ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (44)
  • Copernicus  (25)
  • Mineralogical Society of America  (19)
  • 2020-2024  (44)
  • Geosciences  (44)
Collection
  • Books
  • Articles  (44)
Years
Year
Journal
Topic
  • 1
    Publication Date: 2021-10-29
    Description: The Arctic is exposed to even faster temperature changes than most other areas on Earth. Constantly increasing temperature will lead to thawing permafrost and changes in the methane (CH4) emissions from wetlands. One of the places exposed to those changes is the Abisko–Stordalen Mire in northern Sweden, where climate and vegetation studies have been conducted since the 1970s. In our study, we analyzed field-scale methane emissions measured by the eddy covariance method at Abisko–Stordalen Mire for 3 years (2014–2016). The site is a subarctic mire mosaic of palsas, thawing palsas, fully thawed fens, and open water bodies. A bimodal wind pattern prevalent at the site provides an ideal opportunity to measure mire patches with different permafrost status with one flux measurement system. The flux footprint for westerly winds was dominated by elevated palsa plateaus, while the footprint was almost equally distributed between palsas and thawing bog-like areas for easterly winds. As these patches are exposed to the same climatic and weather conditions, we analyzed the differences in the responses of their methane emission for environmental parameters. The methane fluxes followed a similar annual cycle over the 3 study years, with a gentle rise during spring and a decrease during autumn, without emission bursts at either end of the ice-free season. The peak emission during the ice-free season differed significantly for the two mire areas with different permafrost status: the palsa mire emitted 19 mg-C m−2 d−1 and the thawing wet sector 40 mg-C m−2 d−1. Factors controlling the methane emission were analyzed using generalized linear models. The main driver for methane fluxes was peat temperature for both wind sectors. Soil water content above the water table emerged as an explanatory variable for the 3 years for western sectors and the year 2016 in the eastern sector. The water table level showed a significant correlation with methane emission for the year 2016 as well. Gross primary production, however, did not show a significant correlation with methane emissions. Annual methane emissions were estimated based on four different gap-filing methods. The different methods generally resulted in very similar annual emissions. The mean annual emission based on all models was 3.1 ± 0.3 g-C m−2 a−1 for the western sector and 5.5 ± 0.5 g-C m−2 a−1 for the eastern sector. The average annual emissions, derived from these data and a footprint climatology, were 2.7 ± 0.5 and 8.2 ± 1.5 g-C m−2 a−1 for the palsa and thawing surfaces, respectively. Winter fluxes were relatively high, contributing 27 %–45 % to the annual emissions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: Authorship conflicts are a common occurrence in academic publishing, and they can have serious implications for the careers and well-being of the involved researchers as well as the collective success of research organizations. In addition to not inviting relevant contributors to co-author a paper, the order of authors as well as honorary, gift, and ghost authors are all widely recognized problems related to authorship. Unfair authorship practices disproportionately affect those lower in the power hierarchies – early career researchers, women, researchers from the Global South, and other minoritized groups. Here we propose an approach to preparing author lists based on clear, transparent, and timely communication. This approach aims to minimize the potential for late-stage authorship conflicts during manuscript preparation by facilitating timely and transparent decisions on potential co-authors and their responsibilities. Furthermore, our approach can help avoid imbalances between contributions and credits in published papers by recording planned and executed responsibilities. We present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Other research groups, departments, and centers can use or build on this template to design their own authorship guidelines as a practical way to promote fair authorship practices.
    Print ISSN: 2569-7102
    Electronic ISSN: 2569-7110
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: This article summarises the results of an analysis of solar radio bursts (SRBs) detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometer hosted by the University of Rwanda. The data analysed were detected during the first year (2014–2015) of the instrument operation. Using quick plots provided by the e-CALLISTO website, a total of 201 intense and well-separated solar radio bursts detected by the CALLISTO station located in Rwanda, are found consisting of 4 type II, 175 type III and 22 type IV radio bursts. It is found that all analysed type II and ∼ 37 % of type III bursts are associated with impulsive solar flares, while the minority (∼ 13 %) of type IV radio bursts are associated with solar flares. Furthermore, all type II radio bursts are associated with coronal mass ejections (CMEs), ∼ 44 % of type III bursts are associated with CMEs, and the majority (∼ 82 %) of type IV bursts were accompanied by CMEs. With aid of the atmospheric imaging assembly (AIA) images on board the Solar Dynamics Observatory (SDO), the location of open magnetic field lines of non-flare-associated type III radio bursts are shown. The same images are used to show the magnetic loops in the solar corona for type IV radio bursts observed in the absence of solar flares and/or CMEs. Findings from this study indicate that analysis of SRBs that are observed from the ground can provide a significant contribution to the early diagnosis of solar transients phenomena, such as solar flares and CMEs, which are major drivers of potential space weather hazards.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-21
    Description: The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-29
