ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6,836)
  • Earth Resources and Remote Sensing  (2,983)
  • Spacecraft Design, Testing and Performance  (1,512)
  • Computer Programming and Software  (1,456)
  • FID-GEO-DE-7
  • 2015-2019  (3,412)
  • 2000-2004  (3,317)
  • 1960-1964  (107)
Collection
  • Other Sources  (6,836)
Keywords
Language
Years
Year
  • 1
    Publication Date: 2019-06-29
    Description: The Compass Final Report: Europa Tunnelbot, is a summary of three Compass concurrent engineering team designs for penetrating the ice of Europa and reaching the ocean, while sampling for biomarkers and communicating back to the surface. These conceptual designs, while providing complete conceptual layouts for these penetrators, or 'Tunnelbots' along with the associated communication 'Repeaters' primarily focused on the power and thermal systems needed for these devices. Trades for these systems will provide advantages and challenges for each option. These results will be used to guide power technology development.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TP—2019-220054 , E-19649 , GRC-E-DAA-TN61831
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-29
    Description: The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth's sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70094 , Frontiers in Earth Science (e-ISSN 2296-6463)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-02
    Description: These maps are an analysis of the Thomas Fire that occurred in California during December 2017. Using a variety of NASA Earth science data from five National Aeronautics and Space Administration (NASA) sources (including four Earth Observing System Data and Information System Distributed Active Archive Centers and NASA Fire Information for Resource Management System), as well as ancillary data from Ventura County, Santa Barbara County, and the Department of Homeland Security, this analysis sought to identify forest fire risk zones, create a fire occurrence density map, examine the vegetation and subsequent burn scar, capture the affected parcels, and capture the affected vegetation.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN67275 , Enviromental Systems Research Institute; 34; 54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-29
    Description: An extreme biomass-burning event occurred in Indonesia from September through October 2015 due to severe drought conditions, partially caused by a major El Nino event, thereby allowing for significant burning of peatland that had been previously drained. This event had the highest sustained aerosol optical depths (AOD) ever monitored by the global Aerosol Robotic Network (AERONET). The newly developed AERONET Version 3 algorithms retain high AOD at the longer wavelengths when associated with high Angstrom Exponents (AEs), which thereby allowed for measurements of AOD at 675 nanometers as high as approximately 7, the upper limit of Sun photometry. Measured AEs at the highest monitored AOD levels were subsequently utilized to estimate instantaneous values of AOD at 550 nanometers in the range of 11 to 13, well beyond the upper measurement limit. Additionally, retrievals of complex refractive indices, size distributions, and single scattering albedos (SSA) were obtained at much higher AOD levels than possible from almucantar scans due to the ability to perform retrievals at smaller solar zenith angles with new hybrid sky radiance scans. For retrievals made at the highest AOD levels the fine mode volume median radii were approximately 0.25 to 0.30 microns, which are very large particles for biomass burning. Very high SSA values (approximately 0.975 from 440 to 1020 nanometers) are consistent with the domination by smoldering combustion of peat burning. Estimates of the percentage peat contribution to total biomass burning aerosol based on retrieved SSA and laboratory measured peat SSA were approximately 80-85 percent, in excellent agreement with independent estimates.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68573 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 124; 8; 4722-4740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-02
    Description: This analysis is a follow-on to the Thomas Fire analysis presented by Ross Bagwell ("Fire Analysis of the Thomas Fire Using NASA DATA in a GIS"). The Thomas fire and heavy rains a month later led to the historic flooding. The maps tell the story using NASA Earth Observing System data in concert with Santa Barbara County data.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN67295
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-18
    Description: Cloud droplet number concentration (Nd) is an important parameter of liquid clouds and is crucial to understanding aerosol-cloud interactions. It couples boundary layer aerosol composition, size and concentration with cloud reflectivity. It affects cloud evolution, precipitation, radiative forcing, global climate and, through observation, can be used to partially monitor the first indirect effect. With its unique combination of multi-wavelength, multi-angle, total and polarized reflectance measurements, the Research Scanning Polarimeter (RSP) retrieves Nd with relatively few assumptions. The approach involves measuring cloud optical thickness, mean droplet extinction cross-section and cloud physical thickness. Polarimetric observations are capable of measuring the effective variance, or width, of the droplet size distribution. Estimating cloud geometrical thickness is also an important component of the polarimetric Nd retrieval, which is accomplished using polarimetric measurements in a water vapor absorption band to retrieve the amount of in-cloud water vapor and relating this to physical thickness. We highlight the unique abilities and quantify uncertainties of the polarimetric approach. We validate the approach using observational data from the North Atlantic and Marine Ecosystems Study (NAAMES). NAAMES targets specific phases in the seasonal phytoplankton lifecycle and ocean-atmosphere linkages. This study provides an excellent opportunity for the RSP to evaluate its approach of sensing Nd over a range of concentrations and cloud types with in situ measurements from a Cloud Droplet Probe (CDP). The RSP and CDP, along with an array of other instruments, are flown on the NASA C-130 aircraft, which flies in situ and remote sensing legs in sequence. Cloud base heights retrieved by the RSP compare well with those derived in situ (R=0.83) and by a ceilometer aboard the R.V. Atlantis (R=0.79). Comparing geometric mean values from 12 science flights throughout the NAAMES-1 and NAAMES-2 campaigns, we find a strong correlation between Nd retrieved by the RSP and CDP (R=0.96). A linear least squares fit has a slope of 0.92 and an intercept of 0.3 cm3. Uncertainty in this comparison can be attributed to cloud 3D effects, nonlinear liquid water profiles, multilayered clouds, measurement uncertainty, variation in spatial and temporal sampling, and assumptions used within the method. Radiometric uncertainties of the RSP measurements lead to biases on derived optical thickness and cloud physical thickness, but these biases largely cancel out when deriving Nd for most conditions and geometries. We find that a polarimetric approach to sensing Nd is viable and the RSP is capable of accurately retrieving Nd for a variety of cloud types and meteorological conditions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68261 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 228; 227-240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-17
    Description: An evapotranspiration (ET) ensemble composed of 36 land surface model (LSM) experiments and four diagnostic datasets (GLEAM, ALEXI, MOD16, and FLUXNET) is used to investigate uncertainties in ET estimate over five climate regions in West Africa. Diagnostic ET datasets show lower uncertainty estimates and smaller seasonal variations than the LSM-based ET values, particularly in the humid climate regions. Overall, the impact of the choice of LSMs and meteorological forcing datasets on the modeled ET rates increases from north to south. The LSM formulations and parameters have the largest impact on ET in humid regions, contributing to 90% of the ET uncertainty estimates. Precipitation contributes to the ET uncertainty primarily in arid regions. The LSM-based ET estimates are sensitive to the uncertainty of net radiation in arid region and precipitation in humid region. This study serves as support for better determining water availability for agriculture and livelihoods in Africa with earth observations and land surface models.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN67775 , Remote Sensing (e-ISSN 2072-4292); 11; 8; 892
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-26
    Description: We present a new high-resolution global composition forecast system produced by NASA's Global Modeling and Assimilation Office. The NASA Goddard Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) system combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70165
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-01
