ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21,327)
  • Institute of Physics (IOP)  (12,665)
  • Molecular Diversity Preservation International  (8,662)
  • 2015-2019  (21,327)
  • 1990-1994
  • 1915-1919
  • Geography  (21,327)
  • Philosophy
Collection
  • Articles  (21,327)
Publisher
Years
Year
Journal
  • 1
    Publication Date: 2019-12-29
    Description: Innovative road signs that can autonomously display the speed limit in cases where the traffic situation requires it are under development. The autonomous road sign contains many types of sensors, of which the subject of interest in this article is the Doppler sensor that we have improved and the constructed and calibrated acoustic probe. An algorithm for performing vehicle detection and tracking, as well as vehicle speed measurement, in a signal acquired with a continuous wave Doppler sensor, is discussed. A method is also experimentally presented and studied for counting vehicles and for determining their movement direction by means of acoustic vector sensor application. The assumptions of the method employing spatial distribution of sound intensity determined with the help of an integrated three-dimensional (3D) sound intensity probe are discussed. The enhanced Doppler radar and the developed sound intensity probe were used for the experiments that are described and analyzed in the paper.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-28
    Description: For a long time, researchers have tried to find a way to analyze tropical cyclone (TC) intensity in real-time. Since there is no standardized method for estimating TC intensity and the most widely used method is a manual algorithm using satellite-based cloud images, there is a bias that varies depending on the TC center and shape. In this study, we adopted convolutional neural networks (CNNs) which are part of a state-of-art approach that analyzes image patterns to estimate TC intensity by mimicking human cloud pattern recognition. Both two dimensional-CNN (2D-CNN) and three-dimensional-CNN (3D-CNN) were used to analyze the relationship between multi-spectral geostationary satellite images and TC intensity. Our best-optimized model produced a root mean squared error (RMSE) of 8.32 kts, resulting in better performance (~35%) than the existing model using the CNN-based approach with a single channel image. Moreover, we analyzed the characteristics of multi-spectral satellite-based TC images according to intensity using a heat map, which is one of the visualization means of CNNs. It shows that the stronger the intensity of the TC, the greater the influence of the TC center in the lower atmosphere. This is consistent with the results from the existing TC initialization method with numerical simulations based on dynamical TC models. Our study suggests the possibility that a deep learning approach can be used to interpret the behavior characteristics of TCs.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-28
    Description: Pronounced spatial non-uniformity has been obtained of daytime sea surface temperature (SST) of the Dead Sea and of land surface temperature (LST) over areas adjacent to the Dead Sea. This non-uniformity was observed in the summer months, under uniform solar radiation. Our findings are based on Moderate Resolution Imaging Spectroradiometer (MODIS) data (2002–2016) on board the Terra and Aqua satellites. MODIS data showed that, on average for the 15-year study period, daytime SST over the eastern part of the lake (Te) exceeded by 5 °C that over the western part (Tw). This SST non-uniformity (observed in the absence of surface heat flow from land to sea at the eastern side) was accompanied by spatial non-uniform distribution of land surface temperature (LST) over areas adjacent to the Dead Sea. Specifically, LST over areas adjacent to the eastern side exceeded by 10 °C that over areas adjacent to the western side. Our findings of spatial non-uniformity of SST/LST based on MODIS data were supported by Meteosat Second Generation LST records. Regional atmospheric warming led to a decrease in spatial non-uniformity of SST during the study period. Temperature difference between Te and Tw steadily decreased at the rate of 0.32 °C decade−1, based on MODIS/Terra data, and 0.54 °C decade−1, based on MODIS/Aqua data. Our simulations of monthly skin temperature distribution over the Dead Sea by the Weather Forecast and Research (WRF) model contradict satellite observations. The application to modeling of the observed SST/LST spatial non-uniformity will advance our knowledge of atmospheric dynamics over hypersaline lakes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-28
    Description: This paper presents a general framework for modeling the growth of three important variables for cities: population distribution, binary urban footprint, and urban footprint in color. The framework models the population distribution as a spatiotemporal regression problem using machine learning, and it obtains the binary urban footprint from the population distribution through a binary classifier plus a temporal correction for existing urban regions. The framework estimates the urban footprint in color from its previous value, as well as from past and current values of the binary urban footprint using a semantic inpainting algorithm. By combining this framework with free data from the Landsat archive and the Global Human Settlement Layer framework, interested users can get approximate growth predictions of any city in the world. These predictions can be improved with the inclusion in the framework of additional spatially distributed input variables over time subject to availability. Unlike widely used growth models based on cellular automata, there are two main advantages of using the proposed machine learning-based framework. Firstly, it does not require to define rules a priori because the model learns the dynamics of growth directly from the historical data. Secondly, it is very easy to train new machine learning models using different explanatory input variables to assess their impact. As a proof of concept, we tested the framework in Valledupar and Rionegro, two Latin American cities located in Colombia with different geomorphological characteristics, and found that the model predictions were in close agreement with the ground-truth based on performance metrics, such as the root-mean-square error, zero-mean normalized cross-correlation, Pearson’s correlation coefficient for continuous variables, and a few others for discrete variables such as the intersection over union, accuracy, and the f 1 metric. In summary, our framework for modeling urban growth is flexible, allows sensitivity analyses, and can help policymakers worldwide to assess different what-if scenarios during the planning cycle of sustainable and resilient cities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-27
    Description: The authors wish to make the following corrections to this paper (Aga et al., 2019 [...]
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-23
    Description: The Second Generation Global Imager (SGLI) on Global Change Observation Mission–Climate (GCOM-C) satellite empowers surface and atmospheric measurements related to the carbon cycle and radiation budget, with two radiometers of Visible and Near Infrared Radiometer (SGLI-VNR) and Infrared Scanning Radiometer (SGLI-IRS) that perform a wide-band (380 nm–12 µm) optical observation not only with as wide as a 1150–1400 km field of view (FOV), but also with as high as 0.25–0.5 km resolution. Additionally, polarization and along-track slant view observations are quite characteristic of SGLI. It is important to calibrate radiometers to provide the sensor data records for more than 28 standard products and 23 research products including clouds, aerosols, ocean color, vegetation, snow and ice, and other applications. In this paper, the radiometric model and the first results of on-board calibrations on the SGLI-VNR, which include weekly solar and light-emitting diode (LED) calibration and monthly lunar calibration, will be described. Each calibration data was obtained with corrections, where beta angle correction and avoidance of reflection from multilayer insulation (MLI) were applied for solar calibration; LED temperature correction was performed for LED calibration; and the GIRO (GSICS (Global Space-based Inter-Calibration System) Implementation of the ROLO (RObotic Lunar Observatory) model) model was used for lunar calibration. Results show that the inter-comparison of the relative degradation amount between these three calibrations agreed to within 1% or less.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-24
    Description: Mapping Earth’s surface and its rapid changes with remotely sensed data is a crucial task to understand the impact of an increasingly urban world population on the environment. However, the impressive amount of available Earth observation data is only marginally exploited in common classifications. In this study, we use the computational power of Google Earth Engine and Google Cloud Platform to generate an oversized feature set in which we explore feature importance and analyze the influence of dimensionality reduction methods to object-based land cover classification with Support Vector Machines. We propose a methodology to extract the most relevant features and optimize an SVM classifier hyperparameters to achieve higher classification accuracy. The proposed approach is evaluated in two different urban study areas of Stockholm and Beijing. Despite different training set sizes in the two study sites, the averaged feature importance ranking showed similar results for the top-ranking features. In particular, Sentinel-2 NDVI, NDWI, and Sentinel-1 VV temporal means are the highest ranked features and the experiment results strongly indicated that the fusion of these features improved the separability between urban land cover and land use classes. Overall classification accuracies of 94% and 93% were achieved in Stockholm and Beijing study sites, respectively. The test demonstrated the viability of the methodology in a cloud-computing environment to incorporate dimensionality reduction as a key step in the land cover classification process, which we consider essential for the exploitation of the growing Earth observation big data. To encourage further research and development of reliable workflows, we share our datasets and publish the developed Google Earth Engine and Python scripts as free and open-source software.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-24
    Description: Fine land cover classification in an open pit mining area (LCCOM) is essential in analyzing the terrestrial environment. However, researchers have been focusing on obtaining coarse LCCOM while using high spatial resolution remote sensing data and machine learning algorithms. Although support vector machines (SVM) have been successfully used in the remote sensing community, achieving a high classification accuracy of fine LCCOM using SVM remains difficult because of two factors. One is the lack of significant features for efficiently describing unique terrestrial characteristics of open pit mining areas and another is the lack of an optimized strategy to obtain suitable SVM parameters. This study attempted to address these two issues. Firstly, a novel carbonate index that was based on WorldView-3 was proposed and introduced into the used feature set. Additionally, three optimization methods—genetic algorithm (GA), k-fold cross validation (CV), and particle swarm optimization (PSO)—were used for obtaining the optimization parameters of SVM. The results show that the carbonate index was effective for distinguishing the dumping ground from other open pit mining lands. Furthermore, the three optimization methods could significantly increase the overall classification accuracy (OA) of the fine LCCOM by 8.40%. CV significantly outperformed GA and PSO, and GA performed slightly better than PSO. CV was more suitable for most of the fine land cover types of crop land, and PSO for road and open pit mining lands. The results of an independent test set revealed that the optimized SVM models achieved significant improvements, with an average of 8.29%. Overall, the proposed strategy was effective for fine LCCOM.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-23
    Description: The third generation of China’s BeiDou Navigation Satellite System (BDS-3) began to provide global services on 27 December, 2018. Differential code bias (DCB) is one of the errors in precise BDS positioning and ionospheric modeling, but the impacts on BDS-2 satellites and receiver DCB are unknown after joining BDS-3 observations. In this paper, the BDS-3 DCBs are estimated and analyzed using the Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) observations during the period of day of year (DOY) 002–031, 2019. The results indicate that the estimated BDS-3 DCBs have a good agreement with the products provided by the Chinese Academy of Sciences (CAS) and Deutsche Zentrum für Luft- und Raumfahrt (DLR). The differences between our results and the other two products are within ±0.2 ns, with Standard Deviations (STDs) of mostly less than 0.2 ns. Furthermore, the effects on satellite and receiver DCB after adding BDS-3 observations are analyzed by BDS-2 + BDS-3 and BDS-2-only solutions. For BDS-2 satellite DCB, the values of effect are close to 0, and the effect on stability of DCB is very small. In terms of receiver DCB, the value of effect on each station is related to the receiver type, but their mean value is also close to 0, and the stability of receiver DCB is better when BDS-3 observations are added. Therefore, there is no evident systematic bias between BDS-2 and BDS-2 + BDS-3 DCB.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-24
    Description: Clear-sky mask (CSM) is a crucial influence on the calculating accuracy of the sensor radiometric biases for spectral bands of visible, infrared, and microwave regions. In this study, a fully connected deep neural network (FCDN) was proposed to generate CSM for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-Orbiting Partnership (S-NPP) and NOAA-20 satellites. The model, well-trained by S-NPP data, was used to generate both S-NPP and NOAA-20 CSMs for the independent data, and the results were validated against the biases between the sensor observations and Community Radiative Transfer Model (CRTM) calculations (O-M). The preliminary result shows that the FCDN-CSM model works well for identifying clear-sky pixels. Both O-M mean biases and standard deviations were comparable with the Advance Clear-Sky Processor over Ocean (ACSPO) and were significantly better than a prototype cloud mask (PCM) and the case without a clear-sky check. In addition, by replacing CRTM brightness temperatures (BTs) with the atmosphere air temperature and water vapor contents as input features, the FCDN-CSM exhibits its potential to generate fast and accurate VIIRS CSM onboard follow-up Joint Polar Satellite System (JPSS) satellites for sensor calibration and validation before the physics-based CSM is available.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-12-24
    Description: The main objective of this work was to retrieve surface soil moisture (SSM) by using scattering models and a support vector machine (SVM) technique driven by backscattering coefficients obtained from Sentinel-1 satellite images acquired over bare agricultural soil in the Tensfit basin of Morocco. Two backscattering models were selected in this study due to their wide use in inversion procedures: the theoretical integral equation model (IEM) and the semi-empirical model (Oh). To this end, the sensitivity of the SAR backscattering coefficients at V V ( σ v v ∘ ) and V H ( σ v h ∘ ) polarizations to in situ soil moisture data were analyzed first. As expected, the results showed that over bare soil the σ v v ∘ was well correlated with SSM compared to the σ v h ∘ , which showed more dispersion with correlation coefficients values (r) of about 0.84 and 0.61 for the V V and V H polarizations, respectively. Afterwards, these values of σ v v ∘ were compared to those simulated by the backscatter models. It was found that IEM driven by the measured length correlation L slightly underestimated SAR backscatter coefficients compared to the Oh model with a bias of about − 0.7 dB and − 1.2 dB and a root mean square (RMSE) of about 1.1 dB and 1.5 dB for Oh and IEM models, respectively. However, the use of an optimal value of L significantly improved the bias of IEM, which became near to zero, and the RMSE decreased to 0.9 dB. Then, a classical inversion approach of σ v v ∘ observations based on backscattering model is compared to a data driven retrieval technic (SVM). By comparing the retrieved soil moisture against ground truth measurements, it was found that results of SVM were very encouraging and were close to those obtained by IEM model. The bias and RMSE were about 0.28 vol.% and 2.77 vol.% and − 0.13 vol.% and 2.71 vol.% for SVM and IEM, respectively. However, by taking into account the difficultly of obtaining roughness parameter at large scale, it was concluded that SVM is still a useful tool to retrieve soil moisture, and therefore, can be fairly used to generate maps at such scales.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-12-24
    Description: Particulate optical backscattering (bbp) is a crucial parameter for the study of ocean biology and oceanic carbon estimations. In this work, bbp retrieval, by the quasi-analytical algorithm (QAA), is assessed using a large in situ database of matched bbp and remote-sensing reflectance (Rrs). The QAA is also applied to satellite Rrs (ESA OC-CCI project) as well, after their validation against in situ Rrs. Additionally, the effect of Raman Scattering on QAA retrievals is studied. Results show negligible biases above random noise when QAA-derived bbp is compared to in situ bbp. In addition, Rrs from the CCI archive shows good agreement with in situ data. The QAA’s functional form of spectral backscattering slope, as derived from in situ radiometry, is validated. Finally, we show the importance of correcting for Raman Scattering over clear waters prior to semi-analytical retrieval. Overall, this work demonstrates the high efficiency of QAA in the bbp detection in case of both in situ and ocean color data, but it also highlights the necessity to increase the number of observations that are severely under-sampled in respect to others environmental parameters.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-12-24
    Description: Precipitation modifies atmospheric column thermodynamics through the process of evaporation and serves as a proxy for latent heat modulation. For this reason, a correct precipitation parameterization (especially for low-intensity precipitation) within global scale models is crucial. In addition to improving our modeling of the hydrological cycle, this will reduce the associated uncertainty of global climate models in correctly forecasting future scenarios, and will enable the application of mitigation strategies. In this manuscript we present a proof of concept algorithm to automatically detect precipitation from lidar measurements obtained from the National Aeronautics and Space Administration Micropulse lidar network (MPLNET). The algorithm, once tested and validated against other remote sensing instruments, will be operationally implemented into the network to deliver a near real time (latency
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-12-24
    Description: Lake Poopó is located in the Andean Mountain Range Plateau or Altiplano. A general decline in the lake water level has been observed in the last two decades, coinciding roughly with an intensification of agriculture exploitation, such as quinoa crops. Several factors have been linked with the shrinkage of the lake, including climate change, increased irrigation, mining extraction and population growth. Being an endorheic catchment, evapotranspiration (ET) losses are expected to be the main water output mechanism and previous studies demonstrated ET increases using Earth observation (EO) data. In this study, we seek to build upon these earlier findings by analyzing an ET time series dataset of higher spatial and temporal resolution, in conjunction with land cover and precipitation data. More specifically, we performed a spatio-temporal analysis, focusing on wet and dry periods, that showed that ET changes occur primarily in the wet period, while the dry period is approximately stationary. An analysis of vegetation trends performed using 500 MODIS vegetation index products (NDVI) also showed an overall increasing trend during the wet period. Analysis of NDVI and ET across land cover types showed that only croplands had experienced an increase in NDVI and ET losses, while natural covers showed either constant or decreasing NDVI trends together with increases in ET. The larger increase in vegetation and ET losses over agricultural regions, strongly suggests that cropping practices exacerbated water losses in these areas. This quantification provides essential information for the sustainable planning of water resources and land uses in the catchment. Finally, we examined the spatio-temporal trends of the precipitation using the newly available Climate Hazards Group Infrared Precipitation with Stations (CHIRPS-v2) product, which we validated with onsite rainfall measurements. When integrated over the entire catchment, precipitation and ET showed an average increasing trend of 5.2 mm yr−1 and 4.3 mm yr−1, respectively. This result suggests that, despite the increased ET losses, the catchment-wide water storage should have been offset by the higher precipitation. However, this result is only applicable to the catchment-wide water balance, and the location of water may have been altered (e.g., by river abstractions or by the creation of impoundments) to the detriment of the Lake Poopó downstream.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-12-25
    Description: Accurate estimates of the spatial distribution of total nitrogen (TN) in soil are fundamental for soil quality assessment, decision making in land management, and global nitrogen cycle modeling. In China, current maps are limited to individual regions or are of coarse resolution. In this study, we compiled a new 90-m resolution map of soil TN in China by the weighted summation of random forest and extreme gradient boosting. After harmonizing soil data from 4022 soil profiles into a fixed soil depth (0–20 cm) by equal area spline, 18 environmental covariates were employed to characterize the spatial pattern of soil TN in topsoil across China. The accuracy assessments from independent validation data showed that the weighted model averaging gave the best predictions with an acceptable R2 (0.41). The prediction map showed that high-value areas of soil TN were mainly distributed in the eastern Tibetan Plateau, central Qilian Mountains and the north of the Greater Khingan Range. Climate factors had a considerable influence on the variation of the soil TN, and land-use types played a pivotal part in each climate zone. This high-resolution and high-quality soil TN data set in China can be very useful for future inventories of soil nitrogen, assessments of soil nutrient status, and management of arable land.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-12-25
    Description: The Geostationary Ocean Color Imager (GOCI) sensor, with high temporal and spatial resolution (eight images per day at an interval of 1 hour, 500 m), is the world’s first geostationary ocean color satellite sensor. GOCI provides good data for ocean color remote sensing in the Western Pacific, among the most turbid waters in the world. However, GOCI has no shortwave infrared (SWIR) bands making atmospheric correction (AC) challenging in highly turbid coastal regions. In this paper, we have developed a new AC algorithm for GOCI in turbid coastal waters by using quasi-synchronous Visible Infrared Imaging Radiometer Suite (VIIRS) data. This new algorithm estimates and removes the aerosol scattering reflectance according to the contributing aerosol models and the aerosol optical thickness estimated by VIIRS’s near-infrared (NIR) and SWIR bands. Comparisons with other AC algorithms showed that the new algorithm provides a simple, effective, AC approach for GOCI to obtain reasonable results in highly turbid coastal waters.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-12-26