    Description: The Arabian Sea (AS) hosts one of the most intense oxygen minimum zones (OMZs) in the world. Observations suggest a decline in O2 in the northern AS over the recent decades accompanied by an intensification of the suboxic conditions there. Over the same period, the local sea surface temperature has risen significantly, particularly over the Arabian Gulf (also known as Persian Gulf, hereafter the Gulf), while summer monsoon winds may have intensified. Here, we simulate the evolution of dissolved oxygen in the AS from 1982 through 2010 and explore its controlling factors, with a focus on changing atmospheric conditions. To this end, we use a set of eddy-resolving hindcast simulations forced with winds and heat and freshwater fluxes from an atmospheric reanalysis. We find a significant deoxygenation in the northern AS, with O2 inventories north of 20∘ N dropping by over 6 % per decade between 100 and 1000 m. These changes cause an expansion of the OMZ volume north of 20∘ N at a rate of 0.6 % per decade as well as an increase in the volume of suboxia and the rate of denitrification by 14 and 15 % per decade, respectively. We also show that strong interannual and decadal variability modulate dissolved oxygen in the northern AS, with most of the O2 decline taking place in the 1980s and 1990s. Using a set of sensitivity simulations we demonstrate that deoxygenation in the northern AS is essentially caused by reduced ventilation induced by the recent fast warming of the sea surface, including in the Gulf, with a contribution from concomitant summer monsoon wind intensification. This is because, on the one hand, surface warming enhances vertical stratification and increases Gulf water buoyancy, thus inhibiting vertical mixing and ventilation of the thermocline. On the other hand, summer monsoon wind intensification causes a rise in the thermocline depth in the northern AS that lowers O2 levels in the upper ocean. Our findings confirm that the AS OMZ is strongly sensitive to upper-ocean warming and concurrent changes in the Indian monsoon winds. Finally, our results also demonstrate that changes in the local climatic forcing play a key role in regional dissolved oxygen changes and hence need to be properly represented in global models to reduce uncertainties in future projections of deoxygenation.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-29
    Description: McMurdo Sound sea ice can generally be partitioned into two regimes: (1) a stable fast-ice cover, forming south of approximately 77.6∘ S around March–April and then breaking out the following January–February, and (2) a more dynamic region north of 77.6∘ S that the McMurdo Sound and Ross Sea polynyas regularly impact. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. We analyse the 2019 sea-ice conditions and relate them to a modified storm index (MSI), a proxy for southerly wind events. We find there is a strong correlation between the timing of break-out events and several unusually large MSI events.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-29
    Description: Improvements in our capability to reconstruct ancient surface-ocean conditions based on organic-walled dinoflagellate cyst (dinocyst) assemblages from the Southern Ocean provide an opportunity to better establish past position, strength and oceanography of the subtropical front (STF). Here, we aim to reconstruct the late Eocene to early Miocene (37–20 Ma) depositional and palaeoceanographic history of the STF in the context of the evolving Tasmanian Gateway as well as the potential influence of Antarctic circumpolar flow and intense waxing and waning of ice. We approach this by combining information from seismic lines (revisiting existing data and generating new marine palynological data from Ocean Drilling Program (ODP) Hole 1168A) in the western Tasmanian continental slope. We apply improved taxonomic insights and palaeoecological models to reconstruct the sea surface palaeoenvironmental evolution. Late Eocene–early Oligocene (37–30.5 Ma) assemblages show a progressive transition from dominant terrestrial palynomorphs and inner-neritic dinocyst taxa as well as cysts produced by heterotrophic dinoflagellates to predominantly outer-neritic/oceanic autotrophic taxa. This transition reflects the progressive deepening of the western Tasmanian continental margin, an interpretation supported by our new seismic investigations. The dominance of autotrophic species like Spiniferites spp. and Operculodinium spp. reflects relatively oligotrophic conditions, like those of regions north of the modern-day STF. The increased abundance in the earliest Miocene of Nematosphaeropsis labyrinthus, typical for modern subantarctic zone (frontal) conditions, indicates a cooling and/or closer proximity of the STF to the site . The absence of major shifts in dinocyst assemblages contrasts with other records in the region and suggests that small changes in surface oceanographic conditions occurred during the Oligocene. Despite the relatively southerly (63–55∘ S) location of Site 1168, the rather stable oceanographic conditions reflect the continued influence of the proto-Leeuwin Current along the southern Australian coast as Australia continued to drift northward. The relatively “warm” dinocyst assemblages at ODP Site 1168, compared with the cold assemblages at Antarctic Integrated Ocean Drilling Program (IODP) Site U1356, testify to the establishment of a pronounced latitudinal temperature gradient in the Oligocene Southern Ocean.
    Print ISSN: 0262-821X
    Electronic ISSN: 2041-4978
    Topics: Geosciences
    Published by Copernicus on behalf of Micropalaeontological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-29
    Description: In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-29
    Description: Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of the towed bird system and establish the towed bird interference model. Due to the geomagnetic gradient changing greatly, the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the geomagnetic field gradient and analyze the influence of the towed bird system on the aeromagnetic compensation results. Finally, we apply the ridge regression method to solve the problem. We verify the feasibility of this compensation method through actual flight tests and further improve the data quality of the towed bird interference.
