ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (202)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • American Chemical Society
  • Oxford University Press
  • University of Chicago Press
  • Wiley-Blackwell
  • 2015-2019  (71)
  • 2010-2014  (103)
  • 1990-1994  (25)
  • 1950-1954  (3)
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Zoological Journal of the Linnean Society, 185 (3). pp. 555-635.
    Publication Date: 2020-01-02
    Description: Polynoidae contains ~900 species within 18 subfamilies, some of them restricted to the deep sea. Macellicephalinae is the most diverse among these deep-sea subfamilies. In the abyssal Equatorial Pacific Ocean, the biodiversity of benthic communities is at stake in the Clarion-Clipperton Fracture Zone (CCFZ) owing to increased industrial interest in polymetallic nodules. The records of polychaetes in this region are scarce. Data gathered during the JPI Oceans cruise SO239 made a significant contribution to fill this gap, with five different localities sampled between 4000 and 5000 m depth. Benthic samples collected using an epibenthic sledge or a remotely operated vehicle resulted in a large collection of polynoids. The aims of this study are as follows: (1) to describe new species of deep-sea polynoids using morphology and molecular data (COI, 16S and 18S); and (2) to evaluate the monophyly of Macellicephalinae. Based on molecular and morphological phylogenetic analyses, ten subfamilies are synonymized with Macellicephalinae in order to create a homogeneous clade determined by the absence of lateral antennae. Within this clade, the Anantennata clade was well supported, being determined by the absence of a median antenna. Furthermore, 17 new species and four new genera are described, highlighting the high diversity hidden in the deep. A taxonomic key for the 37 valid genera of the subfamily Macellicephalinae is provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    In:  FEMS Microbiology Letters, 366 (11).
    Publication Date: 2020-01-02
    Description: Metabolites give us a window into the chemistry of microbes and are split into two subclasses: primary and secondary. Primary metabolites are required for life whereas secondary metabolites have historically been classified as those appearing after exponential growth and are not necessarily needed for survival. Many microbial species are estimated to produce hundreds of metabolites and can be affected by differing nutrients. Using various analytical techniques, metabolites can be directly detected in order to elucidate their biological significance. Currently, a single experiment can produce anywhere from megabytes to terabytes of data. This big data has motivated scientists to develop informatics tools to help target specific metabolites or sets of metabolites. Broadly, it is imperative to identify clear biological questions before embarking on a study of metabolites (metabolomics). For instance, studying the effect of a transposon insertion on phenazine biosynthesis in Pseudomonas is a very different from asking what molecules are present in a specific banana-derived strain of Pseudomonas. This review is meant to serve as a primer for a ‘choose your own adventure’ approach for microbiologists with limited mass spectrometry expertise, with a strong focus on liquid chromatography mass spectrometry based workflows developed or optimized within the past five years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-15
    Description: Three monoterpenoid indole alkaloids (MIAs), tabernabovines A–C (1–3), were isolated from Tabernaemontana bovina. They were elucidated by spectroscopic data and computational calculations. Unlike precursors of MIAs, strictosidine and alstrostine A, alkaloid 1 consists of tryptamine and secologanin in a 2:1 ratio. Alkaloid 2 is a cage compound, and 3 possesses a bridged ring. Tabernabovine A exhibited inhibitory activity against NO production with IC50 44.1 μM compared to l-NMMA with IC50 of 48.6 μM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-02
    Description: Euphorkanlide A (1), a highly modified ingenane diterpenoid with a C24 appendage forming an additional hexahydroisobenzofuran-fused 19-membered macrocyclic bis-lactone ring system was isolated from the roots of Euphorbia kansuensis. Its structure was determined by extensive spectroscopic analysis and quantum-chemical calculations. Compound 1 showed significant cytotoxicities against a panel of cancer cell lines (IC50s 〈 5 μM). Mechanistic study revealed that 1 could induce the generation of ROS, leading to cell cycle arrest and cell apoptosis in drug-resistant cancer cell line HCT-15/5-FU.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-02
    Description: The vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (〉100 nm and 〈5 mm) or nanoplastics (〈100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and microplastics is limited. Generally, the smaller the size of the plastic particle, the more difficult it is to separate from environmental samples. Currently employed passive density and size separation techniques to isolate plastics from environmental samples are not well suited to separate microplastics and nanoplastics. Passive flotation is hindered by the low buoyancy of small particles as well as the difficulty of handling small particles on the surface of flotation media. Here we suggest exploring alternative techniques borrowed from other fields of research to improve separation of the smallest plastic particles. These techniques include adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry. Furthermore, plastic pollution is often challenging to quantify in complex matrices such as biological tissues and wastewater. Biological and wastewater samples are important matrices that represent key points in the fate and sources of plastic pollution, respectively. In both kinds of samples, protocols need to be optimized to increase throughput, reduce contamination potential, and avoid destruction of plastics during sample processing. To this end, we recommend adapting digestion protocols to match the expected composition of the nonplastic material as well as taking measures to reduce and account for contamination. Once separated, plastics in an environmental sample should ideally be characterized both visually and chemically. With existing techniques, microplastics and nanoplastics are difficult to characterize or even detect. Their low mass and small size provide limited signal for visual, vibrational spectroscopic, and mass spectrometric analyses. Each of these techniques involves trade-offs in throughput, spatial resolution, and sensitivity. To accurately identify and completely quantify microplastics and nanoplastics in environmental samples, multiple analytical techniques applied in tandem are likely to be required.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-03
    Description: Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Behavioral Ecology, 31 (2). pp. 287-291.
    Publication Date: 2021-01-08
    Description: Marine prey and predators will respond to future climate through physiological and behavioral adjustments. However, our understanding of how such direct effects may shift the outcome of predator–prey interactions is still limited. Here, we investigate the effects of ocean warming and acidification on foraging behavior and biomass of a common prey (shrimps, Palaemon spp.) tested in large mesocosms harboring natural resources and habitats. Acidification did not alter foraging behavior in prey. Under warming, however, prey showed riskier behavior by foraging more actively and for longer time periods, even in the presence of a live predator. No effects of longer-term exposure to climate stressors were detected on prey biomass. Our findings suggest that ocean warming may increase the availability of some prey to predators via a behavioral pathway (i.e., increased risk-taking by prey), likely by elevating metabolic demand of prey species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Oxford Research Encyclopedia of Climate Science. Oxford University Press, Oxford. ISBN 9780190228620
    Publication Date: 2021-02-23
    Description: Climate change influences the Baltic Sea ecosystem via its effects on oceanography and biogeochemistry. Sea surface temperature has been projected to increase by 2 to 4 °C until 2100 due to global warming; the changes will be more significant in the northern areas and less so in the south. The warming up will also diminish the annual sea ice cover by 57% to 71%, and ice season will be one to three months shorter than in the early 21st century, depending on latitude. A significant decrease in sea surface salinity has been projected because of an increase in rainfall and decrease of saline inflows into the Baltic Sea. The increasing surface flow has, in turn, been projected to increase leaching of nutrients from the soil to the watershed and eventually into the Baltic Sea. Also, acidification of the seawater and sea-level rise have been predicted. Increasing seawater temperature speeds up metabolic processes and increases growth rates of many secondary producers. Species associated with sea ice, from salt brine microbes to seals, will suffer. Due to the specific salinity tolerances, species’ geographical ranges may shift by tens or hundreds of kilometres with decreasing salinity. A decrease in pH will slow down calcification of bivalve shells, and higher temperatures also alleviate establishment of non-indigenous species originating from more southern sea areas. Many uncertainties still remain in predicting the couplings between atmosphere, oceanography and ecosystem. Especially projections of many oceanographic parameters, such as wind speeds and directions, the mean salinity level, and density stratification, are still ambiguous. Also, the effects of simultaneous changes in multiple environmental factors on species with variable preferences to temperature, salinity, and nutrient conditions are difficult to project. There is, however, enough evidence to claim that due to increasing runoff of nutrients from land and warming up of water, primary production and sedimentation of organic matter will increase; this will probably enhance anoxia and release of phosphorus from sediments. Such changes may keep the Baltic Sea in an eutrophicated state for a long time, unless strong measures to decrease nutrient runoff from land are taken. Changes in the pelagic and benthic communities are anticipated. Benthic communities will change from marine to relatively more euryhaline communities and will suffer from hypoxic events. The projected temperature increase and salinity decline will contribute to maintain the pelagic ecosystem of the Central Baltic and the Gulf of Finland in a state dominated by cyanobacteria, flagellates, small-sized zooplankton and sprat, instead of diatoms, large marine copepods, herring, and cod. Effects vary from area to area, however. In particular the Bothnian Sea, where hypoxia is less common and rivers carry a lot of dissolved organic carbon, primary production will probably not increase as much as in the other basins. The coupled oceanography-biogeochemistry ecosystem models have greatly advanced our understanding of the effects of climate change on marine ecosystems. Also, studies on climate associated “regime shifts” and cascading effects from top predators to plankton have been fundamental for understanding of the response of the Baltic Sea ecosystem to anthropogenic and climatic stress. In the future, modeling efforts should be focusing on coupling of biogeochemical processes and lower trophic levels to the top predators. Also, fine resolution species distribution models should be developed and combined with 3-D modelling, to describe how the species and communities are responding to climate-induced changes in environmental variables.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Agricultural and Food Chemistry, 67 (18). pp. 5135-5146.