    Description: Compared to conventional laboratory testing methods, crop nitrogen estimation methods based on canopy spectral characteristics have advantages in terms of timeliness, cost, and practicality. A variety of rapid and non-destructive estimation methods based on the canopy spectrum have been developed on the scale of space, sky, and ground. In order to understand the differences in estimation accuracy and applicability of these methods, as well as for the convenience of users to select the suitable technology, models for estimation of nitrogen status of winter wheat were developed and compared for three methods: drone equipped with a multispectral camera, soil plant analysis development (SPAD) chlorophyll meter, and smartphone photography. Based on the correlations between observed nitrogen status in winter wheat and related vegetation indices, green normalized difference vegetation index (GNDVI) and visible atmospherically resistant index (VARI) were selected as the sensitive vegetation indices for the drone equipped with a multispectral camera and smartphone photography methods, respectively. The correlation coefficients between GNDVI, SPAD, and VARI were 0.92 ** and 0.89 **, and that between SPAD and VARI was 0.90 **, which indicated that three vegetation indices for these three estimation methods were significantly related to each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content estimation models for the drone equipped with a multispectral camera, SPAD, and smartphone photography methods were 0.63, 0.54, and 0.81, respectively. In the estimation accuracy evaluation, the method of smartphone photography had the smallest root mean square error (RMSE = 9.80 mg/kg). The accuracy of the smartphone photography method was slightly higher than the other two methods. Due to the limitations of these models, it was found that the crop nitrogen estimation methods based on canopy spectrum were not suitable for the crops under severe phosphate deficiency. In addition, in estimation of soil nitrate nitrogen content, there were saturation responses in the estimation indicators of the three methods. In order to introduce these three methods in the precise management of nitrogen fertilizer, it is necessary to further improve their estimation models.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-12-26
    Description: Land cover mapping of intensive cropping areas facilitates an enhanced regional response to biosecurity threats and to natural disasters such as drought and flooding. Such maps also provide information for natural resource planning and analysis of the temporal and spatial trends in crop distribution and gross production. In this work, 10 meter resolution land cover maps were generated over a 6200 km 2 area of the Riverina region in New South Wales (NSW), Australia, with a focus on locating the most important perennial crops in the region. The maps discriminated between 12 classes, including nine perennial crop classes. A satellite image time series (SITS) of freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery was used. A segmentation technique grouped spectrally similar adjacent pixels together, to enable object-based image analysis (OBIA). K-means unsupervised clustering was used to filter training points and classify some map areas, which improved supervised classification of the remaining areas. The support vector machine (SVM) supervised classifier with radial basis function (RBF) kernel gave the best results among several algorithms trialled. The accuracies of maps generated using several combinations of the multispectral and radar bands were compared to assess the relative value of each combination. An object-based post classification refinement step was developed, enabling optimization of the tradeoff between producers’ accuracy and users’ accuracy. Accuracy was assessed against randomly sampled segments, and the final map achieved an overall count-based accuracy of 84.8% and area-weighted accuracy of 90.9%. Producers’ accuracies for the perennial crop classes ranged from 78 to 100%, and users’ accuracies ranged from 63 to 100%. This work develops methods to generate detailed and large-scale maps that accurately discriminate between many perennial crops and can be updated frequently.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-12-26
    Description: The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth’s radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200–242 nm) using high quantum efficiency ultraviolet and infrared sensors. This research and innovation mission has been initiated by the University of Versailles Saint-Quentin-en-Yvelines (UVSQ) with the support of the International Satellite Program in Research and Education (INSPIRE). The motivation of the UVSQ-SAT mission is to experiment miniaturized remote sensing sensors that could be used in the multi-point observation of Essential Climate Variables (ECV) by a small satellite constellation. UVSQ-SAT represents the first step in this ambitious satellite constellation project which is currently under development under the responsibility of the Laboratory Atmospheres, Environments, Space Observations (LATMOS), with the UVSQ-SAT CubeSat launch planned for 2020/2021. The UVSQ-SAT scientific payload consists of twelve miniaturized thermopile-based radiation sensors for monitoring incoming solar radiation and outgoing terrestrial radiation, four photodiodes that benefit from the intrinsic advantages of Ga 2 O 3 alloy-based sensors made by pulsed laser deposition for measuring solar UV spectral irradiance, and a new three-axis accelerometer/gyroscope/compass for satellite attitude estimation. We present here the scientific objectives of the UVSQ-SAT mission along the concepts and properties of the CubeSat platform and its payload. We also present the results of a numerical simulation study on the spatial reconstruction of the Earth’s radiation budget, on a geographical grid of 1 ° × 1 ° degree latitude-longitude, that could be achieved with UVSQ-SAT for different observation periods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-12-27
    Description: Mapping hydrothermal alteration minerals using multispectral remote sensing satellite imagery provides vital information for the exploration of porphyry and epithermal ore mineralizations. The Ahar-Arasbaran region, NW Iran, contains a variety of porphyry, skarn and epithermal ore deposits. Gold mineralization occurs in the form of epithermal veins and veinlets, which is associated with hydrothermal alteration zones. Thus, the identification of hydrothermal alteration zones is one of the key indicators for targeting new prospective zones of epithermal gold mineralization in the Ahar-Arasbaran region. In this study, Landsat Enhanced Thematic Mapper+ (Landsat-7 ETM+), Landsat-8 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral remote sensing datasets were processed to detect hydrothermal alteration zones associated with epithermal gold mineralization in the Ahar-Arasbaran region. Band ratio techniques and principal component analysis (PCA) were applied on Landsat-7 ETM+ and Landsat-8 data to map hydrothermal alteration zones. Advanced argillic, argillic-phyllic, propylitic and hydrous silica alteration zones were detected and discriminated by implementing band ratio, relative absorption band depth (RBD) and selective PCA to ASTER data. Subsequently, the Bayesian network classifier was used to synthesize the thematic layers of hydrothermal alteration zones. A mineral potential map was generated by the Bayesian network classifier, which shows several new prospective zones of epithermal gold mineralization in the Ahar-Arasbaran region. Besides, comprehensive field surveying and laboratory analysis were conducted to verify the remote sensing results and mineral potential map produced by the Bayesian network classifier. A good rate of agreement with field and laboratory data is achieved for remote sensing results and consequential mineral potential map. It is recommended that the Bayesian network classifier can be broadly used as a valuable model for fusing multi-sensor remote sensing results to generate mineral potential map for reconnaissance stages of epithermal gold exploration in the Ahar-Arasbaran region and other analogous metallogenic provinces around the world.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-12-27
    Description: The free open access data policy instituted for the Landsat archive since 2008 has revolutionised the use of Landsat data for forest monitoring, especially for estimating forest aboveground biomass (AGB). This paper provides a comprehensive review of recent approaches utilising Landsat time-series (LTS) for estimating AGB and its dynamics across space and time. In particular, we focus on reviewing: (1) how LTS has been utilised to improve the estimation of AGB (for both single-date and over time) and (2) recent LTS-based approaches used for estimating AGB and its dynamics across space and time. In contrast to using single-date images, the use of LTS can benefit forest AGB estimation in two broad areas. First, using LTS allows for the filling of spatial and temporal data gaps in AGB predictions, improving the quality of AGB products and enabling the estimation of AGB across large areas and long time-periods. Second, studies have demonstrated that spectral information extracted from LTS analysis, including forest disturbance and recovery metrics, can significantly improve the accuracy of AGB models. Throughout the last decade, many innovative LTS-based approaches for estimating forest AGB dynamics across space and time have been demonstrated. A general trend is that methods have evolved as demonstrated through recent studies, becoming more advanced and robust. However, most of these methods have been developed and tested in areas that are either supported by established forest inventory programs and/or can rely on Lidar data across large forest areas. Further investigations should focus on tropical forest areas where inventory data are often not systematically available and/or out-of-date.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-12-26
    Description: Remotely-sensed identification of ozone stress in crops can allow for selection of ozone resistant genotypes, improving yields. This is critical as population, food demand, and background tropospheric ozone are projected to increase over the next several decades. Visual scores of common ozone damage have been used to identify ozone-stress in bio-indicator plants. This paper evaluates the use of a visual scoring metric of ozone damage applied to soybeans. The scoring of the leaves is then combined with hyperspectral data to identify spectral indices specific to ozone damage. Two genotypes of soybean, Dwight and Pana, that have shown different sensitivities to ozone, were grown and visually scored for ozone-specific damage on multiple dates throughout the growing season. Leaf reflectance, foliar biophysical properties, and yield data were collected. Additionally, ozone bio-indicator plants, snap beans, and common milkweed, were investigated with visual scores and hyperspectral leaf data for comparison. The normalized difference spectral index (NDSI) was used to identify the significant bands in the visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) that best correlated with visual damage score when used in the index. Results were then compared to multiple well-established indices. Indices were also evaluated for correlation with seed and pod weight. The ozone damage scoring metric for soybeans evaluated in August had a coefficient of determination of 0.60 with end-of-season pod weight and a Pearson correlation coefficient greater than 0.6 for photosynthetic rate, stomatal conductance, and transpiration. NDSI [R558, R563] correlated best with visual scores of ozone damage in soybeans when evaluating data from all observation dates. These wavelengths were similar to those identified as most sensitive to visual damage in August when used in NDSI (560 nm, 563 nm). NDSI [R560, R563] in August had the highest coefficient of determination for individual pod weight (R2 = 0.64) and seed weight (R2 = 0.54) when compared against 21 well-established indices used for identification of pigment or photosynthetic stress in plants. When evaluating use of spectral bands in NDSI, longer wavelengths in SWIR were identified as more sensitive to ozone visual damage. Trends in the bands and biophysical properties of the soybeans combined with evaluation of ozone data indicate likely timing of significant ozone damage as after late-July for this season. This work has implications for better spectral detection of ozone stress in crops and could help with efforts to identify ozone tolerant varieties to increase future yield.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-12-18
    Description: Leaf area index (LAI) is a key parameter in plant growth monitoring. For several decades, vegetation indices-based empirical method has been widely-accepted in LAI retrieval. A growing number of spectral indices have been proposed to tailor LAI estimations, however, saturation effect has long been an obstacle. In this paper, we classify the selected 14 vegetation indices into five groups according to their characteristics. In this study, we proposed a new index for LAI retrieval-transformed triangular vegetation index (TTVI), which replaces NIR and red bands of triangular vegetation index (TVI) into NIR and red-edge bands. All fifteen indices were calculated and analyzed with both hyperspectral and multispectral data. Best-fit models and k-fold cross-validation were conducted. The results showed that TTVI performed the best predictive power of LAI for both hyperspectral and multispectral data, and mitigated the saturation effect. The R2 and RMSE values were 0.60, 1.12; 0.59, 1.15, respectively. Besides, TTVI showed high estimation accuracy for sparse (LAI 〈 4) and dense canopies (LAI 〉 4). Our study provided the value of the Red-edge bands of the Sentinel-2 satellite sensors in crop LAI retrieval, and demonstrated that the new index TTVI is applicable to inverse LAI for both low-to-moderate and moderate-to-high vegetation cover.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-12-18
    Description: Indonesia has experienced extensive land-cover change and frequent vegetation and land fires in the past few decades. We combined a new land-cover dataset with satellite data on the timing and location of fires to make the first detailed assessment of the association of fire with specific land-cover transitions in Riau, Sumatra. During 1990 to 2017, secondary peat swamp forest declined in area from 40,000 to 10,000 km2 and plantations (including oil palm) increased from around 10,000 to 40,000 km2. The dominant land use transitions were secondary peat swamp forest converting directly to plantation, or first to shrub and then to plantation. During 2001–2017, we find that the frequency of fire is greatest in regions that change land-cover, with the greatest frequency in regions that transition from secondary peat swamp forest to shrub or plantation (0.15 km−2 yr−1). Areas that did not change land cover exhibit lower fire frequency, with shrub (0.06 km–2 yr–1) exhibiting a frequency of fire 〉60 times the frequency of fire in primary forest. Our analysis demonstrates that in Riau, fire is closely connected to land-cover change, and that the majority of fire is associated with the transition of secondary forest to shrub and plantation. Reducing the frequency of fire in Riau will require enhanced protection of secondary forests and restoration of shrub to natural forest.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-12-19
    Description: Unmanned aerial vehicles (UAV) are increasingly used for topographic mapping. The camera calibration for UAV image blocks can be performed a priori or during the bundle block adjustment (self-calibration). For an area of interest with flat scene and corridor configuration, the focal length of camera is highly correlated with the height of the camera. Furthermore, systematic errors of camera calibration accumulate on the longer dimension and cause deformation. Therefore, special precautions must be taken when estimating camera calibration parameters. In order to better investigate the impact of camera calibration errors, a synthetic, error-free aerial image block is generated to simulate several issues of interest. Firstly, the erroneous focal length in the case of camera pre-calibration is studied. Nadir images are not able to prevent camera poses from drifting to compensate for the erroneous focal length, whereas the inclusion of oblique images brings significant improvement. Secondly, the case where the focal length varies gradually (e.g., when the camera subject to temperature changes) is investigated. The neglect of this phenomenon can substantially degrade the 3D measurement accuracy. Different flight configurations and flight orders are analyzed, the combination of oblique and nadir images shows better performance. At last, the rolling shutter effect is investigated. The influence of camera rotational motion on the final accuracy is negligible compared to that of the translational motion. The acquisition configurations investigated are not able to mitigate the degradation introduced by the rolling shutter effect. Other solutions such as correcting image measurements or including camera motion parameters in the bundle block adjustment should be exploited.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-12-19
    Description: Investigating regional connections and their influencing factors from the perspective of “flow” space is one of the foundations of promoting regional development. In this article, the data we used includes actual highway passenger flow data, National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) nighttime light remote sensing data, and socioeconomic data. We analyzed the spatial distribution pattern, connection intensity and spatial autocorrelation of highway passenger flow in Chongqing during the working day, weekend and May Day and revealed the influencing factors by means of a geographic detector. Three key conclusions resulted from this research. First, highway passenger flow in Chongqing districts exhibits spatial agglomeration that is clearly higher in western Chongqing than in eastern Chongqing and forms an obviously dual-core “star” structure, with the main urban area and Wanzhou serving as the core. Second, a factor detector notes that the nighttime light area index (0.9251, 0.9512, 0.9541) has the strongest explanatory power for the spatial differentiation of passenger traffic in Chongqing districts, which is the key factor. Third, interaction detection shows that the interaction between the two factors displays an enhancement effect at different times. The nighttime light area index shows the strongest explanatory power under the synergy of tourist attractions, which are 0.9850, 0.9903 and 0.9908. But the per capita GDP and highway mileage have the most obvious enhancement effect after interaction (0.9544, 0.9661, 0.9652). Therefore, in future planning and development, we should pay attention to cooperation and exchanges between districts and use the nighttime light area index as an important reference factor to provide a scientific basis for the construction of public transport and economic construction in Chongqing.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-12-20
    Description: Following the large-scale disintegration of the Larsen B Ice Shelf (LBIS) in 2002, ice flow velocities for its remnants and tributary glaciers began to increase. In this study, we used sequential Landsat images spanning 2005–2018 to produce detailed maps of the ice flow velocities and surface features for the Scar Inlet Ice Shelf (SIIS). Our results indicate that the ice flow velocities for the SIIS and its tributary glaciers (Flask and Leppard Glaciers) have substantially increased since 2005. Surface features, such as rifts and crevasses, have also substantially increased in both scope and scale and are particularly evident in the region between the Leppard Glacier and the Jason Peninsula. Several indicators—including the acceleration of ice flows, the rapid growth of major surface rifts, the heavily enhanced surface crevasses, and the dynamic position of the ice front—point to the evolving instability of the SIIS. These same indicators describe the conditions for the LBIS leading up to its 2002 collapse. To date, however, the SIIS remains intact. The formation of fast ice supporting the ice shelf front, combined with moderate mean summer temperatures, may be preventing or delaying its collapse.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-12-20
    Description: Time series analysis of Sentinel-1 SAR imagery made available by the Google Earth Engine (GEE) is described. Advantage is taken of a recent modification of a sequential complex Wishart-based algorithm which is applicable to the dual polarization intensity data archived on the GEE. Both the algorithm and a software interface to the GEE Python API for convenient data exploration and analysis are presented; the latter can be run from a platform independent Docker container and the source code is available on GitHub. Application examples are given involving the monitoring of anthropogenic activity (shipping, uranium mining, deforestation) and disaster assessment (flash floods). These highlight the advantages of the good temporal resolution resulting from cloud cover independence, short revisit times and near real time data availability.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-12-20
    Description: Night-time lights satellite images provide a new opportunity to measure regional inequality in real-time by developing the Night Light Development Index (NLDI). The NLDI was extracted using the Gini coefficient approach based on population and night light spatial distribution in Romania. Night-time light data were calculated using a grid with a 0.15 km2 area, based on Defense Meteorological Satellite Program (DMSP) /Operational Linescan System (OLS satellite imagery for the 1992–2013 period and based on the National Polar-orbiting Partnership–Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) satellite imagery for the 2014–2018 period. Two population density grids were created at the level of equal cells (0.15 km2) using ArcGIS and PostgreSQL software, and census data from 1992 and 2011. Subsequently, based on this data and using the Gini index approach, the Night Light Development Index (NLDI) was calculated within the MATLAB software. The NLDI was obtained for 42 administrative counties (nomenclature of territorial units for statistics level 3 (NUTS-3 units)) for the 1992–2018 period. The statistical relationship between the NLDI and the socio-economic, demographic, and geographic variables highlighted a strong indirect relationship with local tax income and gross domestic product (GDP) per capita. The polynomial model proved to be better in estimating income based on the NLDI and R2 coefficients showed a significant improvement in total variation explained compared to the linear regression model. The NLDI calculated on the basis of night-time lights satellite images proved to be a good proxy for measuring regional inequalities. Therefore, it can play a crucial role in monitoring the progress made in the implementation of Sustainable Development Goal 10 (reduced inequalities).