    Print ISSN: 2193-0856
    Electronic ISSN: 2193-0864
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-29
    Description: Frequently occurring mega-droughts under current global climate change have attracted broad social attention. A paleoclimatic perspective is needed to increase our understanding of the causes and effects of droughts. South-western (SW) China has been threatened by severe seasonal droughts. Our current knowledge of millennial-scale dry and wet phases in this region is primarily based on the variability of the Indian summer monsoon. However, water availability over land does not always follow patterns of monsoonal precipitation but also depends on water loss from evaporation and transpiration. Here, we reconstructed precipitation intensity, lake hydrological balance and the soil water stress index (SWSI) for the last 27 000 years. Grain size, geochemical and pollen records from Yilong Lake reveal the long-term relationships and inconsistencies of dry–wet patterns in meteorological, hydrological and soil systems in the central Yunnan region, SW China. Our results show that the long-term trends among precipitation, hydrological balance and soil moisture varied through time. The hydrological balance and soil moisture were primarily controlled by temperature-induced evaporation change during periods of low precipitation such as the Last Glacial Maximum and Younger Dryas. During periods of high precipitation (the early to late Holocene), intensified evaporation from the lake surface offset the effects of increased precipitation on the hydrological balance. However, abundant rainfall and the dense vegetation canopy circumvented a soil moisture deficit that might have resulted from rising temperature. In conclusion, the hydrological balance in the central Yunnan region was more sensitive to temperature change while soil moisture could be further regulated by vegetation changes over millennial timescales. Therefore, under future climate warming, the surface water shortage in the central Yunnan region may become even more serious. Our study suggests that reforestation efforts may provide some relief to soil moisture deficits in this region.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-10-29
    Description: A new luminescence erosion meter has huge potential for inferring erosion rates on sub-millennial scales for both steady and transient states of erosion, which is not currently possible with any existing techniques capable of measuring erosion. This study applies new rock luminescence techniques to a well-constrained scenario provided by the Beinn Alligin rock avalanche, NW Scotland. Boulders in this deposit are lithologically consistent and have known cosmogenic nuclide ages and independently derived Holocene erosion rates. We find that luminescence-derived exposure ages for the Beinn Alligin rock avalanche were an order of magnitude younger than existing cosmogenic nuclide exposure ages, suggestive of high erosion rates (as supported by field evidence of quartz grain protrusions on the rock surfaces). Erosion rates determined by luminescence were consistent with independently derived rates measured from boulder edge roundness. Inversion modelling indicates a transient state of erosion reflecting the stochastic nature of erosional processes over the last ∼4.5 kyr in the wet, temperate climate of NW Scotland. Erosion was likely modulated by known fluctuations in moisture availability and to a lesser extent temperature, which controlled the extent of chemical weathering of these highly lithified rocks prior to erosion. The use of a multi-elevated temperature, post-infra-red, infra-red stimulated luminescence (MET-pIRIR) protocol (50, 150 and 225 ∘C) was advantageous as it identified samples with complexities that would not have been observed using only the standard infra-red stimulated luminescence (IRSL) signal measured at 50 ∘C, such as that introduced by within-sample variability (e.g. surficial coatings). This study demonstrates that the luminescence erosion meter can infer accurate erosion rates on sub-millennial scales and identify transient states of erosion (i.e. stochastic processes) in agreement with independently derived erosion rates for the same deposit.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-10-29
    Description: Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Studying icequakes provides a unique view on ice dynamics, specifically on the basal conditions. Changes in conditions due to environmental or climate changes are reflected in icequakes. Counting and characterizing icequakes is thus essential to monitor them. Most of the icequakes recorded by the seismic station at the Belgian Princess Elisabeth Antarctica Station (PE) have small amplitudes corresponding to maximal displacements of a few nanometres. Their detection threshold is highly variable because of the rapid and strong changes in the local seismic noise level. Therefore, we evaluated the influence of katabatic winds on the noise measured by the well-protected PE surface seismometer. Our purpose is to identify whether the lack of icequake detection during some periods could be associated with variations in the processes generating them or simply with a stronger seismic noise linked to stronger wind conditions. We observed that the wind mainly influences seismic noise at frequencies greater than 1 Hz. The seismic noise power exhibits a bilinear correlation with the wind velocity, with two different slopes at a wind velocity lower and greater than 6 m s−1 and with, for example at a period of 0.26 s, a respective variation of 0.4 dB (m −1 s) and 1.4 dB (m −1 s). These results allowed a synthetic frequency and wind-speed-dependent noise model to be presented that explains the behaviour of the wind-induced seismic noise at PE, which shows that seismic noise amplitude increases exponentially with increasing wind speed. This model enables us to study the influence of the wind on the original seismic dataset, which improves the observation of cryoseismic activity near the PE station.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-10-29
    Description: The mass of the Greenland ice sheet is declining as mass gain from snow accumulation is exceeded by mass loss from surface meltwater runoff, marine-terminating glacier calving and submarine melting, and basal melting. Here we use the input–output (IO) method to estimate mass change from 1840 through next week. Surface mass balance (SMB) gains and losses come from a semi-empirical SMB model from 1840 through 1985 and three regional climate models (RCMs; HIRHAM/HARMONIE, Modèle Atmosphérique Régional – MAR, and RACMO – Regional Atmospheric Climate MOdel) from 1986 through next week. Additional non-SMB losses come from a marine-terminating glacier ice discharge product and a basal mass balance model. From these products we provide an annual estimate of Greenland ice sheet mass balance from 1840 through 1985 and a daily estimate at sector and region scale from 1986 through next week. This product updates daily and is the first IO product to include the basal mass balance which is a source of an additional ∼24 Gt yr−1 of mass loss. Our results demonstrate an accelerating ice-sheet-scale mass loss and general agreement (coefficient of determination, r2, ranges from 0.62 to 0.94) among six other products, including gravitational, volume, and other IO mass balance estimates. Results from this study are available at https://doi.org/10.22008/FK2/OHI23Z (Mankoff et al., 2021).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-10-29
