ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mixing  (19)
  • Geographic location/entity  (16)
  • Topographic effects  (11)
  • American Meteorological Society  (41)
  • American Association for the Advancement of Science
  • 2015-2019  (41)
  • 1980-1984
  • 1970-1974
  • 1965-1969
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2006–2024, doi:10.1175/JPO-D-14-0234.1.
    Description: The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.
    Description: We thank Skidmore College for financial and infrastructure support, and Skidmore and the National Science Foundation for funding travel to meetings where early versions of this work were presented. We also thank the National Science Foundation, Oregon State University, Jonathan Nash, and Joe Jurisa for funding and hosting a workshop on River Plume Mixing in October, 2013, where ideas and context for this paper were developed.
    Description: 2016-02-01
    Keywords: Circulation/ Dynamics ; Mixing ; Turbulence ; Wave breaking ; Wind stress ; Atm/Ocean Structure/ Phenomena ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in he balance of salinity variance in a partially stratified estuary: Implications for exchange flow, mixing, and stratification. Journal of Physical Oceanography, 48(12), (2018) 2887-2899., doi: 10.1175/JPO-D-18-0032.1.
    Description: Salinity variance dissipation is related to exchange flow through the salinity variance balance equation, and meanwhile its magnitude is also proportional to the turbulence production and stratification inside the estuary. As river flow increases, estuarine volume-integrated salinity variance dissipation increases owing to more variance input from the open boundaries driven by exchange flow and river flow. This corresponds to the increased efficient conversion of turbulence production to salinity variance dissipation due to the intensified stratification with higher river flow. Through the spring–neap cycle, the temporal variation of salinity variance dissipation is more dependent on stratification than turbulence production, so it reaches its maximum during the transition from neap to spring tides. During most of the transition time from spring to neap tides, the advective input of salinity variance from the open boundaries is larger than dissipation, resulting in the net increase of variance, which is mainly expressed as vertical variance, that is, stratification. The intensified stratification in turn increases salinity variance dissipation. During neap tides, a large amount of enhanced salinity variance dissipation is induced by the internal shear stress near the halocline. During most of the transition time from neap to spring tides, dissipation becomes larger than the advective input, so salinity variance decreases and the stratification is destroyed.
    Description: TW was supported by the National Key R&D Program of China (Grant 2017YFA0604104), National Natural Science Foundation of China (Grant 41706002), Natural Science Foundation of Jiangsu Province (Grant BK20170864), and MEL Visiting Fellowship (MELRS1617). WRG was supported by NSF Grant OCE 1736539. Part of this work is finished during TW’s visit in MEL and WHOI. We would like to acknowledge John Warner for providing the codes of the Hudson estuary model, and Parker MacCready, the editor, and two reviewers for their insightful suggestions on improving the manuscript.
    Description: 2019-06-06
    Keywords: Estuaries ; Dynamics ; Mixing ; Density Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.
    Description: A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
    Description: AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.
    Description: 2015-10-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Fronts ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1610–1631, doi:10.1175/JPO-D-14-0047.1.
    Description: The use of a measure to diagnose submesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities is tested. Specifically, the robustness of a “roughness” measure to discriminate between tracer fields experiencing different submesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. This measure is used to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. The authors find that simulations with an isopycnal diffusivity of ~20 m2 s−1 best match observations in the Pacific sector of the Antarctic Circumpolar Current (ACC), rising to ~20–50 m2 s−1 through Drake Passage, representing submesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximize the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release.
    Description: We thank the U.K. Natural Environment Research Council and the U.S. National Science Foundation for funding the DIMES project.
    Description: 2015-12-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Physical Meteorology and Climatology ; Isopycnal mixing ; Observational techniques and algorithms ; Tracers ; Models and modeling ; Model comparison ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2598–2620, doi:10.1175/JPO-D-14-0249.1.
    Description: Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
    Description: WGZ and GGG were supported by the National Science Foundation through Grant OCE-1129125.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Instability ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Fronts ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Description: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Description: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Description: 2016-06-01
    Keywords: Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2735-2768, doi:10.1175/JPO-D-15-0134.1.
    Description: In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.
    Description: The data collection and analysis was funded by NSF Grants ARC-0909373, OCE-113008, and OCE-1434041.
    Keywords: Geographic location/entity ; Estuaries ; Glaciers ; Circulation/ Dynamics ; Coastal flows ; Atm/Ocean Structure/ Phenomena ; Freshwater ; Snowmelt/icemelt ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2645-2662, doi:10.1175/JPO-D-15-0191.1.
    Description: The occurrence, drivers, and implications of small-scale O(2–5) km diameter coherent vortices, referred to as submesoscale eddies, over the inner shelf south of Martha’s Vineyard, Massachusetts, are examined using high-frequency (HF), radar-based, high-resolution (400 m) observations of surface currents. Within the 300 km2 study area, eddies occurred at rates of 1 and 4 day−1 in winter and summer, respectively. Most were less than 5 h in duration, smaller than 4 km in diameter, and rotated less than once over their lifespan; 60% of the eddies formed along the eastern edge of study area, adjacent to Wasque Shoal, and moved westward into the interior, often with relative vorticity greater than f. Eddy generation was linked to vortex stretching on the ebb and flood tide as well as the interaction of the spatially variable tide and the wind-driven currents; however, these features had complex patterns of surface divergence and stretching. Eddies located away from Wasque Shoal were related to the movement of wind-driven surface currents, as wind direction controlled where eddies formed as well as density effects. Using an analysis of particles advected within the radar-based surface currents, the observed eddies were found to be generally leaky, losing 60%–80% of particles over their lifespan, but still more retentive than the background flow. As a result, the combined translation and rotational effects of the observed eddies were an important source of lateral exchange for surface waters over the inner shelf.