    Publication Date: 2021-01-08
    Description: UPLC–TOF/MS profiling, followed by the recently reported differential off-line LC–NMR (DOLC–NMR) and quantitative 1H NMR spectroscopy (qHNMR), led to the differential qualitative analysis and accurate quantitation of l-tryptophan-induced metabolome alterations of Penicillium roqueforti, which is typically used in making blue-mold cheese. Among the 24 metabolites identified, two tetrapeptides, namely, d-Phe-l-Val-d-Val-l-Tyr and d-Phe-l-Val-d-Val-l-Phe, as well as cis-bis(methylthio)silvatin, are reported for the first time as metabolites of P. roqueforti. Antimicrobial activity tests showed strong effects of the catabolic l-tryptophan metabolites 3-hydroxyanthranilic acid, anthranilic acid, and 3-indolacetic acid against Saccharomyces cerevisiae, with IC50 values between 15.6 and 24.0 μg/mL, while roquefortine C and cis-bis(methylthio)silvatin inhibited the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis with IC50 values between 30.0 and 62.5 μg/mL.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-07
    Description: This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology, 53 (9). pp. 5151-5158.
    Publication Date: 2022-01-31
    Description: Microplastics (MPs) in aquatic organisms are raising increasing concerns regarding their potential damage to ecosystems. To date, Raman and Fourier transform infrared spectroscopy techniques have been widely used for detection of MPs in aquatic organisms, which requires complex protocols of tissue digestion and MP separation and are time- and reagentconsuming. This novel approach directly separates, identifies, and characterizes MPs from the hyperspectral image (HSI) of the intestinal tract content in combination with a support vector machine classification model, instead of using the real digestion/separation protocols. The procedures of HSI acquisition ( 1 min) and data analysis (5 min) can be completed within 6 min plus the sample preparation and drying time (30 min) where necessary. This method achieved a promising efficiency (recall 〉98.80%, precision 〉96.22%) for identifying five types of MPs (particles 〉0.2 mm). Moreover, the method was also demonstrated to be effective on field fish from three marine fish species, revealing satisfying detection accuracy (particles 〉0.2 mm) comparable to Raman analysis. The present technique omits the digestion protocol (reagent free), thereby significantly reducing reagent consumption, saving time, and providing a rapid and efficient method for MP analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-31
    Description: Repeated and independent emergence of trait divergence that matches habitat differences is a sign of parallel evolution by natural selection. Yet, the molecular underpinnings that are targeted by adaptive evolution often remain elusive. We investigate this question by combining genome-wide analyses of copy number variants (CNVs), single nucleotide polymorphisms (SNPs), and gene expression across four pairs of lake and river populations of the three-spined stickleback (Gasterosteus aculeatus). We tested whether CNVs that span entire genes and SNPs occurring in putative cis-regulatory regions contribute to gene expression differences between sticklebacks from lake and river origins. We found 135 gene CNVs that showed a significant positive association between gene copy number and gene expression, suggesting that CNVs result in dosage effects that can fuel phenotypic variation and serve as substrates for habitat-specific selection. Copy number differentiation between lake and river sticklebacks also contributed to expression differences of two immune-related genes in immune tissues, cathepsin A and GIMAP7. In addition, we identified SNPs in cis-regulatory regions (eSNPs) associated with the expression of 1,865 genes, including one eSNP upstream of a carboxypeptidase gene where both the SNP alleles differentiated and the gene was differentially expressed between lake and river populations. Our study highlights two types of mutations as important sources of genetic variation involved in the evolution of gene expression and in potentially facilitating repeated adaptation to novel environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-01-31
    Description: A new olivine reference material – MongOL Sh11‐2 – for in situ analysis has been prepared from a central portion of a large (20 cm × 20 cm × 10 cm) mantle peridotite xenolith from a ~ 0.5 Ma old basaltic breccia at Shavaryn‐Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration. Approximately 10 g of 0.5 to 2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA‐ICP‐MS, SIMS and bulk analytical methods (ID ICP‐MS for Mg and Fe, XRF, ICP‐MS) for major, minor and trace elements at six institutions worldwide. The results show that the olivine fragments are sufficiently homogeneous with respect to major (Mg, Fe, Si) and minor and trace elements. Significant inhomogeneity was revealed only for phosphorus (homogeneity index of 12.4), whereas Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index of 1–2). The presence of some mineral and fluid‐melt micro‐inclusions may be responsible for the inconsistency in mass fractions obtained by in situ and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information values for twenty‐seven major, minor and trace elements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-01-31
    Description: Aim: The interdependencies between trophic interactions, environmental factors and anthropogenic forcing determine how species distributions change over time. Large changes in species distributions have occurred as a result of climate change. The objective of this study was to analyse how the spatial distribution of cod and flounder has changed in the Baltic Sea during the past four decades characterized by large hydrological changes. Location: Baltic Sea. Taxon: Cod (Gadus morhua) and flounder (Platichthys flesus). Methods: Catch per unit of effort (CPUE) data for adult and juvenile cod and for adult flounder were modelled using Delta-Generalized additive models including environmental and geographical variables between 1979 and 2016. From the annual CPUE predictions for each species, yearly distribution maps and depth distribution curves were obtained. Mean depth and the depth range were estimated to provide an indication on preferred depth and habitat occupancy. Results: Adult and juvenile cod showed a contraction in their distribution in the southern areas of the Baltic Sea. Flounder, instead, showed an expansion in its distribution with an increase in abundance in the northern areas. The depth distributions showed a progressive shift of the mean depth of occurrence towards shallower waters for adult cod and flounder and towards deeper waters for juvenile cod, as well as a contraction of the species depth ranges, evident mainly from the late 1980s. Main conclusions: Our study illustrates large changes in the spatial distribution of cod and flounder in the Baltic Sea. The changes in depth distribution occurred from the late 1980s are probably due to a combination of expanded areas of hypoxia in deep waters and an increase in predation risk in shallow waters. The net effect of these changes is an increased spatial overlap between life stages and species, which may amplify cod cannibalism and the interaction strength between cod and flounder
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-01-31
    Description: Cichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology, 53 (12). pp. 7068-7074.
    Publication Date: 2022-01-31
    Description: Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved. Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake. The potential for microplastic inhalation and how the source of drinking water may affect microplastic consumption were also explored. Our analysis used 402 data points from 26 studies, which represents over 3600 processed samples. Evaluating approximately 15% of Americans’ caloric intake, we estimate that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex. These estimates increase to 74000 and 121000 when inhalation is considered. Additionally, individuals who meet their recommended water intake through only bottled sources may be ingesting an additional 90000 microplastics annually, compared to 4000 microplastics for those who consume only tap water. These estimates are subject to large amounts of variation; however, given methodological and data limitations, these values are likely underestimates.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-01-31
    Description: The Arctic Limnocalanus macrurus is a prominent representative of large copepods which performs several essential functions in freshwater and marine ecosystems. Being a cold stenotherm species, its distribution is primarily confined to deeper water layers. Based on the long-term observations from one of the largest spatially confined natural populations of this species in the Baltic Sea, we detected profound long-term variability of L. macrurus during 1958–2016: high abundances before the 1980s, then nearly disappearance in the 1990s and recovery in the 2000s. The main environmental parameters explaining the interannual variability of L. macrurus in spring were herring spawning stock biomass in preceding year, winter severity, and bottom water temperature in preceding summer. The effect of winter severity and water temperature was also non-linear. The sliding window correlation analysis pointed to a non-stationary relationship between the abundance of L. macrurus and the key variables. Given the observed pronounced seasonality in the population structure of L. macrurus (young stages dominated in the beginning of the year and only adults were left in the population in summer and autumn) we identified the dynamics of key environmental variables to understand this species under different ecosystem configurations and different combinations of drivers of change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-01-31
    Description: The Swan Islands Transform Fault (SITF) marks the southern boundary of the Cayman Trough and the ocean–continent transition of the North American–Caribbean Plate boundary offshore Honduras. The CAYSEIS experiment acquired a 180-km-long seismic refraction and gravity profile across this transform margin, ∼70 km to the west of the Mid-Cayman Spreading Centre (MCSC). This profile shows the crustal structure across a transform fault system that juxtaposes Mesozoic-age continental crust to the south against the ∼10-Myr-old ultraslow spread oceanic crust to the north. Ocean-bottom seismographs were deployed along-profile, and inverse and forward traveltime modelling, supported by gravity analysis, reveals ∼23-km-thick continental crust that has been thinned over a distance of ∼70 km to ∼10 km-thick at the SITF, juxtaposed against ∼4-km-thick oceanic crust. This thinning is primarily accommodated within the lower crust. Since Moho reflections are not widely observed, the 7.0 km s−1 velocity contour is used to define the Moho along-profile. The apparent lack of reflections to the north of the SITF suggests that the Moho is more likely a transition zone between crust and mantle. Where the profile traverses bathymetric highs in the off-axis oceanic crust, higher P-wave velocity is observed at shallow crustal depths. S-wave arrival modelling also reveals elevated velocities at shallow depths, except for crust adjacent to the SITF that would have occupied the inside corner high of the ridge-transform intersection when on axis. We use a Vp/Vs ratio of 1.9 to mark where lithologies of the lower crust and uppermost mantle may be exhumed, and also to locate the upper-to-lower crustal transition, identify relict oceanic core complexes and regions of magmatically formed crust. An elevated Vp/Vs ratio suggests not only that serpentinized peridotite may be exposed at the seafloor in places, but also that seawater has been able to flow deep into the crust and upper mantle over 20–30-km-wide regions which may explain the lack of a distinct Moho. The SITF has higher velocities at shallower depths than observed in the oceanic crust to the north and, at the seabed, it is a relatively wide feature. However, the velocity–depth model subseabed suggests a fault zone no wider than ∼5–10 km, that is mirrored by a narrow seabed depression ∼7500 m deep. Gravity modelling shows that the SITF is also underlain, at 〉2 km subseabed, by a ∼20-km-wide region of density 〉3000 kg m−3 that may reflect a broad region of metamorphism. The residual mantle Bouguer anomaly across the survey region, when compared with the bathymetry, suggests that the transform may also have a component of left-lateral trans-tensional displacement that accounts for its apparently broad seabed appearance, and that the focus of magma supply may currently be displaced to the north of the MCSC segment centre. Our results suggest that Swan Islands margin development caused thinning of the adjacent continental crust, and that the adjacent oceanic crust formed in a cool ridge setting, either as a result of reduced mantle upwelling and/or due to fracture enhanced fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-01-31
    Description: Latest knowledge on the reactivity of charged nanoparticulate complexants toward aqueous metal ions is discussed in mechanistic detail. We present a rigorous generic description of electrostatic and chemical contributions to metal ion binding by nanoparticulate complexants, and their dependence on particle size, particle type (i.e., reactive sites distributed within the particle body or confined to the surface), ionic strength of the aqueous medium, and the nature of the metal ion. For the example case of soft environmental particles such as fulvic and humic acids, practical strategies are delineated for determining intraparticulate metal ion speciation, and for evaluating intrinsic chemical binding affinities and heterogeneity. The results are compared with those obtained by popular codes for equilibrium speciation modeling (namely NICA-Donnan and WHAM). Physicochemical analysis of the discrepancies generated by these codes reveals the a priori hypotheses adopted therein and the inappropriateness of some of their key parameters. The significance of the characteristic time scales governing the formation and dissociation rates of metal−nanoparticle complexes in defining the relaxation properties and the complete equilibration of the metal− nanoparticulate complex dispersion is described. The dynamic features of nanoparticulate complexes are also discussed in the context of predictions of the labilities and bioavailabilities of the metal species.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Geophysical Journal International, 219 (3). pp. 1876-1884.