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-12-20
    Description: In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard located in California are presented. Toward this end, an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height, volume, surface area, and projected surface area of the plant canopy solely based on point cloud information. In addition to biomass information, it can add multi-spectral UAV information to point clouds and provide spectral-structural canopy properties. The biomass information is used to assess its relationship with in situ Leaf Area Index (LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of plant parameters, spatial information of fractional cover, canopy height, and canopy width are input to the TSEB model. Therefore, the two main objectives for incorporating point cloud information into remote sensing ET models for this study are to (1) evaluate the possible improvement in the estimation of LAI and biomass parameters from point cloud information in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB model to using average/nominal values versus spatially-distributed canopy fractional cover, height, and width information derived from point cloud data. The proposed algorithm is tested on imagery from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located in California. The results indicate a robust relationship between in situ LAI measurements and estimated biomass parameters from the point cloud data, and improvement in the agreement between TSEB model output of ET with tower measurements when employing LAI and spatially-distributed canopy structure parameters derived from the point cloud data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-12-20
    Description: Accurate estimation of precipitation is crucial for fundamental input to various hydrometeorological applications. Ground-based precipitation data suffer limitations associated with spatial resolution and coverage; hence, satellite precipitation products can be used to complement traditional rain gauge systems. However, the satellite precipitation data need to be validated before extensive use in the applications. Hence, we conducted a thorough validation of the Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals (IMERG) product for all of Iran. The study focused on investigating the performance of daily and monthly GPM IMERG (early, late, final, and monthly) products by comparing them with ground-based precipitation data at synoptic stations throughout the country (2014–2017). The spatial and temporal performance of the GPM IMERG was evaluated using eight statistical criteria considering the rainfall index at the country level. The rainfall detection ability index (POD) showed that the best IMERG product’s performance is for the spring season while the false alarm ratio (FAR) index indicated the inferior performance of the IMERG products for the summer season. The performance of the products generally increased from IMERG-Early to –Final according to the relative bias (rBIAS) results while, based on the quantile-quantile (Q-Q) plots, the IMERG-Final could not be suggested for the applications relying on extreme rainfall estimates compared to IMERG-Early and -Late. The results in this paper improve the understanding of IMERG product’s performance and open a door to future studies regarding hydrometeorological applications of these products in Iran.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-12-20
    Description: Using remote sensing for monitoring trophic states of inland waters relies on the calibration of chlorophyll-a (chl-a) bio-optical algorithms. One of the main limiting factors of calibrating those algorithms is that they cannot accurately cope with the wide chl-a concentration ranges in optically complex waters subject to different trophic states. Thus, this study proposes an optical hybrid chl-a algorithm (OHA), which is a combined framework of algorithms for specific chl-a concentration ranges. The study area is Ibitinga Reservoir characterized by high spatiotemporal variability of chl-a concentrations (3–1000 mg/m3). We took the following steps to address this issue: 1) we defined optical classes of specific chl-a concentration ranges using Spectral Angle Mapper (SAM); 2) we calibrated/validated chl-a bio-optical algorithms for each trophic class using simulated Sentinel-2 MSI (Multispectral Instrument) bands; 3) and we applied a decision tree classifier in MSI/Sentinel-2 images to detect the optical classes and to switch to the suitable algorithm for the given class. The results showed that three optical classes represent different ranges of chl-a concentration: class 1 varies 2.89–22.83 mg/m3, class 2 varies 19.51–87.63 mg/m3, and class 3 varies 75.89–938.97 mg/m3. The best algorithms for trophic classes 1, 2, and 3 are the 3 bands (R² = 0.78; MAPE - Mean Absolute Percentage Error = 34.36%), slope (R² = 0.93; MAPE = 23.35%), and 2 bands (R² = 0.98; MAPE = 20.12%), respectively. The decision tree classifier showed an accuracy of 95% for detecting SAM’s optical trophic classes. The overall performance of OHA was satisfactory (R2 = 0.98; MAPE = 26.33%) using in situ data but reduced in the Sentinel-2 images (R2 = 0.42; MAPE = 28.32%) due to the temporal gap between matchups and the variability in reservoir hydrodynamics. In summary, OHA proved to be a viable method for estimating chl-a concentration in Ibitinga Reservoir and the extension of this framework allowed a more precise chl-a estimate in eutrophic inland waters.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-12-20
    Description: There are a large number of lakes with beaded distribution in the semi-arid areas of the Inner Mongolian Plateau, and some of them have degraded or even disappeared during the past three decades. We studied the reasons of the disappearance of these lakes by determining the way of replenishment of these lakes and the impact of the natural-social environment of the basin, with the aim of saving these gradually disappearing lakes. Based on remote sensing image and hydrological analysis, this paper studied the recharge of Daihai Lake and Huangqihai Lake. The deep learning method was used to establish the time-series of lake evolution. The same method was combined with the innovative woodland and farmland extraction method to set up the time-series of ground classification composition in the basins. Using relevant survey data, combined with soil water infiltration test, water chemical, and isotopic signature analysis of various water bodies, we found that the Daihai Lake area is the largest in dry season and the smallest in rainy season and the other lake is not satisfied with this phenomenon. In addition, we calculated the specific recharge and consumption of the study basin. These experiments indicated that the exogenous groundwater is recharged directly through the faults at the bottom of Daihai Lake, while the exogenous groundwater is recharged in Huangqihai Lake through rivers indirectly. Large-scale exploitation of groundwater for agricultural irrigation and industrial production is the main cause of lake degradation. Reducing the extraction of groundwater for agricultural irrigation is an important measure to restore lake ecology.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-12-20
    Description: Hyperspectral systems integrated on unmanned aerial vehicles (UAV) provide unique opportunities to conduct high-resolution multitemporal spectral analysis for diverse applications. However, additional time-consuming rectification efforts in postprocessing are routinely required, since geometric distortions can be introduced due to UAV movements during flight, even if navigation/motion sensors are used to track the position of each scan. Part of the challenge in obtaining high-quality imagery relates to the lack of a fast processing workflow that can retrieve geometrically accurate mosaics while optimizing the ground data collection efforts. To address this problem, we explored a computationally robust automated georectification and mosaicking methodology. It operates effectively in a parallel computing environment and evaluates results against a number of high-spatial-resolution datasets (mm to cm resolution) collected using a push-broom sensor and an associated RGB frame-based camera. The methodology estimates the luminance of the hyperspectral swaths and coregisters these against a luminance RGB-based orthophoto. The procedure includes an improved coregistration strategy by integrating the Speeded-Up Robust Features (SURF) algorithm, with the Maximum Likelihood Estimator Sample Consensus (MLESAC) approach. SURF identifies common features between each swath and the RGB-orthomosaic, while MLESAC fits the best geometric transformation model to the retrieved matches. Individual scanlines are then geometrically transformed and merged into a single spatially continuous mosaic reaching high positional accuracies only with a few number of ground control points (GCPs). The capacity of the workflow to achieve high spatial accuracy was demonstrated by examining statistical metrics such as RMSE, MAE, and the relative positional accuracy at 95% confidence level. Comparison against a user-generated georectification demonstrates that the automated approach speeds up the coregistration process by 85%.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-12-21
    Description: The establishment and management of cover crops are common practices widely used in irrigated viticulture around the world, as they bring great benefits not only to protect and improve the soil, but also to control vine vigor and improve the yield quality, among others. However, these benefits are often reduced when cover crops are infested by Cynodon dactylon (bermudagrass), which impacts crop production due to its competition for water and nutrients and causes important economic losses for the winegrowers. Therefore, the discrimination of Cynodon dactylon in cover crops would enable site-specific control to be applied and thus drastically mitigate damage to the vineyard. In this context, this research proposes a novel, automatic and robust image analysis algorithm for the quick and accurate mapping of Cynodon dactylon growing in vineyard cover crops. The algorithm was developed using aerial images taken with an Unmanned Aerial Vehicle (UAV) and combined decision tree (DT) and object-based image analysis (OBIA) approaches. The relevance of this work consisted in dealing with the constraint caused by the spectral similarity of these complex scenarios formed by vines, cover crops, Cynodon dactylon, and bare soil. The incorporation of height information from the Digital Surface Model and several features selected by machine learning tools in the DT-OBIA algorithm solved this spectral similarity limitation and allowed the precise design of Cynodon dactylon maps. Another contribution of this work is the short time needed to apply the full process from UAV flights to image analysis, which can enable useful maps to be created on demand (within two days of the farmer´s request) and is thus timely for controlling Cynodon dactylon in the herbicide application window. Therefore, this combination of UAV imagery and a DT-OBIA algorithm would allow winegrowers to apply site-specific control of Cynodon dactylon and maintain cover crop-based management systems and their consequent benefits in the vineyards, and also comply with the European legal framework for the sustainable use of agricultural inputs and implementation of integrated crop management.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-12-21
    Description: Due to advantages such as its low power consumption and higher concealment, deceptive jamming against synthetic aperture radar (SAR) has received extensive attention during the past decades. However, large-scene deception jamming is still a challenge because of the huge computing burden. In this paper, we propose a new large-scene deceptive jamming algorithm. First, the time-delay and frequency-shift (TDFS) algorithm is introduced to improve the jamming processing speed. The system function of jammer (JSF) for a fake scatter is simplified to the multiplication of the scattering coefficient, a time-delay term in the range dimension and a frequency-shift term in the azimuth dimension. Then, in order to solve the problem that the effective region of the TDFS algorithm is limited, the scene deceptive jamming template is divided into several blocks according to the SAR parameters and imaging quality control factor. The JSF of each block is calculated by the TDFS algorithm and added together to achieve the large-scene jamming. Finally, the correction algorithm in squint mode is derived. The simplification and parallel-block processing could improve the calculation efficiency significantly. The simulation results verified the validity of the algorithm.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-12-21
    Description: Given the increasing anthropogenic pressures on lagoons, estuaries, and lakes and considering the highly dynamic behavior of these systems, methods for the continuous and spatially distributed retrieval of water quality are becoming vital for their correct monitoring and management. Water temperature is certainly one of the most important drivers that influence the overall state of coastal systems. Traditionally, lake, estuarine, and lagoon temperatures are observed through point measurements carried out during field campaigns or through a network of sensors. However, sporadic measuring campaigns or probe networks rarely attain a density sufficient for process understanding, model development/validation, or integrated assessment. Here, we develop and apply an integrated approach for water temperature monitoring in a shallow lagoon which incorporates satellite and in-situ data into a mathematical model. Specifically, we use remote sensing information to constrain large-scale patterns of water temperature and high-frequency in situ observations to provide proper time constraints. A coupled hydrodynamic circulation-heat transport model is then used to propagate the state of the system forward in time between subsequent remote sensing observations. Exploiting the satellite data high spatial resolution and the in situ measurements high temporal resolution, the model may act a physical interpolator filling the gap intrinsically characterizing the two monitoring techniques.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-12-22
    Description: The Compact Infrared Camera (CIRC) instruments onboard the Advanced Land Observing Satellite-2 (ALOS-2) and the Calorimetric Electron Telescope (CALET) attached to the International Space Station are satellite-borne 2D-array thermal infrared cameras for technical demonstrations in fields such as forest fire monitoring, volcano monitoring, and heat island analysis. Since they have the characteristics of low cost and low power consumption and have no onboard calibrator such as a blackbody or shutter, in-flight calibration should be performed by vicarious calibration (VC) and cross-calibration (CC). In this study, we determined the recalibration coefficients for both of the CIRC instruments as a function of time based on VC experiments in Lake Kasumigaura (Japan) and Railroad Valley Playa (USA), VC with telemetry data from three lakes in Japan and the USA, and CC with imagers onboard two geostationary satellites (MTSAT-2 and Himawari-8). As a result, the derived recalibration coefficients improved the accuracy of the ground-testing-based radiance remarkably in both of the CIRC instruments, suggesting that the recalibrated radiance can satisfy the target accuracy of CIRC, given as 2 K at 300 K. These coefficients, as a function of time, will be applied to all CIRC images by reprocessing planned in the near future.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-12-23