    Description: In 2012 during the entry, descent, and landing of the Mars Science Laboratory (MSL), the MSL Entry, Descent, and Landing Instrumentation (MEDLI) sensor suite was collecting in-flight heatshield pressure and temperature data. The data collected by the MEDLI instruments has since been used for reconstruction of vehicle aerodynamics, atmospheric conditions, aerothermal heating, and Thermal Protection System (TPS) performance as well as material response model validation and refinement. The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite for the Mars 2020 heatshield and backshell is being designed to expand on the measurements and knowledge gained from MEDLI. Similar to MEDLI, MEDLI2 will measure the pressure and temperature of the heatshield. MEDLI2 will additionally measure the temperature, pressure, total heat flux, and radiative heat flux on the backshell.Since the backshell instrumentation is new to MEDLI2, Do No Harm (DNH) testing was conducted on instrumented backshell TPS (SLA-561V) panels. The panels consisted of four pressure port holes, one Mars Entry Atmospheric Data System (MEADS) pressure port plug, one MEDLI2 Integrated Sensor Plug (MISP) thermal plug, and one heat flux sensor. DNH testing was conducted to ensure the performance of the TPS was not degraded due to sensor integration and to characterize any TPS performance changes. The testing consisted of environmental testing vibration, shock, thermal vacuum (TVAC) cycling and bounding aerothermal (arc jet) testing. During arc jet testing, the heat flux sensors embedded in the SLA-561V panels exhibited an unexpected temporary reduction in the heat flux sensor temperature and response. After review of the test results, it was determined that this unexpected response was confined to the two heat flux sensors that experienced the greatest thermal shock condition. This condition consisted of a liquid nitrogen (LN2) bath that induced temperatures of approximately -190C, and then a transition (thermal shock) to an arc jet test at a heat rate of approximately 21 W/cm2. Both heat flux sensors that were exposed to this thermal shock experienced a blister in the thermal coating during the arc jet test.Two heat flux sensor thermal shock test series were performed to investigate the cause of the blistering and subsequent energy release. In these tests, the heat flux sensor was first cold soaked in either a dry ice or LN2 bath to induce temperatures of approximately -78C or -190C, respectively. Then the sensors were thermally shocked using two propane torches with a heat rate of either approximately 8 W/cm2 or 21 W/cm2. The key findings indicated that there is a correlation between thermal shock and the blistering observed in the DNH test series, and that the cause appeared to be rooted in the heat flux sensor epoxy that encapsulates the sensor thermopile.Since the heat flux sensors are required to measure heat fluxes up to 15 W/cm2 during the Mars 2020 entry, a third test series was designed to determine if blistering is an issue at this maximum expected flight heat flux. Results from all three thermal shock test series and a discussion about whether or not blistering of the heat flux sensor thermal coating could be an issue for the Mars 2020 mission will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70038 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-01
    Description: NASA Earth Science and Aeronautics researchers have been involved in development and use of High Altitude Long Endurance (HALE) unmanned aircraft systems (UAS) since the 1990's. The NASA Environmental Research Aircraft Sensor and Technology Program (ERAST) demonstrated the promise of HALE aircraft for providing observations while also proving the importance of triple-redundant avionics to improve system reliability for large unmanned aircraft. Early efforts to develop an operational HALE capability for earth observations languished for nearly two decades owing to insufficient solar panel efficiency, battery power density, and light-weight, yet strong, materials. During this time NASA researchers focused on using the Global Hawk to demonstrate the utility of providing diurnal measurements over severe storms (ie. HS3) and to track stratospheric water vapor transport (ATTREX). Recent significant commercial investments are now leading to the realization of a long-held goal of week- to month-long sustained observations and measurements from the stratosphere. In addition to a historical review of NASA use and interest in HALE aircraft, this paper will present current concepts for exploiting current and planned HALE aircraft capabilities including in situ characterization of atmospheric composition and dynamics as well as imagery collection. NASA researchers anticipate HALE will provide a useful means to test smallsat instruments and components. Observations from HALE-based instruments might also provide useful gap-filler observations to flagship satellite missions where the repeat time doesn't allow for measurements of quickly changing phenomenon. HALE will likely also provide measurements and communications relay to facilitate other aircraft in multi-aircraft campaigns. We will also report on progress towards a NASA-funded flight test planned for summer 2019 of a solar-electric vehicle designed to carry 7kg (15lbs) for 30 days at 20km altitude.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN68775 , Living Planet Symposium; May 13, 2019 - May 17, 2019; Milan; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-20
    Description: Nearly all proglacial water discharge from the Greenland Ice Sheet is routed englacially, from the surface to the bed, via moulins. Identification of moulins in high-resolution imagery is a frequent topic of study, but the processes controlling how and where moulins form remain poorly understood. We seek to leverage information gained from the development of a physical model of moulin formation, remotely sensed ice-sheet data products, and an analytic model of ice-flow perturbations to develop a predictive stochastic model of moulin distribution across Greenland. Here we present initial results from the physical model of moulin formation and characterize the sensitivity of moulin geometry to a range of model parameters. This parameterization of moulin formation is the first step in developing a stochastic model that will be a predictive, computationally efficient representation of the englacial hydrologic system.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN65005 , Program for Arctic Regional Climate Assessment (PARCA); Feb 01, 2019; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: Seeker is an automated extravehicular free-flying inspector CubeSat designed and built in-house at the Johnson Space Center (JSC). As a Class 1E project funded by the International Space Station (ISS) Program, Seeker had a streamlined process to flight certification, but the vehicle had to be designed, developed, tested, and delivered within approximately one year after authority to pro-ceed (ATP) and within a $1.8 million budget. These constraints necessitated an expedited Guidance, Navigation, and Control (GNC) development schedule, development began with a navigation sensor trade study using Linear Covariance (LinCov) analysis and a rapid sensor downselection process, resulting in the use of commercial off-the-shelf (COTS) sensors which could be procured quickly and subjected to in-house environmental testing to qualify them for flight. A neural network was used to enable a COTS camera to provide bearing measurements for visual navigation. The GNC flight software (FSW) algorithms utilized lean development practices and leveraged the Core Flight Software (CFS) architecture to rapidly develop the GNC system, tune the system parameters, and verify performance in simulation. This pace was anchored by several Hardware-Software Integration (HSI) milestones, which forced the Seeker GNC team to develop the interfaces both between hardware and software and between the GNC domains early in the project and to enable a timely delivery.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 19-065 , JSC-E-DAA-TN64897 , AAS Guidance and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Cumulus is an open source platform used for ingesting and maintaining archives in the cloud. Sharing and maximizing code re-use are pillars of Cumulus development. Cumulus aims to promote collaboration within the community. This presentation will dive into the principles of Cumulus development, both within the team and the community.
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN64441 , Earth Science Information Partners (ESIP) 2019 Winter Meeting; Jan 14, 2019 - Jan 17, 2019; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: The NASA PACE project, in conjunction with the IOCCG, EUMETSAT, and JAXA, have initiated an Aquatic Primary Productivity working group, with the aim to develop community consensus on multiple methods for measuring aquatic primary productivity used for satellite validation and model synthesis. A workshop to commence the working group efforts was held December 05-07, 2018 at the University Space Research Association headquarters in Columbia, MD U.S.A., bringing together 26 active researchers from 16 institutions. The group discussed the primary differences, nuances, scales, uncertainties, definitions, and best practices for measurements of primary productivity derived from in situ/on-deck/laboratory radio/stable isotope incubations, dissolved oxygen concentrations (from incubations or autonomous platforms such as floats or gliders), oxygen-argon ratios, triple oxygen isotope, natural fluorescence, and FRRF/ETR/kinetic analysis. These discussions highlighted the necessity to move the community forward towards the establishment of climate-quality primary productivity measurements that follow uniform protocols, which is imperative to ensure that existing and future measurements can be compared, assimilated, and their uncertainties determined for model development and validation. The specific deliverable resulting from of this activity will be a protocol document, published in coordination with the IOCCG. This presentation will discuss the findings of the meeting, and address future activities of the working group.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN67407 , 2019 International Ocean Colour Science Meeting; Apr 09, 2019 - Apr 12, 2019; Busan; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: Previous studies have quantified the expansion of gold mining-related forest loss (Espejo et al., 2018; Asner et al., 2017; Swenson et al., 2011) in the Madre de Dios region of Peru. This study uses Spectral Mixture Analysis (SMA) in a cloud-computing platform to map general forest loss within and outside key land tenure areas in this region. Landsat 7 Enhanced Thematic Mapper plus (ETM+) and Landsat 8 Operational Land Imager (OLI) Surface Reflectance data were utilized spanning 2013 and 2018 and spectral unmixing was performed to identify patterns of forest loss for each year. Planet Scope and RapidEye imagery were used to conduct an accuracy assessment and to identify potential drivers.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN67447 , 2019 CPU2AL Science and Technology Open House (STOH); Apr 03, 2019 - Apr 05, 2019; Mobile, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN64476 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoneix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN66996 , 2019 Space Weather Workshop; Apr 01, 2019 - Apr 05, 2019; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: This is a presentation for students who will be participating in the App Development Challenge (ADC). This discussion tells the students the data format NASA will be using (which their software must be compatible with). This presentation contains only publicly available images and information, and is provided to help the students with their coding (that they will submit to NASA).