    Publication Date: 2022-01-31
    Description: Standard seismic acquisition and processing require appropriate source-receiver offsets. P-cable technology represents the opposite, namely, very short source-receiver offsets at the price of increased spatial and lateral resolution with a high-frequency source. To use this advantage, a processing flow excluding offset information is required. This aim can be achieved with a processing tuned to diffractions because point diffractions scatter the same information in offset and midpoint direction. Usually, diffractions are small amplitude events and a careful diffraction separation is required as a first step. We suggest the strategy to use a multiparameter stacking operator, e.g, common-reflection surface, and stack along the midpoint direction. The obtained kinematic wavefront attributes are used to calculate time-migration velocities. A diffractivity map serves as filter to refine the velocities. This strategy is applied to a 3D P-cable data set to obtain a time-migrated image.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-03-21
    Description: The continental expression of global cooling during the Miocene Climate Transition in Central Asia is poorly documented, as the tectonically active setting complicates the correlation of Neogene regional and global climatic developments. This study presents new geochemical data (CaSO 4 content, carbonate δ 13 C and δ 18 O) from the endorheic alluvial‐lacustrine Aktau succession (Ili Basin, south‐east Kazakhstan) combined with findings from the previously published facies evolution. Time series analysis revealed long‐eccentricity forcing of the paleohydrology throughout the entire succession, split into several facies‐dependent segments. Orbital tuning, constrained by new laser ablation U‐Pb dates and a preexisting magnetostratigraphy, places the succession in a 5.0 Ma long interval in the middle to late Miocene (15.6 to 10.6 Ma). The long‐term water accumulation in the Ili Basin followed the timing of the Miocene Climate Transition, suggesting increased precipitation in the catchment area in response to climate cooling and stronger westerly winds. This was paced by minima of the 2.4 Ma eccentricity cycle, which favored the establishment of a discharge playa (~14.3 Ma) and a perennial lake (12.6 to 11.8 Ma). Furthermore, low obliquity amplitudes (nodes) caused a transient weakening of the westerlies at ~13.7 to 13.5 Ma and at ~12.7 Ma, resulting in negative hydrological budgets and salinization. Flooding of the windward Ili Basin coeval with aridification in the leeward basins suggests that the Tian Shan was a climate boundary already in the middle Miocene. Our results emphasize the impact of climate fluctuations on the westerlies' strength and thus on Central Asian hydrology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-02-08
    Description: To enable quality control of measurement procedures for determinations of Mg isotope amount ratios, expressed as δ26Mg and δ25Mg values, in Earth-surface studies, the δ26Mg and δ25Mg values of eight reference materials (RMs) were determined by inter-laboratory comparison between five laboratories and considering published data, if available. These matrix RMs, including river water SLRS-5, spring water NIST SRM 1640a, Dead Sea brine DSW-1, dolomites JDo-1 and CRM 512, limestone CRM 513, soil NIST SRM 2709a and vegetation NIST SRM 1515 apple leaves, are representative for a wide range of Earth-surface materials from low-temperature environments. The inter-laboratory variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17‰ in δ26Mg. Thus, it is suggested that all these materials are suitable for validation of δ26Mg and δ25Mg determinations of Earth-surface geochemical studies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-02-08
    Description: Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-08
    Description: We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-02-08
    Description: Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-02-08
    Description: Mass fractions of Sn and In were determined in sixteen geological reference materials including basaltic/mafic (BCR‐2, BE‐N, BHVO‐1, BHVO‐2, BIR‐1, OKUM, W‐2, WS‐E), ultramafic (DTS‐2b, MUH‐1, PCC‐1, UB‐N) and felsic/sedimentary reference materials (AGV‐2, JA‐1, SdAR‐M2, SdAR‐H1). Extensive digestion and ion exchange separation tests were carried out in order to provide high yields (〉 90% for Sn, 〉 85% for In), low total procedural blanks (~ 1 ng for Sn, 〈 3 pg for In) and low analytical uncertainties for the elements of interest in a variety of silicate sample matrices. Replicate analyses (n = 2–13) of Sn‐In mass fractions give a combined measurement uncertainty of 2u that are generally 〈 3% and in agreement with literature data, where available. We present the first high precision In data for reference materials OKUM (32.1 ± 1.5 ng g−1), DTS‐2b (2.03 ± 0.25 ng g−1), MUH‐1 (6.44 ± 0.30 ng g−1), and PCC‐1 (3.55 ± 0.35 ng g−1) as well as the first Sn data for MUH‐1 (0.057 ± 0.010 μg g−1) and DTS‐2b (0.623 ± 0.018 μg g−1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-02-08
    Description: Sediment core PS1904 reveals continuous records of planktic and benthic foraminiferal stable isotopes (δ18O/δ13C) from the north-eastern Greenland continental margin. The data show good comparability with other records from the Nordic Seas, allowing the stratigraphic range of PS1904 to be dated to Marine Isotope Stage (MIS) 6. Focusing on MIS 5 reveals light δ18O values during MIS 5a compared to the last interglacial peak (MIS 5e) which indicates that surface and bottom water layers were strongly affected by freshwater during the former event. We present two possible scenarios explaining the origin and routing of the freshwater: (i) drainage of a Eurasian proglacial lake coupled with the collapse of the Kara Sea Ice Sheet at the MIS 5b/a boundary, and (ii) destabilization and melting of the nearby Greenland Ice Sheet. Although both scenarios could have acted simultaneously, sediment records from the Eurasian sector of the Arctic Ocean hint at the proglacial lake system in north-western Siberia as the largest freshwater source. Regardless of the actual source, the freshwater lowered the surface ocean salinity causing water column stratification and sea ice expansion. Increased sea-ice abundance led to a higher albedo and probably contributed to the cooling and global ice sheet growth that occurred subsequently during MIS 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 32 (8). pp. 8167-8174.
    Publication Date: 2020-07-31
    Description: Methane recovery from artificial hydrate-bearing sandstones by simulated flue gas swapping was tested using a core flooding experimental setup. Seven groups of experiments were conducted to investigate the effect of hydrate saturation as well as the initial porosity and permeability of sandstones on methane production and carbon dioxide capture. The results show that the CH4 recovery efficiency and the amount of CO2 captured increase with the increase of hydrate saturation at the same initial porosity and permeability of sandstone. The highest CH4 recovery obtained is 51.6% and 99.4% of CO2 in simulated flue gas is sequestered in the hydrate phase after swapping at 9.2 MPa and 277.15 K. Hydrate saturation was 82.5% and the initial porosity and permeability of sandstone are 25.1% and 49 mD, respectively. With the increase of initial porosity and permeability of sandstone, the CH4 recovery efficiency and the amount of CO2 captured increase when other conditions (the hydrate saturation and reaction time) are similar. For investigating the CH4-flue gas swapping mechanism, a micro-differential scanning calorimetry was used to test the heat changes in the whole reaction. No noticeable endothermic or exothermic phenomenon was detected in the CH4-flue gas swapping, which indicates that CH4 hydrate would form mixed hydrates directly instead of going through a dissociation and reformation process. Based on the observed experimental results, a CH4-flue gas swapping mechanism is proposed and the reaction process is found to be essentially controlled by mass transfer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-11-20
    Description: Marine methane hydrate in sands has huge potential as an unconventional gas resource; however, no field test of their production potential had been conducted. Here, we report the world’s first offshore methane hydrate production test conducted at the eastern Nankai Trough and show key findings toward future commercial production. Geological analysis indicates that hydrate saturation reaches 80% and permeability in the presence of hydrate ranges from 0.01 to 10 mdarcies. Permeable (1–10 mdarcies) highly hydrate-saturated layers enable depressurization-induced gas production of approximately 20,000 Sm3/D with water of 200 m3/D. Numerical analysis reveals that the dissociation zone expands laterally 25 m at the front after 6 days. Gas rate is expected to increase with time, owing to the expansion of the dissociation zone. It is found that permeable highly hydrate-saturated layers increase the gas–water ratio of the production fluid. The identification of such layers is critically important to increase the energy efficiency and the technical feasibility of depressurization-induced gas production from hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-07-27
    Description: In the colloidal synthesis of iron sulfides, a series of dialkyl disulfides, alkyl thiols, and dialkyl disulfides (allyl, benzyl, tert-butyl, and phenyl) were employed as sulfur sources. Their reactivity was found to tune the phase between pyrite (FeS2), greigite (Fe3S4), and pyrrhotite (Fe7S8). DFT was used to show that sulfur-rich phases were favored when the C–S bond strength was low in the organosulfurs, yet temperature dependent studies and other observations indicated the reasons for phase selectivity were more nuanced; the different precursors decomposed through different reaction mechanisms, some involving the oleylamine solvent. The formation of pyrite from diallyl disulfide was carefully studied as it was the only precursor to yield FeS2. Raman spectroscopy indicated that FeS2 forms directly without an FeS intermediate, unlike most synthetic procedures to pyrite. Diallyl disulfide releases persulfide (S–S)2– due to the lower C–S bond strength relative to the S–S bond strength, as well as facile decomposition in the presence of amines through SN2′ mechanisms at elevated temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of the World Aquaculture Society, 48 (2). pp. 353-359.