    Description: Recent observational and modeling studies show that variations of stratospheric ozone and the resulting interaction between ozone and the stratospheric circulation play an important role in surface weather and climate. However, in many cases, computationally expensive coupled chemistry models have been used to study these effects. Here, we demonstrate how a much simpler idealized general circulation model (GCM) can be used for studying the impact of interactive stratospheric ozone on the circulation. The model, named Simplified Chemistry-Dynamical Model (SCDM V1.0), is constructed from a preexisting idealized GCM, into which a simplified linear ozone scheme and a parameterization for the shortwave radiative effects of ozone are implemented. The distribution and variability of stratospheric ozone simulated by the new model are in good agreement with the MERRA2 reanalysis, even for extreme circulation events such as Arctic stratospheric sudden warmings. The model thus represents a promising new tool for the study of ozone–circulation interaction in the stratosphere and its associated effects on tropospheric weather and climate.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-10-29
    Description: The earthquake early warning systems (EEWSs) in China have achieved great progress, with warning alerts being successfully delivered to the public in some regions. We examined the performance of the EEWS in China's Sichuan Province during the 2019 Changning earthquake. Although its technical effectiveness was tested with the first alert released 10 s after the earthquake, we found that a big gap existed between the EEWS's message and the public's response. We highlight the importance of EEWS alert effectiveness and public participation for long-term resiliency, such as delivering useful alert messages through appropriate communication channels and training people to understand and properly respond.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-10-29
    Description: The source apportionment of aerosol iron (Fe), including natural and combustion Fe, is an important issue because aerosol Fe can enhance oceanic primary production in the surface ocean. Based on our previous finding that combustion Fe emitted by evaporation processes has Fe isotope ratios (δ56Fe) that are approximately 4 ‰ lower than those of natural Fe, this study aimed to distinguish aerosol Fe sources over the northwestern Pacific using two size-fractionated marine aerosols. The δ56Fe values of fine and coarse particles from the eastern or northern Pacific were found to be similar to each other, ranging from 0.0 ‰ to 0.4 ‰. Most of them were close to the crustal average, suggesting the dominance of natural Fe. On the other hand, particles from the direction of East Asia demonstrated lower δ56Fe values in fine particles (−0.5 ‰ to −2.2 ‰) than in coarse particles (on average −0.02 ± 0.12 ‰). The correlations between the δ56Fe values and the enrichment factors of lead and vanadium suggested that the low δ56Fe values obtained were due to the presence of combustion Fe. The δ56Fe values of the soluble component of fine particles in this region were lower than the total, indicating the preferential dissolution of combustion Fe. In addition, we found a negative correlation between the δ56Fe value and the fractional Fe solubility in air masses from the direction of East Asia. These results suggest that the presence of combustion Fe is an important factor in controlling the fractional Fe solubility in air masses from the direction of East Asia, whereas other factors are more important in the other areas. By assuming typical δ56Fe values for combustion and natural Fe, the contribution of combustion Fe to the total (acid-digested) Fe in aerosols was estimated to reach up to 50 % of fine and 21 % of bulk (coarse + fine) particles in air masses from the direction of East Asia, whereas its contribution was small in the other areas. The contribution of combustion Fe to the soluble Fe component estimated for one sample was approximately twice as large as the total, indicating the importance of combustion Fe as a soluble Fe source despite lower emissions than the natural. These isotope-based estimates were compared with those estimated using an atmospheric chemical transport model (IMPACT), in which the fractions of combustion Fe in fine particles, especially in air masses from the direction of East Asia, were consistent with each other. In contrast, the model estimated a relatively large contribution from combustion Fe in coarse particles, probably because of the different characteristics of combustion Fe that are included in the model calculation and the isotope-based estimation. This highlights the importance of observational data on δ56Fe for size-fractionated aerosols to scale the combustion Fe emission by the model. The average deposition fluxes of soluble Fe to the surface ocean were 1.4 and 2.9 nmol m−2 d−1 from combustion and natural aerosols, respectively, in air masses from the direction of East Asia, which suggests that combustion Fe could be an important Fe source to the surface seawater among other Fe sources. Distinguishing Fe sources using the δ56Fe values of marine aerosols and seawater is anticipated to lead to a more quantitative understanding of the Fe cycle in the atmosphere and surface ocean.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-10-29
    Description: Forest fires modify soil organic carbon and suppress soil respiration for many decades after the initial disturbance. The associated changes in soil autotrophic and heterotrophic respiration from the time of the forest fire, however, are less well characterized. The FireResp model predicts soil autotrophic and heterotrophic respiration parameterized with a novel dataset across a fire chronosequence in the Yukon and Northwest Territories of Canada. The dataset consisted of soil incubation experiments and field measurements of soil respiration and soil carbon stocks. The FireResp model contains submodels that consider a Q10 (exponential) model of respiration compared to models of heterotrophic respiration using Michaelis–Menten kinetics parameterized with soil microbial carbon. For model evaluation we applied the Akaike information criterion and compared predicted patterns in components of soil respiration across the chronosequence. Parameters estimated with data from the 5 cm soil depth had better model–data comparisons than parameters estimated with data from the 10 cm soil depth. The model–data fit was improved by including parameters estimated from soil incubation experiments. Models that incorporated microbial carbon with Michaelis–Menten kinetics reproduced patterns in autotrophic and heterotrophic soil respiration components across the chronosequence. Autotrophic respiration was associated with aboveground tree biomass at more recently burned sites, but this association was less robust at older sites in the chronosequence. Our results provide support for more structured soil respiration models than standard Q10 exponential models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-10-29