    Keywords: Computer Programming and Software
    Type: JSC-E-DAA-TN66531
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M19-7384 , International Association for the Advancement of Space Safety (IAASS) Conference; May 15, 2019 - May 17, 2019; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: AVHRR data record is well alive and continue to improve and be used by a large land user community.Most of the improvement are due to the overlapping with MODIS Aqua, Terra.We recommend operating missions as long as possible to enable overlap of at least a few years (especially for applications).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN69234 , Japan Geoscience Union Meeting 2019; May 26, 2019 - May 30, 2019; Makuhari, Chiba; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: Balloon-borne frostpoint measurements have shown a high frequency of supersaturation near the tropical tropopause, and this has been attributed to forced ascent associated with wavemotions as well as diabatic heating. Long-term profile statistics are typically presented on altitude, pressure or potential temperature surfaces. For example, at Costa Rica long-term mean values of CFH RH at 16.8 km, the mean annual height of the tropopause, range from less than 60 percent in July to over 90% in October. While a plot of the annual cycle vs height shows relatively high humidities in the upper troposphere and especially so as one approaches the tropopause, the overall picture is one of subsaturation. A very different picture emerges,however, if the analysis is done in height relative to the tropopause. Here the long-term average of RH at the tropopause is 94 percent or greater throughout the year. We discuss this paradoxical result in the context of dynamical and cloud processes occurring near the tropical tropopause.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN66441 , NASA Code SGG Seminar Series; Apr 25, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN64469 , Conference on Hydrology; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-20
    Description: Stratospheric ozone concentrations have begun to show early signs of recovery following the implementation of the Montreal Protocol and its amendments as well as in response to decreasing upper-stratospheric temperatures. Secular trends in stratospheric ozone are modulated by considerable interannual variability and systematic changes in transport patterns that are expected under increasing concentrations of greenhouse gases, especially in the lower stratosphere. These factors necessitate the continued close monitoring of stratospheric ozone in upcoming decades, with a special focus on the lower stratosphere.As highly resolved data sets combining a plethora of observations with model simulations atmospheric reanalyses are, in principle, well suited for the task. All major reanalyses generate ozone output. However, significant spurious discontinuities that arise from step changes in the observing systems prevent a straightforward analysis of ozone trends and long-term variability. Building on our recent work, in this presentation we will demonstrate that trend detection is nonetheless possible using the ozone record from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) reanalysis bias-corrected using a chemistry model simulation as a transfer function. Next, we will outline several strategies to reduce artificial discontinuities in the ozone record in future NASA reanalyses. This discussion will be illustrated by an example of joint assimilation of bias-corrected ozone profiles from the Microwave Limb Sounder (MLS) on the Aura satellite (2004 to present) and the Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP) sensors that are expected to operate on future NOAA platforms.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN64589 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-20
    Description: OuroboroSat (also known as MRMSS: the Modular Rapidly Manufactured Spacecraft System) is a modular instrumentation platform consisting of multiple 3 inch (7.5 centimeter) square printed circuit boards that are mechanically and electrically connected to one another in order to produce a fully- functioning payload facility system. Each OuroboroSat module consists of a microcontroller, a battery, conditioning and monitoring circuitry for the battery, optional space for solar panels, and an expansion area where an experimental payload or specialized functionality (such as wireless communication submodules) can be attached.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA FS-2015-07-05-ARC , ARC-E-DAA-TN25947
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-17
    Description: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft nonmetallic programmatic requirements. Now mandated by NASA STD-6016A, Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments, with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers, must meet the offgassing requirements in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7, beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967, in which tests were performed in mostly oxygen atmospheres. It progresses through Skylab, Space Shuttle, International Space Station nonmetals testing, and acceptance requirements with milder test environments. This review of the history of Test 7 presents the reader with a perspective on the development and changes undergone since inception to the present. Related NASA standard tests (some now former, discontinued, combined, or supplemental) including Test 6, Odor Assessment, Test 16, Determination of Offgassed Products from Assembled Articles, and Test 12, Total Spacecraft Cabin Offgassing, are discussed in context
    Keywords: Spacecraft Design, Testing and Performance
    Type: ICES-2019-504 , JSC-E-DAA-TN68279 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-20
    Description: The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and, with itsseven science instruments, has made numerous contributions to our understandingof the moon. LRO is in an elliptical, polar lunar orbit and nominally maintainsa nadir orientation. There are frequent slews off nadir to observe various sciencetargets. LRO attitude control system (ACS) has two star trackers and a gyro forattitude estimation in an extended Kalman filter (EKF) and four reaction wheelsused in a proportional-integral-derivative (PID) controller. LRO is equipped withthrusters for orbit adjustments and momentum management. In early 2018, thegyro was powered off following a fairly rapid decline in the laser intensity on theX axis. Without the gyro, the EKF has been disabled. Attitude is provided by asingle star tracker and a coarse rate estimate is computed by a back differencingof the star tracker quaternions. Slews have also been disabled. A new rate estimationapproach makes use of a complementary filter, combining the quaterniondifferentiated rates and the integrated PID limited control torque (with reactionwheel drag and feedforward torque removed). The filtered rate estimate replacesthe MIMU rate in the EKF, resulting in minimal flight software changes. The paperwill cover the preparation and testing of the new gyroless algorithm, both inground simulations and inflight.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN65164 , AAS Annual Guidance and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-20
    Description: This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capability for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-assimilate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN67454
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-20
    Description: Like a peninsula into the Southern Ocean, the vast Patagonia desert in the southern tip of South America is exposed to extreme winds. Dust blown from this region has important impacts thousands of kilometers away, but these impacts are very difficult to assess. Questions such as the sources of dust found in snow in East Antarctica as well as the provenance of nutrients in the Southern Ocean remain unanswered. While the Patagonia desert is the likely source of dust, there is a dearth of observational records of dust activity from this desert. This study fills the gap in observations by providing a record of 50 years of surface and satellite observations of the largest and most active dust source in Patagonia: lake Colhu Huapi. The seasonality, frequency and periods of major dust activity are identified from meteorological records at a station located 100km downwind from the lake. Collocated satellite observations confirmed the major periods of dust activity in the last 30 years. This dataset provides information on how to interpret records of recent dust found in East Antarctica snow as well as help to understand the CO2 cycle in the Southern Ocean.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN67426 , Journal of Geophysical Research-Atmospheres; 124; 6; 3417-3434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-20
    Description: Integrated multi-sensor assessment is proposed as a novel approach to advance satellite precipitation validation in order to provide users and algorithm developers with an assessment adequately coping with the varying performances of merged satellite precipitation estimates. Gridded precipitation rates retrieved from space sensors with quasi-global coverage feed numerous applications ranging from water budget studies to forecasting natural hazards caused by extreme events. Characterizing the error structure of satellite precipitation products is recognized as a major issue for the usefulness of these estimates. The Global Precipitation Measurement (GPM) mission aims at unifying precipitation measurements from a constellation of low-earth orbiting (LEO) sensors with various capabilities to detect, classify and quantify precipitation. They are used in combination with geostationary observations to provide gridded precipitation accumulations. The GPM Core Observatory satellite serves as a calibration reference for consistent precipitation retrieval algorithms across the constellation. The propagation of QPE uncertainty from LEO active/passive microwave (PMW) precipitation estimates to gridded QPE is addressed in this study, by focusing on the impact of precipitation typology on QPE from the Level-2 GPM Core Observatory Dual-frequency Precipitation Radar (DPR) to the Microwave Imager (GMI) to Level-3 IMERG precipitation over the Conterminous U.S. A high-resolution surface precipitation used as a consistent reference across scales is derived from the ground radar-based Multi-Radar/Multi-Sensor. While the error structure of the DPR, GMI and subsequent IMERG is complex because of the interaction of various error factors, systematic biases related to precipitation typology are consistently quantified across products. These biases display similar features across Level-2 and Level-3, highlighting the need to better resolve precipitation typology from space and the room for improvement in global-scale precipitation estimates. The integrated analysis and framework proposed herein applies more generally to precipitation estimates from sensors and error sources affecting low-earth orbiting satellites and derived gridded products.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN63401
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN67620 , Global Forest Observations Initiative (GFOI) Plenary 2019; Apr 08, 2019 - Apr 11, 2019; Maputo; Mozambique
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN67317 , NASA Decadal Survey Designated Observable Mission: ACCP Community Workshop; Apr 02, 2019 - Apr 04, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-20
    Description: The objective of this project is to quantify changes of mangrove extent in Madagascar and Nigeria from 2015-2018. Both countries contain a significant portion of the worlds mangroves, and which are known to be deforested and degraded due to natural and anthropogenic factors. Change is estimated using multi-date Landsat-8 OLI data and cloud computational techniques. Findings show that mangroves in both countries have exhibited areal loss during the study period, but loss varies across space. Understanding the rate and magnitude of mangrove change can aid in identifying priority areas for forest regenerations, and can help construct sustainable management practices for the future.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN67476 , 2019 CPU2AL Science and Technology Open House; Apr 05, 2019; Mobile, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN67443 , 2019 CPU2AL Science and Technology Open House; Apr 03, 2019 - Apr 04, 2019; Mobile, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN64556 , 2019 AMS Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: No abstract available
    Keywords: Computer Programming and Software
    Type: M19-7365 , Applied Space Environments Conference; May 12, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: The Orion European Service Module - Structural Test Article (E-STA) underwent sine vibration testing in 2016 using the Mechanical Vibration Facility (MVF) multi-axis shaker system at NASA Glenn Research Centers (GRC) Plum Brook Station (PBS) Space Power Facility (SPF). The main objective was to verify the structural integrity of the European Service Module (ESM) under sine sweep dynamic qualification vibration testing. A secondary objective was to perform a fixed-base modal survey, while E-STA was still mounted to MVF, in order to achieve a test correlate the finite element model (FEM). To facilitate the E-STA system level correlation effort, a building block test approach was implemented. Modal tests were performed on two major subassemblies, the crew module/launch abort structure (CM/LAS) and the crew module adapter (CMA) mass simulators. These subassembly FEMs were individually correlated and then integrated into the E-STA FEM prior to the start of the E-STA sine vibration test. This paper summarizes the modal testing and model correlation efforts of both of these subassemblies and how the building block approach assisted in the overall correlation of the E-STA FEM. This paper will also cover modeling practices that should be avoided, recommended instrumentation positioning on complex structures, and the importance of the FEM geometrically matching CAD in sufficient detail in order to adequately replicate internal load paths. The goal of this paper is to inform the reader of the hard earned lessons learned and pitfalls to avoid when applying a building block test approach.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN61845 , International Modal Analysis Conference (IMAC); Jan 28, 2019 - Jan 31, 2019; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: Background (what): SI (International System of Units)-traceable Microwave Radiometer calibration; Motivation (why): NWP (Numerical Weather Prediction), FCDR (Fundamental Climate Data Record); Technology (how): NIST (National Inst. of Standards and Technology) blackbody target for ; Standards: Status & Future Plans. Development of a National Standard for Microwave Brightness Temperature (TB) at NIST.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN66555 , Annual Meeting Global Space-based Inter-Calibration System (GSICS 2019); Mar 04, 2019 - Mar 08, 2019; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: This chapter summarizes ocean color science data product requirements for the Plankton, Aerosol, Cloud,ocean Ecosystem (PACE) mission's Ocean Color Instrument (OCI) and observatory. NASA HQ delivered Level-1 science data product requirements to the PACE Project, which encompass data products to be produced and their associated uncertainties. These products and uncertainties ultimately determine the spectral nature of OCI and the performance requirements assigned to OCI and the observatory. This chapter ultimately serves to provide context for the remainder of this volume, which describes tools developed that allocate these uncertainties into their components, including allowable OCI systematic and random uncertainties, observatory geo location uncertainties, and geophysical model uncertainties.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/TM?2018-219027/ Vol. 6 , GSFC-E-DAA-TN65850
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-20
    Description: Advances in Entry Systems Technologies -- Continuing the Ames' Innovation Heritage" will provide an overview of recent accomplishments in the areas of entry systems, TPS materials, arcjet testing, etc.Hypervelocity Entry is a Hard Problem !Use of atmospheric drag is the most efficient way to slow down. Protection fromthe entry heating demands comprehensive understanding of the hypervelocity,reacting flow (aero-thermodynamics), and selection, design, testing and verificationof the integrated entry system, especially thermal protection system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN65551 , Owl Feather Society; Feb 19, 2019; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN64167 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-20
    Description: Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. Forty thin film polymer and pyrolytic graphite samples, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the ISS for nearly four years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2) mission. The purpose of the MISSE 2 PEACE Polymers experiment was to determine the atomic oxygen (AO) erosion yield (E(sub y), volume loss per incident oxygen atom) of a wide variety of polymers exposed to the LEO space environment. The Ey values were determined based on mass loss measurements. Because many polymeric materials are hygroscopic, the pre-flight and post-flight mass measurements were obtained using dehydrated samples. To maximize the accuracy of the mass measurements, obtaining dehydration data for each of the polymers was desired to ensure that the samples were fully dehydrated before weighing. A comparison of dehydration and rehydration data showed that rehydration data mirrors dehydration data, and is easier and more reliable to obtain. Tests were also conducted to see if multiple samples could be dehydrated and weighed sequentially. Rehydration curves of 43 polymers and pyrolytic graphite were obtained. This information was used to determine the best pre-flight, and post-flight, mass measurement procedures for the MISSE 2 PEACE Polymers experiment, and for subsequent NASA Glenn Research Center MISSE polymer flight experiments.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2019-220063 , E-19653 , GRC-E-DAA-TN64510
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-25
    Description: As the data holdings of the Earth Observation System Data and Information System expand over the next several years, the typical data analysis process of downloading data to local compute resources will become increasingly inefficient. However, cloud computing promises to mitigate that by allowing the user to process close to the data. These improvements will be obtained via a variety of mechanisms: 1 - improving the ability of data transformation services to reduce the data prior to analysis; 2 - providing cloud-native analysis capabilities for common analysis functions; and 3 - providing the ability to work directly with data in Web Object Storage.