    Publication Date: 2020-07-16
    Description: Japanese flounder, Paralichthys olivaceus, is an economically important marine fish species in Asia. A suite of 18 microsatellite markers chosen from published genetic linkage maps was used to carry out parentage assignments of 188 hatchery-reared juveniles from a small number of breeders. The probabilities of exclusion for the 18 microsatellite markers were 0.604–0.913, and the effectiveness of combined probability of exclusion reached 100% when using the eight microsatellite markers with higher Excl 1 probabilities. The cultured and wild stocks (WSs) were differentiated in a release-recapture population based on these markers. Of the 321 recaptured offspring, 28.34% were assigned to their parental pairs in our broodstock, whereas the remaining offspring could not be traced back to a possible sire or dam. Significant reduction in genetic diversity of the cultured stock (CS) had not been found compared with that of the WS. The results suggest that CSs released into the wild will not adversely affect the genetic structure of natural populations. Our results demonstrate that these markers provide an efficient tool for parentage assignments and genetic analysis of Japanese flounder.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Marine Plankton: A practical guide to ecology, methodology, and taxonomy. , ed. by Castellani, C. and Edwards, M. Oxford University Press, Oxford, UK, pp. 538-550. ISBN 978-0-19-923326-7
    Publication Date: 2020-03-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Chemical Society
    In:  The Journal of Organic Chemistry, 82 (1). pp. 269-275.
    Publication Date: 2020-01-02
    Description: A synthesis of the 12,12′-azo-analogue of ritterazine N from hecogenin is reported. Ring contraction of two 6/5 bicyclic ring systems, one trans-fused and another spiro, to 5/5 spiro ring systems is accomplished with excellent stereochemical control. Key transformations include an abnormal Baeyer–Villiger oxidation, a Norrish type I cleavage, an intramolecular dipolar [3 + 2] cycloaddition, and an intramolecular oxymecuration. Failing to uncover the β-OH ketone from the isoxazoline ring, we end up with a synthesis of a cyclic analogue of ritterazine N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-02-06
    Description: The spatial structure of species is important for their dynamics and evolution, but also for management and conservation. There are numerous ways of inferring spatial structures, and information from multiple methods is becoming more common to examine how different processes shape the spatial structures of species to improve fish management. Here, we investigate the spatial structure of a suite of Baltic Sea fish species based on the following: (i) spatial (presumably neutral) genetic differentiation, reviewed from the literature, and (ii) spatial synchrony in abundance changes from time series of fishery-independent surveys, which we currently find to be underused given the amount of data available. For each of these two methods, species were classified as having a distinct, continuous or no/weak spatial structure. In addition, based on each source of information, we estimated the spatial scale of management units for species. The results show that only among species confined to the coastal zone the two sources of information yielded a congruence of the spatial structure (displaying a continuous spatial structure). In contrast, offshore species show weak spatial genetic structure but stronger spatial structure of synchrony in abundance. Based on this, we suggest that population genetic structure and synchrony in abundance should be used as complementary information as they reflect different spatial processes and suggest that management actions should differ with respect to scale depending on the management targets applied. We propose similar analysis should be applied to areas outside the Baltic Sea, and other stock identification methods, to improve management of fish resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-10-26
    Description: Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta-analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log-response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model-averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-09-02
    Description: Marine plastic debris is a global environmental problem. Surveys have shown that 〈5 mm plastic particles, known as microplastics, are significantly more abundant in surface seawater and on shorelines than larger plastic particles are. Nevertheless, quantification of microplastics in the environment is hampered by a lack of adequate high-throughput methods for distinguishing and quantifying smaller size fractions (〈1 mm), and this has probably resulted in an underestimation of actual microplastic concentrations. Here we present a protocol that allows high-throughput detection and automated quantification of small microplastic particles (20–1000 μm) using the dye Nile red, fluorescence microscopy, and image analysis software. This protocol has proven to be highly effective in the quantification of small polyethylene, polypropylene, polystyrene, and nylon-6 particles, which frequently occur in the water column. Our preliminary results from sea surface tows show a power-law increase in small microplastics (i.e., 〈1 mm) with a decreasing particle size. Hence, our data help to resolve speculation about the “apparent” loss of this fraction from surface waters. We consider that this method presents a step change in the ability to detect small microplastics by substituting the subjectivity of human visual sorting with a sensitive and semiautomated procedure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-12-17
    Description: The Ignik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for C02 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure C02 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of C02 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of C02, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and ( 3) an extended ( 30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of C02 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; (2) gas hydrate test wells must be carefully designed to enable rapid remediation of wellbore blockages that will occur during any cessation in operations; (3) sand production during hydrate production likely can be managed through standard engineering controls; and ( 4) reservoir heat exchange during depressurization was more favorable than expected-mitigating concerns for near-wellbore freezing and enabling consideration of more aggressive pressure reduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Fish and Fisheries, 18 (4). pp. 656-667.
    Publication Date: 2019-02-01
    Description: Fisheries advice is based on demographic calculations, which assume that density-dependent processes regulating recruitment occur only in early life. This assumption is challenged by laboratory and lake studies and some recent indications from marine systems that demonstrate density-dependent regulation late in life. By accounting for spatial dynamics of a population, something that has previously been ignored in models of fish, we show that density-dependent regulation is determined by the size of the habitat: in small habitats, for example small lakes, regulation occurs late in life, while it can occur early in large habitats. When regulation happens late in life, fisheries yield is maximized by exploitation of mainly juvenile fish, while exploiting mature fish maximizes yield if regulation happens early. We review and interpret observations of density dependence in the light of the theory. Our results challenge the current assumption that density dependence always occurs early in life and highlights the need for an increased understanding of density-dependent processes. This can only come about by a change of focus from determining stock-recruitment relationships towards understanding when and how density-dependent regulation occurs in nature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-02-01
    Description: The spatial structure of species is important for their dynamics and evolution, but also for management and conservation. There are numerous ways of inferring spatial structures, and information from multiple methods is becoming more common to examine how different processes shape the spatial structures of species to improve fish management. Here, we investigate the spatial structure of a suite of Baltic Sea fish species based on the following: (i) spatial (presumably neutral) genetic differentiation, reviewed from the literature, and (ii) spatial synchrony in abundance changes from time series of fishery‐independent surveys, which we currently find to be underused given the amount of data available. For each of these two methods, species were classified as having a distinct, continuous or no/weak spatial structure. In addition, based on each source of information, we estimated the spatial scale of management units for species. The results show that only among species confined to the coastal zone the two sources of information yielded a congruence of the spatial structure (displaying a continuous spatial structure). In contrast, offshore species show weak spatial genetic structure but stronger spatial structure of synchrony in abundance. Based on this, we suggest that population genetic structure and synchrony in abundance should be used as complementary information as they reflect different spatial processes and suggest that management actions should differ with respect to scale depending on the management targets applied. We propose similar analysis should be applied to areas outside the Baltic Sea, and other stock identification methods, to improve management of fish resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Metamorphic Geology .
    Publication Date: 2020-07-23
    Description: We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high-grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late-Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large-scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-10-26
    Description: Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Fish and Fisheries, 18 (2). pp. 199-211.
