrosospira was shown to nitrify at pH 4.5 in a pH-stat with urea as a substrate. With ammonium as the sole substrate nitrification did not occur at pH values below 5.5. Nitrosomonas europaea ATCC 19718 and Nitrosospira briensis ATCC 25971 did not possess urease activity. The results indicate that in acid soils nitrification by ureolytic ammonium-oxidizing chemolithotrophs may not be restricted to microsites of neutral pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1432-072X
    Keywords: Nitrobacter ; Nitrification ; Natural population ; soil ; freshwater ; sediments ; Restriction fragment length polymorphism ; Polymerase chain reaction ; Intergenic spacer ; ribosomal RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequences from the intergenic spacer (IGS) region of the ribosomal operon were amplified by the polymerase chain reaction (PCR) technique using two primers derived from 16S and 23S rRNA conserved sequences. The PCR products, cleaved by 4 base cutting restriction enzymes, were used to differentiate Nitrobacter strains. This method offered a convenient alternative to serological testing for characterization of Nitrobacter isolates and enabled a large number of strains to be genotypically characterized easily and rapidly. This method was successfully used to characterize natural populations of Nitrobacter from various soils and a lake. A diversity was demonstrated in various soils, and in a lake both in freshwater and in sediments. Strains closely related to both WL and LL were found in these eco-systems. It seems that the diversity of Nitrobacter populations was not associated with global environments but may be related to the presence of locally coexisting niches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 158 (1992), S. 439-443 
    ISSN: 1432-072X
    Keywords: Nitrification ; Nitrosomonas ; Nitrogenloss ; Nitric oxide ; Nitrous oxide ; Hydroxylamine ; Pyruvate ; Chemodenitrification ; Nitrobacter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chemolithoautotrophically growing cells of Nitrosomonas europaea quantitatively oxidized ammonia to nitrite under aerobic conditions with no loss of inorganic nitrogen. Significant inorganic nitrogen losses occurred when cells were growing mixotrophically with ammonium, pyruvate, yeast extract and peptone. Under oxygen limitation the nitrogen losses were even higher. In the absence of oxygen pyruvate was metabolized slowly while nitrite was consumed concomitantly. Nitrogen losses were due to the production of nitric oxide and nitrous oxide. In mixed cultures of Nitrosomonas and Nitrobacter, strong inhibition of nitrite oxidation was reproducibly measured. NO and ammonium were not inhibitory to Nitrobacter. First evidence is given that hydroxylamine, the intermediate of the Nitrosomonas monooxygenase-reaction, is formed. 0.2 to 1.7 μM NH2OH were produced by mixotrophically growing cells of Nitrosomonas and Nitrosovibrio. Hydroxylamine was both a selective inhibitory agent to Nitrobacter cells and a strong reductant which reduced nitrite to NO and N2O. It is discussed whether chemodenitrification or denitrification is the most abundant process for NO and N2O production of Nitrosomonas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 99-100 (1992), S. 247-257 
    ISSN: 1573-5052
    Keywords: Montseny ; Nitrification ; Nitrogen availability ; Nitrogen mineralization ; Quercus ilex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Soil nitrogen (N) dynamics were studied in a dense, holm oak (Quercus ilex ssp. ilex) stand in the Montseny mountains to determine annual and seasonal patterns of N availability and uptake in an undisturbed Mediterranean forest on acidic soil. Soil mineral N content, net N mineralization (NNM), and net nitrification (NN) were determined by monthly sampling at two soil depths followed by in situ incubation in polyethylene bags. NNM per unit of soil mass was much higher at 0–5 cm than at 5–20 cm (annual means 24 and 2.5 mg N/kg, respectively) but on an area basis NNM was similar at both depths. A total of 80 kg N/ha/yr were mineralized from the first 20 cm of soil. NN amounted to only 9% of the annual NNM (7.5 kg N/ha/yr) and it occurred only in the upper 5 cm. NNM was maximum in June and July, while the NN peaked in May. Despite favourable soil temperature and moisture, NNM was negative in autumn because of microbial immobilization. Seasonal and depth variations of NNM appeared to be controlled more by substrate quality than by organic matter quantity, temperature or moisture. NN was not limited by ammonium availability. Calculated N uptake amounted to 91 kg/ha yr, peaking in June and July. The investigated stand showed a moderately high N availability, but ammonium was the major form of mineral N supply for holm oak.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 54 (1980), S. 249-258 