    Description: China has experienced dramatic changes in emissions since 2010, which accelerated following the implementation of the Clean Air Action program in 2013. These changes have resulted in significant air quality improvements that are reflected in observations from both surface networks and satellite observations. Air pollutants, such as PM2.5, surface ozone, and their precursors, have long enough lifetimes in the troposphere to be easily transported downwind. Emission changes in China will thus not only change the domestic air quality but will also affect the air quality in other regions. In this study, we use a global chemistry transport model (CAM-chem) to simulate the influence of Chinese emission changes from 2010 to 2017 on both domestic and foreign air quality. We then quantify the changes in air-pollution-associated (including both PM2.5 and O3) premature mortality burdens at regional and global scales. Within our simulation period, the population-weighted annual PM2.5 concentration in China peaks in 2011 (94.1 µg m−3) and decreases to 69.8 µg m−3 by 2017. These estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observations. Relative to 2010, emission changes in China increased the global PM2.5-associated premature mortality burdens through 2013, among which a majority of the changes (∼ 93 %) occurred in China. The sharp emission decreases after 2013 generated significant benefits for human health. By 2017, emission changes in China reduced premature deaths associated with PM2.5 by 108 800 (92 800–124 800) deaths per year globally, relative to 2010, among which 92 % were realized in China. In contrast, the population-weighted, annually averaged maximum daily 8 h ozone concentration peaked in 2014 and did not reach 2010 levels by 2017. As such, O3 generated nearly 8500 (6500–9900) more premature deaths per year in 2017 compared to 2010. Downwind regions, such as South Korea, Japan, and the United States, generally experienced O3 improvements following 2013 due to the decreased export of ozone and its precursors. Overall, we conclude that the sharp emission reductions in China over the past decade have generated substantial benefits for air quality that have reduced premature deaths associated with air pollution at a global scale.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-10-29
    Description: The importance of Antarctic sea ice and Southern Ocean warming has come into the focus of polar research during the last couple of decades. Especially around West Antarctica, where warm water masses approach the continent and where sea ice has declined, the distribution and evolution of sea ice play a critical role in the stability of nearby ice shelves. Organic geochemical analyses of marine seafloor surface sediments from the Antarctic continental margin allow an evaluation of the applicability of biomarker-based sea-ice and ocean temperature reconstructions in these climate-sensitive areas. We analysed highly branched isoprenoids (HBIs), such as the sea-ice proxy IPSO25 and phytoplankton-derived HBI-trienes, as well as phytosterols and isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), which are established tools for the assessment of primary productivity and ocean temperatures respectively. The combination of IPSO25 with a phytoplankton marker (i.e. the PIPSO25 index) permits semi-quantitative sea-ice reconstructions and avoids misleading over- or underestimations of sea-ice cover. Comparisons of the PIPSO25-based sea-ice distribution patterns and TEX86L- and RI-OH′-derived ocean temperatures with (1) sea-ice concentrations obtained from satellite observations and (2) instrument measurements of sea surface and subsurface temperatures corroborate the general capability of these proxies to determine oceanic key variables properly. This is further supported by model data. We also highlight specific aspects and limitations that need to be taken into account for the interpretation of such biomarker data and discuss the potential of IPSO25 as an indicator for the former occurrence of platelet ice and/or the export of ice-shelf water.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-10-29
    Description: The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a Large Reaction Chamber). The chemical structure of myrcene consists of one moiety that is a conjugated π system (similar to isoprene) and another moiety that is a triple-substituted olefinic unit (similar to 2-methyl-2-butene). Hydrogen shift reactions of organic peroxy radicals (RO2) formed in the reaction of isoprene with atmospheric OH radicals are known to be of importance for the regeneration of OH. Structure–activity relationships (SARs) suggest that similar hydrogen shift reactions like in isoprene may apply to the isoprenyl part of RO2 radicals formed during the OH oxidation of myrcene. In addition, SAR predicts further isomerization reactions that would be competitive with bimolecular RO2 reactions for chemical conditions that are typical for forested environments with low concentrations of nitric oxide. Assuming that OH peroxy radicals can rapidly interconvert by addition and elimination of O2 like in isoprene, bulk isomerization rate constants of 0.21 and 0.097 s−1 (T=298 K) for the three isomers resulting from the 3′-OH and 1-OH addition, respectively, can be derived from SAR. Measurements of radicals and trace gases in the experiments allowed us to calculate radical production and destruction rates, which are expected to be balanced. The largest discrepancies between production and destruction rates were found for RO2. Additional loss of organic peroxy radicals due to isomerization reactions could explain the observed discrepancies. The uncertainty of the total radical (ROx=OH+HO2+RO2) production rates was high due to the uncertainty in the yield of radicals from myrcene ozonolysis. However, results indicate that radical production can only be balanced if the reaction rate constant of the reaction between hydroperoxy (HO2) and RO2 radicals derived from myrcene is lower (0.9 to 1.6×10-11 cm3 s−1) than predicted by SAR. Another explanation of the discrepancies would be that a significant fraction of products (yield: 0.3 to 0.6) from these reactions include OH and HO2 radicals instead of radical-terminating organic peroxides. Experiments also allowed us to determine the yields of organic oxidation products acetone (yield: 0.45±0.08) and formaldehyde (yield: 0.35±0.08). Acetone and formaldehyde are produced from different oxidation pathways, so that yields of these compounds reflect the branching ratios of the initial OH addition to myrcene. Yields determined in the experiments are consistent with branching ratios expected from SAR. The yield of organic nitrate was determined from the gas-phase budget analysis of reactive oxidized nitrogen in the chamber, giving a value of 0.13±0.03. In addition, the reaction rate constant for myrcene + OH was determined from the measured myrcene concentration, yielding a value of (2.3±0.3)×10-10 cm3 s−1.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-11-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-11-01