    Publication Date: 2019-02-01
    Description: Managing fisheries presents trade-offs between objectives, for example yields, profits, minimizing ecosystem impact, that have to be weighed against one another. These trade-offs are compounded by interacting species and fisheries at the ecosystem level. Weighing objectives becomes increasingly challenging when managers have to consider opposing objectives from different stakeholders. An alternative to weighing incomparable and conflicting objectives is to focus on win–wins until Pareto efficiency is achieved: a state from which it is impossible to improve with respect to any objective without regressing at least one other. We investigate the ecosystem-level efficiency of fisheries in five large marine ecosystems (LMEs) with respect to yield and an aggregate measure of ecosystem impact using a novel calibration of size-based ecosystem models. We estimate that fishing patterns in three LMEs (North Sea, Barents Sea and Benguela Current) are nearly efficient with respect to long-term yield and ecosystem impact and that efficiency has improved over the last 30 years. In two LMEs (Baltic Sea and North East US Continental Shelf), fishing is inefficient and win–wins remain available. We additionally examine the efficiency of North Sea and Baltic Sea fisheries with respect to economic rent and ecosystem impact, finding both to be inefficient but steadily improving. Our results suggest the following: (i) a broad and encouraging trend towards ecosystem-level efficiency of fisheries; (ii) that ecosystem-scale win–wins, especially with respect to conservation and profits, may still be common; and (iii) single-species assessment approaches may overestimate the availability of win–wins by failing to account for trade-offs across interacting species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-07-31
    Description: To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases inChloroflexisequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-10-26
    Description: Ecological studies based on time-series often investigate community changes centered on species abundance or biomass but rarely expose the consequential functional aspects underlying such changes. Functional diversity measures have proven to be more accurate predictors for ecosystem functioning than traditional taxonomic approaches and hence gained much attention. There are only limited studies available that analyse the functional implications behind decadal changes of entire communities. We studied zoobenthic communities of two habitats, sheltered and exposed, of a coastal system subject to contrasting changes in community composition over the past four decades. Besides eutrophication and climate-related impacts, the system has been invaded by a non-native polycheate Marenzelleria spp., adding altered functional properties to the communities. The functional dispersion (FDis) metric was used as a measure for comparing the functional diversity of the contrasting habitats, with special focus on the role of Marenzelleria for the entire communities. We highlight changes in the functional identity of the communities, expressed as community-weighted means of trait expression (CWM), using multivariate techniques, and investigate the relationship between taxonomic and functional changes. Despite contrasting community developments in the two habitats, with characteristics traditionally suggesting different environmental quality, we found that the FDis in both habitats remained similar and increased with the introduction of Marenzelleria. Although showing maintained functional diversity across time and space, the functional identity (CWM) of communities changed irrespective of taxonomical differences. Examples include inter alia alterations in palatability proxies, feeding position and sediment transportation types, indicating changed functionality of zoobenthos in coastal systems. We show, when focussing on qualitative functional changes of communities, it is important to evaluate the underlying functional identity, and not only rely on measures of the diversity of functions per se, as the quality indication of expressed functional traits can be concealed when using multi-functionality approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-02-01
    Description: Connectivity of pelagic, early life stages via transport by ocean currents may affect survival chances of offspring, recruitment success, and mixing of stocks across management units. Based on drift model studies, transport patterns of particles representing exogenously feeding cod larvae in the transition area between North Sea and Baltic were investigated to (i) determine long-term trends and variability in advective transport of larvae from spawning grounds to juvenile nursery areas, (ii) estimate the degree of exchange between different management areas, and (iii) compare the results with spatial distributions of juvenile cod. The transport of particles showed considerable intra- and interannual variability, but also some general patterns of retention within and dispersion to different management areas. Good spatial overlap of particle end positions, representing potential juvenile settlement areas, with observed distributions of juveniles in bottom trawl surveys suggests that the drift simulations provide reasonable estimates of early life stage connectivity between cod populations in the investigated areas. High exchange rates of particles between management areas of up to ca. 70% suggest that cod populations in the investigated areas are demographically correlated. Results are discussed in relation to their relevance for stock structure, fish stock assessment, and management.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-07-30
    Description: The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to move from this descriptive level to improved quantitative, process-level understanding of the roles of marine microbes in biogeochemical cycles and of the impact of environmental change on the marine microbial ecosystem. Linking studies at levels from the genome to the organism, to ecological strategies and organism and ecosystem response, requires new modelling approaches. Key to this will be a fundamental shift in modelling scale that represents micro-organisms from the level of their macromolecular components. This will enable contact with omics data sets and allow acclimation and adaptive response at the phenotype level (i.e. traits) to be simulated as a combination of fitness maximization and evolutionary constraints. This way forward will build on ecological approaches that identify key organism traits and systems biology approaches that integrate traditional physiological measurements with new insights from omics. It will rely on developing an improved understanding of ecophysiology to understand quantitatively environmental controls on microbial growth strategies. It will also incorporate results from experimental evolution studies in the representation of adaptation. The resulting ecosystem-level models can then evaluate our level of understanding of controls on ecosystem structure and function, highlight major gaps in understanding and help prioritize areas for future research programs. Ultimately, this grand synthesis should improve predictive capability of the ecosystem response to multiple environmental drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-02-01
    Description: Despite considerable progress in the production of alternative diets, small concentrations of antinutrients remain common in aquaculture nutrition, resulting in a perpetual limitation with regard to the inclusion of plant ingredients in aquafeeds. These compounds are known to impair the general performance of fish when fed for a prolonged period of time, potentially affecting the animal's susceptibility to stress, too. Therefore, a 12-week feeding trial was conducted to examine the chronic effects of purified rapeseed protein concentrate (RPC), containing low concentrations of glucosinolates and phytic acid, on the relative expression of multiple target genes in the liver of juvenile turbot (Psetta maxima, L.). Our results revealed divergent patterns of gene expression, suggesting different coping strategies dependent on the grade of RPC substitution. Data implies increased metabolic rate of turbot fed a 33% RPC-substituted diet due to an upregulation of cytochrome c oxidase mRNA, accompanied by minor adjustments in metabolic pathways. While no signs of reduced welfare were found, data adumbrate a beneficial hormetic reaction. In the highest treatment level (66% RPC), diminished fish condition and reduced growth performance coincided with a downregulation of insulin-like growth factor I, further indicating a potential impaired resistance to stress. An additional downregulation of transferrin hints towards an increased liability to bacterial infections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-09-23
    Description: This paper proposes improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene-divinylbenzene copolymer (PPL) sorbent, which has become an established method for the isolation of DOM from natural waters, because of its ease of application and appreciable carbon recovery. Suwannee River water was selected to systematically study the effects of critical SPE variables such as loading mass, concentration, flow rate, and up-scaling on the extraction selectivity of the PPL sorbent. High-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and proton nuclear magnetic resonance (H-1 NMR) spectroscopy were performed to interpret the DOM chemical space of eluates, as well as permeates and-wash liquids with molecular resolution. Up to 89% dissolved organic carbon (DOC) recovery was obtained with a DOC/PPL mass ratio of 1:800 at a DOC concentration of 20 mg/L. With the 0 application of larger loading volumes, low proportions of highly oxygenated compounds were retained on the PPL sorbent. The effects of the flow rate on the extraction selectivity of the sorbent were marginal. Up-scaling had a limited effect on the extraction selectivity with the exception of increased self-esterification with a methanol solvent, resulting in methyl ester groups. Furthermore, the SPE/PPL extract exhibited highly authentic characteristics in comparison with original water and reverse osmosis samples. These findings will be useful for reproducibly isolating DOM with representative molecular compositions from various sources and concentrations and minimizing potential inconsistencies among interlaboratory comparative studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Molecular Biology and Evolution, 33 (9). pp. 2376-2390.
    Publication Date: 2019-10-10
    Description: While we know much about the evolutionary patterns of endosymbiotic organelle origins, we know less about how the actual process unfolded within each system. This is partly due to the massive changes endosymbiosis appears to trigger, and partly because most organelles evolved in the distant past. The dinotoms are dinoflagellates with diatom endosymbionts, and they represent a relatively recent but nevertheless obligate endosymbiotic association. We have carried out deep sequencing of both the host and endosymbiont transcriptomes from two dinotoms, Durinskia baltica and Glenodinium foliaceum, to examine how the nucleocytosolic compartments have functionally integrated. This analysis showed little or no functional reduction in either the endosymbiont or host, and no evidence for genetic integration. Rather, host and endosymbiont seem to be bound to each other via metabolites, such as photosynthate exported from the endosymbiont to the host as indicated by the presence of plastidic phosphate translocators in the host transcriptome. The host is able to synthesize starch, using plant-specific starch synthases, as a way to store imported photosynthate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Wiley Interdisciplinary Reviews: Climate Change, 8 (1). e441.
    Publication Date: 2019-02-01
    Description: To estimate the anthropogenic contribution to climate signals in the recent past and future decades implies a certain degree of confidence in both understanding and simulating natural internal variability at interdecadal time scales. If we are to embark on the challenge of decadal prediction, we must be able to mechanistically attribute events to known processes and phenomena, and reproduce their features and statistics within our models. To date, models have succeeded in reproducing only partially spatial patterns, statistics and climatic impacts of interdecadal modes of variability. Reasons for the partial success and agreement among models are to be attributed to the short observational record, the different and complex flavours of coupling between the many subcomponents of the climate system, and the present inability to resolve all climate processes. At an even more fundamental level, this difficulty is aggravated by the limited understanding of the physical mechanisms involved. Here, we review the proposed mechanisms giving rise to interdecadal climate variability, we discuss the hypotheses explaining the main interdecadal modes of variability, and present an overview on the ability and level of agreement in their simulation by the latest generation of coupled climate models. To achieve any progress, the modeling community should focus on both improving the representation and parameterization of key ocean physical processes and obtaining a firmer grasp on the physical mechanisms generating the variability. Both goals can benefit from process studies, intercomparisons with perturbation experiments to study model's sensitivities, and the use of a hierarchy of climate models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Accounts of chemical research, 49 (9). pp. 1946-1956.
    Publication Date: 2019-04-02
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Accounts of Chemical Research, 49 (9). pp. 1957-1968.