    Description: The HF radar data utilized here were obtained using internal funding from the Woods Hole Oceanographic Institution. The analysis was supported by NSF OCE Grant 1332646.
    Description: 2017-02-19
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Currents ; Eddies ; Observational techniques and algorithms ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1291-1305, doi:10.1175/JPO-D-16-0160.1.
    Description: Along-stream variations in the dynamics of the Antarctic Circumpolar Current (ACC) impact heat and tracer transport, regulate interbasin exchange, and influence closure of the overturning circulation. Topography is primarily responsible for generating deviations from zonal-mean properties, mainly through standing meanders associated with regions of high eddy kinetic energy. Here, an idealized channel model is used to explore the spatial distribution of energy exchange and its relationship to eddy geometry, as characterized by both eddy momentum and eddy buoyancy fluxes. Variations in energy exchange properties occur not only between standing meander and quasi-zonal jet regions, but throughout the meander itself. Both barotropic and baroclinic stability properties, as well as the magnitude of energy exchange terms, undergo abrupt changes along the path of the ACC. These transitions are captured by diagnosing eddy fluxes of energy and by adopting the eddy geometry framework. The latter, typically applied to barotropic stability properties, is applied here in the depth–along-stream plane to include information about both barotropic and baroclinic stability properties of the flow. These simulations reveal that eddy momentum fluxes, and thus barotropic instability, play a leading role in the energy budget within a standing meander. This result suggests that baroclinic instability alone cannot capture the dynamics of ACC standing meanders, a challenge for models where eddy fluxes are parameterized.
    Description: The authors all acknowledge support from NSF OCE-1235488. MKY also acknowledges support from the AMS Graduate Student Fellowship.
    Description: 2017-10-12
    Keywords: Southern Ocean ; Channel flows ; Stability ; Topographic effects ; Eddies ; Mesoscale models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 607-623, doi:10.1175/JPO-D-17-0189.1.
    Description: The roles of straining and dissipation in controlling stratification are derived analytically using a vertical salinity variance method. Stratification is produced by converting horizontal variance to vertical variance via straining, that is, differential advection of horizontal salinity gradients, and stratification is destroyed by the dissipation of vertical variance through turbulent mixing. A numerical model is applied to the Changjiang estuary in order to demonstrate the salinity variance balance and how it reveals the factors controlling stratification. The variance analysis reveals that dissipation reaches its maximum during spring tide in the Changjiang estuary, leading to the lowest stratification. Stratification increases from spring tide to neap tide because of the increasing excess of straining over dissipation. Throughout the spring–neap tidal cycle, straining is almost always larger than dissipation, indicating a net excess of production of vertical variance relative to dissipation. This excess is balanced on average by advection, which exports vertical variance out of the estuarine region into the plume. During neap tide, tidal straining shows a general tendency of destratification during the flood tide and restratification during ebb, consistent with the one-dimensional theory of tidal straining. During spring tide, however, positive straining occurs during flood because of the strong baroclinicity induced by the intensified horizontal salinity gradient. These results indicate that the salinity variance method provides a valuable approach for examining the spatial and temporal variability of stratification in estuaries and coastal environments.
    Description: X. Li was supported by the China Scholarship Council. W. R. Geyer was supported by NSF Grants OCE 1736539 and OCE 1634480. J. Zhu was supported by the National Natural Science Foundation of China (41476077 and 41676083). H. Wu was supported by the National Natural Science Foundation of China (41576088 and 41776101).
    Description: 2018-09-08
    Keywords: Ocean ; Estuaries ; Freshwater ; Mixing ; Numerical analysis/modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2773–2789, doi:10.1175/JPO-D-15-0031.1.
    Description: Tidal oscillatory salt transport, induced by the correlation between tidal variations in salinity and velocity, is an important term for the subtidal salt balance under the commonly used Eulerian method of salt transport decomposition. In this paper, its mechanisms in a partially stratified estuary are investigated with a numerical model of the Hudson estuary. During neap tides, when the estuary is strongly stratified, the tidal oscillatory salt transport is mainly due to the hydraulic response of the halocline to the longitudinal variation of topography. This mechanism does not involve vertical mixing, so it should not be regarded as oscillatory shear dispersion, but instead it should be regarded as advective transport of salt, which results from the vertical distortion of exchange flow obtained in the Eulerian decomposition by vertical fluctuations of the halocline. During spring tides, the estuary is weakly stratified, and vertical mixing plays a significant role in the tidal variation of salinity. In the spring tide regime, the tidal oscillatory salt transport is mainly due to oscillatory shear dispersion. In addition, the transient lateral circulation near large channel curvature causes the transverse tilt of the halocline. This mechanism has little effect on the cross-sectionally integrated tidal oscillatory salt transport, but it results in an apparent left–right cross-channel asymmetry of tidal oscillatory salt transport. With the isohaline framework, tidal oscillatory salt transport can be regarded as a part of the net estuarine salt transport, and the Lagrangian advective mechanism and dispersive mechanism can be distinguished.