    Description: Studies of the new growth and re-distribution of Cu-rich phases in chondrites of different petrologic subtypes can potentially provide insights into post-accretionary parent-body processes. We present a systematic study of the distribution of Cu-rich phases and metallic Cu in Ornans-like carbonaceous chondrites (CO3) that underwent little aqueous alteration or shock (most with shock stages of S1) but exhibit a range of thermal metamorphism (subtype 3.0–3.7). A comparison to ordinary chondrites (OCs), which have undergone a larger range of shock levels, allows us to constrain the relative roles of radiogenic and shock heating in the origin of Cu distribution in chondrites. We found that the Cu content of Ni-rich metal and calculated bulk Cu content of CO3 chondrites (based on mass-balance calculations) show an increase from CO3.0 to CO3.2 chondrites. We speculate that some unidentified phases in the matrix account for a significant portion (nearly ~100 ppm) of the Cu budget in bulk samples of CO3.0 chondrites, while Ni-rich metal is the main Cu-carrier for CO3.2–3.7 chondrites. Within CO3.2–3.7 chondrites, Cu and Ni contents of Ni-rich metal are positively correlated, showing a systematic decrease from lower to higher subtype (~0.41 wt% Cu and ~45.0 wt% Ni in CO3.2 Kainsaz; ~0.28 wt% Cu and ~38.8 wt% Ni in CO3.7 Isna). Metallic Cu grains were found in every sample of CO3.2–3.7 chondrites, but not in any CO3.0–3.1 chondrites. Metallic Cu is: (1) present at metallic-Fe-Ni-pyrrhotite interfaces; (2) associated with fine irregular pyrrhotite grains in Ni-rich-metal-pyrrhotite nodules; (3) associated with fizzed pyrrhotite (fine-grained mixtures of irregularly shaped metal grains surrounded by pyrrhotite); (4) present at the edges of metallic Fe-Ni grains; and (5) present as isolated grains. In some metallic-Cu-bearing mineral assemblages, pyrrhotite has higher Cu concentrations than adjacent Ni-rich metal and shows a drop in Cu concentration at the interface between metallic Cu and Cu-rich pyrrhotite. This implies that the precipitation of metallic Cu grains could be related to the local Cu enrichment of pyrrhotite. We consider that radiogenic heating is mainly responsible for the formation of opaque phases in CO chondrites based on the relatively slow metallographic cooling rate (~0.1–5 °C/Ma), the increasing uniformity of Ni contents in Ni-rich metal with increasing CO subtype (44.3 ± 17.3 wt% in CO3.00 to 38.8 ± 3.4 wt% in CO3.7 chondrite), and the relatively narrow range of pyrrhotite metal/sulfur ratios (~0.976–0.999). Metal/sulfur ratios of pyrrhotite grains in most CO3.2–3.7 chondrites (mean = ~0.986–0.997; except Lancé) are slightly higher than those in CO3.0–3.1 chondrites (mean = ~0.981–0.987; except Y-81020), possibly indicative of a release and re-mobilization of sulfur during progressive heating as previously reported for type-3 chondrites. In this regard, we suggest most metallic Cu grains in CO3 chondrites may have precipitated from Cu-rich pyrrhotite due to sulfidation of Fe-Ni metal during parent-body thermal metamorphism. Locally, a few metallic Cu grains associated with fizzed pyrrhotite could have formed during transient shock-heating. Both thermal and shock metamorphism could be responsible for the formation of metallic Cu. Although the systematic decrease in the Ni contents of Ni-rich metal from subtype-3.2 to subtype-3.8 also occurs in OCs, the average Cu contents of Ni-rich metal grains are indistinguishable among type-3 OCs of different subtypes. The paucity of metallic Cu in weakly shocked type-3 OCs could be related to: (1) the relatively low-bulk Cu contents of OCs, and/or (2) the relatively rapid metallographic cooling rates at
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-11-01
    Description: Antigorite, a high-pressure polymorph of serpentine, is considered to be the most abundant hydrous mineral in subduction zones. Although antigorite dehydration is presumed as one of the origins of intermediate-depth earthquakes in the subduction zone, the amount of antigorite is uncertain because the amount of water infiltrated into the oceanic lithosphere is still debated. To investigate whether antigorite can be formed even with limited water availability, we conducted the axial deformation experiments of magnesium germanate at 1.2 GPa and T = 500–800 °C using a Griggs-type deformation apparatus. Magnesium germanate is an analog material of magnesium silicate, and the starting material was dried prior to experimentation. Nevertheless, the samples had initially high porosity, and hence a small amount of water (about 200 ppm wt H2O) was retained in the samples. In the samples deformed at 600 °C, stable slip occurred, and TEM analysis revealed that fine-grained platelets of germanate antigorite existed along the faults. A sharp absorption band assigned to the OH-stretching vibration of antigorite in Fourier transform infrared spectroscopic (FTIR) analysis also implies that antigorite was formed in the samples deformed at a temperature lower than 600 °C. Our results indicate that strain-induced hydration of germanate olivine results in antigorite formation even with only a small amount of water present. Thus, partial serpentinization in the oceanic lithosphere can occur under slight water infiltration due to the high strain accumulated by subduction.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-11-01
    Description: Gold (Au) deposits have formed in orogenic belts throughout Earth’s history. However, the upper temperature limits of orogenic Au vein formation are difficult to constrain because measurements made on fluid inclusions focus on intermediate to late-stage minerals (e.g., quartz and calcite) or are based on P-T estimates for the metamorphic mineral assemblages of the host rocks. We conducted a study of TiO2 polymorphs that are among the earliest minerals that grew in Au-bearing veins of the Dongyuan deposit, Jiangnan orogenic Au belt, South China. Based on Raman analyzes, we identified TiO2 polymorphs of anatase (with Raman peaks at 396, 515, and 638 cm−1), rutile (with Raman peaks at 235, 447, and 613 cm−1), and anatase–rutile intergrowths. Transmission electron microscope (TEM) confirmed the polymorphs identifying the [111] zone axis of anatase, [110] zone axis of rutile, and [111] and [111] zone axes of rutile–anatase intergrowths. The TiO2 polymorphs in the Dongyuan Au veins constrain a temperature range for early mineral precipitation in the veins of 450–550 °C. The results show that ore-forming fluids for this orogenic Au deposit emplaced in the shallow crust originated from deeper and hotter crustal levels (e.g., high-grade metamorphic rocks in the middle to lower crust).