    Description: Modern robotic exploratory strategies assume multi-agent cooperation that raises a need for an effective exchange of acquired scans of the environment with the absence of a reliable global positioning system. In such situations, agents compare the scans of the outside world to determine if they overlap in some region, and if they do so, they determine the right matching between them. The process of matching multiple point-cloud scans is called point-cloud registration. Using the existing point-cloud registration approaches, a good match between any two-point-clouds is achieved if and only if there exists a large overlap between them, however, this limits the advantage of using multiple robots, for instance, for time-effective 3D mapping. Hence, a point-cloud registration approach is highly desirable if it can work with low overlapping scans. This work proposes a novel solution for the point-cloud registration problem with a very low overlapping area between the two scans. In doing so, no initial relative positions of the point-clouds are assumed. Most of the state-of-the-art point-cloud registration approaches iteratively match keypoints in the scans, which is computationally expensive. In contrast to the traditional approaches, a more efficient line-features-based point-cloud registration approach is proposed in this work. This approach, besides reducing the computational cost, avoids the problem of high false-positive rate of existing keypoint detection algorithms, which becomes especially significant in low overlapping point-cloud registration. The effectiveness of the proposed approach is demonstrated with the help of experiments.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-12-23
    Description: Boundaries of agricultural fields are important features necessary for defining the location, shape, and spatial extent of agricultural units. They are commonly used to summarize production statistics at the field level. In this study, we investigate the delineation of agricultural field boundaries (AFB) from Sentinel-2 satellite images acquired over the Flevoland province, the Netherlands, using a deep learning technique based on fully convolutional networks (FCNs). We designed a multiple dilation fully convolutional network (MD-FCN) for AFB detection from Sentinel-2 images at 10 m resolution. Furthermore, we developed a novel super-resolution semantic contour detection network (named SRC-Net) using a transposed convolutional layer in the FCN architecture to enhance the spatial resolution of the AFB output from 10 m to 5 m resolution. The SRC-Net also improves the AFB maps at 5 m resolution by exploiting the spatial-contextual information in the label space. The results of the proposed SRC-Net outperform alternative upsampling techniques and are only slightly inferior to the results of the MD-FCN for AFB detection from RapidEye images acquired at 5 m resolution.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-12-23
    Description: Sustainable management of orchard fields requires detailed information about the tree types, which is a main component of precision agriculture programs. To this end, hyperspectral imagery can play a major role in orchard tree species mapping. Efficient use of hyperspectral data in combination with field measurements requires the development of optimized band selection strategies to separate tree species. In this study, field spectroscopy (350 to 2500 nm) was performed through scanning 165 spectral leaf samples of dominant orchard tree species (almond, walnut, and grape) in Chaharmahal va Bakhtiyari province, Iran. Two multivariable methods were employed to identify the optimum wavelengths: the first includes three-step approach ANOVA, random forest classifier (RFC) and principal component analysis (PCA), and the second employs partial least squares (PLS). For both methods we determined whether tree species can be spectrally separated using discriminant analysis (DA) and then the optimal wavelengths were identified for this purpose. Results indicate that all species express distinct spectral behaviors at the beginning of the visible range (from 350 to 439 nm), the red edge and the near infrared wavelengths (from 701 to 1405 nm). The ANOVA test was able to reduce primary wavelengths (2151) to 792, which had a significant difference (99% confidence level), then the RFC further reduced the wavelengths to 118. By removing the overlapping wavelengths, the PCA represented five components (99.87% of variance) which extracted optimal wavelengths were: 363, 423, 721, 1064, and 1388 nm. The optimal wavelengths for the species discrimination using the best PLS-DA model (100% accuracy) were at 397, 515, 647, 1386, and 1919 nm.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-12-17
    Description: This project developed an integrated land cover/hydrological modeling framework using remote sensing and geographic information systems (GIS) data, stakeholder input, climate information and projections, and empirical data to estimate future groundwater recharge on the Island of Maui, Hawaiʻi, USA. End-of-century mean annual groundwater recharge was estimated under four future land cover scenarios: Future 1 (conservation-focused), Future 2 (status-quo), Future 3 (development-focused), and Future 4 (balanced conservation and development), and two downscaled climate projections: a coupled model intercomparison project (CMIP) phase 5 (CMIP5) representative concentration pathway (RCP) 8.5 “dry climate” future and a CMIP3 A1B “wet climate” future. Results were compared to recharge estimated using the 2017 baseline land cover to understand how changing land management and climate could influence groundwater recharge. Estimated recharge increased island-wide under all future land cover and climate combinations and was dominated by specific land cover transitions. For the dry future climate, recharge for land cover Futures 1 to 4 increased by 12%, 0.7%, 0.01%, and 11% relative to 2017 land cover conditions, respectively. Corresponding increases under the wet future climate were 10%, 0.9%, 0.6%, and 9.3%. Conversion from fallow/grassland to diversified agriculture increased irrigation, and therefore recharge. Above the cloud zone (610 m), conversion from grassland to native or alien forest led to increased fog interception, which increased recharge. The greatest changes to recharge occurred in Futures 1 and 4 in areas where irrigation increased, and where forest expanded within the cloud zone. Furthermore, new future urban expansion is currently slated for coastal areas that are already water-stressed and had low recharge projections. This study demonstrated that a spatially-explicit scenario planning process and modeling framework can communicate the possible consequences and tradeoffs of land cover change under a changing climate, and the outputs from this study serve as relevant tools for landscape-level management and interventions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-12-17
    Description: The development of a snow depth product over North America is investigated by applying two-dimensional optimal interpolation to passive microwave satellite-derived and in-situ measured snow depth. At each snow-covered satellite footprint, the technique computes a snow depth increment as the weighted average of data increments, and updates the satellite-derived snow depth accordingly. Data increments are computed as the difference between the in-situ-measured and satellite snow depth at station locations surrounding the satellite footprint. Calculation of optimal weights is based on spatial lag autocorrelation of snow depth increments, modelled as functions of horizontal distance and elevation difference between pairs of observations. The technique is applied to Advanced Microwave Scanning Radiometer 2 (AMSR2) snow depth and in-situ snow depth obtained from the Global Historical Climatology Network. The results over North America during January–February 2017 indicate that the technique greatly enhances the performance of the satellite estimates, especially over mountain terrain, albeit with an accuracy inferior to that over low elevation areas. Moreover, the technique generates more accurate output compared to that from NOAA’s Global Forecast System, with implications for improving the utilization of satellite data in snow assessments and numerical weather prediction.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-12-17
    Description: Climatically driven processes are important controls on the Earth’s surface and on interactions between the hydrological cycle and erosion in drainage basins. As a result, landscape forms such as hillslope topography can be used as an archive to reconstruct historical climatic conditions. Recent progress in the Structure-from-Motion (SfM) photogrammetric technique allows for the construction of high-resolution, low-cost topography data using remote-controlled unmanned aerial vehicle (UAV) surveys. Here, we present the climatic effects on the hillslope erosion rate that can be obtained from the drainage frequency of hillslopes. We quantify the centimeter-scale accuracy of surveys across 72 badland hillslopes in SE Taiwan, which is a tropical monsoon area with an annual precipitation of over 2 m. Our observations indicate that climatic erosion results in a higher drainage frequency and the number of furrows, instead of drainage density. Additionally, the morphometric slope index (MSI) has a strong positive correlation with erosion and its rate but shows a negative correlation with drainage length and a positive correlation with inclination. This suggests that the erosion pattern is due to gravitational mass wasting instead of hydrological erosion. MSI should always be calculated relying on the normalized slope length and is less applicable to landslide-dominated erosion. We, therefore, suggest that UAV-driven digital elevation models (DEMs) are integrated into erosion mapping to aid in identifying erosion patterns. We highlight the unique opportunity for cross-climate zone comparative studies offered by badland landscapes and differential rainfall patterns, with remote sensing techniques and the morphometric slope index.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-12-17
    Description: Semi-natural grasslands are perennial ecosystems and an important part of agricultural landscapes that are threatened by urbanization and agricultural intensification. However, implementing national grassland conservation policies remains challenging because their inventory, based on short-term observation, rarely discriminate semi-natural permanent from temporary grasslands. This study aims to map grassland frequency at a national scale over a long period using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m satellite time-series. A three-step method was applied to the entire area of metropolitan France (543,940 km²). First, land-use and land-cover maps—including grasslands—were produced for each year from 2006–2017 using the random forest classification of MOD13Q1 and MYD13Q1 products, which were calibrated and validated using field observations. Second, grassland frequency from 2006–2017 was calculated by combining the 12 annual maps. Third, sub-pixel analysis was performed using a reference layer with 20 m spatial resolution to quantify percentages of land-use and land-cover classes within MODIS pixels classified as grassland. Results indicate that grasslands were accurately modeled from 2006–2017 (F1-score 0.89–0.93). Nonetheless, modeling accuracy varied among biogeographical regions, with F1-score values that were very high for Continental (0.94 ± 0.01) and Atlantic (0.90 ± 0.02) regions, high for Alpine regions (0.86 ± 0.04) but moderate for Mediterranean regions (0.62 ± 0.10). The grassland frequency map for 2006–2017 at 250 m spatial resolution provides an unprecedented view of stable grassland patterns in agricultural areas compared to existing national and European GIS layers. Sub-pixel analysis showed that areas modeled as grasslands corresponded to grassland-dominant areas (60%–94%). This unique long-term and national monitoring of grasslands generates new opportunities for semi-natural grassland inventorying and agro-ecological management.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-12-17
    Description: NOAA platforms provide the longest period of terrestrial observation since the 1980s. The progress in calibration, atmospheric corrections and physically based land retrieval offers the opportunity to reprocess these data for extending terrestrial product time series. Within the Quality Assurance for Essential Climate Variables (QA4ECV) project, the black-sky Joint Research Centre (JRC)-fraction of absorbed photosynthetically active radiation (FAPAR) algorithm was developed for the AVHRR sensors on-board NOAA-07 to -16 using the Land Surface Reflectance Climate Data Record. The retrieval algorithm was based on the radiative transfer theory, and uncertainties were included in the products. We proposed a time and spatial composite for providing both 10-day and monthly products at 0.05º × 0.05º. Quality control and validation were achieved through benchmarking against third-party products, including Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) datasets produced with the same retrieval algorithm. Past ground-based measurements, providing a proxy of FAPAR, showed good agreement of seasonality values over short homogeneous canopies and mixed vegetation. The average difference between SeaWiFS and QA4ECV monthly products over 2002–2005 is about 0.075 with a standard deviation of 0.091. We proposed a monthly linear bias correction that reduced these statistics to 0.02 and 0.001. The complete harmonized long-term time series was then used to address its fitness for the purpose of analysis of global terrestrial change.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-12-17
    Description: A new all-weather land surface temperature (LST) product derived at the Satellite Application Facility on Land Surface Analysis (LSA-SAF) is presented. It is the first all-weather LST product based on visible and infrared observations combining clear-sky LST retrieved from the Spinning Enhanced Visible and Infrared Imager on Meteosat Second Generation (MSG/SEVIRI) infrared (IR) measurements with LST estimated with a land surface energy balance (EB) model to fill gaps caused by clouds. The EB model solves the surface energy balance mostly using products derived at LSA-SAF. The new product is compared with in situ observations made at 3 dedicated validation stations, and with a microwave (MW)-based LST product derived from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) measurements. The validation against in-situ LST indicates an accuracy of the new product between -0.8 K and 1.1 K and a precision between 1.0 K and 1.4 K, generally showing a better performance than the MW product. The EB model shows some limitations concerning the representation of the LST diurnal cycle. Comparisons with MW LST generally show higher LST of the new product over desert areas, and lower LST over tropical regions. Several other imagers provide suitable measurements for implementing the proposed methodology, which offers the potential to obtain a global, nearly gap-free LST product.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-12-24
    Description: This paper presents the development of an evenly spaced volume time series for Lakes Azuei and Enriquillo both located on the Caribbean island of Hispaniola. The time series is derived from an unevenly spaced Landsat imagery data set which is then exposed to several imputation methods to construct the gap filled uniformly-spaced time series so it can be subjected to statistical analyses methods. The volume time series features both gradual and sudden changes the latter of which is attributed to North Atlantic cyclone activity. Relevant cyclone activity is defined as an event passing within 80 km and having regional monthly rainfall averages higher than a threshold value of 87 mm causing discontinuities in the lake responses. Discontinuities are accounted for in the imputation algorithm by dividing the time series into two sub-sections: Before/after the event. Using leave-p-out cross-validation and computing the NRMSE index the Stineman interpolation proves to be the best algorithm among 15 different imputation alternatives that were tested. The final time series features 16-day intervals which is subsequently resampled into one with monthly time steps. Data analyses of the monthly volume change time series show Lake Enriquillo’s seasonal periodicity in its behavior and also its sensitivity due to the occurrence of storm events. Response times feature a growth pattern lasting for one to two years after an extreme event, followed by a shrinking pattern lasting 5–7 years returning the lake to its original state. While both lakes show a remarkable long term increase in size starting in 2005, Lake Azuei is different in that it is much less sensitive to storm events and instead shows a stronger response to just changing seasonal rainfall patterns.