    Description: Tao Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509) and Chinese Scholarship Council. Geyer was supported by by NSF Grant OCE 0926427. Wensheng Jiang was supported by NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant U1406401).
    Description: 2016-05-01
    Keywords: Geographic location/entity ; Estuaries ; Circulation/ Dynamics ; Baroclinic flows ; Dispersion ; Shear structure/flows ; Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Models and modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 361–367, doi:10.1175/JPO-D-15-0171.1.
    Description: Idealized laboratory experiments investigate the glacier–ocean boundary dynamics near a vertical glacier in a two-layer stratified fluid. Discharge of meltwater runoff at the base of the glacier (subglacial discharge) enhances submarine melting. In the laboratory, the effect of multiple sources of subglacial discharge is simulated by introducing freshwater at freezing temperature from two point sources at the base of an ice block representing the glacier. The buoyant plumes of cold meltwater and subglacial discharge water entrain warm ambient water, rise vertically, and interact within a layer of depth H2 if the distance between the sources x0 is smaller than H2α/0.35, where α is the entrainment constant. The plume water detaches from the glacier face at the interface between the two layers and/or at the free surface, as confirmed by previous numerical studies and field observations. A plume model is used to explain the observed nonmonotonic dependence of submarine melting on the sources’ separation. The distance between the two sources influences the entrainment of warm water in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Two interacting plumes located very close together are observed to melt approximately half as much as two independent plumes. The inclusion, or parameterization, of the dynamics regulating multiple plumes’ interaction is therefore necessary for a correct estimate of submarine melting. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation.
    Description: Support to C.C. was given by the NSF Project OCE-1130008 and OCE-1434041. V.M.G. received support from the “Gori” Fellowship.
    Description: 2016-07-01
    Keywords: Geographic location/entity ; Glaciers ; Circulation/ Dynamics ; Buoyancy ; Entrainment ; Ocean dynamics ; Small scale processes ; Models and modeling ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 327–348, doi:10.1175/JPO-D-15-0112.1.
    Description: Potential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.
    Description: Glider operations in the Gulf Stream were supported by the National Science Foundation under Grant OCE-0220769. Glider operations in the Gulf of Mexico were supported by BP. R.E.T. was supported by the Penzance Endowed Fund in Support of Assistant Scientists and the Independent Research and Development Program at WHOI.
    Description: 2016-07-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Boundary currents ; Potential vorticity ; Atm/Ocean Structure/ Phenomena ; Boundary currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 839-846, doi:10.1175/JTECH-D-15-0221.1.
    Description: During the Shallow Water Acoustic Experiment 2006 (SW06) conducted on the New Jersey continental shelf in the summer of 2006, detailed measurements of the ocean environment were made along a fixed reference track that was parallel to the continental shelf. The time-varying environment induced by nonlinear internal waves (NLIWs) was recorded by an array of moored thermistor chains and by X-band radars from the attending research vessels. Using a mapping technique, the three-dimensional (3D) temperature field for over a month of NLIW events is reconstructed and analyzed to provide a statistical summary of important NLIW parameters, such as the NLIW propagation speed, direction, and amplitude. The results in this paper can be used as a database for studying the NLIW generation, propagation, and fidelity of nonlinear internal wave models.
    Description: This research was supported by the Office of Naval Research Ocean Acoustics Program (322OA) through Grants N00014-10-1-0396 and N00014-11-1-0701.
    Description: 2016-10-18
    Keywords: Geographic location/entity ; Continental shelf/slope ; North America ; Observational techniques and algorithms ; Data processing ; In situ oceanic observations ; Sampling ; Mathematical and statistical techniques ; Statistics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3415-3427, doi:10.1175/JPO-D-16-0035.1.
    Description: The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to 1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment, jet oscillations, and the generation of internal waves are examined. The mean jet penetration is predicted well by a simple model based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the entrainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the higher peak exceeds the maximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is observed at higher Froude numbers.
    Description: This work was supported by the Linné FLOW Centre at KTH (E. E.), the European Research Council Grant ERC-2013-CoG-616186, TRITOS (L. B.), and the Swedish Research Council (VR), Outstanding Young Researcher Award (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.
    Description: 2017-05-10
    Keywords: Jets ; Mixing ; Oscillations ; Thermocline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 485-498, doi:10.1175/JPO-D-16-0175.1.
    Description: Dense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental importance to the formation of deep water masses. The entrainment in a dense current flowing down a sloping bottom in a rotating homogeneous fluid is investigated using laboratory experiments, focusing on the influence of the bottom roughness on the flow dynamics. The roughness is idealized by an array of vertical rigid cylinders and both their spacing and height are varied as well as the inclination of the sloping bottom. The presence of the roughness is generally observed to decelerate the dense current, with a consequent reduction of the Froude number, when compared to the smooth bottom configuration. However, the dilution of the dense current due to mixing with the ambient fluid is enhanced by the roughness elements, especially for low Froude numbers. When the entrainment due to shear instability at the interface between the dense current and the ambient fluid is low, the additional turbulence and mixing arising at the bottom of the dense current due to the roughness elements strongly affects the dilution of the current. Finally, a strong dependence of the entrainment parameter on the Reynolds number is observed.
    Description: Support to C. C. was given by the National Science Foundation Project OCE- 1333174. Support to L. O. during her internship at WHOI was provided by the Lions Club ‘‘Napoli Megaride’’ and the Zoological Station Anton Dohrn through the Paolo Brancaccio fellowship (2012).