    Publication Date: 2019-04-03
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-04-03
    Description: The first total synthesis and structure revision of (−)-11β-hydroxycurvularin (1b), a macrolide possessing a β-hydroxyketone moiety, were accomplished. The β-hydroxyketone moiety in this natural product was introduced by cleavage of the N–O bond in an isoxazoline ring that was formed diastereoselectively in a 1,5-remote stereocontrolled fashion by employing intramolecular nitrile oxide cycloaddition
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-12-02
    Description: The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-04-23
    Description: Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Climate Justice in a Non-Ideal World
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-07-20
    Description: The guest-exchange method (or replacement) for methane production from gas hydrates has recently received attention because it can be used for both carbon dioxide sequestration and methane production. The structure of gas hydrates is maintained as a structure I (sI) hydrate while methane molecules are exchanged with carbon dioxide. In this study, CH4 + CO2 mixed gas hydrates were examined under terahertz light at various temperatures to simulate CH4–CO2 exchange reactions. Each gas hydrate composition examined was a representative composition at each step of the exchange reaction. The molecular composition was also accurately analyzed by gas chromatography. Refractive indices calculated by the terahertz time-domain spectroscopy (THz-TDS) of gas hydrate samples were correlated to the guest composition, and this novel method was proven to be used to quantify the extent of replacement via optical constant. Furthermore, changes in the water framework from the sI hydrate to ice using THz-TDS were investigated with an increasing temperature. Overall, this study reveals the process of guest exchange and phase transition from a gas hydrate to ice via the optical properties in the terahertz region, and it offers a powerful tool in gas hydrate production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-02-05
    Description: Barnacles of the genus Galkinius occupy a large spectrum of host corals, making it one of the least host-specific genera within the Pyrgomatidae. Molecular analyses show that within the genus Galkinius there are highly supported clades, suggesting that the genus Galkinius is a complex of evolutionarily significant units (ESUs). The morphology of the opercular valves has been used as the basis for the separation of species of Galkinius. In this study, morphological variability was found both between specimens within ESUs extracted from different host species and between specimens extracted from the same colony. Identifications based on the opercular valves cannot therefore be assigned to different species despite being genetically distinguishable. It is proposed that in many cases the differences between valve morphology of different species of Galkinius are the outcome of ontogeny. Allometric growth of the valves has resulted in differences in the proportions of the parts of the valve.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-07-31
    Description: In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-02-05
    Description: Archaea associated with marine sponges are active and influence the nitrogen metabolism of sponges. However, we know little about their occurrence, specificity, and persistence. We aimed to elucidate the relative importance of host specificity and biogeographic background in shaping the symbiotic archaeal communities. We investigated these communities in sympatric sponges from the Mediterranean (Ircinia fasciculata and Ircinia oros, sampled in summer and winter) and from the Caribbean (Ircinia strobilina and Mycale laxissima). PCR cloning and sequencing of archaeal 16S rRNA and amoA genes showed that the archaeal community composition and structure were different from that in seawater and varied among sponge species. We found that the communities were dominated by ammonia-oxidizing archaea closely related to Nitrosopumilus. The community in M. laxissima differed from that in Ircinia spp., including the sympatric sponge I. strobilina; yet, geographical clusters within Ircinia spp. were observed. Whereas archaeal phylotypes in Ircinia spp. were persistent and belong to 'sponge-enriched' clusters, archaea in M. laxissima were closely related with those from diverse habitats (i.e. seawater and sediments). For all four sponge species, the expression of the archaeal amoA gene was confirmed. Our results indicate that host-specific processes, such as host ecological strategy and evolutionary history, control the sponge-archaeal communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-07-31
    Description: The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Oxford University Press
    In:  IMA Journal of Applied Mathematics, 80 (3). pp. 811-824.
    Publication Date: 2015-07-06
    Description: The permafrost methane emission problem is the focus of attention on different climate models. Here, we present a mathematical model for permafrost lake methane emission and its influence on the climate system. We model this process using the theory of non-linear phase transitions. Further, we find that a climate catastrophe possibility depends on a value of feedback connecting the methane concentration in the atmosphere and temperature, and on the tundra permafrost methane pool.We note that the permafrost lake model that we developed for the methane emission positive feedback loop problem is a conceptual climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  (In Press / Accepted) Zoological Journal of the Linnean Society .
    Publication Date: 2020-04-21
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Geology Today, 31 (4). pp. 153-159.
    Publication Date: 2020-07-30
    Description: The geological development of the Fogo island volcano commenced in the early Quaternary, and much later during the Last Glacial stage this involved a mega-scale lateral collapse of the former edifice. This later event created a large caldera-like landform open to the east, the floor of which is known as the Chã, and subsequently within this a strato-volcanic cone has grown. The last phase of volcanic activity started in late 2014 and persisted for 77 days. It had a devastating impact on the lives of the 1000 plus people who were living within the ‘caldera’, since two large villages and a smaller one were each totally destroyed in a matter of days by the advancing lavas. In addition, large areas of cultivated land, upon which the inhabitants were dependent for their livelihood, were enveloped by lava. The eruption proved to be of a greater magnitude than the immediately preceding one of 1995, when a mass evacuation was necessary but as only a few buildings were affected, resettlement followed. Unfortunately the much greater devastation to the human environment makes it doubtful whether any significant resettlement will be possible after the 2014–2015 event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-04-23
    Description: Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 29 (9). pp. 5681-5691.
    Publication Date: 2020-07-31
    Description: The shrinking-core model of the formation of gas hydrates from ice spheres with well-defined geometry gives experimental access to the gas permeation in bulk hydrates which is relevant to their use as energy storage materials, their exploitation from natural resources, as well as to their role in flow assurance. Here we report on a new approach to model CO2 clathration experiments in the temperature range from 230 to 272 K. We develop a comprehensive description of the gas permeation based on the diffusion along the network of polyhedral cages, some of them being empty. Following earlier molecular dynamics simulation results, the jump from a cage to one of its empty neighbors is assumed to proceed via a “hole-in-cage-wall” mechanism involving water vacancies in cage walls. The rate-limiting process in the investigated temperature range can be explained by the creation of water-vacancy-interstitial pairs. The gas diffusion leads to a time-dependent cage filling which decreases across the hydrate layer with the distance from the particle surface. The model allows a prediction of the time needed for a complete conversion of ice spheres into clathrate as well as the time needed for a full equilibration of the cage fillings. The findings essentially support our earlier results obtained in the framework of a purely phenomenological permeation model in terms of the overall transformation kinetics, yet it provides for the first time insight into the cage equilibration processes. The diffusion of CO2 molecules through bulk hydrate is found to be about three to four times faster in comparison with the CH4 case.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-07-15
    Description: The herbal remedy, milk thistle (Silybum marianum), has been used in traditional medicine for various liver, kidney, and gall bladder ailments. For over a decade, our research group has been investigating the flavonolignans obtained from this medicinal herb for cancer chemoprevention and hepatoprotection.[1–6] Recently, we extended our studies toward examining the diversity as well as distribution patterns of fungal endophytes in leaves, stem, and roots of milk thistle.[7] These fungi inhabit the internal living tissues of the host plants asymptomatically, though they may also cause disease over time.[8] In addition to the phylogenetic profiling of these endophytes, a series of fungal extracts were also examined for chemical composition. Although the plant–endophyte relationship may ormay not be mutualistic, the compounds produced by some endophytes could play a role in the growth and survival of the host. In a previous study, Penicillium restrictum, isolated from milk thistle, yielded promising secondary metabolites.[9] Hence, in pursuit of interesting chemistry, a related monoverticillate endophytic Penicillium sp. was explored.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-03-05
    Description: Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica-a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga. © 2015 The Author.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-28
    Description: Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology Letters, 2 (4). pp. 84-88.
    Publication Date: 2020-04-24
    Description: Viruses play important roles in microbial ecology and some infectious diseases, but relatively little is known about the concentrations, sources, transformation, and fate of viruses in the atmosphere. We have measured total airborne concentrations of virus-like and bacterium-like particles (VLPs between 0.02 and 0.5 μm in size and BLPs between 0.5 and 5 μm) in nine locations: a classroom, a daycare center, a dining facility, a health center, three houses, an office, and outdoors. Indoor concentrations of both VLPs and BLPs were ∼105 particles m–3, and the virus:bacteria ratio was 0.9 ± 0.1 (mean ± standard deviation across different locations). There were no significant differences in concentration between different indoor environments. VLP and BLP concentrations in outdoor air were 2.6 and 1.6 times higher, respectively, than in indoor air. At the single outdoor site, the virus:bacteria ratio was 1.4.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Oxford University Press
    In:  The Oxford Handbook of the Macroeconomics of Global Warming
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-11-03
    Description: Two discontinuous tephra layers were discovered at Burney Spring Mountain, northern California. Stratigraphic relationships suggest that they are two distinct primary fall tephras. The geochemistries of these tephras from electron probe microanalysis were compared with those of known layers found in the area to test for potential correlations, using clustering analysis on geochemistry. In most cases, geochemical data from a tephra layer can be assigned to a single cluster, but in some cases the analyses are spread over several clusters. This spreading is a direct result of mixing and reworking of several tephra layers. The mixing, in turn, appears to be related to the influence of wind in a marshy environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-03-21
    Description: Stock‐based and ecosystem‐based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North‐east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses of the status and trends in fish stocks were consolidated at the ecosystem level; and (iii) trends in ecosystem indicators based on landings and surveys were analysed. We show that yields began to decrease everywhere (except in the Baltic) from the mid‐1970s, as a result of the over‐exploitation of some major stocks. Fishermen adapted by increasing fishing effort and exploiting a wider part of the ecosystems. This was insufficient to compensate for the decrease in abundance of many stocks, and total landings have halved over the last 30 years. The highest fishing impact took place in the late 1990s, with a clear decrease in stock‐based and ecosystem indicators. In particular, trophic‐based indicators exhibited a continuous decreasing trend in almost all ecosystems. Over the past decade, a decrease in fishing pressure has been observed, the mean fishing mortality rate of assessed stocks being almost halved in all the considered ecosystems, but no clear recovery in the biomass and ecosystem indicators is yet apparent. In addition, the mean recruitment index was shown to decrease by around 50% in all ecosystems (except the Baltic). We conclude that building this kind of diagnosis is a key step on the path to implementing an ecosystem approach to fisheries management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-31
    Description: Numerical tools are essential for the prediction and evaluation of conventional hydrocarbon reservoir performance. Gas hydrates represent a vast natural resource with a significant energy potential. The numerical codes/tools describing processes involved during the dissociation (induced by several methods) for gas production from hydrates are powerful, but they need validation by comparison to empirical data to instill con fidence in their predictions. In this study, we successfully reproduce experimental data of hydrate dissociation using the TOUGH+HYDRATE (T+H) code. Methane(CH4)hydrate growth and dissociation in partially water- and gas-saturated Bentheim sandstone were spatially resolved using Magnetic Resonance Imaging (MRI), which allows the in situ monitoring of saturation and phase transitions. All the CH4 that had been initially converted to gas hydrate was recovered during depressurization. The physical system was reproduced numerically, usingboth a simplified 2D model and a 3D grid involving complex Voronoi elements. We modeled dissociation using both the equilibrium and the kinetic reaction options in T+H, and we used a range of kinetic parameters for sensitivity analysis and curve fitting. We successfully reproduced the experimental results, which confirmed the empirical data that demonstrated that heattransport was the limiting factor during dissociation. Dissociation was more sensitive to kinetic parameters than anticipated, which indicates that kinetic limitations may be important in short-term core studies and a necessity in such simulations. This is the first time T+H has been used to predict empirical nonmonotonic dissociation behavior, where hydrate dissociation and reformation occurred as parallel events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-06-19
    Description: The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been long recognized. In the present study, 56 sponge species from three geographic regions (greater Caribbean, Mediterranean, Red Sea) were investigated by transmission electron microscopy for the presence of microorganisms in the mesohyl matrix. Additionally, bacterial enumeration by DAPI-counting was performed on a subset of samples. Of the 56 species investigated, 28 were identified as belonging to the HMA and 28 to the LMA category. The sponge orders Agelasida and Verongida consisted exclusively of HMA species, and the Poecilosclerida were composed only of LMA sponges. Other taxa contained both types of microbial associations (e.g., marine Haplosclerida, Homoscleromorpha, Dictyoceratida), and a clear phylogenetic pattern could not be identified. For a few sponge species, an intermediate microbial load was determined, and the microscopy data did not suffice to reliably determine HMA or LMA status. To experimentally determine the HMA or LMA status of a sponge species, we therefore recommend a combination of transmission electron microscopy and 16S rRNA gene sequence data. This study significantly expands previous reports on microbial abundances in sponge tissues and contributes to a better understanding of the HMA-LMA dichotomy in sponge-microbe symbioses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-07-31
    Description: The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Quaternary Science, 29 (7). pp. 627-640.