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-12-27
    Description: Concerning the significant increase in the negative effects of flash-floods worldwide, the main goal of this research is to evaluate the power of the Analytical Hierarchy Process (AHP), fi (kNN), K-Star (KS) algorithms and their ensembles in flash-flood susceptibility mapping. To train the two stand-alone models and their ensembles, for the first stage, the areas affected in the past by torrential phenomena are identified using remote sensing techniques. Approximately 70% of these areas are used as a training data set along with 10 flash-flood predictors. It should be remarked that the remote sensing techniques play a crucial role in obtaining eight out of 10 flash-flood conditioning factors. The predictive capability of predictors is evaluated through the Information Gain Ratio (IGR) method. As expected, the slope angle results in the factor with the highest predictive capability. The application of the AHP model implies the construction of ten pair-wise comparison matrices for calculating the normalized weights of each flash-flood predictor. The computed weights are used as input data in kNN–AHP and KS–AHP ensemble models for calculating the Flash-Flood Potential Index (FFPI). The FFPI also is determined through kNN and KS stand-alone models. The performance of the models is evaluated using statistical metrics (i.e. sensitivity, specificity and accuracy) while the validation of the results is done by constructing the Receiver Operating Characteristics (ROC) Curve and Area Under Curve (AUC) values and by calculating the density of torrential pixels within FFPI classes. Overall, the best performance is obtained by the kNN–AHP ensemble model.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-12-27
    Description: Although the Zhaotong–Ludian fault is a seismically active zone located in the boundary between the Sichuan–Yunnan block and the South China block, it has not experienced a large earthquake greater than Mw 7 since at least 1700. On 3 August, 2014, an Mw 6.1 earthquake (the Ludian earthquake) ruptured the Zhaotong active belt in Ludian County, Yunnan province, China. This earthquake was the largest earthquake recorded in the region since 2000, and it provides us with a unique opportunity to study the active tectonics in the region. The analysis of the aftershocks showed that two conjugate faults could have been involved in the event. We first used Global Positioning System (GPS) data and C-band RADARSAT-2 imagery to map the coseismic surface deformation. We then inverted the derived coseismic deformation for the slip distribution based on the constructed conjugate fault model. Finally, the coulomb failure stress due to the Ludian earthquake was estimated to investigate the potential seismic hazards in this region. Our investigations showed that the Ludian earthquake was mainly a bilateral rupture event. The major slip of the main shock was located at depths of 0–5 km, which is close but does not superpose with the aftershocks that are mostly located at depths of 5–20 km. Interestingly, the seismic moment released by the aftershocks (6.9 × 1018 N∙m) was greater than that of the main shock (2.6 × 1018 N∙m). This evidence suggests that the accumulated elastic strain at depths of 0–20 km could have been fully released by the Ludian earthquake and its subsequent aftershocks. Furthermore, our analysis of the coulomb failure stress changes due to the main shock showed that the aftershocks could be the result of dynamic triggering rather than static triggering.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-12-27
    Description: Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hashing performance, we develop a cohesion intensive deep hashing model for remote sensing image retrieval. The underlying architecture of our deep model is motivated by the state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion when the net reaches a certain depth. However, different from the residual net which outputs multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function for binarizing remote sensing images. In this scenario, the representational power of the residual net architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within one class. This effectively addresses the data imbalance problem normally arising in remote sensing image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining optimal model parameters in order to favor accurate binary codes with little quantization error. We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and AID. The experimental results validate the hypothesis that our method improves the performance of current remote sensing image retrieval.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-12-27
    Description: As the backbone and arteries of a comprehensive transportation network, highways play an important role in improving people’s living standards and promoting economic growth. However, globally, there is limited quantifiable data evaluating the highway traffic state, characteristics, and performance. From the 1960s to the present, remote sensing has been regarded as the most effective technology for long-term and large-scale monitoring of surface information. However, how to reflect the dynamic “flow” information of traffic with a static remote sensing image has always been a difficult problem that is hard to solve in the field. This study aims to construct a method of evaluating highway traffic prosperity using nighttime remote sensing. First, based on nighttime light data that indicate social and economic activities, a highway-oriented method was proposed to extract highway nighttime light data from 2015 annual nighttime light data of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (SNPP-VIIRS). Subsequently, Pearson correlation analysis was used to fit the relationship between freeway traffic flow volume and freeway nighttime light at the provincial level. The results showed that Pearson Correlation Coefficient of freeway nighttime light and freeway traffic flow volume for coach and truck are 0.905 and 0.731, respectively, which are higher than between freeway traffic flow volume for coach and truck and total nighttime light (0.593 and 0.516, respectively). A new index—Highway Nighttime Traffic Prosperity Index (HNTPI)—was proposed to evaluate highway traffic across China. The results showed that HNTPI has a strong correspondence with socio-economic parameters. The Pearson Correlation Coefficient of HNTPI and gross domestic product (GDP) per capita, consumption per capita, and population are 0.772, 0.895, and 0.968, respectively. There is a huge spatial heterogeneity in China nighttime traffic, the prosperity degree of highway traffic in developed coastal areas is obviously higher than that inland. The national general highway is the most prosperous highway at night and the national general highway nighttime prosperity of Shanghai reached 22.34%. This research provides basic data for the long-term monitoring and evaluation of regional traffic operation at night and research on the correlation between regional highway construction and the economy.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-12-27
    Description: The advent of multiple satellite systems capable of resolving smallholder agricultural plots raises possibilities for significant advances in measuring and understanding agricultural productivity in smallholder systems. However, since only imperfect yield data are typically available for model training and validation, assessing the accuracy of satellite-based estimates remains a central challenge. Leveraging a survey experiment in Mali, this study uses plot-level sorghum yield estimates, based on farmer reporting and crop cutting, to construct and evaluate estimates from three satellite-based sensors. Consistent with prior work, the analysis indicates low correlation between the ground-based yield measures (r = 0.33). Satellite greenness, as measured by the growing season peak value of the green chlorophyll vegetation index from Sentinel-2, correlates much more strongly with crop cut (r = 0.48) than with self-reported (r = 0.22) yields. Given the inevitable limitations of ground-based measures, the paper reports the results from the regressions of self-reported, crop cut, and (crop cut-calibrated) satellite sorghum yields. The regression covariates explain more than twice as much variation in calibrated satellite yields (R2 = 0.25) compared to self-reported or crop cut yields, suggesting that a satellite-based approach anchored in crop cuts can be used to track sorghum yields as well or perhaps better than traditional measures. Finally, the paper gauges the sensitivity of yield predictions to the use of Sentinel-2 versus higher-resolution imagery from Planetscope and DigitalGlobe. All three sensors exhibit similar performance, suggesting little gains from finer resolutions in this system.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-12-27
    Description: Submesoscale eddies play an important role in the energy transfer from the mesoscale down to the dissipative range, as well as in tracer transport. They carry inorganic matter, nutrients and biomass; in addition, they may act as pollutant conveyors. However, synoptic observations of these features need high resolution sampling, in both time and space, making their identification challenging. Therefore, HF coastal radar were and are successfully used to accurately identify, track and describe them. In this paper we tested two already existing algorithms for the automated detection of submesoscale eddies. We applied these algorithms to HF radar velocity fields measured by a network of three radar systems operating in the Gulf of Naples. Both methods showed shortcomings, due to the high non-geostrophy of the observed currents. For this reason we developed a third, novel algorithm that proved to be able to detect highly asymmetrical eddies, often not properly identified by the previous ones. We used the results of the application of this algorithm to estimate the eddy boundary profiles and the eddy spatial distribution.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-12-18
    Description: Land use/land cover change (LUCC) is the most direct driving force of landscape pattern change. The Zoige Plateau is a natural ecosystem with the largest high-altitude swamp wetland in China and its land use pattern has undergone great changes in recent years, but how the changes of each land use type affect the landscape pattern is uncertain. Here, we used the object-oriented method to extract land use information in 2015. Then, combined with land use data, the land use change characteristics from 2000 to 2015 were analyzed. We used the correlation analysis method to analyze the effects of land use changes on landscape pattern systematically. Three key conclusions were reached. (1) Land use information for the Zoige Plateau could be extracted with high accuracy by combining the object-oriented method and support vector machine (SVM). The overall accuracy was 93.2% and the Kappa coefficient was 0.889. (2) The comprehensive dynamic degree of land use was the highest from 2010 to 2015. From 2000 to 2015, the wetland area decreased the fastest because 57.05% of the wetlands were transferred out. Construction land increased the fastest, and the transferred in area from grassland and farmland were the main reason. (3) The effects of unused land, farmland, and construction land on the overall landscape pattern were stronger than that of the other types, among which farmland had the most significant impact (with a correlation coefficient of 0.959, p 〈 0.001). The change of unused land was the most highly significant factor associated with the landscape area pattern, and both the water body and unused land showed strong correlations with landscape shape pattern change. This suggested that the effects of land use types occupying a relatively small area on the landscape pattern were intensified. This study will provide guidance for the environmental management of local land resources and other natural ecosystem areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-12-18
    Description: The use of infrared (IR) sensors to detect clouds in different layers of the atmosphere is a big challenge, especially for ice clouds. This study aims to improve ice cloud detection using Lin’s algorithm and apply it to Atmospheric Infrared Sounder (AIRS). To achieve these objectives, the scattering and emission characteristics of clouds as perceived by AIRS longwave infrared (LWIR, ~15 μm) and shortwave infrared (SWIR, ~4.3 μm) CO2 absorption bands are applied for ice cloud detection. Hence, the weighting function peak (WFP), cut-off pressure, and correlation coefficients between the brightness temperatures (BTs) of LWIR and SWIR channels are used to pair the LWIR and SWIR channels. After that, the linear relationship between the clear-sky BTs of the paired LWIR and SWIR channels is established by the cloud scattering and emission Index (CESI). However, the linear relationship fails in the presence of ice clouds. Comparing these results with collocated Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations show that the probability of detection of ice clouds for Pair-8 (WFP~330hPa), Pair-19 (WFP~555hPa), and Pair-24 (WFP~866hPa) are 0.63, 0.71, and 0.73 in the daytime and 0.46, 0.62, and 0.7 in the nighttime at a false alarm rate of 0.1 when ice clouds top pressure above 330 hPa, 555 hPa, and 866 hPa, respectively. Furthermore, the thresholds of the three pairs are 2.4 K, 3 K, and 8.7 K in the daytime and 1.7 K, 1.7 K, and 4.4 K in the nighttime at the highest Heike Skill Score (HSS). The error of HSS values based on thresholds of ice clouds is between 0.01 and 0.02 which is comparable with the ice cloud detection results in both day and night conditions. It is shown that Pair-8 (WFP~330hPa) can detect opaque and thick ice clouds above its WFP altitude over the tropical areas but it is unable to observe ice clouds over the mid-latitude while Pair-19 and Pair-24 can identify ice clouds above their WFP altitude.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-12-18
    Description: The dynamic response of coastal wetlands (CWs) to hydro-meteorological signals is a key indicator for understanding climate driven variations in wetland ecosystems. This study explored the response of CW dynamics to hydro-meteorological signals using time series of Landsat-derived normalized difference vegetation index (NDVI) values at six locations and hydro-meteorological time-series from 1984 to 2015 in Apalachicola Bay, Florida. Spectral analysis revealed more persistence in NDVI values for forested wetlands in the annual frequency domain, compared to scrub and emergent wetlands. This behavior reversed in the decadal frequency domain, where scrub and emergent wetlands had a more persistent NDVI than forested wetlands. The wetland dynamics were found to be driven mostly by the Apalachicola Bay water level and precipitation. Cross-spectral analysis indicated a maximum time-lag of 2.7 months between temperature and NDVI, whereas NDVI lagged water level by a maximum of 2.2 months. The quantification of persistent behavior and subsequent understanding that CW dynamics are mostly driven by water level and precipitation suggests that the severity of droughts, floods, and storm surges will be a driving factor in the future sustainability of CW ecosystems.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-12-19
    Description: Accurately mapping burned areas is crucial for the analysis of carbon emissions and wildfire risk as well as understanding the effects of climate change on forest structure. Burned areas have predominantly been mapped using optical remote sensing images. However, the structural changes due to fire also offer opportunities for mapping burned areas using three-dimensional (3D) datasets such as Light detection and ranging (LiDAR). This study focuses on the feasibility of using photon counting LiDAR data from National Aeronautics and Space Administration’s (NASA) Ice, Cloud, and land Elevation Satellite-2 (ICESat−2) mission to differentiate vegetation structure in burned and unburned areas and ultimately classify burned areas along mapped ground tracks. The ICESat−2 mission (launched in September 2018) provides datasets such as geolocated photon data (ATL03), which comprises precise latitude, longitude and elevation of each point where a photon interacts with land surface, and derivative products such as the Land Water Vegetation Elevation product (ATL08), which comprises estimated terrain and canopy height information. For analysis, 24 metrics such as the average, median and standard deviation of canopy height were derived from ATL08 data over forests burned by recent fires in 2018 in northern California and western New Mexico. A reference burn map was derived from Sentinel−2 images based on the differenced Normalized Burn Ratio (dNBR) index. A landcover map based on Sentinel−2 images was employed to remove non-forest classes. Landsat 8 based dNBR image and landcover map were also used for comparison. Next, ICESat−2 data of forest samples were classified into burned and unburned ATL08 100-m segments by both Random Forest classification and logistic regression. Both Sentinel−2 derived and Landsat 8 derived ATL08 samples got high classification accuracy, 83% versus 76%. Moreover, the resulting classification accuracy by Random Forest and logistic regression reached 83% and 74%, respectively. Among the 24 ICESat−2 metrics, apparent surface reflectance and the number of canopy photons were the most important. Furthermore, burn severity of each ATL08 segment was also estimated with Random Forest regression. R2 of predicted burn severity to observed dNBR is 0.61 with significant linear relationship and moderate correlation (r = 0.78). Overall, the reasonably high accuracies achieved in this study demonstrate the feasibility of employing ICESat−2 data in burned forest classification, opening avenues for improved estimation of burned biomass and carbon emissions from a 3D perspective.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-12-20
    Description: Robust detection of infrared small target is an important and challenging task in many photoelectric detection systems. Using the difference of a specific feature between the target and the background, various detection methods were proposed in recent decades. However, most methods extract the feature in a region with fixed shape, especially in a rectangular region, which causes a problem: when faced with complex-shape clutters, the rectangular region involves the pixels inside and outside the clutters, and the significant grey-level difference among these pixels leads to a relatively large feature in the clutter area, interfering with the target detection. In this paper, we propose a structure-adaptive clutter suppression method, called chain-growth filtering, for robust infrared small target detection. The well-designed filtering model can adjust its shape to fit various clutter structures such as lines, curves and irregular edges, and thus has a more robust clutter suppression capability than the fixed-shape feature extraction strategy. In addition, the proposed method achieves a considerable anti-noise ability by employing guided filter as a preprocessing approach and enjoys the capability of multi-scale target detection without complex parameter tuning. In the experiment, we evaluate the performance of the detection method through 12 typical infrared scenes which contain different types of clutters. Compared with seven state-of-the-art methods, the proposed method shows the superior clutter-suppression effects for various types of clutters and the excellent detection performance for various scenes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-12-20
    Description: The potential applications of computational tools, such as anomaly detection and incongruence, for analyzing data attract much attention from the scientific research community. However, there remains a need for more studies to determine how anomaly detection and incongruence applied to analyze data of static images from remote sensing will assist in detecting water pollution. In this study, an incongruence-based anomaly detection strategy for analyzing water pollution in images from remote sensing is presented. Our strategy semi-automatically detects occurrences of one type of anomaly based on the divergence between two image classifications (contextual and non-contextual). The results indicate that our strategy accurately analyzes the majority of images. Incongruence as a strategy for detecting anomalies in real-application (non-synthetic) data found in images from remote sensing is relevant for recognizing crude oil close to open water bodies or water pollution caused by the presence of brown mud in large rivers. It can also assist surveillance systems by detecting environmental disasters or performing mappings.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-12-20
    Description: There is a long history of the use of aerial imagery for archaeological research, but the application of multisensor image data has only recently been facilitated by the development of unmanned aerial vehicles (UAVs). Two archaeological sites in the East Midlands U.K. that differ in age and topography were selected for survey using multisensor imaging from a fixed-wing UAV. The aim of this study was to determine optimum methodology for the use of UAVs in examining archaeological sites that have no obvious surface features and examine issues of ground control target design, thermal effects, image processing and advanced filtration. The information derived from the range of sensors used in this study enabled interpretation of buried archaeology at both sites. For any archaeological survey using UAVs, the acquisition of visible colour (RGB), multispectral, and thermal imagery as a minimum are advised, as no single technique is sufficient to attempt to reveal the maximum amount of potential information.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-12-20
    Description: Repeat photogrammetry is increasingly the go-too tool for long-term geomorphic monitoring, but quantifying the differences between structure-from-motion (SfM) models is a developing field. Volumetric differencing software (such as the open-source package CloudCompare) provides an efficient mechanism for quantifying change in landscapes. In this case study, we apply this methodology to coastal boulder deposits on Inishmore, Ireland. Storm waves are known to move these rocks, but boulder transportation and evolution of the deposits are not well documented. We used two disparate SfM data sets for this analysis. The first model was built from imagery captured in 2015 using a GoPro Hero 3+ camera (fisheye lens) and the second used 2017 imagery from a DJI FC300X camera (standard digital single-lens reflex (DSLR) camera); and we used CloudCompare to measure the differences between them. This study produced two noteworthy findings: First, volumetric differencing reveals that short-term changes in boulder deposits can be larger than expected, and that frequent monitoring can reveal not only the scale but the complexities of boulder transport in this setting. This is a valuable addition to our growing understanding of coastal boulder deposits. Second, SfM models generated by different imaging hardware can be successfully compared at sub-decimeter resolution, even when one of the camera systems has substantial lens distortion. This means that older image sets, which might not otherwise be considered of appropriate quality for co-analysis with more recent data, should not be ignored as data sources in long-term monitoring studies.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-12-20
    Description: Surface temperature and pressure are indispensable variables in Global Navigation Satellite System (GNSS) meteorology. The lack of meteorological observations located at or near the GNSS sites is a big challenge for the calculation of accurate zenith hydrostatic delay (ZHD). Therefore, various empirical models with different model forms were established to provide temperature and pressure values. In this study, the influence of different modelling factors, including model forms, temporal resolution of the data sources, and the spatial resolution of the data sources, is evaluated and the temperature and pressure model with the best performance is developed. On the basis of the meteorological parameters estimated by the above model, we analyzed the global performance of the three most commonly used ZHD models, that is, the Saastamoinen, Hopfield, and Black models. The numerical results show that the model with the idea of time-segmented modelling performs best, of which the global mean root mean square (RMS), mean absolute error (MAE), and standard deviation (SD) are 7.87/6.33/7.17 hPa and 2.95/2.31/2.79 K for pressure and temperature, respectively, using the data sources with temporal resolution of 2 h and spatial resolution of 2.5° × 2° in the reanalysis data comparison. In comparison with the radiosonde data, the mean RMS/MAE/SD are 7.02/5.24/6.46 hPa and 4.05/3.17/3.86 K for pressure and temperature, respectively. The Saastamoinen model with a global mean bias/RMS of 1.01/16.9 mm achieved the best ZHD estimated values compared with the other two ZHD models.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-12-20