    Description: 2017-08-20
    Keywords: Density currents ; Entrainment ; Density currents ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 773-794, doi:10.1175/JPO-D-17-0205.1.
    Description: Fourteen autonomous profiling floats, equipped with CTDs, were deployed in the deep eastern and western basins of the Gulf of Mexico over a four-year interval (July 2011–August 2015), producing a total of 706 casts. This is the first time since the early 1970s that there has been a comprehensive survey of water masses in the deep basins of the Gulf, with better vertical resolution than available from older ship-based surveys. Seven floats had 14-day cycles with parking depths of 1500 m, and the other half from the U.S. Argo program had varying cycle times. Maps of characteristic water masses, including Subtropical Underwater, Antarctic Intermediate Water (AAIW), and North Atlantic Deep Water, showed gradients from east to west, consistent with their sources being within the Loop Current (LC) and the Yucatan Channel waters. Altimeter SSH was used to characterize profiles being in LC or LC eddy water or in cold eddies. The two-layer nature of the deep Gulf shows isotherms being deeper in the warm anticyclonic LC and LC eddies and shallower in the cold cyclones. Mixed layer depths have an average seasonal signal that shows maximum depths (~60 m) in January and a minimum in June–July (~20 m). Basin-mean steric heights from 0–50-m dynamic heights and altimeter SSH show a seasonal range of ~12 cm, with significant interannual variability. The translation of LC eddies across the western basin produces a region of low homogeneous potential vorticity centered over the deepest part of the western basin.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M08PC20043 to Leidos, Inc., Raleigh, North Carolina.
    Description: 2018-10-04
    Keywords: Eddies ; Mixing ; Potential vorticity ; Surface layer ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 905-923, doi:10.1175/JPO-D-17-0133.1.
    Description: Observations of turbulent kinetic energy, dissipation, and turbulent stress were collected in the middle reaches of Chesapeake Bay and were used to assess second-moment closure predictions of turbulence generated beneath breaking waves. Dissipation scaling indicates that the turbulent flow structure observed during a 10-day wind event was dominated by a three-layer response that consisted of 1) a wave transport layer, 2) a surface log layer, and 3) a tidal, bottom boundary layer limited by stable stratification. Below the wave transport layer, turbulent mixing was limited by stable stratification. Within the wave transport layer, where dissipation was balanced by a divergence in the vertical turbulent kinetic energy flux, the eddy viscosity was significantly underestimated by second-moment turbulence closure models, suggesting that breaking waves homogenized the mixed surface layer to a greater extent than the simple model of TKE diffusing away from a source at the surface. While the turbulent transport of TKE occurred largely downgradient, the intermittent downward sweeps of momentum generated by breaking waves occurred largely independent of the mean shear. The underprediction of stress in the wave transport layer by second-moment closures was likely due to the inability of the eddy viscosity model to capture the nonlocal turbulent transport of the momentum flux beneath breaking waves. Finally, the authors hypothesize that large-scale coherent turbulent eddies played a significant role in transporting momentum generated near the surface to depth.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-10-19
    Keywords: Mixing ; Turbulence ; Waves, oceanic ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1815-1830, doi:10.1175/JPO-D-17-0275.1.
    Description: Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.
    Description: This study was supported by MEXT KAKENHI Grant JP15H05824 and JSPS KAKENHI Grant JP15H02131.
    Description: 2019-02-15
    Keywords: Abyssal circulation ; Mixing ; Subgrid-scale processes ; Turbulence ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 3033–3053, doi:10.1175/JPO-D-13-0227.1.
    Description: The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.
    Description: This study has been supported by National Science Foundation (OCE0927017 and ARC1107412).
    Description: 2015-06-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Channel flows ; Meridional overturning circulation ; Ocean circulation ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1356–1375, doi:10.1175/JPO-D-13-0259.1.
    Description: Eddy–mean flow interactions along the Kuroshio Extension (KE) jet are investigated using a vorticity budget of a high-resolution ocean model simulation, averaged over a 13-yr period. The simulation explicitly resolves mesoscale eddies in the KE and is forced with air–sea fluxes representing the years 1995–2007. A mean-eddy decomposition in a jet-following coordinate system removes the variability of the jet path from the eddy components of velocity; thus, eddy kinetic energy in the jet reference frame is substantially lower than in geographic coordinates and exhibits a cross-jet asymmetry that is consistent with the baroclinic instability criterion of the long-term mean field. The vorticity budget is computed in both geographic (i.e., Eulerian) and jet reference frames; the jet frame budget reveals several patterns of eddy forcing that are largely attributed to varicose modes of variability. Eddies tend to diffuse the relative vorticity minima/maxima that flank the jet, removing momentum from the fast-moving jet core and reinforcing the quasi-permanent meridional meanders in the mean jet. A pattern associated with the vertical stretching of relative vorticity in eddies indicates a deceleration (acceleration) of the jet coincident with northward (southward) quasi-permanent meanders. Eddy relative vorticity advection outside of the eastward jet core is balanced mostly by vertical stretching of the mean flow, which through baroclinic adjustment helps to drive the flanking recirculation gyres. The jet frame vorticity budget presents a well-defined picture of eddy activity, illustrating along-jet variations in eddy–mean flow interaction that may have implications for the jet’s dynamics and cross-frontal tracer fluxes.