    ISSN: 1573-5036
    Keywords: Antibiotic ; Fermentation ; Microbial respiration ; Mineralization ; Nitrification ; Temperature ; Tylosin ; Waste
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Aerobic decomposition of tylosin fermentation waste was studied by O2 uptake and CO2, NH4 + and NO3 − release over 10 weeks in a light compost-soil at 3 concentrations and 4 temperatures. Comparisons of O2 uptake and CO2 release at each temperature showed that aerobic conditions were maintained in the system. Maximal rates of respiration (C mineralization) increased with temperature. At 23°C 50% of the substrate C had been mineralized in 10 weeks. At 10–15°C and at 4°C C mineralization was approximately 38% and 22% respectively. Except at 4°C mineralization had almost ceased within 10 weeks. There was evidence of a permanent inhibition of C mineralization at 10–15°C compared with 23°C, and a temporary inhibition at 10°C compared with 15°C. At 10 weeks 25% of the N had been mineralized at 23, 15 and 10°C, while 14% had been mineralized at 4°C. The time taken to reach maximum N mineralization was reduced by increase in temperature and by 10 weeks mineralization had almost ceased at 15 and 23°C. In terms of the fertilizing effect of tylosin fermentation, 25% of the total N was available within 10 weeks at 10–23°C. Nitrification was strongly inhibited at 4 and 10°C. Both C and N mineralization were in direct proportion to the concentration of tylosin fermentation waste added to the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 61 (1981), S. 43-52 
    ISSN: 1573-5036
    Keywords: Adaptation ; Allelopathy ; Ecophysiology ; Grassland ; Plantago ; Nitrate production ; Nitrate reductase ; Nitrate uptake ; Nitrification ; Nitrifying bacteria ; Rhizosphere ; Root environment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The production of nitrate in an old established dune grassland soil and its uptake by plants was studied by comparing amounts of mineral nitrogen and numbers of nitrifying bacteria in the rhizosphere on the one hand, and on the other accumulated nitrate and levels of nitrate reductase (NaR) of individual plants of three Plantago species,i. e., P. major, P. lanceolata andP. coronopus. For these three Plantago species andP. media basal levels of NaR in the absence of nitrate were determined in plants grown in culture solutions. The basal NaR levels ofP. major andP. media (species occurring on nutrient-rich soils) were significantly higher than those ofP. lanceolata andP. coronopus (species found on nutrient-poor soils). NaR activity increased in the presence of nitrate and was suppressed by ammonium. From the numbers of nitrifying bacteria in the rhizosphere and NaR activity in the leaves it was concluded that nitrate was produced in the root environments of the three Plantago species and that the compound was taken up by the plants. NaR activities and numbers of nitrifying bacteria were higher for individuals ofP. major than for those ofP. lanceolata andP. coronopus. No correlation was found between the ammonium levels and the numbers of nitrifying bacteria in the soil, and no indications of inhibition of nitrifying bacteria in the rhizosphere were obtained. For individuals ofP. lanceolata a correlation was found between the numbers of nitrifying bacteria in the soil and NaR activity in the leaves. The results are discussed in relation to the ecological habitats of the three species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1573-5036
    Keywords: Denitrification ; Nitrification ; Nitrogen isotope fractionation ; Nitrogen-15 natural abundance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A few principles relative to the presentation and use of nitrogen stable isotopic data are briefly reviewed. Some classical relationships between the isotope composition of a substrate undergoing a single-step unidirectional reaction, are introduced. They are illustrated through controlled experiments on denitrification in a soil, and through nitrification by pure cultures ofNitrosomonas europaea. In the latter case, the isotope fractionation is calculated from the isotopic composition of the residual substrate, then of the product and the result is shown to be statistically the same for the two procedures. The isotopic enrichment factor for denitrification is −29.4±2.4‰ at 20°C, and −24.6±0.9‰ at 30°C; for nitrification this factor is −34.7±2.5‰ under the experimental conditions employed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 62 (1981), S. 439-451 
    ISSN: 1573-5036