    Description: As one of the most commonly used acoustic systems in seabed surveys, the altitude of the side scan sonar from the seafloor is always difficult to determine, especially when raw signal levels and gain information are unavailable. The inaccurate sonar altitudes would limit the applications of sonar image geocoding, target detection, and sediment classification. The sonar altitude can be obtained by using bottom tracking methods, but traditional methods often require manual thresholds or complex post-processing procedures, which cannot ensure accurate and real-time bottom tracking. In this paper, a real-time bottom tracking method of side scan data is proposed based on a one-dimensional convolution neural network. First, according to the characteristics of side scan backscatter strength sequences, positive (bottom sequences) and negative (water column and seabed sequences) samples are extracted to establish the sample sets. Second, a one-dimensional convolution neural network is carefully designed and trained by using the sample set to recognize the bottom sequences. Third, a complete processing procedure of the real-time bottom tracking method is established by traversing each side scan ping data and recognizing the bottom sequences. The auxiliary methods for improving real-time performance and sample data augmentation are also explained in detail. The proposed method is implemented on the measured side scan data from the marine area in Meizhou Bay. The trained network model achieves a 100% recognition of the initial sample set as well as 100% bottom tracking accuracy of the training survey line. The average bottom tracking accuracy of the testing survey lines excluding missed pings reaches 99.2%. By comparison with multi-beam bathymetric data and the statistical analysis of real-time performance, the experimental results prove the validity and accuracy of the proposed real-time bottom tracking method.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-12-20
    Description: Global Fishing Watch and VIIRS-DNB (visible infrared imaging radiometer suite day/night band) signals are compared for the jigger fleet in FAO (Food and Agriculture Organization of the United Nations) Major Fishing Area 41 during the maximum feasible time span (2012–2018). Both signals have shown a high degree of consistency at all temporal and spatial scales analyzed, including seasonal cycles, lack of signal for some years and interannual tendencies. This indicates that both signals are a fair representation of the fishing effort exerted by the jigger fleet in this zone. The high degree of consistency does not support views questioning satellite AIS (automatic identification system) as a reliable tool to survey fishing activities. Instead, our results add evidence supporting the value of remote sensing, in particular, when independent sources of information (such as VIIRS-DNB and AIS) are combined, as a relevant tool to add transparency and support compliance of fishing activities in vast and distant regions of the ocean.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-12-21
    Description: The greenhouse is the fastest growing food production approach and has become the symbol of protected agriculture with the development of agricultural modernization. Previous studies have verified the effectiveness of remote sensing techniques for mono-temporal greenhouse mapping. In practice, long-term monitoring of greenhouse from remote sensing data is vital for the sustainable management of protected agriculture and existing studies have been limited in understanding its spatiotemporal dynamics. This study aimed to generate multi-temporal greenhouse maps in a typical protected agricultural region (Shouguang region, north China) from 1990 to 2018 using Landsat imagery and the Google Earth Engine and quantify its spatiotemporal dynamics that occur as a consequence of the development of protected agriculture in the study area. The multi-temporal greenhouse maps were produced using random forest supervised classification at seven-time intervals, and the overall accuracy of the results greater than 90%. The total area of greenhouses in the study area expanded by 1061.94 km 2 from 1990 to 2018, with the largest growth occurring in 1995–2010. And a large number of increased greenhouses occurred in 10–35 km northwest and 0–5 km primary roads buffer zones. Differential change trajectories between the total area and number of patches of greenhouses were revealed using global change metrics. Results of five landscape metrics showed that various landscape patterns occurred in both spatial and temporal aspects. According to the value of landscape expansion index in each period, the growth mode of greenhouses was from outlying to edge-expansion and then gradually changed to infilling. Spatial heterogeneity, which measured by Shannon’s entropy, of the increased greenhouses was different between the global and local levels. These results demonstrated the advantage of utilizing Landsat imagery and Google Earth Engine for monitoring the development of greenhouses in a long-term period and provided a more intuitive perspective to understand the process of this special agricultural production approach than relevant social science studies.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-12-20
    Description: Supervised classification methods, used for many applications, including vegetation mapping require accurate “ground truth” to be effective. Nevertheless, it is common for the quality of this data to be poorly verified prior to it being used for the training and validation of classification models. The fact that noisy or erroneous parts of the reference dataset are not removed is usually explained by the relatively high resistance of some algorithms to errors. The objective of this study was to demonstrate the rationale for cleaning the reference dataset used for the classification of heterogeneous non-forest vegetation, and to present a workflow based on the t-distributed stochastic neighbor embedding (t-SNE) algorithm for the better integration of reference data with remote sensing data in order to improve outcomes. The proposed analysis is a new application of the t-SNE algorithm. The effectiveness of this workflow was tested by classifying three heterogeneous non-forest Natura 2000 habitats: Molinia meadows (Molinion caeruleae; code 6410), species-rich Nardus grassland (code 6230) and dry heaths (code 4030), employing two commonly used algorithms: random forest (RF) and AdaBoost (AB), which, according to the literature, differ in their resistance to errors in reference datasets. Polygons collected in the field (on-ground reference data) in 2016 and 2017, containing no intentional errors, were used as the on-ground reference dataset. The remote sensing data used in the classification were obtained in 2017 during the peak growing season by a HySpex sensor consisting of two imaging spectrometers covering spectral ranges of 0.4–0.9 μm (VNIR-1800) and 0.9–2.5 μm (SWIR-384). The on-ground reference dataset was gradually cleaned by verifying candidate polygons selected by visual interpretation of t-SNE plots. Around 40–50% of candidate polygons were ultimately found to contain errors. Altogether, 15% of reference polygons were removed. As a result, the quality of the final map, as assessed by the Kappa and F1 accuracy measures as well as by visual evaluation, was significantly improved. The global map accuracy increased by about 6% (in Kappa coefficient), relative to the baseline classification obtained using random removal of the same number of reference polygons.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-12-22
    Description: The movement of contaminants and biota within river channels is influenced by the flow field via various processes of dispersion. Understanding and modeling of these processes thus can facilitate applications ranging from the prediction of travel times for spills of toxic materials to the simulation of larval drift for endangered species of fish. A common means of examining dispersion in rivers involves conducting tracer experiments with a visible tracer dye. Whereas conventional in situ instruments can only measure variations in dye concentration over time at specific, fixed locations, remote sensing could provide more detailed, spatially-distributed information for characterizing dispersion patterns and validating two-dimensional numerical models. Although previous studies have demonstrated the potential to infer dye concentrations from remotely sensed data in clear-flowing streams, whether this approach can be applied to more turbid rivers remains an open question. To evaluate the feasibility of mapping spatial patterns of dispersion in streams with greater turbidity, we conducted an experiment that involved manipulating dye concentration and turbidity within a pair of tanks while acquiring field spectra and hyperspectral and RGB (red, green, blue) images from a small Unoccupied Aircraft System (sUAS). Applying an optimal band ratio analysis (OBRA) algorithm to these data sets indicated strong relationships between spatially averaged reflectance (i.e., water color) and Rhodamine WT dye concentration across four different turbidity levels from 40–60 NTU. Moreover, we obtained high correlations between spectrally based quantities (i.e., band ratios) and dye concentration for the original, essentially continuous field spectra; field spectra resampled to the bands of a five-band imaging system and an RGB camera; and both hyperspectral and RGB images acquired from an sUAS during the experiment. The results of this study thus confirmed the potential to map dispersion patterns of tracer dye via remote sensing and suggested that this empirical approach can be extended to more turbid rivers than those examined previously.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-12-18
    Description: Retreat and progradation make the edges of salt marsh platforms their most active features. If we have a single topographic snapshot of a marsh, is it possible to tell if some areas have retreated or prograded recently or if they are likely to do so in the future? We explore these questions by characterising marsh edge topography in mega-tidal Moricambe Bay (UK) in 2009, 2013 and 2017. We first map outlines of marsh platform edges based on lidar data and from these we generate transverse topographic profiles of the marsh edge 10 m long and 20 m apart. By associating profiles with individual retreat or progradation events, we find that they produce distinct profiles when grouped by change event, regardless of event magnitude. Progradation profiles have a shallow scarp and low relief that decreases with event magnitude, facilitating more progradation. Conversely, steep-scarped, high-relief retreat profiles dip landward as retreat reveals older platforms. Furthermore, vertical accretion of the marsh edge is controlled by elevation rather than its lateral motion, suggesting an even distribution of deposition that would allow bay infilling were it not limited by the migration of creeks. While we demonstrate that marsh edges can be quantified with currently available DTMs, oblique observations are crucial to fully describe scarps and better inform their sensitivity to wave and current erosion.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-12-17
    Description: Technological progress in Earth surface observation provides a vast range of information on the land and methods of its use. This enables property owners, users and administrators to monitor the state of the boundaries of the land they own/administer. The land cover, monitored directly on the ground, is not always consistent with the land use entered in the Land and Property Registry (LPR). Discrepancies between these data are often found in former communist countries. One of the reasons for this was the rapid process of land privatisation, which took place in Poland, without updating information on the plot geodetic boundaries. The study examined and compared the land use (entered in the LPR) with the land cover (on the ground) for national roads (acr. LU-LC). The most frequent discrepancies were selected, using CLC2018, digital orthophotomaps (using the Web Map Service (WMS) browsing service compliant with Open Geospatial Consortium (OGC) standards), cadastral data, statistical modelling and an updated survey of the right-of-way. Subsequently, six algorithms were proposed to synchronise the land use and land cover when the right-of-way was used by unauthorised persons, and two algorithms for cases of unauthorised use of land by the road administrator. Currently, it is difficult to synchronise the land cover with the land use from the administrative, legal and social points of view. The results of analyses show that full synchronisation of land use and land cover is complicated and time-consuming, although desired.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-12-23
    Description: Analyses of landfast ice in Arctic coastal areas provide a comprehensive understanding of the variations in Arctic sea ice and generate data for studies on the utilization of the Arctic passages. Based on our analysis, Arctic landfast ice mainly appears in January–June and is distributed within the narrow straits of the Canadian Archipelago (nearly 40%), the coastal areas of the East Siberian Sea, the Laptev Sea, and the Kara Sea. From 1976–2018, the landfast ice extent gradually decreased at an average rate of −1.1 ± 0.5 × 104 km2/yr (10.5% per decade), while the rate of decrease for entire Arctic sea ice was −6.0 ± 2.4 × 104 km2/yr (5.2% per decade). The annual maximum extent reached 2.3 × 106 km2 in the early 1980s, and by 2018, the maximum extent decreased by 0.6 × 106 km2, which is an area approximately equivalent the Laptev Sea. The mean duration of Arctic landfast ice is 44 weeks, which has gradually been reduced at a rate of −0.06 ± 0.03 weeks/yr. Regional landfast ice extent decreases in 16 of the 17 subregions except for the Bering Sea, making it the only subregion where both the extent and duration increases. The maximum mean landfast ice thickness appears in the northern Canadian Archipelago (〉2.5 m), with the highest increasing trend (0.1 m/yr). In the Northeast Passage, the mean landfast ice thickness is 1.57 m, with a slight decreasing trend of −1.2 cm/yr, which is smaller than that for entire Arctic sea ice (−5.1 cm/yr). The smaller decreasing trend in the landfast ice extent and thickness suggests that the well-known Arctic sea ice decline largely occurred in the pack ice zone, while the larger relative extent loss indicates a faster ice free future in the landfast ice zone.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-12-23
    Description: An accurate inversion of the fraction of absorbed photosynthetically active radiation (FPAR) based on remote sensing data is particularly important for understanding global climate change. At present, there are relatively few studies focusing on the inversion of FPAR using Chinese autonomous satellites. This work intends to investigate the inversion of the FPAR obtained from the FengYun-3C (FY-3C) data of domestic satellites by using the PROSAIL model and the look-up table (LUT) algorithm for different vegetation types from various places in China. After analyzing the applicability of existing models using FY-3C data and MOD09GA data, an inversion strategy for FY-3C data is implemented. This strategy is applied to areas with various types of vegetation, such as grasslands, croplands, shrubs, broadleaf forests, and needleleaf forests, and produces FPAR products, which are cross-validated against the FPAR products from the Moderate Resolution Imaging Spectro Radiometer (MODIS), Geoland Version 1 (GEOV1), and Global Land Surface Satellite (GLASS). Accordingly, the results show that the FPAR retrieved from the FY-3C data has good spatial and temporal consistency and correlation with the three FPAR products. However, this technique does not favor all types of vegetation equally; the FY-FPAR is relatively more suitable for the inversion of grasslands and croplands during the lush period than for others. Therefore, the inversion strategy provides the potential to generate large-area and long-term sequence FPAR products from FY-3C data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-12-23
    Description: Land-cover information is significant for land-use planning, urban management, and environment monitoring. This paper presented a novel extended topology-preserving segmentation (ETPS)-based multi-scale and multi-feature method using the convolutional neural network (EMMCNN) for high spatial resolution (HSR) image land-cover classification. The EMMCNN first segmented the images into superpixels using the ETPS algorithm with false-color composition and enhancement and built parallel convolutional neural networks (CNNs) with dense connections for superpixel multi-scale deep feature learning. Then, the multi-resolution segmentation (MRS) object hand-delineated features were extracted and mapped to superpixels for complementary multi-segmentation and multi-type representation. Finally, a hybrid network was designed to consist of 1-dimension CNN and multi-layer perception (MLP) with channel-wise stacking and attention-based weighting for adaptive feature fusion and comprehensive classification. Experimental results on four real HSR GaoFen-2 datasets demonstrated the superiority of the proposed EMMCNN over several well-known classification methods in terms of accuracy and consistency, with overall accuracy averagely improved by 1.74% to 19.35% for testing images and 1.06% to 8.78% for validating images. It was found that the solution combining an appropriate number of larger scales and multi-type features is recommended for better performance. Efficient superpixel segmentation, networks with strong learning ability, optimized multi-scale and multi-feature solution, and adaptive attention-based feature fusion were key points for improving HSR image land-cover classification in this study.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-12-24
    Description: Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement units (IMU), to evaluate dynamic displacement responses of engineering structures. However, the most common problem in structural health monitoring (SHM) using GNSS is the presence of surrounding structures that cause multipath errors in GNSS observations. Skyscrapers and high-rise buildings in metropolitan cities are generally close to each other, and long-span bridges have towers, main cable, and suspender cables. Therefore, multipath error in GNSS observations, which is typically added to the measurement noise, is inevitable while monitoring such flexible engineering structures. Unlike other errors like atmospheric errors, which are mostly reduced or modeled out, multipath errors are the largest remaining unmanaged error sources. The high noise levels of high-rate GNSS solutions limit their structural monitoring application for detecting load-induced semi-static and dynamic displacements. This study investigates the estimation of accurate dynamic characteristics (frequency and amplitude) of structural or seismic motions derived from multipath-affected high-rate GNSS observations. To this end, a novel hybrid model using both wavelet-based multiscale principal component analysis (MSPCA) and wavelet transform (MSPCAW) is designed to extract the amplitude and frequency of both GNSS relative- and PPP- (Precise Point Positioning) derived displacement motions. To evaluate the method, a shaking table with a GNSS receiver attached to it, collecting 10 Hz data, was set up close to a building. The table was used to generate various amplitudes and frequencies of harmonic motions. In addition, 50-Hz linear variable differential transformer (LVDT) observations were collected to verify the MSMPCAW model by comparing their results. The results showed that the MSPCAW could be efficiently used to extract the dynamic characteristics of noisy dynamic movements under seismic loads. Furthermore, the dynamic behavior of seismic motions can be extracted accurately using GNSS-PPP, and its dominant frequency equals that extracted by LVDT and relative GNSS positioning method. Its accuracy in determining the amplitude approaches 91.5% relative to the LVDT observations.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-12-24
    Description: Mountain ecosystems are biodiversity hotspots that are increasingly threatened by climate and land use/land cover changes. Long-term biodiversity monitoring programs provide unique insights into resulting adverse impacts on plant and animal species distribution. Species distribution models (SDMs) in combination with satellite remote sensing (SRS) data offer the opportunity to analyze shifts of species distributions in response to these changes in a spatially explicit way. Here, we predicted the presence probability of three different rove beetles in a mountainous protected area (Gran Paradiso National Park, GPNP) using environmental variables derived from Landsat and Aster Global Digital Elevation Model data and an ensemble modelling approach based on five different model algorithms (maximum entropy, random forest, generalized boosting models, generalized additive models, and generalized linear models). The objectives of the study were (1) to evaluate the potential of SRS data for predicting the presence of species dependent on local-scale environmental parameters at two different time periods, (2) to analyze shifts in species distributions between the years, and (3) to identify the most important species-specific SRS predictor variables. All ensemble models showed area under curve (AUC) of the receiver operating characteristics values above 0.7 and true skills statistics (TSS) values above 0.4, highlighting the great potential of SRS data. While only a small proportion of the total area was predicted as highly suitable for each species, our results suggest an increase of suitable habitat over time for the species Platydracus stercorarius and Ocypus ophthalmicus, and an opposite trend for Dinothenarus fossor. Vegetation cover was the most important predictor variable in the majority of the SDMs across all three study species. To better account for intra- and inter-annual variability of population dynamics as well as environmental conditions, a continuation of the monitoring program in GPNP as well as the employment of SRS with higher spatial and temporal resolution is recommended.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-12-24
    Description: Urban geographical maps are important to urban planning, urban construction, land-use studies, disaster control and relief, touring and sightseeing, and so on. Satellite remote sensing images are the most important data source for urban geographical maps. However, for optical satellite remote sensing images with high spatial resolution, certain inevitable factors, including cloud, haze, and cloud shadow, severely degrade the image quality. Moreover, the geometrical and radiometric differences amongst multiple high-spatial-resolution images are difficult to eliminate. In this study, we propose a robust and efficient procedure for generating high-resolution and high-quality seamless satellite imagery for large-scale urban regions. This procedure consists of image registration, cloud detection, thin/thick cloud removal, pansharpening, and mosaicking processes. Methodologically, a spatially adaptive method considering the variation of atmospheric scattering, and a stepwise replacement method based on local moment matching are proposed for removing thin and thick clouds, respectively. The effectiveness is demonstrated by a successful case of generating a 0.91-m-resolution image of the main city zone in Nanning, Guangxi Zhuang Autonomous Region, China, using images obtained from the Chinese Beijing-2 and Gaofen-2 high-resolution satellites.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-12-18
    Description: Airborne lidar point clouds of vegetation capture the 3-D distribution of its scattering elements, including leaves, branches, and ground features. Assessing the contribution from vegetation to the lidar point clouds requires an understanding of the physical interactions between the emitted laser pulses and their targets. Most of the current methods to estimate the gap probability (Pgap) or leaf area index (LAI) from small-footprint airborne laser scan (ALS) point clouds rely on either point-number-based (PNB) or intensity-based (IB) approaches, with additional empirical correlations with field measurements. However, site-specific parameterizations can limit the application of certain methods to other landscapes. The universality evaluation of these methods requires a physically based radiative transfer model that accounts for various lidar instrument specifications and environmental conditions. We conducted an extensive study to compare these approaches for various 3-D forest scenes using a point-cloud simulator developed for the latest version of the discrete anisotropic radiative transfer (DART) model. We investigated a range of variables for possible lidar point intensity, including radiometric quantities derived from Gaussian Decomposition (GD), such as the peak amplitude, standard deviation, integral of Gaussian profiles, and reflectance. The results disclosed that the PNB methods fail to capture the exact Pgap as footprint size increases. By contrast, we verified that physical methods using lidar point intensity defined by either the distance-weighted integral of Gaussian profiles or reflectance can estimate Pgap and LAI with higher accuracy and reliability. Additionally, the removal of certain additional empirical correlation coefficients is feasible. Routine use of small-footprint point-cloud radiometric measures to estimate Pgap and the LAI potentially confirms a departure from previous empirical studies, but this depends on additional parameters from lidar instrument vendors.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-12-18
    Description: The authors wish to make the following corrections to this paper [1]: [...]