    Description: A. S. Delman (ASD) and J. L. McClean (JLM) were supported by NSF Grant OCE-0850463 and Office of Science (BER), U.S. Department of Energy, Grant DE-FG02-05ER64119. ASD and J. Sprintall were also supported by a NASA Earth and Space Science Fellowship (NESSF), Grant NNX13AM93H. JLM was also supported by U.S. DOE Office of Science grant entitled “Ultra-High Resolution Global Climate Simulation” via a Los Alamos National Laboratory subcontract. S. R. Jayne was supported by NSF Grant OCE-0849808. Computational resources for the model run were provided by NSF Resource Grants TG-OCE110013 and TG-OCE130010.
    Description: 2015-11-01
    Keywords: Geographic location/entity ; North Pacific Ocean ; Circulation/ Dynamics ; Forcing ; Instability ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Jets ; Models and modeling ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2497–2521, doi:10.1175/JPO-D-14-0128.1.
    Description: Oceanic density overturns are commonly used to parameterize the dissipation rate of turbulent kinetic energy. This method assumes a linear scaling between the Thorpe length scale LT and the Ozmidov length scale LO. Historic evidence supporting LT ~ LO has been shown for relatively weak shear-driven turbulence of the thermocline; however, little support for the method exists in regions of turbulence driven by the convective collapse of topographically influenced overturns that are large by open-ocean standards. This study presents a direct comparison of LT and LO, using vertical profiles of temperature and microstructure shear collected in the Luzon Strait—a site characterized by topographically influenced overturns up to O(100) m in scale. The comparison is also done for open-ocean sites in the Brazil basin and North Atlantic where overturns are generally smaller and due to different processes. A key result is that LT/LO increases with overturn size in a fashion similar to that observed in numerical studies of Kelvin–Helmholtz (K–H) instabilities for all sites but is most clear in data from the Luzon Strait. Resultant bias in parameterized dissipation is mitigated by ensemble averaging; however, a positive bias appears when instantaneous observations are depth and time integrated. For a series of profiles taken during a spring tidal period in the Luzon Strait, the integrated value is nearly an order of magnitude larger than that based on the microstructure observations. Physical arguments supporting LT ~ LO are revisited, and conceptual regimes explaining the relationship between LT/LO and a nondimensional overturn size are proposed. In a companion paper, Scotti obtains similar conclusions from energetics arguments and simulations.
    Description: B.D.M. and S.K.V. gratefully acknowledge the support of the Office of Naval Research under Grants N00014-12-1-0279, N00014-12-1-0282, and N00014-12-1-0938 (Program Manager: Dr. Terri Paluszkiewicz). S.K.V. also acknowledges support of the National Science Foundation under Grant OCE-1151838. L.S.L. acknowledges support for BBTRE by the National Science Foundation by Contract OCE94-15589 and NATRE and IWISE by the Office of Naval Research by Contracts N00014-92-1323 and N00014-10-10315. J.N.M. was supported through Grant 1256620 from the National Science Foundation and the Office of Naval Research (IWISE Project).
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Small scale processes ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Mixing ; Observational techniques and algorithms ; Profilers, oceanic ; Models and modeling ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2621–2639, doi:10.1175/JPO-D-14-0239.1.
    Description: Measurements made as part of a large-scale experiment to examine wind-driven circulation and mixing in Chesapeake Bay demonstrate that circulations consistent with Langmuir circulation play an important role in surface boundary layer dynamics. Under conditions when the turbulent Langmuir number Lat is low (〈0.5), the surface mixed layer is characterized by 1) elevated vertical turbulent kinetic energy; 2) decreased anisotropy; 3) negative vertical velocity skewness indicative of strong/narrow downwelling and weak/broad upwelling; and 4) strong negative correlations between low-frequency vertical velocity and the velocity in the direction of wave propagation. These characteristics appear to be primarily the result of the vortex force associated with the surface wave field, but convection driven by a destabilizing heat flux is observed and appears to contribute significantly to the observed negative vertical velocity skewness. Conditions that favor convection usually also have strong Langmuir forcing, and these two processes probably both contribute to the surface mixed layer turbulence. Conditions in which traditional stress-driven turbulence is important are limited in this dataset. Unlike other shallow coastal systems where full water column Langmuir circulation has been observed, the salinity stratification in Chesapeake Bay is nearly always strong enough to prevent full-depth circulation from developing.
    Description: The funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Convection ; Instability ; Mixing ; Turbulence ; Wave breaking ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 551-568, doi:10.1175/JPO-D-15-0047.1.
    Description: There exists a good deal of indirect evidence, from several locations around the world, that there is a substantial eddy field over continental shelves. These eddies appear to have typical swirl velocities of a few centimeters per second and have horizontal scales of perhaps 5–10 km. These eddies are weak compared to typical, wind-driven, alongshore flows but often seem to dominate middepth cross-shelf flows. The idea that motivates the present contribution is that the alongshore wind stress ultimately energizes these eddies by means of baroclinic instabilities, even in cases where obvious intense fronts do not exist. The proposed sequence is that alongshore winds over a stratified ocean cause upwelling or downwelling, and the resulting horizontal density gradients are strong enough to fuel baroclinic instabilities of the requisite energy levels. This idea is explored here by means of a sequence of idealized primitive equation numerical model studies, each driven by a modest, nearly steady, alongshore wind stress applied for about 5–10 days. Different runs vary wind forcing, stratification, bottom slope, bottom friction, and Coriolis parameter. All runs, both upwelling and downwelling, are found to be baroclinically unstable and to have scales compatible with the underlying hypothesis. The model results, combined with physically based scalings, show that eddy kinetic energy generally increases with bottom slope, stratification, wind impulse (time integral of the wind stress), and inverse Coriolis parameter. The dominant length scale of the eddies is found to increase with increasing eddy kinetic energy and to decrease with Coriolis parameter.