    Keywords: Agrostis tenuis ; Ammonification ; China clay waster ; Festuca rubra ; Nitrification ; Nitrogen mineralisation ; Reclamation ; Trifolium repens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrogen accumulation and nitrogen mineralisation rates were measured in a series of waste heaps, produced by the china clay mining industry, which had been reclaimed at different times with a sward ofAgrostis tenuis, Festuca rubra, andTrifolium repens. The best swards tended to have high ammonification rates and rapid N turnover (which is represented by a nitrogen turnover index) —nitrification rates or nitrogen accumulation were not such good predictors of sward quality. Ammonification increased with pH and with organic nitrogen accumulation whereas N turnover was not related to these factors. Nitrification levels were generally low and it was concluded that nitrification was not important to sward health. Organic nitrogen increased with age in all swards, ammonification in certain types only and nitrification not at all. Levels of all are well short of those in adjacent grazing land. Rates of turnover had however a tendency to decline towards those in the grazings owing probably to the build up of resistant humus. The proportion of the total nitrogen which is in the biomass (30%) is also higher than in adjacent grazings (6%). Rapid nitrogen cycling is thus needed to maintain productivity and greenness, and the disadvantages of this are discussed. The adequacy of nitrogen cycle development to date is considered, and possible future strategies outlined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 62 (1981), S. 469-471 
    ISSN: 1573-5036
    Keywords: Aerobic incubation ; Anaerobic incubation ; Nitrification ; Release of ammonium ; Slow release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Study of the mineralization of biuret N under aerobic and anaerobic conditions in a sandy loam showed that higher amounts of mineral N accumulated under anaerobic incubation than under aerobic conditions. Under waterlogged incubation, 46.8% of the 100 ppm biuret N was mineralized while under aerobic conditions only 18.3% of biuret-N was converted into mineral N during 5 weeks at 30°C. The results of the study bring out slow-release nature of biuret-N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-5036
    Keywords: Coking pollution ; Nitrification ; S-oxidation ; Soil fertility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Atmospheric pollution deposits, largely consisting of soot, were removed from sycamore leaves growing downwind of a coking plant, and added to soil. Increases in plant available S-ions (S2O3 2−; S4O6 2− and SO4 2−) and N (NH4 + and NO3 −) occurred due to the action of soil microorganisms on the deposits. Although the detrimental effects of air pollution on plant growth have been previously emphasised, supply of nutrients resulting from the microbial transformation of particulate pollutants may prove important to the growth of pollution-resistant plant communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 271-281 
    ISSN: 1573-5036
    Keywords: Cacao ; Erythrina ; Leaching ; Mineralization ; N-cycling ; Nitrification ; Shade trees
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen Se realizaron investigaciones sobre la mineralización y la lixiviación de nitrógeno en parcelas fertilizadas con N, P y K y en parcelas sin fertilizar en plantaciones de cacao de 30 años en la región sur de Bahia, Brasil. Los suelos del cacaotal eran CEPEC (Tropudalf), comunes en la zona. Las mediciones se realizaron durante un año. Se instalaron minilisimetros a 10, 20 y 40 cm de profundidad y se colectó el agua lixiviada semanalmente o después de intensas lluvias. La mineralización neta se midió en muestras de suelo tomadas a 0–5 y 5–15 cm de profundidad colocadas nuevamente en bolsas plásticas en el sitio de colecta. El grado de lixiviación se correlacionó con la cantidad de precipitación y aun cuando no es posible cuantificar las pérdidas por unidad de área, se estimó que estas pérdidas eran de menor cuantia. Tanto la tasa de amonificación como la de nitrificación fueron altas durante la mayor parte del año; la nitrificación fué particularmente intensa en el área fertilizada. Los análisis de la hojarasca fresca de Erythrina y de los cacaoteros mostraron que estos componentes contribuyen notablemente al ciclo del nitrógeno en la plantación de cacao. Se detectaron altas concentraciones de nitrógeno en muestras de suelo tomadas cerca de los árboles de sombra; en promedio los suelos de la zona sombreada contenian 480 mg N kg−1 suelo por encima del promedio de los suelos en plantaciones sin sombra. La cantidad de nitrógeno exportado por cosecha es notable. Se recomienda tomar en consideración la información procedente de los ciclos de nitrógeno para formular recomendaciones de fertilización.