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-12-18
    Description: Machine learning approaches are valuable methods in hyperspectral remote sensing, especially for the classification of land cover or for the regression of physical parameters. While the recording of hyperspectral data has become affordable with innovative technologies, the acquisition of reference data (ground truth) has remained expensive and time-consuming. There is a need for methodological approaches that can handle datasets with significantly more hyperspectral input data than reference data. We introduce the Supervised Self-organizing Maps (SuSi) framework, which can perform unsupervised, supervised and semi-supervised classification as well as regression on high-dimensional data. The methodology of the SuSi framework is presented and compared to other frameworks. Its different parts are evaluated on two hyperspectral datasets. The results of the evaluations can be summarized in four major findings: (1) The supervised and semi-Supervised Self-organizing Maps (SOM) outperform random forest in the regression of soil moisture. (2) In the classification of land cover, the supervised and semi-supervised SOM reveal great potential. (3) The unsupervised SOM is a valuable tool to understand the data. (4) The SuSi framework is versatile, flexible, and easy to use. The SuSi framework is provided as an open-source Python package on GitHub.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-12-18
    Description: Satellite salinity data from the Soil Moisture and Ocean Salinity (SMOS) mission was recently enhanced, increasing the spatial extent near the coast that eluded earlier versions. In a pilot attempt we assimilate this data into a coastal ocean model (ROMS) using variational assimilation and, for the first time, investigate the impact on the simulation of a major river plume (the Congo River). Four experiments were undertaken consisting of a control (without data assimilation) and the assimilation of either sea surface height (SSH), SMOS and the combination of both, SMOS SSH. Several metrics specific to the plume were utilised, including the area of the plume, distance to the centre of mass, orientation and average salinity. The assimilation of SMOS and combined SMOS SSH consistently produced the best results in the plume analysis. Argo float salinity profiles provided independent verification of the forecast. The SMOS or SMOS SSH forecast produced the closest agreement for Argo profiles over the whole domain (outside and inside the plume) for three of four months analysed, improving over the control and a persistence baseline. The number of samples of Argo floats determined to be inside the plume were limited. Nevertheless, for the limited plume-detected floats the largest improvements were found for the SMOS or SMOS SSH forecast for two of the four months.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-12-18
    Description: Sustainable management of non-timber forest products such as palm fruits is crucial for the long-term conservation of intact forest. A major limitation to expanding sustainable management of palms has been the need for precise information about the resources at scales of tens to hundreds of hectares, while typical ground-based surveys only sample small areas. In recent years, small unmanned aerial vehicles (UAVs) have become an important tool for mapping forest areas as they are cheap and easy to transport, and they provide high spatial resolution imagery of remote areas. We developed an object-based classification workflow for RGB UAV imagery which aims to identify and delineate palm tree crowns in the tropical rainforest by combining image processing and GIS functionalities using color and textural information in an integrative way to show one of the potential uses of UAVs in tropical forests. Ten permanent forest plots with 1170 reference palm trees were assessed from October to December 2017. The results indicate that palm tree crowns could be clearly identified and, in some cases, quantified following the workflow. The best results were obtained using the random forest classifier with an 85% overall accuracy and 0.82 kappa index.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-12-18
    Description: Phenotyping of crops is important due to increasing pressure on food production. Therefore, an accurate estimation of biomass during the growing season can be important to optimize the yield. The potential of data acquisition by UAV-LiDAR to estimate fresh biomass and crop height was investigated for three different crops (potato, sugar beet, and winter wheat) grown in Wageningen (The Netherlands) from June to August 2018. Biomass was estimated using the 3DPI algorithm, while crop height was estimated using the mean height of a variable number of highest points for each m2. The 3DPI algorithm proved to estimate biomass well for sugar beet (R2 = 0.68, RMSE = 17.47 g/m2) and winter wheat (R2 = 0.82, RMSE = 13.94 g/m2). Also, the height estimates worked well for sugar beet (R2 = 0.70, RMSE = 7.4 cm) and wheat (R2 = 0.78, RMSE = 3.4 cm). However, for potato both plant height (R2 = 0.50, RMSE = 12 cm) and biomass estimation (R2 = 0.24, RMSE = 22.09 g/m2), it proved to be less reliable due to the complex canopy structure and the ridges on which potatoes are grown. In general, for accurate biomass and crop height estimates using those algorithms, the flight conditions (altitude, speed, location of flight lines) should be comparable to the settings for which the models are calibrated since changing conditions do influence the estimated biomass and crop height strongly.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-12-18
    Description: Coastal erosion endangers millions living near-shore and puts coastal infrastructure at risk, particularly in low-lying deltaic coasts of developing nations. This study focuses on morphological changes along the ~320-km-long Sindh coastline of Pakistan over past three decades. In this study, the Landsat images from 1989 to 2018 at an interval of 10 years are used to analyze the state of coastline erosion. For this purpose, well-known statistical approaches such as end point rate (EPR), least median of squares (LMS), and linear regression rate (LRR) are used to calculate the rates of coastline change. We analyze the erosion trend along with the underlying controlling variables of coastal change. Results show that most areas along the coastline have experienced noteworthy erosion during the study period. It is found that Karachi coastline experienced 2.43 ± 0.45 m/yr of erosion and 8.34 ± 0.45 m/yr of accretion, while erosion on the western and eastern sides of Indus River reached 12.5 ± 0.55 and 19.96 ± 0.65 m/yr on average, respectively. Coastal erosion is widespread along the entire coastline. However, the rate of erosion varies across the study area with a general trend of erosion increasing from west to east in the Indus Delta region (IDR), and the highest average erosion rate is 27.46 m/yr. The interdecadal change during 1989–1999, 1999–2009 and 2009–2018 periods depicted an increasing linear trend (R2 = 0.78) from Karachi to Indus River (IR) East zone. The spatial trend from west to east is positively correlated with mean sea level rise, which has increased from 1.1 to 1.9 mm/year, and negatively correlated with topographic slope, which is found to be decreasing eastward along the coastline. The findings necessitate appropriate actions and have important implications to better manage coastal areas in Pakistan in the wake of global climate change.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-12-18
    Description: Calibration of terrestrial laser scanners (TLSs) is one of the fundamental tasks for assuring the high measurement accuracy required by an increasing number of end-users. Nevertheless, the development of user-oriented calibration approaches is still an active topic of research. The calibration fields for the target-based self-calibration of TLSs described in the literature are based on the quasi-random distribution of a high number of targets, and they rely on heavy redundancy. This redundancy assures highly accurate calibration results, however, with the price of reduced efficiency. In contrast, this work follows the design, implementation, and validation of a user-oriented, cost-efficient calibration field intended for TLS calibration prior to measurement campaigns. Multiple goals and constraints are placed upon the design of the calibration field, such as comprehensive calibration for high-end panoramic TLSs considering all relevant mechanical misalignments, delivering stable and reusable calibration parameters, increasing calibration efficiency by minimizing calibration-field assembly, measurement acquisition and processing time through reducing the number of targets and scanner stations, as well as estimating calibration parameters with predefined quality criteria. The calibration field design was derived through a series of simulation experiments and it was compared with the current state of the art. The simulations indicate comparable calibration results, with eight times smaller number of targets (14 instead of 120). The implemented calibration field was tested on a range of instruments, successfully improving the measurement quality, both in situ and in the subsequent applications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-12-19
    Description: Urban vegetation provides many ecosystem services that make cities more liveable for people. As the world continues to urbanise, the vegetation cover in urban areas is changing rapidly. Here we use Google Earth Engine to map vegetation cover in all urban areas larger than 15 km2 in 2000 and 2015, which covered 390,000 km2 and 490,000 km2 respectively. In 2015, urban vegetation covered a substantial area, equivalent to the size of Belarus. Proportional vegetation cover was highly variable, and declined in most urban areas between 2000 and 2015. Declines in proportional vegetated cover were particularly common in the Global South. Conversely, proportional vegetation cover increased in some urban areas in eastern North America and parts of Europe. Most urban areas that increased in vegetation cover also increased in size, suggesting that the observed net increases were driven by the capture of rural ecosystems through low-density suburban sprawl. Far fewer urban areas achieved increases in vegetation cover while remaining similar in size, although this trend occurred in some regions with shrinking populations or economies. Maintaining and expanding urban vegetation cover alongside future urbanisation will be critical for the well-being of the five billion people expected to live in urban areas by 2030.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-12-18
    Description: Indonesia’s converted peatland areas have a well-established fire problem, but limited studies have examined the frequency with which they are burning. Here, we quantify fire frequency in Indonesia’s two largest peatland regions, Sumatra and Kalimantan, during 2001–2018. We report, annual areas burned, total peatland area affected by fires, amount of recurrent burning and associations with land-use and land-cover (LULC) change. We based these analyses on Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua combined burned area and three Landsat-derived LULC maps (1990, 2007, and 2015) and explored relationships between burning and land-cover types. Cumulative areas burned amounted nearly half of the surface areas of Sumatra and Kalimantan but were concentrated in only ~25% of the land areas. Although peatlands cover only 13% of Sumatra and Kalimantan, annual percentage of area burning in these areas was almost five times greater than in non-peatlands (2.8% vs. 0.6%) from 2001 to 2018. Recurrent burning was more prominent in Kalimantan than Sumatra. Average fire-return intervals (FRI) in peatlands of both regions were short, 28 and 45 years for Kalimantan and Sumatra, respectively. On average, forest FRI were less than 50 years. In non-forest areas, Kalimantan had shorter average FRI than Sumatra (13 years vs. 40 years), with ferns/low shrub areas burning most frequently. Our findings highlight the significant influence of LULC change in altering fire regimes. If prevalent rates of burning in Indonesia’s peatlands are not greatly reduced, peat swamp forest will disappear from Sumatra and Kalimantan in the coming decades.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-12-19
    Description: Understanding the ecological effects of human activities on an ecosystem is integral to the implementation of conservation management plans. The plasticity of plant functional traits presents an opportunity to examine the capacity for intraspecific functional trait variations to be indicators of anthropogenic landscape modifications. The presence of intraspecific trait variation would indicate that plants of a single species could to be used to evaluate and map functional diversity, a common metric used to measure biodiversity. This study uses leaf spectroscopy, light detection and ranging (LiDAR) and partial least squares regression (PLSR) to examine the intraspecific variation of functional traits in a population of 40 Quercus garryana experiencing varying levels of anthropogenic influence at the site level (
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-12-19
    Description: Unmanned aerial vehicles (UAVs) equipped with compact digital cameras and multi-spectral sensors are used in remote sensing applications and environmental studies. Recently, due to the reduction of costs of these types of system, the increase in their reliability, and the possibility of image acquisition with very high spatial resolution, low altitudes imaging is used in many qualitative and quantitative analyses in remote sensing. Also, there has been an enormous development in the processing of images obtained with UAV platforms. Until now, research on UAV imaging has focused mainly on aspects of geometric and partially radiometric correction. And consideration of the effects of low atmosphere and haze on images has so far been neglected due to the low operating altitudes of UAVs. However, it proved to be the case that the path of sunlight passing through various layers of the low atmosphere causes refraction and causes incorrect registration of reflection by the imaging sensor. Images obtained from low altitudes may be degraded due to the scattering process caused by fog and weather conditions. These negative atmospheric factors cause a reduction in contrast and colour reproduction in the image, thereby reducing its radiometric quality. This paper presents a method of dehazing images acquired with UAV platforms. As part of the research, a methodology for imagery acquisition from a low altitude was introduced, and methods of atmospheric calibration based on the atmosphere scattering model were presented. Moreover, a modified dehazing model using Wiener's adaptive filter was presented. The accuracy assessment of the proposed dehazing method was made using qualitative indices such as structural similarity (SSIM), peak signal to noise ratio (PSNR), root mean square error (RMSE), Correlation Coefficient, Universal Image Quality Index (Q index) and Entropy. The experimental results showed that using the proposed dehazing method allowed the removal of the negative impact of haze and improved image quality, based on the PSNR index, even by an average of 34% compared to other similar methods. The obtained results show that our approach allows processing of the images to remove the negative impact of the low atmosphere. Thanks to this technique, it is possible to obtain a dehazing effect on images acquired at high humidity and radiation fog. The results from this study can provide better quality images for remote sensing analysis.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-12-20
    Description: Information on habitat preferences is critical for the successful conservation of endangered species. For many species, especially those living in remote areas, we currently lack this information. Time and financial resources to analyze habitat use are limited. We aimed to develop a method to describe habitat preferences based on a combination of bird surveys with remotely sensed fine-scale land cover maps. We created a blended multiband remote sensing product from SPOT 6 and Landsat 8 data with a high spatial resolution. We surveyed populations of three bird species (Yellow-breasted Bunting Emberiza aureola, Ochre-rumped Bunting Emberiza yessoensis, and Black-faced Bunting Emberiza spodocephala) at a study site in the Russian Far East using hierarchical distance sampling, a survey method that allows to correct for varying detection probability. Combining the bird survey data and land cover variables from the remote sensing product allowed us to model population density as a function of environmental variables. We found that even small-scale land cover characteristics were predictable using remote sensing data with sufficient accuracy. The overall classification accuracy with pansharpened SPOT 6 data alone amounted to 71.3%. Higher accuracies were reached via the additional integration of SWIR bands (overall accuracy = 73.21%), especially for complex small-scale land cover types such as shrubby areas. This helped to reach a high accuracy in the habitat models. Abundances of the three studied bird species were closely linked to the proportion of wetland, willow shrubs, and habitat heterogeneity. Habitat requirements and population sizes of species of interest are valuable information for stakeholders and decision-makers to maximize the potential success of habitat management measures.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-12-20