    Description: This work was supported by the Woods Hole Oceanographic Institution and by the National Science Foundation, Physical Oceanography section through Grant OCE-1433953.
    Description: 2016-06-09
    Keywords: Geographic location/entity ; Continental shelf/slope ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1309-1321, doi:10.1175/JPO-D-15-0068.1.
    Description: Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate ε estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on ε and the buoyancy frequency.
    Description: This work was supported by grants from the U.S. National Science Foundation.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Mixing ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Fronts ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1769-1783, doi:10.1175/JPO-D-15-0193.1.
    Description: High-resolution observations of velocity, salinity, and turbulence quantities were collected in a salt wedge estuary to quantify the efficiency of stratified mixing in a high-energy environment. During the ebb tide, a midwater column layer of strong shear and stratification developed, exhibiting near-critical gradient Richardson numbers and turbulent kinetic energy (TKE) dissipation rates greater than 10−4 m2 s−3, based on inertial subrange spectra. Collocated estimates of scalar variance dissipation from microconductivity sensors were used to estimate buoyancy flux and the flux Richardson number Rif. The majority of the samples were outside the boundary layer, based on the ratio of Ozmidov and boundary length scales, and had a mean Rif = 0.23 ± 0.01 (dissipation flux coefficient Γ = 0.30 ± 0.02) and a median gradient Richardson number Rig = 0.25. The boundary-influenced subset of the data had decreased efficiency, with Rif = 0.17 ± 0.02 (Γ = 0.20 ± 0.03) and median Rig = 0.16. The relationship between Rif and Rig was consistent with a turbulent Prandtl number of 1. Acoustic backscatter imagery revealed coherent braids in the mixing layer during the early ebb and a transition to more homogeneous turbulence in the midebb. A temporal trend in efficiency was also visible, with higher efficiency in the early ebb and lower efficiency in the late ebb when the bottom boundary layer had greater influence on the flow. These findings show that mixing efficiency of turbulence in a continuously forced, energetic, free shear layer can be significantly greater than the broadly cited upper bound from Osborn of 0.15–0.17.
    Description: Holleman was supported by the Devonshire Scholars program. The field study and the coauthors’ contributions were supported by NSF Grant OCE 0926427.
    Description: 2016-11-24
    Keywords: Circulation/ Dynamics ; Mixing ; Shear structure/flows ; Turbulence ; Observational techniques and algorithms ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 417-437, doi:10.1175/JPO-D-15-0055.1.
    Description: In the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.
    Description: A.M. was supported by the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. K.L.P.’s salary support was provided by Woods Hole Oceanographic Institution bridge support funds. B.M.S. was supported by the Australian Climate Change Science Program.
    Description: 2016-06-07
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Internal waves ; Mixing ; Wave properties ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 569-582, doi:10.1175/JPO-D-15-0048.1.
    Description: Continental shelf baroclinic instability energized by fluctuating alongshore winds is treated using idealized primitive equation numerical model experiments. A spatially uniform alongshore wind, sinusoidal in time, alternately drives upwelling and downwelling and so creates highly variable, but slowly increasing, available potential energy. For all of the 30 model runs, conducted with a wide range of parameters (varying Coriolis parameter, initial stratification, bottom friction, forcing period, wind strength, and bottom slope), a baroclinic instability and subsequent eddy field develop. Model results and scalings show that the eddy kinetic energy increases with wind amplitude, forcing period, stratification, and bottom slope. The dominant alongshore length scale of the eddy field is essentially an internal Rossby radius of deformation. The resulting depth-averaged alongshore flow field is dominated by the large-scale, periodic wind forcing, while the cross-shelf flow field is dominated by the eddy variability. The result is that correlation length scales for alongshore flow are far greater than those for cross-shelf velocity. This scale discrepancy is qualitatively consistent with midshelf observations by Kundu and Allen, among others.
    Description: This work was funded by the Woods Hole Oceanographic Institution and by the National Science Foundation, Physical Oceanography section through Grant OCE-1433953.
    Description: 2016-06-09
    Keywords: Geographic location/entity ; Continental shelf/slope ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1277-1284, doi:10.1175/JPO-D-16-0027.1.
    Description: The contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.
    Description: Support was provided by the National Science Foundation Division of Polar Programs Award 1350046 and Office of Naval Research Grant Number N00014-12-1-0110.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1717-1734, doi:10.1175/JPO-D-15-0124.1.
    Description: The contribution of warm-core anticyclones shed by the Irminger Current off West Greenland, known as Irminger rings, to the restratification of the upper layers of the Labrador Sea is investigated in the 1/12° Family of Linked Atlantic Models Experiment (FLAME) model. The model output, covering the 1990–2004 period, shows strong similarities to observations of the Irminger Current as well as ring observations at a mooring located offshore of the eddy formation region in 2007–09. An analysis of fluxes in the model shows that while the majority of heat exchange with the interior indeed occurs at the site of the Irminger Current instability, the contribution of the coherent Irminger rings is modest (18%). Heat is provided to the convective region mainly through noncoherent anomalies and enhanced local mixing by the rings facilitating further exchange between the boundary and interior. The time variability of the eddy kinetic energy and the boundary to interior heat flux in the model are strongly correlated to the density gradient between the dense convective region and the more buoyant boundary current. In FLAME, the density variations of the boundary current are larger than those of the convective region, thereby largely controlling changes in lateral fluxes. Synchronous long-term trends in temperature in the boundary and the interior over the 15-yr simulation suggest that the heat flux relative to the temperature of the interior is largely steady on these time scales.