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN70319 , 2019 Earth Science Information Partners Summer Meeting; Jul 16, 2019 - Jul 19, 2019; Tacoma, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-25
    Description: Operating and maintaining a large multi-tenant ecosystem in the cloud requires scalable solutions to unique technical and process challenges. The Cloud Computing model grants significant permissions to development teams that traditionally were reserved for Data-Center Administrators and Supply-Chain Managers. Earthdata Cloud has worked to re-cast traditional data-center management into a sensible cloud-first model. This talk discusses some of our challenges, solutions, and way ahead.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70382 , 2019 ESIP Summer Meeting; Jul 16, 2019 - Jul 19, 2019; Tacoma, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-24
    Description: Cumulus is a scalable, extensible cloud-based archive system which is capable of ingesting, archiving, and distributing data from both existing on-prem sources and new cloud-native missions. As we have built and evolved the system with contributions from seven NASA EOSDIS organizations, we have learned several lessons about how to build a robust, broadly-applicable, microservices-based cloud system for geospatial data which we will share in this talk.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN69899 , ESIP Summer Meeting; Jul 16, 2019 - Jul 19, 2019; Tacoma, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-23
    Description: In this talk, we will discuss our work for testing OPeNDAP client access of data stored in the Amazon S3 cloud storage using a set of common analysis tools including Panoply, Jupyter Notebooks with Python xarray, NCO command line tool package, ArcGIS, and GDAL. We will also discuss our ongoing work on improving performance in Hyrax aggregation functionality.
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN69932 , 2019 Earth Science Information Partners (ESIP) Summer Meeting; Jul 16, 2019 - Jul 19, 2019; Tacoma, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-20
    Description: Mineral dust is an integral component in the Earth system that interacts with the system's many other components involving the energy, water, and carbon cycles. Dust also degrades air quality and adversely affects human health. These interactions and impacts are not contained in regions nearby dust sources, but can reach very far because of the long-range transport on intercontinental and global scales. Satellite's routine sampling and extensive coverage in time and space makes it an ideal platform to follow the dust from sources to sinks and assess its impacts along the long journey. Dust particles are unique in their coarse size and irregular shape, which makes it feasible to distinguish them from other aerosol particles using remote sensing techniques. This talk will provide an overview of what we have learned from analyzing advanced satellite remote sensing measurements during the EOS-era supplemented by in situ observations and model simulations, including dust source characterization, seasonal and interannual variability, trans-Pacific and trans-Atlantic transport and deposition, and dust influences on the radiation budget, air quality, and ecosystems. The talk will also discuss challenges and opportunities to further improve the dust characterization and assessment of the impacts via remote sensing techniques.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70670 , CTWF International Symposium on Aerosol and Climate Change: Observations, Modeling & Interactions; Jul 15, 2019 - Jul 17, 2019; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-20
    Description: Temperature is a primary determining factor for plant growth and development so providing an appropriate temperature input is critically important for developing growth models. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA (US Dept. of Agriculture)-sponsored area-wide project including NASA Ames Research Center and State of California Department of Boating and Waterways, uses modeling to assess invasive aquatic plant impacts on ecosystem services in the Delta. Availability of continuous records for monitored temperature is limited and particularly in the case of water temperature the distribution of monitoring is inadequate. This work quantitatively defines the influence of air and water temperature in determining dominant growth rate processes for important floating aquatic invasive plants in the Delta. Since these plants function with portions submerged and above water we wanted to understand the relationship between root zone and shoot zone temperature and ability to use a single temperature inputs in DRAAWP models. Water Hyacinth and Primrose were gown in multiple controlled environment chamber studies with various combinations of root zone and shoot zone temperatures. Long-term growth studies provided integrated response of biomass accumulation and distribution within the canopy. Short-term gas exchange studies provide a time scale for responsiveness to temperature and a short-term study approach to evaluate temperature responses at various stages of canopy development.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN69181 , Annual Meeting of the Aquatic Plant Management Society (APMS 2019); Jul 14, 2019 - Jul 17, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-20
    Description: The NASA Goddard Earth Sciences Data and Information Services Center archives tens of thousands of Earth Observation (EO) parameters for land, atmosphere, and ocean. To facilitate GIS users to easily find, visualize, obtain, and analyze these EO data through, we developed an ArcGIS infrastructure with the Server, image services, Portal, and AOL. We will show how this capability supports broad GIS applications. Use cases including water management and air quality analyses will be demonstrated.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70787 , 2019 Esri User Conference; Jul 08, 2019 - Jul 12, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-20
    Description: We present a new high-resolution global composition forecast system produced by NASA's Global Modeling and Assimilation Office. The NASA Goddard Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) system combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70807 , Health and Air Quality Applied Sciences Team (HAQAST) 6 Meeting; Jul 10, 2019 - Jul 12, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-20
    Description: We present a detailed overview of the structure and activities associated with the NASA-led ground validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The overarching philosophy and approaches for NASAs GV program are presented with primary focus placed on aspects of direct validation and a summary of physical validation campaigns and results. We describe a spectrum of key instruments, methods, field campaigns and data products developed and used by NASAs GV team to verify GPM level-2 precipitation products in rain and snow. We describe the tools and analysis framework used to confirm that NASAs Level-1 science requirements for GPM are met by the GPM Core Observatory. Examples of routine validation activities related to verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different regions of the globe (Korea and the U.S.) are provided, and a brief analysis related to IMERG performance in the extreme rainfall event associated with Hurricane Florence is discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN63395 , Satellite Precipitation Measurement
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-20
    Description: The latest generation of geostationary satellites carry sensors such as the Advanced Baseline Imager (GOES-16/17) and the Advanced Himawari Imager (Himawari-8/9) that closely mimic the spatial and spectral characteristics of MODIS and VIIRS, useful for monitoring land surface conditions. The NASA Earth Exchange (NEX) team at Ames Research Center has embarked on a collaborative effort among scientists from NASA and NOAA exploring the feasibility of producing operational land surface products similar to those from MODIS/VIIRS. The team built a processing pipeline called GEONEX that is capable of converting raw geostationary data into routine products of Fires, surface reflectances, vegetation indices, LAI/FPAR, ET and GPP/NPP using algorithms adapted from both NASA/EOS and NOAA/GOES-R programs. The GEONEX pipeline has been deployed on Amazon Web Services cloud platform and it currently leverages near-realtime geostationary data hosted in AWS public datasets under a NOAA-AWS agreement. Initial analyses of various products from ABI/AHI sensors suggest that they are comparable to those from MODIS in representing the spatio-temporal dynamics of land conditions. Cloud computing offers a variety of options for deploying the GEONEX pipeline including choice CPUs, storage media, and automation. By making the GEONEX pipeline available on the cloud, we hope to engage a broad community of Earth scientists from around the world in utilizing this new source of data for Earth monitoring.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN66251 , Brazilian Symposium on Remote Sensing; Apr 14, 2019 - Apr 17, 2019; Santos; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Over the past two decades, the emergence of highly effective software testing frameworks has greatly simplified the development and use of unit tests and has led to new software development paradigms such as test driven development (TDD). However, technical computing introduces a number of unique testing challenges, including distributed parallelism and numerical accuracy. This webinar will begin with a basic introduction to the use of pFUnit (parallel Fortran Unit testing framework) to develop tests for Message Passing Interface (MPI) plus Fortran (MPI+Fortran) software and then present some of the new capabilities in the latest release. We will also discuss some specialized methodologies for testing numerical algorithms and speculate about future framework capabilities that may improve our ability to test at exascale.