    Description: The ability to map burn severity and to understand how it varies as a function of time of year and return frequency is an important tool for landscape management and carbon accounting in tropical savannas. Different indices based on optical satellite imagery are typically used for mapping fire scars and for estimating burn severity. However, cloud cover is a major limitation for analyses using optical data over tropical landscapes. To address this pitfall, we explored the suitability of C-band Synthetic Aperture Radar (SAR) data for detecting vegetation response to fire, using experimental fires in northern Australia. Pre- and post-fire results from Sentinel-1 C-band backscatter intensity data were compared to those of optical satellite imagery and were corroborated against structural changes on the ground that we documented through terrestrial laser scanning (TLS). Sentinel-1 C-band backscatter (VH) proved sensitive to the structural changes imparted by fire and was correlated with the Normalised Burn Ratio (NBR) derived from Sentinel-2 optical data. Our results suggest that C-band SAR holds potential to inform the mapping of burn severity in savannas, but further research is required over larger spatial scales and across a broader spectrum of fire regime conditions before automated products can be developed. Combining both Sentinel-1 SAR and Sentinel-2 multi-spectral data will likely yield the best results for mapping burn severity under a range of weather conditions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-12-19
    Description: The coverage of valid pixels of remote-sensing reflectance (Rrs) from ocean color imagery is relatively low due to the presence of clouds. In fact, it is also related to the presence of high aerosol optical depth (AOD) and other factors. In order to increase the valid coverage of satellite-retrieved products, a layer removal scheme for atmospheric correction (LRSAC) has been developed to process the ocean color data. The LRSAC used a five-layer structure including atmospheric absorption layer, Rayleigh scattering layer, aerosol scattering layer, sea surface reflection layer, and water-leaving reflectance layer to deal with the relationship of the components of the atmospheric correction. A nonlinear approach was used to solve the multiple reflections of the interface between two adjoining layers and a step-by-step procedure was used to remove effects of each layer. The LRSAC was used to process data from the sea-viewing wide field-of-view sensor (SeaWiFS) and the results were compared with standard products. The average of valid pixels of the global daily Rrs images of the standard products from 1997 to 2010 is only 11.5%, while it reaches up to 30.5% for the LRSAC. This indicates that the LRSAC recovers approximately 1.65 times of invalid pixels as compared with the standard products. Eight-day standard composite images exhibit many large areas with invalid values due to the presence of high AOD, whereas these areas are filled with valid pixels wusing the LRSAC. The ratio image of the mean valid pixel of the LRSAC to that of the standard products indicates that the number of valid pixels of the LRSAC increases with an increase of AOD. The LRSAC can increase the number of valid pixels by more than two times in about 33.8% of ocean areas with high AOD values. The accuracy of Rrs from the LRSAC was validated using the following two in situ datasets: the Marine Optical BuoY (MOBY) and the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Most matchup pairs are distributed around the 1:1 line indicating that the systematic bias of the LRSAC is relatively small. The global mean relative error (MRE) of Rrs is 7.9% and the root mean square error (RMSE) is 0.00099 sr-1 for the MOBY matchups. Similarly, the MRE and RMSE are 2.1% and 0.0025 sr-1 for the NOMAD matchups, respectively. The accuracy of LRSAC was also evaluated by different groups of matchups according to the increase of AOD values, indicating that the errors of Rrs were little affected by the presence of high AOD values. Therefore, the LRSAC can significantly improve the coverage of valid pixels of Rrs with a similar accuracy in the presence of high AOD.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-12-20
    Description: Keywords: 
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-12-23
    Description: In the era of big data, the explosive growth of Earth observation data and the rapid advancement in cloud computing technology make the global-oriented spatiotemporal data simulation possible. These dual developments also provide advantageous conditions for discrete global grid systems (DGGS). DGGS are designed to portray real-world phenomena by providing a spatiotemporal unified framework on a standard discrete geospatial data structure and theoretical support to address the challenges from big data storage, processing, and analysis to visualization and data sharing. In this paper, the trinity of big Earth observation data (BEOD), cloud computing, and DGGS is proposed, and based on this trinity theory, we explore the opportunities and challenges to handle BEOD from two aspects, namely, information technology and unified data framework. Our focus is on how cloud computing and DGGS can provide an excellent solution to enable big Earth observation data. Firstly, we describe the current status and data characteristics of Earth observation data, which indicate the arrival of the era of big data in the Earth observation domain. Subsequently, we review the cloud computing technology and DGGS framework, especially the works and contributions made in the field of BEOD, including spatial cloud computing, mainstream big data platform, DGGS standards, data models, and applications. From the aforementioned views of the general introduction, the research opportunities and challenges are enumerated and discussed, including EO data management, data fusion, and grid encoding, which are concerned with analysis models and processing performance of big Earth observation data with discrete global grid systems in the cloud environment.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-12-23
    Description: Frequent droughts and waterlogging events are a threat to food security. An understanding of the spatial and temporal variations that occur during such events is essential when conducting a regional and/or global drought and waterlogging assessment. The goal of this study is to define a comprehensive index that considers the continuum system of atmosphere, crops, and soil moisture impacts on droughts and waterlogging events, and to analyze the temporal and spatial distribution of such events in the development of maize. The results show that the proposed comprehensive drought and waterlogging index (CDWI) can bring together the advantages of a single drought and waterlogging index and reasonably describe its range. During the study period, the annual trends of the CDWI decreased at different growth stages from 1982 to 2015, whereas the CDWI did not show significant spatial heterogeneity during any particular stage. Increasing trends of CDWI over 0.019/year were found in the northern part of Midwestern Jilin Province from the emergence to tasseling stages. In addition, decreasing trends were observed in the study area from the tasseling to maturation stages. Slight drought and waterlogging events occurred more frequently than moderate and serious drought and waterlogging events.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-12-21
    Description: Increased drought frequency in Australia is a pressing concern for scholars. In 2018, a severe drought in eastern Australia was recorded by the Emergency Events Database (EM-DAT). To investigate the main causes and impacts of this drought across southeastern Australia, this work presents an overview of the drought mechanism and depicts its evolutionary process. The Standardized Precipitation Evapotranspiration Index (SPEI) from the Global Drought Monitor was used to identify the drought event and characterize its spatiotemporal distribution. The Normalized Difference Vegetation Index (NDVI) and the sun-induced chlorophyll fluorescence (SIF) were used to investigate the drought impacts on vegetation growth. In addition, the effects of drought response measures on Sustainable Development Goals (SDGs) were analyzed. Our results showed that the exceptional drought occurred across southeastern Australia from April to December, and it was most severe in July, owing to an extreme lack of precipitation and increase in temperature. Moreover, we identified profound and long-lasting impacts of the drought on NDVI and SIF levels, especially for cropland. Furthermore, we also found that SIF was superior to NDVI in detecting drought impacts. This study advised on how to formulate timely and effective drought-response measures and supports sustainable socioeconomic development in Australia.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-12-21
    Description: Multi-frequency multibeam backscatter (BS) has indicated, in particular for fine sediments, the potential for increasing the discrimination between different seabed environments. Fine sediments are expected to have a varying signal penetration within the frequency range of modern multibeam echosounders (MBES). Therefore, it is unknown to what extent the multispectral MBES data represent the surface of the seabed or different parts of the subsurface. Here, the effect of signal penetration on the measured multi-frequency BS and bathymetry is investigated. To this end, two multi-frequency datasets (90 to 450 kHz) were acquired with an R2Sonic 2026 MBES, supported by ground-truthing, in the Vlietland Lake and Port of Rotterdam (The Netherlands). In addition, a model to simulate the MBES bathymetric measurements in a layered medium is developed. The measured bathymetry difference between the lowest ( 90 kHz) and highest frequency ( 450 kHz) in areas with muddy sediments reaches values up to 60 cm dependent on the location and incident angle. In spatial correspondence with the variation in the depth difference, the BS level at the lowest frequency varies by up to 15 dB for the muddy sediments while the BS at the highest frequency shows only small variations. A comparison of the acoustic results with ground-truthing, geological setting and model indicates that the measured bathymetry and BS at the different frequencies correspond to different parts of the seabed. However, the low-frequency BS cannot be directly related to a subsurface layer because of a significant sound attenuation in the upper layer. The simulation of the MBES bottom detection indicates that the bathymetry measured at the highest and lowest frequency can be used to determine the thickness of thin layers (∼20 cm). However, with an increasing layer thickness, the bottom detection becomes more sensitive to the incident angle and small variations in the sediment properties. Consequently, an accurate determination of the layer thickness is hampered. Based on this study, it is highly recommended to analyze multi-frequency BS in combination with the inter-frequency bathymetry difference to ensure a correct interpretation and classification of multi-frequency BS data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-12-18
    Description: Advances in machine learning have changed many fields of study and it has also drawn attention in a variety of remote sensing applications. In particular, deep convolutional neural networks (CNNs) have proven very useful in fields such as image recognition; however, the use of CNNs in large-scale remote sensing landcover classifications still needs further investigation. We set out to test CNN-based landcover classification against a more conventional XGBoost shallow learning algorithm for mapping a notoriously difficult group of landcover classes, wetland class as defined by the Canadian Wetland Classification System. We developed two wetland inventory style products for a large (397,958 km2) area in the Boreal Forest region of Alberta, Canada, using Sentinel-1, Sentinel-2, and ALOS DEM data acquired in Google Earth Engine. We then tested the accuracy of these two products against three validation data sets (two photo-interpreted and one field). The CNN-generated wetland product proved to be more accurate than the shallow learning XGBoost wetland product by 5%. The overall accuracy of the CNN product was 80.2% with a mean F1-score of 0.58. We believe that CNNs are better able to capture natural complexities within wetland classes, and thus may be very useful for complex landcover classifications. Overall, this CNN framework shows great promise for generating large-scale wetland inventory data and may prove useful for other landcover mapping applications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-12-18
    Description: Maize is an extremely important grain crop, and the demand has increased sharply throughout the world. China contributes nearly one-fifth of the total production alone with its decreasing arable land. Timely and accurate prediction of maize yield in China is critical for ensuring global food security. Previous studies primarily used either visible or near-infrared (NIR) based vegetation indices (VIs), or climate data, or both to predict crop yield. However, other satellite data from different spectral bands have been underutilized, which contain unique information on crop growth and yield. In addition, although a joint application of multi-source data significantly improves crop yield prediction, the combinations of input variables that could achieve the best results have not been well investigated. Here we integrated optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield across four agro-ecological zones (AEZs) in China using a regression-based method (LASSO), two machine learning (ML) methods (RF and XGBoost), and deep learning (DL) network (LSTM). The results showed that combining multi-source data explained more than 75% of yield variation. Satellite data at the silking stage contributed more information than other variables, and solar-induced chlorophyll fluorescence (SIF) had an almost equivalent performance with the enhanced vegetation index (EVI) largely due to the low signal to noise ratio and coarse spatial resolution. The extremely high temperature and vapor pressure deficit during the reproductive period were the most important climate variables affecting maize production in China. Soil properties and management factors contained extra information on crop growth conditions that cannot be fully captured by satellite and climate data. We found that ML and DL approaches definitely outperformed regression-based methods, and ML had more computational efficiency and easier generalizations relative to DL. Our study is an important effort to combine multi-source remote sensed and environmental data for large-scale yield prediction. The proposed methodology provides a paradigm for other crop yield predictions and in other regions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-12-17
    Description: A recent study of property valuation literature indicated that the vast majority of researchers and academics in the field of real estate are focusing on Mass Appraisals rather than on the further development of the existing valuation methods. Researchers are using a variety of mathematical models used within the field of Machine Learning, which are applied to real estate valuations with high accuracy. On the other hand, it appears that professional valuers do not use these sophisticated models during daily practice, rather they operate using the traditional five methods. The Department of Lands and Surveys in Cyprus recently published the property values (General Valuation) for taxation purposes which were calculated by applying a hybrid model based on the Cost approach with the use of regression analysis in order to quantify the specific parameters of each property. In this paper, the authors propose a number of algorithms based on Artificial Intelligence and Machine Learning approaches that improve the accuracy of these results significantly. The aim of this work is to investigate the capabilities of such models and how they can be used for the mass appraisal of properties, to highlight the importance of sensitivity analysis in such models and also to increase the transparency so that automated valuation models (AVM) can be used for the day-to-day work of the valuer.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-12-17
    Description: The millimeter-wave cloud radar, ceilometer, and disdrometer have been widely used to observe clouds and precipitation. However, there are some drawbacks when those three instruments are solely employed due to their own limitations, such as the fact that radars usually suffer from signal attenuation and ceilometers/disdrometers cannot provide measurements of the hydrometeors of aloft clouds and precipitation. Thus, in this paper, we developed an integrated technology by combining and utilizing the advantages of three instruments together to investigate the vertical structure and diurnal variation of warm clouds and precipitation, and the raindrop size distribution. Specifically, the technology consists of appropriate data processing, quality control, and retrieval methods. It was implemented to study the warm clouds and precipitation in South China during the pre-flood season of 2016. The results showed that the hydrometeors of warm clouds and precipitation were mainly distributed below 2.5 km and most of the rainfall events were very light with a rain rate less than 1 mm h−1, however, the stronger precipitation primarily contributed the accumulated rain amount. Furthermore, a rising trend of cloud base height from 1000 to 1900 BJT was found. The cloud top height and cloud thickness gradually increased from 1200 BJT to reach a maximum at 1600 BJT (Beijing Standard Time, UTC+8), and then decreased until 2000 BJT. Also, three periods of the apparent rainfall on the ground of the day, namely, 0400–0700 BJT, 1400–1800 BJT, and 2300–2400 BJT were observed. During three periods, the raindrops had wider size spectra, higher number concentrations, larger rain rates, and higher water contents than at other times. The hydrometeor type, size, and concentration were gradually changed in the vertical orientation. The raindrop size distributions of warm precipitation in the air and on the ground were different, which can be expressed by γ distributions N(D) = 1.49 × 104D−0.9484exp(−6.79D) in the air and N(D) = 1.875 × 103D0.862exp(−2.444D) on the ground, where D and N(D) denote the diameter and number concentration of the raindrops, respectively.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...