    Publication Date: 2015-09-01
    Description: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used widely to analyse single volcanic glass shards from Quaternary tephra deposits for stratigraphic correlation. As yet, no generally accepted protocol for these analyses exists and published methods report significant differences in crater size and calibration strategies. Using Ca as the ‘internal standard’ (CaI.S.), and not SiI.S., for the analysis of rhyolitic glass can cause significant problems, because of ablation of (i) Ca-rich phenocrysts, notably ‘ubiquitous’ plagioclase, but also calcic-amphibole, apatite and allanite or (ii) mounting epoxy resin which can contribute to the Ca internal standard signal. Using CaI.S. can cause underreporting of many elements which concentrate in Ca-rich phenocrysts, making their ablation difficult to recognize, but when using SiI.S., no such underreporting occurs. Additionally, larger ablation craters (50mm diameter) potentially incorporate even small volumes of phenocryst material, whereas smaller craters (〈20mm diameter) more frequently miss phenocrysts. Thus, for the LA-ICP-MS analysis of rhyolitic glass shards, smaller ablation craters should be employed and calibrated using SiI.S., allowing recognition and removal of analyses incorporating Ca-rich phenocrysts and avoiding issues related to the ablation of the mounting resin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Journal of Experimental Botany, 65 (18). pp. 5161-5178.
    Publication Date: 2020-07-24
    Description: Ferredoxins are electron shuttles harbouring iron–sulfur clusters that connect multiple oxido-reductive pathways in organisms displaying different lifestyles. Some prokaryotes and algae express an isofunctional electron carrier, flavodoxin, which contains flavin mononucleotide as cofactor. Both proteins evolved in the anaerobic environment preceding the appearance of oxygenic photosynthesis. The advent of an oxygen-rich atmosphere proved detrimental to ferredoxin owing to iron limitation and oxidative damage to the iron–sulfur cluster, and many microorganisms induced flavodoxin expression to replace ferredoxin under stress conditions. Paradoxically, ferredoxin was maintained throughout the tree of life, whereas flavodoxin is absent from plants and animals. Of note is that flavodoxin expression in transgenic plants results in increased tolerance to multiple stresses and iron deficit, through mechanisms similar to those operating in microorganisms. Then, the question remains open as to why a trait that still confers plants such obvious adaptive benefits was not retained. We compare herein the properties of ferredoxin and flavodoxin, and their contrasting modes of expression in response to different environmental stimuli. Phylogenetic analyses suggest that the flavodoxin gene was already absent in the algal lineages immediately preceding land plants. Geographical distribution of phototrophs shows a bias against flavodoxin-containing organisms in iron-rich coastal/freshwater habitats. Based on these observations, we propose that plants evolved from freshwater macroalgae that already lacked flavodoxin because they thrived in an iron-rich habitat with no need to back up ferredoxin functions and therefore no selective pressure to keep the flavodoxin gene. Conversely, ferredoxin retention in the plant lineage is probably related to its higher efficiency as an electron carrier, compared with flavodoxin. Several lines of evidence supporting these contentions are presented and discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-04-23
    Description: The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-09-16
    Description: Electrolytes can thermodynamically inhibit clathrate hydrate formation by lowering the activity of water in the surrounding liquid phase, causing the hydrates to form at lower temperatures and higher pressures compared to their formation in pure water. However, it has been reported that some thermodynamic hydrate inhibitors (THIs), when doped at low concentrations, could enhance the rate of gas hydrate formation. We here report a systematic study of model natural gas (a mixture of 90% methane and 10% propane) hydrate formation in strong monovalent salt solutions in a broad range of concentrations, using a high pressure automated lag time apparatus (HP-ALTA). HP-ALTA can apply a large number (〉100) of cooling ramps to a sample and construct probability distributions of gas hydrate formation for each sample. The probabilistic interpretation of data enables us to mitigate the stochastic variation inherent in the nucleation probability distributions and facilitates meaningful comparison among different samples. The electrolytes used in this work are lithium chloride (LiCl), lithium bromide (LiBr), lithium iodide (LiI), sodium chloride (NaCl), sodium bromide (NaBr), sodium iodide (NaI), potassium chloride (KCl), potassium bromide (KBr), and potassium iodide (KI). We found that (1) some salts may act as kinetic hydrate promoters at low concentrations; (2) the width of the probability distributions (stochasticity) of natural gas hydrate formation in these salt solutions was significantly narrower than that in pure water. To gain further insight, we extended the study of the solutions of the same nine salts to the formation of ice and model tetrahydrofuran (THF) hydrate for comparison.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-09-23
    Description: Landscape connectivity can increase the capacity of communities to maintain their function when environments change by promoting the immigration of species or populations with adapted traits. However, high immigration may also restrict fine tuning of species compositions to local environmental conditions by homogenizing the community. Here we demonstrate that dispersal generates such a tradeoff between maximizing local biomass and the capacity of model periphyton metacommunities to recover after a simulated heat wave. In non-disturbed metacommunities, dispersal decreased the total biomass by preventing differentiation in species composition between the local patches making up the metacommunity. On the contrary, in metacommunities exposed to a realistic summer heat wave, dispersal promoted recovery by increasing the biomass of heat tolerant species in all local patches. Thus, the heat wave reorganized the species composition of the metacommunities and after an initial decrease in total biomass by 38.7%, dispersal fueled a full recovery of biomass in the restructured metacommunities. Although dispersal may decrease equilibrium biomass, our results highlight that connectivity is a key requirement for the response diversity that allows ecological communities to adapt to climate change through species sorting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-01-21
    Description: The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within–trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-09-06
    Description: This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum 〉2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (〈2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-07-21
    Description: Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass-dependent isotope fractionation. We suggest that the Mo-98/95 of the NIST SRM 3134 be defined as +0.25. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first-order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical Mo-98/95 values such as +2.3 parts per thousand for seawater and -0.7 parts per thousand for marine Fe-Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined Mo-98/95 value of +2.34 +/- 0.10 parts per thousand (2s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Fish Biology, 84 (6). pp. 1740-1747.
    Publication Date: 2017-09-14
    Description: This study investigated growth, condition and development of American eels Anguilla rostrata that were introduced into a European river to estimate their competitive potential in a non-native habitat. Results demonstrate that A. rostrata develops normally in European waters and successfully competes with the native European eel Anguilla anguilla. In addition, A. rostrata appears to be more susceptible to the Asian swimbladder nematode Anguillicola crassus than A. anguilla and could support the further propagation of this parasite. Detected differences in fat content and gonad mass between Anguilla species are assumed to reflect species-specific adaptations to spawning migration distances. This study indicates that A. rostrata is a potential competitor for the native fauna in European fresh waters and suggests strict import regulations to prevent additional pressure on A. anguilla and a potential further deterioration of its stock situation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-01-31
    Description: Ecosystem functioning is affected by horizontal (within trophic groups) and vertical (across trophic levels) biodiversity. Theory predicts that the effects of vertical biodiversity depend on consumer specialization. In a microcosm experiment, we investigated ciliate consumer diversity and specialization effects on algal prey biovolume, evenness and composition, and on ciliate biovolume production. The experimental data was complemented by a process-based model further analyzing the ecological mechanisms behind the observed diversity effects. Overall, increasing consumer diversity had no significant effect on prey biovolume or evenness. However, consumer specialization affected the prey community. Specialist consumers showed a stronger negative impact on prey biovolume and evenness than generalists. The model confirmed that this pattern was mainly driven by a single specialist with a high per capita grazing rate, consuming the two most productive prey species. When these were suppressed, the prey assemblage became dominated by a less productive species, consequently decreasing prey biovolume and evenness. Consumer diversity increased consumer biovolume, which was stronger for generalists than for specialists and highest in mixed combinations, indicating that consumer functional diversity, i.e. more diverse feeding strategies, increased resource use efficiency. Overall, our results indicate that consumer diversity effects on prey and consumers strongly depend on species-specific growth and grazing rates, which may be at least equally important as consumer specialization in driving consumer diversity effects across trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-09-23
    Description: We compared the development and fatty acid content of the harpacticoid copepods Tachidius discipes and Tisbe sp. fed with different microalgal species (Dunaliella tertiolecta, Rhodomonas sp., Phaeodactylum tricornutum, Isochrysis galbana and a concentrate of Pavlova sp.), which differed in cell size and fatty acid composition. Tisbe could develop in 11 days with every alga to the same average stage, whereas Tachidius developed poorly when fed with Isochrysis and Dunaliella. Feeding with Phaeodactylum resulted in a fast development of both copepods at low algal concentrations. However, reproduction was higher with Rhodomonas as food than with the other algae. Fatty acid compositions of copepods were influenced by their food source, but both were able to convert docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from precursors. Tachidius fed with Rhodomonas or Phaeodactylum was closest to the DHA/EPA/arachidonic acid (ARA) ratio of 10 : 5 : 1 considered optimal for some marine fish larvae. Tachidius showed similar development and reproduction capacity as Tisbe, but requested higher absolute fatty acid contents in the diet. Tisbe was superior in the utilization of bacteria as additional food source and the bioconversion of precursor fatty acids. Phaeodactylum and Rhodomonas are recommendable food sources for both copepod species, but Phaeodactylum is more easily cultured.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-09-23
    Description: Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial -diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Oxford University Press
    In:  FEMS Microbiology Ecology, 89 (3). pp. 679-690.