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN67643 , Best Practices for HPC Software Developers (Webinar); Apr 12, 2019; Online - Remote
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN64611 , Conference on the Meteorological Applications of Lightning Data; Jan 07, 2019 - Jan 11, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: Spacecraft charging can occur when a spacecraft vehicle is subject to space plasma environments and varying sunlit conditions. The trajectory of the spacecraft will determine the specific impinging environment while the spacecraft geometry and material properties determine the susceptibility to various charging issues. In general, spacecraft charging is separated into two categories, surface charging (~〈100 keV) and internal charging (~〉100keV).
    Keywords: Spacecraft Design, Testing and Performance
    Type: M19-7357 , Applied Space Environments Conference; May 13, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: Planetary entry vehicles employ ablative TPS materials to shield the aeroshell from entry aeroheating environments. To ensure mission success, it must be demonstrated that the heat shield system, including local features such as seams, does not fail at conditions that are suitably margined beyond those expected in flight. Furthermore, its thermal response must be predictable, with acceptable fidelity, by computational tools used in heat shield design. Mission assurance is accomplished through a combination of ground testing and material response modelling. A material's robustness to failure is verified through arcjet testing while its thermal response is predicted by analytical tools that are verified against experimental data. Due to limitations in flight-like ground testing capability and lack of validated high-fidelity computational models, qualification of heat shield materials is often achieved by piecing together evidence from multiple ground tests and analytical simulations, none of which fully bound the flight conditions and vehicle configuration. Extreme heating environments (〉2000 W/sq. cm heat flux and 〉2 atm pressure), experienced during entries at Venus, Saturn and Ice Giants, further stretch the current testing and modelling capabilities for applicable TPS materials. Fully-dense Carbon Phenolic was the material of choice for these applications; however, since heritage raw materials are no longer available, future uses of re-created Carbon Phenolic will require re-qualification. To address this sustainability challenge, NASA is developing a new dual-layer material based on 3D weaving technology called Heat shield for Extreme Entry Environments (HEEET). Regardless of TPS material, extreme environments pose additional certification challenges beyond what has been typical in recent NASA missions. Scope of this presentation: This presentation will give an overview of challenges faced in verifying TPS performance at extreme heating conditions. Examples include: (1) Bounding aeroheating parameters (heat flux, pressure, shear and enthalpy) in ground facilities. How to certify TPS if environments can't be bounded or aeroheating parameters can't be simultaneously achieved. (2) Higher uncertainties in ground test environments (facility calibration and analytical predictions) at extreme conditions. (3) Testing in flows similar to planetary atmosphere composition (H2/He for Gas and Ice Giants). (4) Test sample size limitations for qualifying seam designs. (5) Lack of computational tools capable of simulating all significant aspects of TPS performance (including initiation and propagation of failures). This presentation will provide recommendations on how the EDL community can address these challenges and mitigate some of the risks involved in flying TPS materials at extreme conditions. Examples include: (1) Dedicated activity to understanding TPS failure modes. Develop computational tools capable of modelling fluid interaction with material's thermostructural response. Validate these tools through failure testing. A better understanding of failure mechanisms may eliminate the need to fully bound all aeroheating parameters in ground testing. (2) Enhancements to current testing facilities to simulate flight-like ablation mechanism (ex. testing in Nitrogen at Ames Interaction Heating Facility to limit oxidation in favor of more sublimation). (3) Improved characterization of test conditions with new diagnostic methods and determination of environment uncertainty through rigorous statistical analysis of available data. (4) Design margin policies that are directly tied to uncertainties in ground test environments and modelling fidelity
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN66398 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN65635 , Land Model and Biogeochemistry Working Group Meetings; Feb 11, 2019 - Feb 13, 2019; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-20
    Description: Vibration testing spaceflight hardware is a vital, but time consuming and expensive endeavor. Traditionally modal tests are performed at the component, subassembly, or system level, preferably free-free with mass loaded interfaces or fixed base on a seismic mass to identify the fundamental structural dynamic (modal) characteristics. Vibration tests are then traditionally performed on single-axis slip tables at qualification levels that envelope the maximum predicted flight environment plus 3 dB and workmanship in order to verify the spaceflight hardware can survive its flight environment. These two tests currently require two significantly different test setups, facilities, and ultimately reconfiguration of the spaceflight hardware. The vision of this research is to show how traditional fixed-base modal testing can be accomplished using vibration qualification testing facilities, which not only streamlines testing and reduces test costs, but also opens up the possibility of performing modal testing to untraditionally high excitation levels that provide for test-correlated finite element models to be more representative of the spaceflight hardware's response in a flight environment. This paper documents the first steps towards this vision, which is the comparison of modal parameters identified from a traditional fixed-based modal test performed on a modal floor and those obtained by utilizing a fixed based correction method with a large single-axis electrodynamic shaker driving a slip table supplemented with additional small portable shakers driving on the slip table and test article. To show robustness of this approach, the test article chosen is a simple linear weldment, whose mass, size, and modal parameters couple well with the dynamics of the shaker/slip table. This paper will show that all dynamics due to the shaker/slip table were successfully removed resulting in true fixed-base modal parameters, including modal damping, being successfully extracted from a traditional style base-shake vibration test setup.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN61795 , International Modal Analysis Conference (IMAC); Jan 28, 2019 - Jan 31, 2019; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-20
    Description: Space structures are one of the most critical components for any spacecraft, as they must provide the maximum amount of livable volume with the minimum amount of mass. Deployable structures can be used to gain additional space that would not normally fit under a launch vehicle shroud. This expansion capability allows it to be packed in a small launch volume for launch, and deploy into its fully open volume once in space. Inflatable, deployable structures in particular, have been investigated by NASA since the early 1950s and used in a number of spaceflight applications. Inflatable satellites, booms, and antennas can be used in low-Earth orbit applications. Inflatable heatshields, decelerators, and airbags can be used for entry, descent and landing applications. Inflatable habitats, airlocks, and space stations can be used for in-space living spaces and surface exploration missions. Inflatable blimps and rovers can be used for advanced missions to other worlds. These applications are just a few of the possible uses for inflatable structures that will continued to be studied as we look to expand our presence throughout the solar system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN66192 , SPIE Smart Structures + Nondestructive Evaluation 2019; Mar 03, 2019 - Mar 07, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-20
    Description: Plans call for human cislunar operations and lunar surface access, to prepare for eventual Mars missions. NASA will also develop new opportunities in lunar orbit that provide the foundation and act as a gateway for human exploration deeper into the solar system. Current human spaceflight is complex and requires as many as fifty people to support the International Space Station (ISS) Mission Control Center (MCC) in Houston, Texas. These flight controllers in the front and back rooms of the MCC, serve as an extra pair of eyes overseeing the numerous station systems. Deep space missions - to the moon, Mars, and beyond - will be more complex and place challenging mission constraints on the crew. As the round-trip communication delays increase in deep space exploration, more on-board systems autonomy and functionality will be needed to maintain and control the vehicle. These mission constraints will change the Earth-based ground control approach and will demand efficient and effective human-computer interfaces (HCI) to control a highly complex vehicle or habitat system. All of this necessitates a different approach to designing and developing spacecraft and habitats. In the beginning of new human spaceflight programs, focus is typically on launch vehicle and uncrewed spacecraft design and development. The reasoning behind this focus to enable flight testing of an integrated launch vehicle and spacecraft system to ensure it will be safe enough to allow humans on board. This is an essential process for new spacecraft, however, the practical effect is a lack of funding for the spacecrafts human interfaces development. It can be many years before the human interface development begins, putting it late in the spacecraft lifecycle, when almost all other spacecraft systems and subsystems are already in place. This forces the usage of existing and proven technologies for the HCI interfaces. We posit that putting the human first in a spacecraft design process will yield a more effective spacecraft for exploration and long duration missions. NASA Human Research Program (HRP) has identified inadequate HCI as a risk for future missions. New tools and procedures to aid the crew in operating a complex spacecraft will be required. This paper discusses ongoing activities in the development of the next generation HCI components and systems, and a new approach toward human interfaces for spacecraft.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN58776 , IEEE Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: An intern presentation on web application development and website design.