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-11-01
    Description: The transport of calcium carbonate (CaCO3) into the Earth’s interior through subduction is one of the key processes in the global cycling of carbon. To develop a better understanding of the CaCO3 structural stability during subduction processes, the phase transitions among CaCO3-I (calcite), CaCO3-II, -III/IIIb, and aragonite under pressure-temperature (P-T) conditions up to 2.5 GPa and 600 °C, in hydrous and anhydrous environments, were investigated using a hydrothermal diamond-anvil cell. One displacive and two reconstructive processes during the phase transitions among CaCO3 polymorphs were confirmed from the results obtained from in situ observations and Raman spectroscopic measurements. Meanwhile, the effect of Ca-substitutional metal cations (e.g., Mg2+) in CaCO3 and the presence of an aqueous fluid on the phase transition processes have been determined. Specifically, the CaCO3-I ↔ -II phase transition is a displacive process, occurring instantly at pressures varying from 1.6 GPa at room temperature to 1.5 GPa at 500 °C with the phase equilibrium boundary having a minimum P-T point at ~1.4 GPa at 300 °C, and is completely reversible upon cooling and decompression. The CaCO3-II → -III phase transition is a reconstructive process, observed at P-T conditions from 2.0 GPa at room temperature to 2.5 GPa at 150 °C, and is accomplished by solid recrystallization starting from CaCO3-II, transitioning through an intermediate CaCO3-IIIb, and ending at the CaCO3-III structure. The phase transition between CaCO3-I or -II and aragonite, which is also a reconstructive process, was found to occur by progressive solid recrystallization under high P-T hydrous and anhydrous conditions, or alternatively, via dissolution-precipitation under low-P-T hydrous conditions, depending on the presence of aqueous fluids and the heating rate of the system. The substitution for Ca2+ by other metal cations (e.g., Mg2+, Mn2+, Fe2+) in CaCO3 results in a significant increase in the pressures for the displacive and solid recrystallization reconstructive phase transitions, but has no detectable influence on the CaCO3-I/II ↔ aragonite transformation via a dissolution-precipitation process under hydrous conditions. Our results show that the presence of Ca-substitutional metal cations in CaCO3 is a key factor controlling the phase stability of CaCO3 under high P-T conditions, and suggest that aragonite should be the predominant phase in the upper mantle in subduction zones where the heating rate is very low and slab dehydration is prevalent.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-11-01
    Description: The Mogok metamorphic belt (MMB), Myanmar, is one of the most well-known gemological belts on Earth. Previously, 40Ar/39Ar, K-Ar, and U-Pb dating have yielded Jurassic-Miocene magmatic and metamorphic ages of the MMB and adjacent areas; however, no reported age data are closely related to the sapphire and moonstone deposits. Secondary ion mass spectrometry (SIMS) U-Pb dating of acicular rutile inclusions in sapphire and furnace step-heating 40Ar/39Ar dating of moonstone (antiperthite) in syenites from the MMB yield ages of 13.43 ± 0.92 and 13.55 ± 0.08 Ma, respectively, indicating both Myanmar sapphire and moonstone formed at the same time, and the ages are the youngest published in the region. The ages provide insight into the complex histories and processes of magmatism and metamorphism of the MMB, the formation of gemstone species in this belt, and the collision between India and Asia. In addition, our high field strength element data for the oriented rutile inclusions suggest an origin by co-precipitation rather than exsolution. In situ age determination of this nature is particularly significant since rutile inclusions in other gemstones, such as rubies, can be used to help constrain the geological history of their host rocks elsewhere.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-11-01
    Description: X-ray computed microtomography (CT) of impact rock varieties from the Kara astrobleme is used to test the method’s ability to identify the morphology and distribution of the rock components. Three types of suevitic breccias, clast-poor melt rock, and a melt clast from a suevite were studied with a spatial resolution of 24 µm to assess CT data values of 3D structure and components of the impactites. The purpose is first to reconstruct pore space, morphology, and distribution of all distinguishable crystallized melt, clastic components, and carbon products of impact metamorphism, including the impact glasses, after-coal diamonds, and other carbon phases. Second, the data are applied to analyze the morphology and distribution of aluminosilicate and sulfide components in the melt and suevitic breccias. The technical limitations of the CT measurements applied to the Kara impactites are discussed. Because of the similar chemical composition of the aluminosilicate matrix, glasses, and some lithic and crystal clasts, these components are hard to distinguish in tomograms. The carbonaceous matter has absorption characteristics close to air, so the pores and carbonaceous inclusions appear similar. However, X-ray microtomography could be used to prove the differences between the studied types of suevites from the Kara astrobleme using structural-textural features of the whole rock, porosity, and the distributions of carbonates and sulfides.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-11-01
    Description: Fibrous amphibole and clay mineral inclusions that form striking trapiche-like star patterns within quartz crystals from Inner Mongolia, China, present a challenge to uncover how these crystals grow and incorporate inclusions in a geological context. We propose that the patterns formed as a result of protogenic clay (ferrosaponite or nontronite) inclusions that were preferentially trapped on rough surfaces during quartz crystal growth. The rough surface texture of these crystals is the result of multiple growth centers during 2D nucleation and spread and split crystal formation. Observations via optical microscopy, cathodoluminescence, and three-dimensional micro-CT scanning highlight how the exterior surface textures on the termination of a complete quartz crystal mimic its interior inclusion patterns. Cathodoluminescence images, as well as varying aluminum concentrations along a core-to-exterior transect in a quartz crystal slice, suggest that the formation fluid underwent a heterogeneous chemical history. Measurements of Ti and observations of fluid inclusions suggest the quartz formed at a temperature of under 348 °C. This study presents the details surrounding split crystal growth in quartz in a natural geological setting, which has implications for inspiring new materials and may serve as an indicator for turbid and highly supersaturated formation fluid conditions in geological formations.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-11-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-11-01
    Description: The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capacity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth’s primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the “Hadean Matte.” We also discuss briefly the implications of our results for the lunar magma ocean.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-11-01