    Description: The authors were supported in this work by the U.S. National Science Foundation.
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Anticyclones ; Boundary currents ; Convection ; Eddies ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1823-1837, doi:10.1175/JPO-D-15-0165.1.
    Description: Measurements just beneath the ocean surface demonstrate that the primary mechanism by which energy from breaking waves is transmitted into the water column is through the work done by the covariance of turbulent pressure and velocity fluctuations. The convergence in the vertical transport of turbulent kinetic energy (TKE) balances the dissipation rate of TKE at first order and is nearly an order of magnitude greater than the sum of the integrated Eulerian and Stokes shear production. The measured TKE transport is consistent with a simple conceptual model that assumes roughly half of the surface flux of TKE by wave breaking is transmitted to depths greater than the significant wave height. During conditions when breaking waves are inferred, the direction of momentum flux is more aligned with the direction of wave propagation than with the wind direction. Both the energy and momentum fluxes occur at frequencies much lower than the wave band, consistent with the time scales associated with wave breaking. The largest instantaneous values of momentum flux are associated with strong downward vertical velocity perturbations, in contrast to the pressure work, which is associated with strong drops in pressure and upward vertical velocity perturbations.
    Description: Funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518
    Keywords: Circulation/ Dynamics ; Energy transport ; Mixing ; Momentum ; Turbulence ; Wave breaking ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.
    Description: Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.
    Description: OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.
    Description: 2016-08-19
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Fronts ; Mathematical and statistical techniques ; Inverse methods ; Kalman filters ; Variability ; Climate variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1205-1220, doi:10.1175/JPO-D-16-0258.1.
    Description: The linkage among total exchange flow, entrainment, and diffusive salt flux in estuaries is derived analytically using salinity coordinates, revealing the simple but important relationship between total exchange flow and mixing. Mixing is defined and quantified in this paper as the dissipation of salinity variance. The method uses the conservation of volume and salt to quantify and distinguish the diahaline transport of volume (i.e., entrainment) and diahaline diffusive salt flux. A numerical model of the Hudson estuary is used as an example of the application of the method in a realistic estuary with a persistent but temporally variable exchange flow. A notable finding of this analysis is that the total exchange flow and diahaline salt flux are out of phase with respect to the spring–neap cycle. Total exchange flow reaches its maximum near minimum neap tide, but diahaline salt transport reaches its maximum during the maximum spring tide. This phase shift explains the strong temporal variation of stratification and estuarine salt content through the spring–neap cycle. In addition to quantifying temporal variation, the method reveals the spatial variation of total exchange flow, entrainment, and diffusive salt flux through the estuary. For instance, the analysis of the Hudson estuary indicates that diffusive salt flux is intensified in the wider cross sections. The method also provides a simple means of quantifying numerical mixing in ocean models because it provides an estimate of the total dissipation of salinity variance, which is the sum of mixing due to the turbulence closure and numerical mixing.
    Description: T. Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509), the Fundamental Research Funds for the Central Universities (Grant 2017B03514), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA11010203). W. R. Geyer was supported by NSF Grant OCE 0926427 and ONR Grant N00014-16-1-2948. P. MacCready was supported by NSF Grant OCE-1634148.
    Description: 2017-09-14
    Keywords: Baroclinic flows ; Conservation equations ; Diapycnal mixing ; Diffusion ; Entrainment ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1921-1939, doi:10.1175/JPO-D-16-0146.1.
    Description: The role of surface gravity waves in structuring the air–sea momentum flux is examined in the middle reaches of Chesapeake Bay. Observed wave spectra showed that wave direction in Chesapeake Bay is strongly correlated with basin geometry. Waves preferentially developed in the direction of maximum fetch, suggesting that dominant wave frequencies may be commonly and persistently misaligned with local wind forcing. Direct observations from an ultrasonic anemometer and vertical array of ADVs show that the magnitude and direction of stress changed across the air–sea interface, suggesting that a stress divergence occurred at or near the water surface. Using a numerical wave model in combination with direct flux measurements, the air–sea momentum flux was partitioned between the surface wave field and the mean flow. Results indicate that the surface wave field can store or release a significant fraction of the total momentum flux depending on the direction of the wind. When wind blew across dominant fetch axes, the generation of short gravity waves stored as much as 40% of the total wind stress. Accounting for the storage of momentum in the surface wave field closed the air–sea momentum budget. Agreement between the direction of Lagrangian shear and the direction of the stress vector in the mixed surface layer suggests that the observed directional difference was due to the combined effect of breaking waves producing downward sweeps of momentum in the direction of wave propagation and the straining of that vorticity field in a manner similar to Langmuir turbulence.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-01-13
    Keywords: Atmosphere-ocean interaction ; Coastal flows ; Mixing ; Momentum ; Wind stress ; Wind waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3599-3621, doi:10.1175/JPO-D-16-0085.1.