    Notes: Abstract Studies of nitrogen mineralization and leaching were conducted in the cacao-growing region in the south of Bahia, Brazil, on plots fertilized with N, P and K and on plots without fertilizer in plantations 30–40 yrs old on CEPEC soil (Tropudalf) over a period of one year. Mini-lysimeters were installed at depths of 10, 20 and 40 cm and the leachate was collected weekly or after heavy rain. Net mineralization was measured in soil samples taken at depths of 0–5 and 5–15 cm and incubated for 30 days in plastic bags placed at the site of collection. The degree of leaching was correlated with the amount of rainfall and, although it is difficult to quantify the losses per unit area, we estimate that these losses are minor. Ammonification and nitrification were both high during most of the year; nitrification was very rapid and was especially intensive on the fertilized area. Analyses of Erythrina and cacao litter show that these components make a considerable contribution to the nitrogen recycled in a cacao plantation. High concentrations of total nitrogen were detected in soil samples taken close to shade trees and, on average, the soil of shaded areas had more than 480 mg N kg soil−1 than soil of non-shaded areas. Removal of nitrogen in harvest can also be considerable. It is advisable to take nitrogen-cycle data into account when compiling tables of fertilizer recommendations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 293-303 
    ISSN: 1573-5036
    Keywords: Burning ; Denitrification ; N-cycling ; N2-fixation ; Nitrification ; Oxisol ; Rhizobium ; Savanna ; South America ; Ultisol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen Las sabanas ocupan alrededor de 300 millones de hectáreas de Sudamérica. Los suelos son básicamente oxisoles y ultisoles de muy baja fertilidad y alta acidez. La vegetación natural varía en densidad y en la cantidad de biomasa producida anualmente, la cual puede llegar a ser igual a la producida por bosques de la región. Entre los microorganismos fijadores de nitrógeno, los únicos bien estudiados son las bacterias del género Rhizobium. En el manejo de la biomasa de estas áreas, es importance considerar la fijación del nitrógeno, como una fuente posible que reemplace al que fué exportado en las cosechas. La nitrificación y la denitrificación en estos, es intensa pero no bien estudiada. La distribución de lluvias durante la estación de crecimiento parece tener una influencia considerable en la provisión de nitrógeno de los suelos. Se registran considerables pérdidas de nitrógeno en este ambiente, cuando amplias áreas son quemadas anualmente.
    Notes: Abstract Savannas cover about 300 million hectares of South America. The soils are mainly oxisols and ultisols and their natural fertility is very low with high acidity. The natural vegetation varies in density and in the amount of biomass produced annually, which can be equal to that produced by forests in the region. Among the nitrogen-fixing micro-organisms, the only ones well-studied are Rhizobium bacteria. In managing the biomass in these areas, it is important to consider biological nitrogen-fixation as a possible source of nitrogen to replace that removed in crops. Nitrification and denitrification in these soils are intense but not well studied. The rainfall distribution during the growing season seems to have a considerable influence of the nitrogen supply to the soils. A considerable loss of nitrogen occurs in this environment when vast areas are burned annually.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-5036
    Keywords: Ammonification ; Cadmium ; Heavy metals ; Kinetics ; Lead ; Nitrification ; Perfusion incubations ; Polluted soils ; Selection ; Toxicity ; Zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The sensitivity of the mineralization of nitrogen by a range of soils contaminated with heavy metals (up to 340 μg Cd g−1, 7500 μg Pb g−1 and 34000 μg Zn g−1) to the addition of heavy metals in solution were studied using pot incubations (ammonification) and a soil perfusion technique (nitrification). The ammonification of peptone showed little correlation between treatments with Cd, Zn (1000 and 5000 μg g−1) and Pb (10000 and 20000 μg g−1) and origin of the soil. Nitrification was considerably more sensitive to heavy metals than ammonification. All the soils had active, often large, populations of ammonifying and nitrifying organisms which showed substantial similarities between the soils. The rate of nitrifying activity (NO3−N production) was logrithmic in most cases. The presence of tolerant populations of nitrifying organisms in the contaminated soils was demonstrated. Tolerance was also eventually acquired after a longer lag phase, by the non-contaminated soil populations although the rate of activity was often reduced. Metals added in solution were adsorbed by the soil within 4 hours. Differences in toxicity between metal salts (chlorides, sulphates and acetate) were attributed to the amount left in solution. However, in many instances, acetate was found to stimulate all the stages in the mineralisation of nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 75 (1983), S. 417-426 