    Keywords: Computer Programming and Software
    Type: KSC-E-DAA-TN62472
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-20
    Description: Astronauts on a mission to Mars will require several vehicles working together to get to Mars orbit, descend to the surface of Mars, support them while theyre there, and return them to Earth. The Mars Ascent Vehicle (MAV) transports the crew off the surface of Mars to a waiting Earth return vehicle in Mars orbit and is a particularly influential part of the mission architecture because it sets performance requirements for the lander and in-space transportation vehicles. With this in mind, efforts have been made to minimize the MAV mass, and its impact on the other vehicles. A minimal mass MAV design using methane and in situ generated oxygen propellants was presented in 2015. Since that time, refinements have been made in most subsystems to incorporate findings from ongoing research into key technologies, improved understanding of environments and further analysis of design options. This paper presents an overview of the current MAV reference design used in NASAs human Mars mission studies, and includes a description of the operations, configuration, subsystem design, and a vehicle mass summary.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-E-DAA-TN62438 , IEEE Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN64302 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-26
    Description: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft non-metallic programmatic requirements. Now mandated by NASA-STD-6016B Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments,with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers must meet the offgassing requirements of in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7 beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN70224 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-25
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN70756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-25
    Description: No abstract available
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN70409 , 2019 ESIP Summer Meeting; Jul 16, 2019 - Jul 19, 2019; Tacoma, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-20
    Description: Over the past 50 years, great advances have been achieved in both analytical modal analysis (i.e. finite element models and analysis) and experimental modal analysis (i.e. modal testing) in aerospace and other fields. With the advent of more powerful computers, higher performance instrumentation and data acquisition systems, and powerful linear modal extraction tools, analysts and test engineers have a breadth and depth of technical resources only dreamed of by our predecessors. However, some observed recent trends indicate that hard lessons learned are being forgotten or ignored, and possibly fundamental concepts are not being understood. These trends have the potential of leading to the degradation of the quality of and confidence in both analytical and test results. These trends are a making of our own doing, and directly related to having ever more powerful computers, programmatic budgetary pressures to limit analysis and testing, and technical capital loss due to the retirement of the senior component of a bimodal workforce. This paper endeavors to highlight some of the most important lessons learned, common pitfalls to hopefully avoid, and potential steps that may be taken to help reverse this trend.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN62051 , International Modal Analysis Conference (IMAC); Jan 28, 2019 - Jan 31, 2019; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-20
    Description: The Photon Sieve (PS) team at NASA Langley Research Center (LaRC) began receiving support for the development and characterization of PS devices through the NASA Internal Research & Development Program (IRAD) in 2015. The project involves ascertaining the imaging characteristics of various PS devices. These devices hold the potential to significantly reduce mission costs and improve imaging quality by replacing traditional reflector telescopes. The photon sieve essentially acts as a lens to diffract light to a concentrated point on the focal plane like a Fresnel Zone Plate (FZP). PSs have the potential to focus light to a very small spot which is not limited by the width of the outermost zone as for the FZP and offers a promising solution for high resolution imaging. In the fields of astronomy, remote sensing, and other applications that require imaging of distant objects both on the ground and in the sky, it is often necessary to perform post-process filtering in order to separate noise signals that arise from multiple scattering events near the collection optic. The PS exhibits a novel filtering technique that rejects the unwanted noise without the need for time consuming post processing of the images. This project leverages key Langley resources to design, manufacture, and characterize a series of photon sieve specimens. After a prototype was developed and characterized in the Langley ISO5 optical cleanroom and laboratory, outside testing was conducted via the capture of images of the moon by using a telescopic setup. This next goal of the project is to design and develop a telescope and image capture system as a drone-based instrument payload. The vehicle utilized for the initial demonstration was a NASA hive model 1200 XE-8 research Unmanned Aerial Vehicle (UAV), capable of handling a 20-pound maximum payload with a 25-minute flight time. This NASA Technical Memorandum (NASA-TM) introduces preliminary results obtained using a PS-based imaging system on the UAV. The next version of the telescope structure will be designed around diffractive optical components and commercially available camera electronics to create a lightweight payload.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM?2019-220252 , L-20999 , NF1676L-32418
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Computer Programming and Software
    Type: M18-7144-1 , Annual International Council on Systems Engineering (INCOSE) International Workshop; Jan 26, 2019 - Jan 29, 2019; Torrance, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-20
    Description: Inflatable space structures have the potential to significantly reduce the required launch volume of large crewed pressure vessels for space exploration missions. Mass savings can also be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Inflatable softgoods structures have been investigated since the late 1950's, and several major development programs at NASA and in industry have helped advance the state-of-the-art in this technology area. This paper discusses the design, analysis, structural testing, and potential applications for inflatable softgoods structures. In particular, this paper will discuss the design of the multi-layer softgoods shell (inner layer, bladder, structural restraint layer, micrometeoroid orbital debris protection layers, thermal insulation layers, and atomic oxygen layer (for low earth orbit) and the results of material and module-level testing that has been conducted over the past two decades at NASA. Finally, the current utilization of expandable spacecraft structures is discussed, as well as potential future applications including airlocks and habitats on the Lunar Orbital Platform-Gateway, and the surface of the Moon and Mars.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN63766 , AIAA Science and Technology Forum and Exposition; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M18-7140 , AIAA Science and Technology (SciTech) Forum; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-20
    Description: Microsecond sparks and the resulting plume of hot gas/plasma were examined against a parametric pressure-distance matrix. Schlieren imaging is used to capture the spatial and temporal location of spark discharge exhaust for two milliseconds. Low pressure and larger gap widths created the largest size and intensity signal for the spark-affected plumes. Experimental exit-plume velocities trend well with analytic predictions using a mean pressure between the chamber and atmospheric conditions. Due to the quadratic relation of the annulus area and gap width, larger gap width velocities are more accurately represented by analytic predictions using atmospheric pressure as the larger exit area restricts the flow less. The same pressure adjustment, when applied to breakdown voltages, improves data alignment with Paschens Curve.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M18-7126 , AIAA Science and Technology Forum (AIAA SciTech 2019); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-20
    Description: NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of twelveNASA Earth Observing System (EOS) data centers that process, archive, document, and distributedata from Earth science missions and related projects. The GES DISC hosts a wide range ofremotely-sensed and model data and provides reliable and robust data access and services to usersworldwide. This presentation, focusing on hydrological land surface data, provides a summary tablefor the hydrological data holdings, along with discussions of recent updates to data and data services.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN65008 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-20
    Description: This paper describes a new operational capability for fast attitude maneuvering that is being developed for the Lunar Reconnaissance Orbiter (LRO). The LRO hosts seven scientific instruments. For some instruments, it is necessary to per-form large off-nadir slews to collect scientific data. The accessibility of off-nadir science targets has been limited by slew rates and/or occultation, thermal and power constraints along the standard slew path. The new fast maneuver (FastMan) algorithm employs a slew path that autonomously avoids constraint violations while simultaneously minimizing the slew time. The FastMan algo-rithm will open regions of observation that were not previously feasible and improve the overall science return for LRO's extended mission. The design of an example fast maneuver for LRO's Lunar Orbiter Laser Altimeter that reduc-es the slew time by nearly 40% is presented. Pre-flight, ground-test, end-to-end tests are also presented to demonstrate the readiness of FastMan. This pioneer-ing work is extensible and has potential to improve the science data collection return of other NASA spacecraft, especially those observatories in extended mission phases where new applications are proposed to expand their utility.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 19-053 , GSFC-E-DAA-TN65209 , Annual AAS Guidance, Navigation, and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-20
    Description: Volcanic lava flows and/or the gas eruptions are the most common characteristics that can be remotely monitored with satellite technology in the global perspective and on different timescales. Atmospheric Sulfur Dioxide (SO2), one of the most abundant gases from volcanic eruptions apart from atmospheric common gases Carbon Dioxide and water vapor, can be directly detected by space-based sensors on satellites. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of the 12 Distributed Active Archive Centers (DAACs) within NASA's Earth Observing System Data and Information System (EOSDIS), which archives SO2 data sets from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) in 1978, till the ongoing Ozone Monitoring Instrument (OMI) on NASA's EOS-Aura satellite, the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper (NM) on both the Suomi National Polar-Orbiting Partnership (Suomi-NPP or SNPP) and the Joint Polar-orbiting Satellite System-1 (JPSS-1) satellites, into the future JPSS missions. In addition to the standard OMI/Aura and OMPS/S-NPP SO2 products, SO2 products created under the charter of the Making Earth System Data Records for Use in Research Environments (MEaSUREs) project, are also archived at GES DISC, through which NASA enacts to expand understanding the Earth system using consistent data records. The Land Processes Distributed Active Archive Center (LP DAAC) is another EOSDIS's DAAC that provides land data products and operates as a partnership with the U.S. Geological Survey (USGS). The LP DAAC has been archiving the satellite imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's EOS-Terra satellite, a high spatial resolution (15 meters) and 14 band multispectral instrument. The ASTER imagery is one of the land products contributing to the application for monitoring hot spots and land terrain changes caused by volcanic eruption events. The data potential in GES DISC and LP DAAC to monitor volcanic sources of SO2 and the influence of wind fields on the gas plume spread will be demonstrated with the most recent 2018 May-July Kilauea Volcano eruption.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN65031 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-25
    Description: Astrobee is a new free-flyer robot designed to operate inside the International Space Station (ISS). Astrobee capabilities include markerless navigation, autonomous docking for recharge, perching on handrails to minimize power and modular payloads. Astrobee will operate without crew support, controlled by teleoperation, plan execution, or on-board third parties software. This slides presents the Astrobee Robot Software, a NASA Open-Source project, powering the Astrobee robot.The Astrobee Robot Software relies on a distributed architecture based on the Robot Operating System (ROS). We present the software approach, infrastructure required, and main software components.