    Description: At continental margins, energetic deep-ocean eddies can transport shelf water offshore in filaments that wrap around the eddy. One example is that of Gulf Stream warm-core rings interacting with the Mid-Atlantic Bight shelf. The rate at which shelf water is exported in these filaments is a major unknown in regional budgets of volume, heat, and salt. This unknown transport is constrained using a series of idealized primitive equation numerical experiments wherein a surface-intensified anticyclonic eddy interacts with idealized shelf–slope topography. There is no shelfbreak front in these experiments, and shelf water is tracked using a passive tracer. When anticyclones interact with shelf–slope topography, they suffer apparent intrusions of shelf–slope water, resulting in a subsurface maximum in offshore transport. The simulations help construct an approximate model for the filament of exported water that originates inshore of any given isobath. This model is then used to derive an expression for the total volume of shelf–slope water transported by the eddy across that isobath. The transport scales with water depth, radius, and azimuthal velocity scale of the eddy. The resulting expression can be used with satellite-derived eddy properties to estimate approximate real-world transports ignoring the presence of a shelfbreak front. The expression assumes that the eddy’s edge is at the shelf break, a condition not always satisfied by real eddies.
    Description: The research presented here was funded by NSF Grants OCE-1059632 and OCE-1433953. Funding support from the Academic Programs Office, and WHOI is also gratefully acknowledged.
    Description: 2017-06-08
    Keywords: Continental shelf/slope ; Advection ; Dynamics ; Eddies ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.
    Description: Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.
    Description: WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-06-08
    Keywords: Ocean circulation ; Topographic effects ; Transport ; Vertical motion ; Waves, oceanic ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1463-1483, doi: 10.1175/JPO-D-18-0213.1.
    Description: A set of float trajectories, deployed at 1500- and 2500-m depths throughout the deep Gulf of Mexico from 2011 to 2015, are analyzed for mesoscale processes under the Loop Current (LC). In the eastern basin, December 2012–June 2014 had 〉40 floats per month, which was of sufficient density to allow capturing detailed flow patterns of deep eddies and topographic Rossby waves (TRWs), while two LC eddies formed and separated. A northward advance of the LC front compresses the lower water column and generates an anticyclone. For an extended LC, baroclinic instability eddies (of both signs) develop under the southward-propagating large-scale meanders of the upper-layer jet, resulting in a transfer of eddy kinetic energy (EKE) to the lower layer. The increase in lower-layer EKE occurs only over a few months during meander activity and LC eddy detachment events, a relatively short interval compared with the LC intrusion cycle. Deep EKE of these eddies is dispersed to the west and northwest through radiating TRWs, of which examples were found to the west of the LC. Because of this radiation of EKE, the lower layer of the eastern basin becomes relatively quiescent, particularly in the northeastern basin, when the LC is retracted and a LC eddy has departed. A mean west-to-east, anticyclone–cyclone dipole flow under a mean LC was directly comparable to similar results from a previous moored LC array and also showed connections to an anticlockwise boundary current in the southeastern basin.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M08PC20043 to Leidos, Inc., Raleigh, NC. The authors also wish to acknowledge the enthusiastic support of Dr. Alexis Lugo-Fernández, the BOEM Contracting Officer’s Technical Representative, during the study into the Deep Circulation of the Gulf of Mexico, using Lagrangian Methods. Thanks go to the captains and crews of the R/V Pelican and B/O Justo Sierra, J. Malbrough (LUMCON), J. Singer (Leidos), J. Valdes (WHOI), B. Guest (WHOI), and the CANEK group (CICESE).
    Description: 2020-05-29
    Keywords: Bottom currents ; Eddies ; Instability ; Lagrangian circulation/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 294–312, doi:10.1175/JPO-D-14-0104.1.
    Description: Model analyses of an alongshelf flow over a continental shelf and slope reveal upwelling near the shelf break. A stratified, initially uniform, alongshelf flow undergoes a rapid adjustment with notable differences onshore and offshore of the shelf break. Over the shelf, a bottom boundary layer and an offshore bottom Ekman transport develop within an inertial period. Over the slope, the bottom offshore transport is reduced from the shelf’s bottom transport by two processes. First, advection of buoyancy downslope induces vertical mixing, destratifying, and thickening the bottom boundary layer. The downward-tilting isopycnals reduce the geostrophic speed near the bottom. The reduced bottom stress weakens the offshore Ekman transport, a process known as buoyancy shutdown of the Ekman transport. Second, the thickening bottom boundary layer and weakening near-bottom speeds are balanced by an upslope ageostrophic transport. The convergence in the bottom transport induces adiabatic upwelling offshore of the shelf break. For a time period after the initial adjustment, scalings are identified for the upwelling speed and the length scale over which it occurs. Numerical experiments are used to test the scalings for a range of initial speeds and stratifications. Upwelling occurs within an inertial period, reaching values of up to 10 m day−1 within 2 to 7 km offshore of the shelf break. Upwelling drives an interior secondary circulation that accelerates the alongshelf flow over the slope, forming a shelfbreak jet. The model results are compared with upwelling estimates from other models and observations near the Middle Atlantic Bight shelf break.
    Description: J. Benthuysen acknowledges support from the ARC Centre of Excellence for Climate System Science (CE110001028) and the MIT/WHOI Joint Program, where this work was initiated.
    Description: 2015-07-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Diapycnal mixing ; Ekman pumping/transport ; Mixing ; Topographic effects ; Upwelling/downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...