    ISSN: 1573-5036
    Keywords: Ammonification ; Bacterial population ; Bacterial spore ; Dynamic equilibrium of soil ; Nitrification ; Partial sterilization effect ; Pentachlorophenol ; Percolated soil ; Pesticide ; Soil bacteria ; Soil microflora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Although pentachlorophenol (PCP) retarded the initial increase in total viable bacteria and gram-negative bacteria in the percolated soil, populations exceeded those in the percolated soils without the addition of PCP at a later period. This seems to be a phenomenon similar to “the partial sterilization effect”. On the other hand, spore counts were continuously lower in the percolated soils when PCP had been added. Ammonification of glycine was also slightly inhibited, but nitrification of ammonium was strongly depressed by PCP. Other physicochemical changes of the percolate proceeded according to those of bacterial populations and biochemical reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 92 (1986), S. 341-362 
    ISSN: 1573-5036
    Keywords: Eucalypt forests ; Fire Immobilizxtion ; Nitrogen mineralization ; Nitrogen turnover ; Nitrification ; Nitrogen conservation ; Resilience
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrogen mineralization was measured in the laboratory andin situ in eight eucalypt forests covering a wide range of climates and soil types. Aerobic and anaerobic incubations as well as chemical indices showed consistently higher rates of mineralization and nitrification and higher mineralization potentials in the wetter, high productivity forests. Nitrification was not confined to these forests and appears best related to soil C/N ratios and the rate of N turnover. Immobilization is recognized as a major process in eucalypt forest soils; in two forests which were burnt by bushfire during this study immobilization prevented over-accumulation of inorganic-N and possible leaching of NO 3 − −N. Calculated fromin situ incubations, annual uptake of inorganic-N ranged from 27 to 160 kg N ha−1; in two of four forests nitrate uptake was not apparent, in a third forest nitrate accounted for 10% of total uptake and in the remaining forest nitrate comprised about one-third of inorganic-N taken up. Ammonium is thus the dominant inorganic form taken up in eucalypt forests of this region. There was general agreement between laboratory andin situ incubations as to the occurrence of nitrification and the difference in mineralization rates between forests. In conjunction with previous studies, the turnover and maintenance of N-pools in eucalypt forests is discussed; forests with low N-capital appear to be resistant to possible N-loss after perturbation, forests with higher N-capital are more susceptible to loss but recover quickly. Immobilization of inorganic-N is central to the recovery process. These results agree with recent hypotheses proposed by Vitousek and Boerner.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 93 (1986), S. 133-135 
    ISSN: 1573-5036
    Keywords: Azadiractin ; Heterotrophic flora ; Neemcake ; Nimbidin ; Nitrification ; Nitrifying bacteria ; Zymogenous flora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Application of neem products like neem leaf and neem cake to wetland soil did not have any adverse effect on the population of heterotrophic microflora; nitrifying bacteria, on the other hand, decreased significantly due to addition of neem cake and fresh and dried neem leaf with urea. It is suggested that neem leaf could be used as an inhibitor of nitrification for enhancing nitrogen use efficiency of fertilizers where neem leaf is available in plentiful supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 109-123 
    ISSN: 1573-5036
    Keywords: Denitrification ; Isobutylidene diurea ; N balance ; Nitrification ; 15N Oxamide ; Rice ; Slow-release N ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Two15N-labelled slow-release nitrogen (N) sources, oxamide and isobutylidene diurea (IBDU), each at two particle sizes, and15N-labelled urea were compared at two rates as sources of N for rice (Oryza sativa) under two watering regimes which simulated a transplant (continuous flood, CF) and a direct-seeded (A/F) system of paddy rice culture. Highest grain yields were obtained from −8+10-mesh oxamide particles applied at the rate of 2,000 mg of N/5 kg of soil, CF series; this yield was slightly higher than that obtained from −3+4-mesh oxamide, A/F series. Incubating the N fertilizers in moist (22% water) soil for 21 days immediately before flooding and transplanting rice greatly reduced N supply because of nitrification during the preflood period, followed by denitrification after flooding. This resulted in less plant uptake of N and less grain yield from urea, fine oxamide and IBDU, A/F series. For coarse oxamide, N release during the preflood period resulted in higher N uptake and grain yield in the A/F rather than in the corresponding CF series. The pattern of fertilizer N uptake by rice plants was affected by kind of fertilizer, particle size of oxamide and IBDU, and watering regime. Uptake of fertilizer N generally paralleled uptake of soil N throughout the growth period. Plant tops continued to accumulate some N during the period of grain filling, but much of the N in plant tops was translocated to the grain after heading. There was a large decrease in dry weight, N content, and15N content of tops after heading. Root weight and N content increased rapidly at first, and then at a diminishing rate until maturity. Unexplained N deficits occurred in the CF series (14–23% of the N applied, depending on N rate and source), and in the A/F series for IBDU (37–43% of the N applied).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 66 (1982), S. 373-381 