    Keywords: Computer Programming and Software
    Type: ARC-E-DAA-TN68686 , Lecture at the Naval Postgraduate School; May 10, 2019; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-25
    Description: Crafting a great user experience is hard. Crafting a great user experience for Earth science applications is fraught with challenges. From the variability in metadata to the experience profile of various users the possible permutations of use cases introduce layer upon layer of complexities that must be designed against. In this session, the Earthdata Search team would like to highlight lessons learned over the lifespan of the application the good, the bad, and the ugly.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70112 , Summer ESIP Meeting; Jul 16, 2019 - Jul 19, 2019; Tacoma, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: This presentation provides mission operations status for the Earth Observing System (EOS) Aqua satellite for the past six-months (December 2018 through May 2019). It only contains information that is of interest to the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) member missions. It will be presented at the bi-annual MOWG Meeting in Toulouse, France on Wednesday, June 5, 2019. These meetings have been occurring twice a year since the MOWG was formed in 2003.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68966 , Constellation Mission Operations Working Group; Jun 05, 2019; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This PowerPoint presentation will discuss a new small spacecraft architecture which takes advantage of ESPA Class rideshare opportunities.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN69419 , Annual Small Payload Rideshare Symposium; Jun 04, 2019 - Jun 06, 2019; Chantilly, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN69885 , International Precipitation Conference; Jun 19, 2019 - Jun 21, 2019; Irvine, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: Airdrop testing of parachutes is a complicated endeavor that requires the custom design and certification of many critical components. The most direct path to certifying a component is to perform full scale testing with margin over the maximum loads expected to be seen in operation. However, other constraints often preclude the opportunity to perform full scale testing. In this paper, we present a case study where a problem arises in a joint that had been certified with a full scale test. There was no time or budget available to repeat the full scale testing after a redesign of the joint. Instead, we present a method of testing each failure mode at the component level to support a certification by analysis approach. The analysis itself was not complicated, but tradeoffs had to be made between different failure modes to arrive at the optimal design. The same approach was also applied back to the original joint to confirm that the failure mode that was not seen in full scale testing would have been caught by the proposed analysis. In the end, the new design was certified by analysis and worked without issue for the final six airdrop tests that used this joint.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN68390 , AIAA Aviation Forum; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: The Orion Capsule Parachute System (CPAS) project has completed qualification testing. Throughout the airdrop test program, CPAS employed a number of test techniques, including Low Velocity Air Drop (LVAD), single parachute darts, subscale parachute airdrop, and full scale capsule and dart airdrop tests. This paper will discuss the advantages and disadvantages for each type of test technique, the challenges encountered, and the lessons learned. Special attention will be given to the issues and solutions required to perform airdrop test extraction at 35,000 feet above mean sea level (MSL).
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN68677 , AIAA Aviation and Aeronautics Forum (Aviation 2019); Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Interannual climate variability patterns associated with the El Nio-Southern Oscillation phenomenon result in climate and environmental anomaly conditions in specific regions worldwide that directly favor outbreaks and/or amplification of variety of diseases of public health concern including chikungunya, hantavirus, Rift Valley fever, cholera, plague, and Zika. We analyzed patterns of some disease outbreaks during the strong 20152016 El Nio event in relation to climate anomalies derived from satellite measurements. Disease outbreaks in multiple El Nio-connected regions worldwide (including Southeast Asia, Tanzania, western US, and Brazil) followed shifts in rainfall, temperature, and vegetation in which both drought and flooding occurred in excess (1481% precipitation departures from normal). These shifts favored ecological conditions appropriate for pathogens and their vectors to emerge and propagate clusters of diseases activity in these regions. Our analysis indicates that intensity of disease activity in some ENSO-teleconnected regions were approximately 2.528% higher during years with El Nio events than those without. Plague in Colorado and New Mexico as well as cholera in Tanzania were significantly associated with above normal rainfall (p 〈 0.05); while dengue in Brazil and southeast Asia were significantly associated with above normal land surface temperature (p 〈 0.05). Routine and ongoing global satellite monitoring of key climate variable anomalies calibrated to specific regions could identify regions at risk for emergence and propagation of disease vectors. Such information can provide sufficient lead-time for outbreak prevention and potentially reduce the burden and spread of ecologically coupled diseases.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN66240 , Scientific Reports (ISSN 0028-0836) (e-ISSN 1476-4687); 9; 1930
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN69546 , Surface Biology Geology Community workshop; Jun 12, 2019 - Jun 14, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: This paper presents the first set of experimental results from Laser Enhanced Arc-Jet Facility (LEAF-Lite) tests that were conducted shortly after the radiative LEAF-Lite system was added to the 60-MW Interaction Heating Facility at NASA Ames Research Center. Results were gathered to characterize the new radiative and combined heating capabilities as well as the convective heating resulting from the new IHF nozzle that was required for combined heating operations. Tests were ultimately conducted at several combinations of radiative and convective heating prompted by the need to understand the effect of combined heating on the Orion heatshield material prior to pursuing combined heating tests of the more complex block architecture.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN62912 , Joint Thermophysics and Heat Transfer Conference; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: High accuracy achieved with temperature stabilized unfiltered trap detectors illuminated by monochromatic light. Tunable lasers and optical parametric oscillators provide orders of magnitude higher spectral radiance than blackbody or other broadband sources; calibrate at high signal levels.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN69738 , Surface Biology and Geology Community Workshop; Jun 12, 2019 - Jun 14, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The Geostationary Operational Environmental Satellite (GOES)-16 observatory was launched on 19 November 2016. During daily on-orbit operations, shadowing of the inboard magnetometer sensor unit occurs due to spacecraft geometry and solar angle. Throughout the shadowing periods of the inboard magnetometer, anomalous excursions of 20 nanotesla (nT) are observed. In addition to the excursions during shadow events, the measurement difference between the inboard and outboard magnetometer varies over the day, indicating erroneous measurements by one or both magnetometers. In addition, based on the deployment rotations, the zero offsets of the X and Y axes were found to be significantly different, ~30nT, from ground calibration data. Because of these observations, an extensive root cause investigation was undertaken to correct the magnetometer system for the next spacecraft in the GOES-R series. This paper documents the efforts of that activity and the lessons learned as a result of the investigation.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68765 , 2019 ESA Workshop on Aerospace EMC; May 20, 2019 - May 22, 2019; Budapest; Hungary
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The most recent Decadal Survey placed high value on continuing constellation science. The ESC has evolved by seeing new missions joining and old missions retiring. Most recently, GCOM-W1, Landsat-8, and OCO-2 joined during 2012-2014. Landsat-9 is set to join in 2020. Each new mission provides new and improved suite of sensors. The new sensors also benefit both from the multitude of other existing on-orbit sensors as well as from the long-term cross-calibrated climate observations from the sensors that preceded them. At the same time, existing missions leave the constellation due to low fuel reserves or aging spacecraft subsystems. For example, CloudSat and CALIPSO left the ESC orbits in 2018, although they plan to continue making coordinated science observations at their new lower altitudes. This ESC evolution is expected to continue and this paper will discuss the opportunities for other new missions to join the ESC.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68006 , European Space Agency Living Planet Symposium 2019 (LPS19); May 13, 2019 - May 17, 2019; Milan; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68177-1 , Rutgers Department of Environmental Science Seminar; Apr 26, 2019; New Brunswick, NJ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M19-7301 , The Space Astrophysics Landscape for the 2020s and Beyond; Apr 01, 2019 - Apr 03, 2019; Potomac, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN67952 , Inter-Agency Space Debris Coordination Committee (IADC); May 07, 2019 - May 10, 2019; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-18
    Description: Entry, descent, and landing (EDL) has been identified as a core area of investment in NASA's Strategic Technology Investment Plan (NASA STIP). STIP lists the space technologies needed to help achieve NASA's science, technology, and exploration goals across the agency. Within the EDL core area, deployable hypersonic decelerators, also known as deployable entry vehicles (DEVs), have been identified as an area of investment, due to its potential to revolutionize payload delivery methods to Earth and other planets. These vehicles, which can deploy their heat shields or alter their shape before entry, exploit an increased and more effective drag ratio by using less mass than traditional blunt body vehicles with rigid aeroshells. DEVs like Adaptive Deployable Entry and Placement Technology (ADEPT) and Hypersonic Inflatable Aerodynamic Decelerator (HIAD) have demonstrated the capability of transporting the equivalent science payloads of blunt body rigid aeroshells, while using a significantly smaller diameter when stowed within a launch vehicle. While DEVs' increased energy dissipation for less mass is an attractive feature, their ability to contract and expand would require advancements in the current state-of-the-art guidance and control (G&C) architectures used by traditional rigid vehicles. Pterodactyl, a project funded by NASA's Space Technology Mission Directorate (STMD), aims to provide feasible integrated G&C solutions for DEVs, complete with optimized vehicle designs and packaging analyses. Structural and aerodynamic analyses for the explored control systems suggested a need for a bank angle guidance algorithm, a heritage guidance approach that has been used in many entry precision targeting vehicles, as well as an additional need for the development of a non-bank angle guidance. For this reason, Pterodactyl will consider four different G&C configurations during its design phase: i) a reaction control system for bank (sigma) control, ii) a mass movement system for angle of attack (alpha) sideslip (beta) control, iii) flaps for alpha - beta control, and iv) flaps for sigma control. To increase the applicability of each proposed integrated G&C architecture, an 11 km/s lunar return demonstration mission is selected to stress the developed technology capability. The Lifting Nano-ADEPT (LNA) vehicle is chosen as the DEV to demonstrate the integrated solutions. This paper will detail the trajectory design for a lunar return mission, using the validated bank control guidance algorithm Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) and a newly developed guidance algorithm: FNPEG Uncoupled Range Control (URC). FNPEG-URC diverges from traditional bank angle guidances by producing alpha and beta commands to thereby decouple downrange and crossrange control. This presentation will discuss the development and overall performance of FNPEG and FNPEG-URC for each of the four G&C configurations. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing site while abiding by trajectory constraints in the face of dispersions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN70528 , International Planetary Probe Workshop (IPPW); Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-31
    Description: Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning, and implementation of management for aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project including NASA Ames Research Center and State of California Department of Boating and Waterways, is working to enhance decision-making and operational efficiency of invasive plant management in the California Sacramento-San Joaquin Delta. Expansion of invasive aquatic plants has been detrimental to water management and the ecosystem complex in the San Francisco Bay/California Delta. The portion of DRAAWP reported here focuses on parametrizing the environmental response inputs for the Delta models for prominent invasive aquatic plants. Changing climate, long-term drought, shifts in land use, and variation in water flow and quality from input watersheds lead to wide and unique variation in environmental conditions. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response of invasive aquatic plants are examined using controlled environment growth facilities at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature, nutrient, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and phenology.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN69165 , Aquatic Plant Management Society (APMS) Annual Meeting; Jul 14, 2019 - Jul 17, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-30
    Description: The Debris Assessment Software (DAS) is provided by the NASA Orbital Debris Program Office as a means of assessing, during the planning and design phase, space missions compliance with NASAs requirements for reduction of orbital debris.