    Publication Date: 2019-01-10
    Description: In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4–6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1–2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-10-10
    Description: Dinoflagellates harboring diatom endosymbionts (termed “dinotoms”) have undergone a process often referred to as “tertiary endosymbiosis”—the uptake of algae containing secondary plastids and integration of those plastids into the new host. In contrast to other tertiary plastids, and most secondary plastids, the endosymbiont of dinotoms is distinctly less reduced, retaining a number of cellular features, such as their nucleus and mitochondria and others, in addition to their plastid. This has resulted in redundancy between host and endosymbiont, at least between some mitochondrial and cytosolic metabolism, where this has been investigated. The question of plastidial redundancy is particularly interesting as the fate of the host dinoflagellate plastid is unclear. The host cytosol possesses an eyespot that has been postulated to be a remnant of the ancestral peridinin plastid, but this has not been tested, nor has its possible retention of plastid functions. To investigate this possibility, we searched for plastid-associated pathways and functions in transcriptomic data sets from three dinotom species. We show that the dinoflagellate host has indeed retained genes for plastid-associated pathways and that these genes encode targeting peptides similar to those of other dinoflagellate plastid-targeted proteins. Moreover, we also identified one gene encoding an essential component of the dinoflagellate plastid protein import machinery, altogether suggesting the presence of a functioning plastid import system in the host, and by extension a relict plastid. The presence of the same plastid-associated pathways in the endosymbiont also extends the known functional redundancy in dinotoms, further confirming the unusual state of plastid integration in this group of dinoflagellates.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-11-16
    Description: Four primary glass populations, well defined by their Sr, Ba and Y concentrations, occur in the Youngest Toba Tuff (YTT), which was deposited during a Supereruption of the Toba caldera complex in northern Sumatra 75 ka. Average concentrations of major and trace elements indicate a coherent, systematic Variation of glass composition across populations. No clear pattern in the areal distribution of these four glass groups can be discerned. The multiple glass populations of the YTT easily distinguish it from the single homogeneous glass population of the Middle Toba Tuff (~500 ka), as represented by its basal vitrophyre, and that of the Oldest Toba Tuff (~800 ka), as represented by ash Layer D at the Ocean Drilling Program site 758 in the Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-01-05
    Description: The macroalga Fucus vesiculosus carries a specific community of surface bacteria. To identify chemical compounds that possibly mediate abundance and community composition of algae-associated bacteria, we tested the effect of surface-available algal compounds on bacterial settlement and community composition under field conditions. Compounds on algal thalli were separated from the surface by extraction with organic solvents and investigated on growth inhibition and settlement of bacterial isolates. Based on in vitro data, partially purified extract fractions were then exposed to bacterial colonizers in vivo followed by bacterial enumeration and community analysis. The polar fraction of the algal surface extract revealed a significant profouling effect for Vibrionales, whereas the nonpolar fraction containing the xanthophyll pigment fucoxanthin and other unidentified nonpolar surface compounds revealed a significant 80% reduction of surface colonizing bacteria. The analysis of bacterial surface communities by 454 pyrosequencing demonstrated that the antifouling activity of nonpolar algal surface compounds was targeting the abundance of natural bacterial colonizers rather than the relative composition of bacterial members within the community. Moreover, the bacterial community composition on F.vesiculosus was markedly different from artificial control substrates and chemically manipulated experimental treatments, suggesting that other, nonextractable surface features and/or physical properties render algal-specific epiphytic bacterial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Functional Ecology, 27 (6). pp. 1415-1423.
    Publication Date: 2020-07-31
    Description: Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid-latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid-latitude species. Our forecasts suggest that mid-latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-07-27
    Description: Abstract Aims Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Methods and Results Microorganisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. Conclusions A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3. Microorganisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bio‐consolidation of ornamental stone protection. Significance and Impact of the Study Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for bio‐restoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-07-23
    Description: Following their transmission from the human to the mosquito with the bloodmeal, malaria parasites have to persevere in the mosquito midgut for approximately 1 d. During this period the parasites are highly vulnerable to factors of the mosquito midgut, including bacteria. We here aimed at determining the microbial diversity of gut bacteria of the Asian malaria vector Anophebs stephensi (Liston) during development and under different feeding regimes, including feeds on malaria parasite-infected blood. 16S rRNA and denaturing gradient gel electrophoresis analyses demonstrated an increasing reduction in the microbial diversity during mosquito development from egg to adult and identified the gram-negative bacterium Elizabethkingia meningoseptica King as the dominant species in the midgut of lab-reared male and female mosquitoes. E. meningoseptica is transmitted between generations and its predominance in the mosquito midgut was not altered by diet, when the gut microbiota was compared between sugar-fed and blood-fed female mosquitoes. Furthermore, feeds on blood infected with malaria parasites did not impact the presence of E. meningoseptica in the gut. Extracts from cultured E. meningoseptica were active against gram-positive and negative bacteria and yeast and against the blood and gametocyte transmission stages of the malaria parasite Plasmodium falciparum Welch. The antimicrobial and antiplasmodial activities of E. meningoseptica may account for its dominance in the midgut of the malaria vector.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Chemical Society
    In:  In: Physical Methods in Food Analysis. American Chemical Society, Washington, DC, pp. 105-125. ISBN 9780841228856
    Publication Date: 2016-08-30
    Description: Consumer preference for natural food ingredients has increased in recent decades, and the natural food colorant market has grown to over one billion dollars annually. A variety of red, orange, and yellow natural colorants are approved and in use, but there still exists a lack of available blue and purple natural colorant options. The occurrence of blue colored compounds in the natural world is relatively rare. The isolation, identification, and characterization of natural blue and purple pigments obtained from underexplored natural sources such as from obscure terrestrial organisms and marine microorganisms will be discussed.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-09-23
    Description: Understanding the ecological mechanisms that underlie species diversity decline in response to environmental change has become an urgent objective in current ecological research. Not only direct (lethal) effects on single species but also indirect effects altering biotic interactions between species within and across trophic levels comprise the driving force of ecosystem change. In an experimental marine benthic microalgae–grazer system we tested for indirect effects of moderate temperature change on algal diversity by manipulation of temperature, nutrient supply and grazer density. In our model system warming did not exert indirect effects on microalgal diversity via effects on resource competition. However, moderate warming strengthened consumer control and thereby indirectly affected algal community structure which ultimately resulted in decreased diversity. Only in low temperature and low nutrient regimes did the antagonizing mechanisms of bottom–up and top–down regulation establish a balancing effect on algal diversity within 29 days (corresponding to 15–29 algae generations). Effects of thermal habitat change did not appear before 9–18 algae generations, which points to the relevance of longer-term experiments and ecological monitoring in order to separate transient biotic responses and subtle changes of community dynamics in consequence to global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-07-24
    Description: The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: The sheer scale of the metagenomic and metatranscriptomic datasets that are now available warrants the development of automated protocols for organizing, annotating and comparing the samples in terms of their metabolic profiles. We describe a user-friendly java program FROMP (Fragment Recruitment on Metabolic Pathways) for mapping and visualizing enzyme annotations onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways or custom-made pathways and comparing the samples in terms of their Pathway Completeness Scores,their relative Activity Scores or enzyme enrichment odds ratios. This program along with our fully-configurable PERL based annotation organization pipeline Meta2Pro (METAbolic PROfiling of META-omic data) offers a quick and accurate standalone solution for metabolic profiling of environmental samples or cultures from different treatments. Apart from pictorial comparisons, FROMP can also generate score matrices for multiple meta-omics samples which can be used directly by other statistical programs
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-09-23
    Description: Individual migration behaviour during the juvenile and adult life phase of the anadromous twaite shad Alosa fallax in the Elbe estuary was examined using otolith Sr:Ca and Ba:Ca profiles. Between hatching and the end of the first year of life, juveniles showed two migration patterns. Pattern one exhibited a single downstream migration from fresh water to the sea with no return into fresh water. In contrast, pattern two showed a first migration into the sea, then a return into fresh water and, finally, a second downstream migration into marine water. This first report of migration plasticity for A. fallax points to different exposure times to estuarine threats depending on the migration strategy. In adults, high Sr:Ca and low Ba:Ca in the majority of individuals confirmed prior reports of a primarily marine habitat use. Patterns reflecting spawning migrations were rarely observed on otoliths, possibly due to the short duration of visits to fresh water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...