    ISSN: 1573-5036
    Keywords: Ammonium ; Eucalypt ; Forest ; Nitrate ; Nitrate reductase ; Nitrification ; Pine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three tree species,Eucalyptus regnans (F. Muell.),E. obliqua (L'Herit.),Pinus radiata (D. Don) were grown in sand culture with different proportions of nitrate and ammonium. Nitrate Reductase Activity (NRA) was induced in root tissue of all species and in leaf tissue of the eucalypts. An increasing proportion of nitrate resulted in increasing NRA in all species and hence NRA alone is no indication of N-preference. The highest NRA was found withE. regnans, a result which has also been obtained in the mature forest. The growth ofE. regnans was least with NH4 + alone, whereas that ofE. obliqua was least with NO3 − alone. The soils of matureE. regnans forest have a high potential for nitrification while those ofE. obliqua forest show little nitrification. Thus the preference for particular N sources shown by seedlings in culture is supported by related properties of mature forests. It is postulated however, that the inducibility of a high level of RNA in seedlings is more likely a result of a preference for NO3 − than a cause.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 209-220 
    ISSN: 1573-5036
    Keywords: Ammonification ; Crop residues ; Denitrification ; Flooded soil ; 15-N ; N-fertilizers ; N2-fixation ; Nitrification ; Rice ; Volatilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen Se revisaron varios aspectos del ciclo de nitrógeno estudiados con15N en un ecosistema de arroz de innundación en suelos franco limosos Crowley en Louisiana, USA, conel fin de construir un balance de masas para el nitrógeno. Las tranformaciones que se incluyeron en el modelo fueron: 1) amonificación neta (0,22 mg NH4−N kg−1 suelo seco dia−1), 2) nitrificación neta (2,07 mg NO3−N kg−1 suelo seco dia−1), 3) desnitrificación (0,37 mg N kg−1 suelo seco dia−1) y 4) fijación biológica de nitrógeno (0,16 mg N kg−1 suelo seco dia−1). Las entradas de nitrógeno al sistema serían aquellas por aplicación de fertilizantes, incorporación de residuos de cosecha, fijación biológica de nitrógeno, deposición. Las salidas serían por cosecha, perdidas gaseosas por volatilización de NH3 y la ocurrencia simultanea de nitrificación y desnitrificación, lixiviación y escorrentía. El balance de masas indicó que el 33% del nitrógeno inorgánico disponible fué recuperado por el arroz y el resto se perdió del sistema. Las pérdidas por volatilización de NH3 fueron minimas porque el fertilizante fué incorporado al suelo. Una proporción significativa del nitrógeno inorgánico se perdió por difusión de NH4 de la capa anaeróbica a la aeróbica en respuesta al gradiente de concentraciones; luego ocurre nitrificación en la capa aeróbica, difusión y finalmente desnitrificación y pérdida en forma gaseosa. Las perdidas por lixiviación y escorrentía fueron minimas.
    Notes: Abstract 15N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH4 +−N kg dry soil−1 day−1), 2) net nitrification (2.07 mg NO3 −−N kg−1 dry soil−1 day−1), 3) denitrification (0.37 mg N kg dry soil−1 day−1), and 4) biological N2 fixation (0.16 mg N kg dry soil−1 day−1). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 15-34 
    ISSN: 1573-5036
    Keywords: Acetylene ; Denitrification ; Immobilization ; Mineralization ; Microbial processes N-cycling ; N2-fixation ; Nitrification ; Nitrate reduction ; Oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen La mayoría de las transformaciones del nitrógeno en el suelo ocurren a través de los micro-organismos. Se requiere asi un conocimiento de los procesos microbiológicos con el fin de desarrollar las prácticas de manejo de los sistemas agrícolas que optimicen la absorción de nitrógeno por las raices y que minimicen las pérdidas de nitrógeno de los sistemas. Se discuten algunos aspectos de ciertos procesos microbiológicos en el ciclo de nitrógeno como su importancia para el manejo eficiente de agroecosistemas. Varios grupos de microorganismos compiten por el nitrógeno disponible y se requieren dados cuantitativos sobre la cinética de absorción de estos grupos de manera de estimar su capacidad de competir bajo diferentes condiciones. La influencia de los factores abióticos tales como la concentración de oxígeno, la concentración de nitrógeno inorgánico y el pH se discuten en relación a los diferentes procesos. Se discute también la importancia del acetileno como herramienta para estudiar el ciclo de nitrógeno.