    Keywords: Computer Programming and Software
    Type: JSC-E-DAA-TN70236 , NASA/TP-2019-220300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-27
    Description: There is considerable interest in the aggregate methane emissions from the Amazon and similar moist tropical regions, and XCH4 measurements are well suited to constrain sources to the global atmosphere. Similarly, XCO2 measurements constrain CO2 in the region. XCO helps to partition CO2 patterns among burning and respiration processes. GeoCarb may allow these column measurements over the Western Hemisphere, but satellite retrieval require exacting calibration and validation by sun-focused Fourier transform spectrometers (FTS). The rarity of sufficiently large gaps in the cloud cover over the Amazon and similar rainforests restricts the validation opportunities for useful FTS observations and even more the opportunities for accurate retrievals. TropOMI observational statistics are extremely poor for the region. We have used two data sources to evaluate FTS opportunities at Manaus, Brazil, an FTS operated for 8 months near Manaus by Mavendra Dubey, and also sun-photometer measurements at several stations. The promise of using data from other satellites, e.g. GOES-16 ( (Geostationary Operational Environmental Satellite) and CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization gaps and aerosol layering will be described. We report initial results on five questions: (1) how frequent are observing opportunities of FTS?, (2) What evidence is there that gaps in clouds are wide enough for satellite retrievals at an appropriate accuracy, (3) What is the diurnal and seasonal variability of cloud gaps?, and (4) What limitations are currently suggested for unbiased FTS measurement of XCH4 due to diurnal effects, and (5) What evidence is there for incidence of problematic high aerosol extinction at higher layers of the troposphere (800 hPa to 120 hPa) which alter the XCH4 light-paths?
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN67614 , International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-15); Jun 03, 2019 - Jun 05, 2019; Sapporo, Hokkaido; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-27
    Description: On September 12th 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range (WSMR), New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, test execution, and test conclusions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70404 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-27
    Description: The Large Ultraviolet/Optical/Infrared (LUVOIR) Surveyor is one of four large strategic mission concept studies commissioned by NASA for the 2020 Decadal Survey in Astronomy and Astrophysics. Slated for launch to the second Lagrange point (L2) in the mid-to-late 2030s, LUVOIR seeks to directly image habitable exoplanets around sun-like stars, characterize their atmospheric and surface composition, and search for biosignatures, as well as study a large array of astrophysics goals including galaxy formation and evolution. Two observatory architectures are currently being considered which bound the trade-off between cost, risk, and scientific return: a 15-meter diameter segmented aperture primary mirror in a three-mirror anastigmat configuration, and an 8-meter diameter unobscured segmented aperture design. To achieve its science objectives, both architectures require milli-Kelvin level thermal stability over the optics, structural components, and interfaces to attain picometer wavefront RMS stability. A 270 Kelvin operational temperature was chosen to balance the ability to perform science in the near-infrared band and the desire to maintain the structure at a temperature with favorable material properties and lower contamination accumulation. This paper will focus on the system-level thermal designs of both LUVOIR observatory architectures. It will detail the various thermal control methods used in each of the major components - the optical telescope assembly, the spacecraft bus, the sunshade, and the suite of accompanying instruments - as well as provide a comprehensive overview of the analysis and justification for each design decision. It will additionally discuss any critical thermal challenges faced by the engineering team should either architecture be prioritized by the Astro2020 Decadal Survey process to proceed as the next large strategic mission for development.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN70503 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: There's a lot of paperwork to go to space! Building tools to help the folks "behind the scenes" at NASA takes a deep understanding of their complex worlds. In this lightning talk, David Luetger will discuss how San Jose State University Research Foundation at NASA Ames used qualitative data to support NASA's Space Launch System program, and introduced a new set of stakeholders to user-centered design.
    Keywords: Computer Programming and Software
    Type: ARC-E-DAA-TN69120 , Code for America Summitt; May 29, 2019 - May 31, 2019; Oakland, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-27
    Description: Planetary entry vehicles employ ablative TPS materials to shield the aeroshell from entry aeroheating environments. To ensure mission success, it must be demonstrated that the heatshield system, including local features such as seams, does not fail at conditions that are suitably margined beyond those expected in flight. Furthermore, its thermal response must be predictable, with acceptable fidelity, by computational tools used in heatshield design. Mission assurance is accomplished through a combination of ground testing and material response modelling. A material's robustness to failure is verified through arcjet testing while its thermal response is predicted by analytical tools that are verified against experimental data. Due to limitations in flight-like ground testing capability and lack of validated high-fidelity computational models, qualification of heatshield materials is often achieved by piecing together evidence from multiple ground tests and analytical simulations, none of which fully bound the flight conditions and vehicle configuration. Extreme heating environments (〉2000 W/cm2 heat flux and 〉2 atm pressure), experienced during entries at Venus, Saturn and Ice Giants, further stretch the current testing and modelling capabilities for applicable TPS materials. Fully-dense Carbon Phenolic was the material of choice for these applications; however, since heritage raw materials are no longer available, future uses of re-created Carbon Phenolic will require re-qualification. To address this sustainability challenge, NASA is developing a new dual-layer material based on 3D weaving technology called Heatshield for Extreme Entry Environments (HEEET) [1]. Regardless of TPS material, extreme environments pose additional certification challenges beyond what has been typical in recent NASA missions.Scope of this presentation: This presentation will give an overview of challenges faced in verifying TPS performance at extreme heating conditions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70580 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-24
    Description: This is a lightning talk at the inaugural SNOW meeting. The objective is to solicit input and feedback on white papers for the upcoming decadal survey.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN72537 , The Outer Planets Assessment Group (OPAG)/Subsurface Needs for Ocean Worlds Meeting (SNOW); Aug 19, 2019 - Aug 21, 2019; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-24
    Description: Extreme weather and climate events, such as heavy rainfall, heatwave, floods and droughts, and strong wind, can have devastating impacts on society. NASA and NOAA, based on independent analyses, recently announced that global surface temperatures in 2018 are the fourth warmest since 1880, behind only those of 2016, 2017, and 2015 (nasa.gov). Also in 2018, the United States experienced 14 billion-dollar disasters, ranking as the fourth highest total number of such events, behind only the years 2017, 2011, and 2016 (climate.gov). Many research studies have focused on acquiring observational and modeling data, to reveal linkages between increasing extreme events, global water and energy cycle, and global climate change. However, draw conclusions is still a challenge. NASA Goddard Earth Sciences Data and Information Services Center is one of twelve NASA Earth Observing System (EOS) data centers that process, archive, document, and distribute data from Earth science missions and related projects. The GES DISC hosts a wide range of remotely-sensed and model data and provides reliable and robust data access and services to users worldwide. This presentation provides a few examples of extreme event study that use Land Surface Model (LSM) assimilated, quality-controlled, and spatially and temporally consistent, hydrological data from the GES DISC. Also provided is a summary table for the hydrological data holdings, along with discussions of recent updates to data and data services.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN71670 , Asia Oceania Geosciences Society (AOGS) Annual Meeting; Jul 28, 2019 - Aug 02, 2019; Singapore; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...