    Notes: Abstract Most nitrogen transformations in soil are carried out by micro-organisms. An understanding of the microbiological processes is thus necessary in order for us to devise management practices in agricultural ecosystems, which will optimize plant root uptake of nitrogen and minimize nitrogen losses from the systems. Some aspects of the individual microbiological processes in the nitrogen cycle are discussed and their importance for an efficient management of agroecosystems. In soil various groups of organisms compete for available inorganic nitrogen and quantitative data are needed on the uptake kinetics for these various groups in order to be able to assess their competitive ability under different conditions. The influence of abiotic factors such as oxygen concentration, inorganic nitrogen concentration and pH is discussed in relation to the different processes. The importance of acetylene as a tool in nitrogen cycling studies is discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1573-5036
    Keywords: Ammonium sulfate ; Nitrification ; Nitrogen ; Slow-release fertilizers ; Sulfur-coated urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We have compared sulfur-coated urea granules (SCU) with ammonium sulfate granules (AS) in regard to nitrogen (N) release, diffusion, nitrification and the effect of irrigation. In the experiments plastic containers were filled with six layers of soil, separated from each other by fine nylon cloths. The fertilizer granules were placed between the two central layers, and irrigation was simulated by application of tap water to the uppermost layer. Nitrogen release from the SCU was slow, and after three months, 29.5% of the applied N remained in the granules. At the end of the experiment there was a deficit of 37.1% N in the case of the AS granules, while there was virtually none with the SCU. Throughout the experiment, N from SCU remained at a relatively even level, while 95% of the N applied as AS had disappeared after irrigation. Nitrification was rapid in both cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1573-5036
    Keywords: Denitrification ; Fertilizer ; N losses ; Flooding regimes ; 15N ; Nitrification ; Nitrogen balance ; Nitrogen efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 77 (1984), S. 193-206 
    ISSN: 1573-5036
    Keywords: Band placement ; Fall application ; Inhibitor ; Nitrification ; Mineral N losses ; Thiourea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Incubation and field experiments were conducted on the influence of thiourea in inhibiting nitrification of urea N, and subsequently on reducing over-winter losses of fallapplied N. Under incubation, most of the added urea placed in bands was nitritified within five or six weeks. However, thiourea when pelleted with urea (2∶1 urea to thiourea by weight) reduced the amount of nitrification to less than one-half during the same period. In two uncropped field experiments in an early dry fall, the application of pelleted urea+thiourea (2∶1) in bands resulted in almost complete inhibition of nitrification of urea for four weeks. In two other uncropped field experiments begun in June with the same fertilizer in bands, half or less of applied N appeared as nitrate after eight weeks. In 10 cropped field experiments with 56 kg N ha−1, urea+thiourea placed in bands depressed nitrification of fall-applied urea over the winter. By early May, the urea mixed into the soil in the previous fall was nearly all nitrified, while only one-half of the banded urea+thiourea was nitrified. The loss of mineral N by early May was 38% with urea mixed into the soil, but only 18% with bands of urea+thiourea. The 10 sites were cropped to spring barley. The increase in yield of grain or the increase in %N uptake from fertilier N was approximately only one-half as much with fall-applied urea mixed into the soil as compared to spring-applied urea added in the same way. Specifically, fall-applied mixed urea produced 930 kg ha−1 less grain yield and 32% less N uptake from fertilizer N than did mixed urea in spring. On fall-application there was some benefit from banding of urea or with mixing urea+thiourea pellets into the soil, but the banding of urea+thiourea pellets gave more benefit. Among the fall applications, banded urea+thiourea pellets produced 670 kg ha−1 more grain yield and 26% more N uptake in grain from fertilizer N than did urea mixed into the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 92 (1986), S. 153-157 
    ISSN: 1573-5036
    Keywords: Liming ; Nitrate leaching ; Nitrification ; N-mineralization ; Rain forest ; Soil acidity ; Tropics ; Ultisol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the effect of liming on the rates of mineralization and nitrification in a coarse-textured kaolinitic Ultisol. Soil samples were taken from field plots which received lime rates from 0 to 4mt/ha three years prior to the study. The pH of the soil samples varied from 4.2 to 6.1. Ammonification of soil organic N and added urea source proceeded readily and was not affected by lime rate. Nitrification occurred in both limed and unlimed soils but the rate of nitrification depended upon the rate of lime application. Soil pH, exchangeable Ca and exchangeable A1 were significantly correlated with the amount of NO3-N accumulated at the end of the 65 days incubation period. Nitrification of NH4-N from ammonium sulfate was absent in soils receiving lower rates of lime which gave pH values ranging from 4.2 to 4.8. Added ammonium source was nitrified readily after a 3-week delay period in the soil (pH 6.1) which received a higher rate of lime (4 mt/ha).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 313-320 
    ISSN: 1573-5036
    Keywords: Alkali soil ; Ammonia volatilization ; Nitrification ; Phenylphosphorodiamidate ; Rice ; Urea ; Urease inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In order to improve nitrogen recovery by rice, the effect of a urease inhibitor phenylphosphorodiamidate (PPD) on the efficiency of fertilizer urea was studied in laboratory and greenhouse. Addition of PPD to urea (5% w/w) delayed urea hydrolysis by 3 to 4 days and reduced ammonia volatilization from 45% (without PPD) to 8.5% (with PPD). Ammonia volatilization obeyed first order kinetics. Urea hydrolysis was sufficiently strongly inhibited to match the nitrification potential of the soil. N application to rice by three different modes showed that a delayed mode (4 splits) was superior to two conventional modes (3 splits) in nitrogen recovery and fertilizer efficiency since it met nitrogen requirement of plants at reproductive stage. In 2 out of 3 modes of application, there was a 14% increase (relative) in grain yields and dry matter, and 6.8% increase in N uptake efficiency on application of PPD along with urea. The results indicate that urease inhibitors like PPD can be effectively used to block urea hydrolysis, reduce ammonia volatilization losses and improve N use efficiency by rice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 80 (1984), S. 321-335 
    ISSN: 1573-5036
    Keywords: Alfisol ; Ammonification ; Nitrification ; Nitrogen mineralization ; Temperate forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 82 (1984), S. 117-123 
    ISSN: 1573-5036
    Keywords: Nitrification ; Nitrification inhibition ; N-Serve ; Urea fertilizer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Urea hydrolysis was studied in samples taken from a coastal sand dune succession, from uncolonized sand; the rhizosphere ofAmmophila arenaria and soil from the mature dune. Comparisons were made with urea hydrolysis in a fertile loam soil. Urea was hydrolyzed in all sand and soil samples, with complete hydrolysis occurring after 6 and 3 weeks in the rhizosphere sand and dune soil compared with only 4 days in the fertile loam. A third of the added urea, however, was still present in the uncolonized sand samples 6 weeks after the beginning of the incubation period. Urea hydrolysis broadly correlated with urease activity. The liberated NH 4 + was oxidized to NO 3 − −N in all samples. Urea stimulated the release of N from native organic matter in the two soils, but not sands, due presumably to the low organic matter content of the latter. Nitrite accumulated in the dune sands and soil, but not in the fertile loam. Although N-Serve (Nitrapyrin) had no effect on urea hydrolysis in any of the treated samples, it inhibited the nitrification of released NH 4 + −N. The relevance of these findings to the use of urea as a fertilizer to improve plant growth and dune stabilization is commented upon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1573-5036
    Keywords: Ammonification ; Clay soil ; Exchangeable ammonium ; Grassland ; Incubation ; Kinetics ; Nitrate ; Nitrification ; N cycle ; N mineralization ; Soil Moisture ; Soil temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Net mineralization of N and net nitrification in field-moist clay soils (Evesham-Kingston series) from arable and grassland sites were measured in laboratory incubation experiments at 4, 10 and 20°C. Three depth fractions to 30 cm were used. Nitrate accumulated at all temperatures except when the soil was very dry (θ=0.13 cm3 cm−3). Exchangeable NH4-ions declined during the first 24 h and thereafter remained low. Net mineralization and net nitrification approximated to zero-order reactions after 24 h, with Q10 values generally 〈1.6. The effect of temperature on both processes was linear although some results conformed to an Arrhenius-type relationship. The dependence of net mineralization and net nitrification in the field soil on soil temperature (10 cm depth) and moisture (0–15, 15–25, 25–35 cm depths) was modelled using the laboratory incubation data. An annual net mineralization of 350 kg N ha−1 and net nitrification of 346 kg N ha−1 were predicted between September 1980 and August 1981. The model probably overstressed the effect of soil moisture relative to soil temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 86 (1985), S. 425-439 
    ISSN: 1573-5036
    Keywords: Ammonium ; Chloride ; Growth ; Inhibition ; Monod model ; Nitrification ; Soil ; Sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Following the addition of 0–75 μmole N g−1 as ammonium chloride or ammonium sulphate to a sandy loam soil the nitrate formed was measured daily for a period of 15–17 days. The nitrate produced as a function of time was described using the Monod equation for microbial growth. An optimisation technique is described for obtaining, from the nitrification time course data, the maximum specific growth rate, the affinity constantant and an index limited by the concentration of ammonium in soil solution. Additions of more than 7.3 μmoles N g−1 soil as ammonium chloride were found to inhibit nitrification. The inhibition was interpreted as being caused by osmotic pressure or by chloride ion. A similar effect was not found with ammonium sulphate, because the salt concentration in the soil solution was restricted by the precipitation of calcium sulphate. The model developed was capable of accounting for nitrate production in the soil under non-steady state conditions of substrate concentrations and nitrifier biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1573-5036
    Keywords: Bacteria ; Fungi ; Mineralization ; Nitrification ; Thuja plicata ; Tsuga heterophylla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial numbers in the forest floor and mineral soil (Al horizon) under large individual western hemlock (Tsuga heterophylla) and western redcedar (Thuja plicata) trees were compared. The lower pH and base saturation of hemlock samples was associated with higher fungal spore counts while cedar samples had higher total microbial counts and populations of ammonium oxidizing bacteria. Nitrogen mineralization rates were greater in laboratory incubations of hemlock soil but nitrification was only observed in incubations of cedar soil. These differences in nitrogen mineralization and nitrification are aspects of species-specific nutrient cycling regimes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...