    Description: A new mineral of the beryl group, johnkoivulaite, Cs(Be2B)Mg2Si6O18, was recovered from the gem gravels in the Pein Pyit area of the Mogok region in Myanmar. Thus far, only a single crystal has been identified. It has dimensions of about 5.8 × 5.7 × 5.5 mm. This specimen has an irregular shape but still has discernible crystal form with geometric growth patterns observed on the crystal faces. The crystal of johnkoivulaite is grayish-violet in color and strongly pleochroic, going from nearly colorless with E┴c to dark bluish-violet with E||c. Johnkoivulaite has a Mohs hardness of about 7½ and a measured density of 3.01(10) g/cm3. It is uniaxial (–) with ω = 1.607(1) and ε = 1.605(1) (white light). Electron microprobe analyses gave the empirical formula of (Cs0.85K0.10Na0.01)(Be1.88B1.12)(Mg1.66Fe0.27Mn0.01Al0.05) (Si5.98)O18 with Be calculated by stoichiometry and confirmed by LA-ICP-MS measurements. Johnkoivulaite is hexagonal, P6/mmc (no. 192) with a = 9.469(2), c = 9.033(2) Å, V = 701.5(3) Å3, and Z = 2. Johnkoivulaite is isostructural with beryl and exhibits partial substitution of B for Be at the distorted tetrahedral site, Mg for Al at the octahedral site, and Cs in the channel sites within the stacked Si6O18 rings. This substitution can be written as (CsMg2B)(☐Al2Be)–1. Johnkoivulaite, the seventh member of the beryl group, is named in honor of gemologist John Koivula in recognition of his contributions to mineralogy and gemology.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-11-01
    Description: The mobility of Ti, a member of high field strength elements, in metamorphic fluids is crucial to understand the recycling of commonly perceived nominally soluble elements and for mass-flux calculations during crustal processes. In this study, we present evidence for large-scale Ti mobility from a suite of clinohumite±spinel-bearing dolomitic marbles from the Makrohar area in central India. The studied rocks mostly contain dolomite and calcite (in subequal proportions) and a subordinate amount of forsterite. It commonly develops 1–5 cm thick, laterally continuous, mostly parallel, sometimes anastomosing, brown-colored clinohumite rich bands with variable spinel. Clinohumite has moderate Ti and F (TiO2 = 0.55–2.88 wt%; F = 0.94–1.88 wt%; n = 32). Textural and phase equilibria modeling indicate that clinohumite grew at the expense of forsterite + dolomite under static conditions due to infiltration of F- and Ti-bearing extremely H2O-rich fluids (XCO2 〈 0.03), at ~5–6 kbar pressure and ~650–700 °C temperature. The Ti and F were most likely supplied by highly channelized aqueous fluids restricted within the centimeter-thick bands. The negative volume change of the reactions further facilitated fluid ingress. The lateral continuity of the bands over several meters across multiple out-crops indicates that Ti was mobile at the meter to kilometer scale. The results are in accordance with experimental studies that solubility of Ti increases in the presence of halides and imply that Ti may be much more mobile in metamorphic fluids during regional metamorphism than previously anticipated.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-11-01
    Description: δ-AlOOH has emerged as a promising candidate for water storage in the lower mantle and could have delivered water into the bottom of the mantle. To date, it still remains unclear how the presence of iron affects its elastic, rheological, vibrational, and transport properties, especially across the spin crossover. Here, we conducted high-pressure X-ray emission spectroscopy experiments on a δ-(Al0.85Fe0.15) OOH sample up to 53 GPa using silicone oil as the pressure transmitting medium in a diamond-anvil cell. We also carried out laser Raman measurements on δ-(Al0.85Fe0.15)OOH and δ-(Al0.52Fe0.48)OOH up to 57 and 62 GPa, respectively, using neon as the pressure-transmitting medium. Evolution of Raman spectra of δ-(Al0.85Fe0.15)OOH with pressure shows two new bands at 226 and 632 cm−1 at 6.0 GPa, in agreement with the transition from an ordered (P21nm) to a disordered hydrogen bonding structure (Pnnm) for δ-AlOOH. Similarly, the two new Raman bands at 155 and 539 cm−1 appear in δ-(Al0.52Fe0.48)OOH between 8.5 and 15.8 GPa, indicating that the incorporation of 48 mol% FeOOH could postpone the order-disorder transition upon compression. On the other hand, the satellite peak (Kβ′) intensity of δ-(Al0.85Fe0.15)OOH starts to decrease at ~30 GPa and it disappears completely at 42 GPa. That is, δ-(Al0.85Fe0.15)OOH undergoes a gradual electronic spin-pairing transition at 30–42 GPa. Furthermore, the pressure dependence of Raman shifts of δ-(Al0.85Fe0.15)OOH discontinuously decreases at 32–37 GPa, suggesting that the improved hydrostaticity by the use of neon pressure medium could lead to a relatively narrow spin crossover. Notably, the pressure dependence of Raman shifts and optical color of δ-(Al0.52Fe0.48)OOH dramatically change at 41–45 GPa, suggesting that it probably undergoes a relatively sharp spin transition in the neon pressure medium. Together with literature data on the solid solutions between δ-AlOOH and ε-FeOOH, we found that the onset pressure of the spin transition in δ-(Al,Fe)OOH increases with increasing FeOOH content. These results shed new insights into the effects of iron on the structural evolution and vibrational properties of δ-AlOOH. The presence of FeOOH in δ-AlOOH can substantially influence its high-pressure behavior and stability at the deep mantle conditions and play an important role in the deep-water cycle.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-11-01
    Description: While much progress has been made in electron-probe microanalysis (EPMA) to improve the accuracy of point analysis, the same level of attention has not always been applied to the quantification of wavelength-dispersive spectrometry (WDS) X-ray intensity maps at the individual pixel level. We demonstrate that the same level of rigor applied in traditional point analysis can also be applied to the quantification of pixels in X-ray intensity maps, along with additional acquisition and quantitative processing procedures to further improve accuracy, precision, and mapping throughput. Accordingly, X-ray map quantification should include pixel-level corrections for WDS detector deadtime, corrections for changes in beam current (beam drift), changes in standard intensities (standard drift), high-accuracy removal of background intensities, quantitative matrix corrections, quantitative correction of spectral interferences, and, if required, time-dependent corrections (for beam and/or contamination sensitive materials). The purpose of quantification at the pixel level is to eliminate misinterpretation of intensity artifacts, inherent in raw X-ray intensity signals, that distort the apparent abundance of an element. Major and minor element X-ray signals can contain significant artifacts due to absorption and fluorescence effects. Trace element X-ray signals can contain significant artifacts where phases with different average atomic numbers produce different X-ray continuum (bremsstrahlung) intensities, or where a spectral interference, even an apparently minor one, can produce a false-positive intensity signal. The methods we propose for rigorous pixel quantification require calibration of X-ray intensities on the instrument using standard reference materials, as we already do for point analysis that is then used to quantify multiple X-ray maps, and thus the relative time overhead associated with such pixel-by-pixel quantification is small. Moreover, the absolute time overhead associated with this method is usually less than that required for quantification using manual calibration curve methods while resulting in significantly better accuracy. Applications to geological, synthetic, or engineering materials are numerous as quantitative maps not only show compositional 2D variation of fine-grained or finely zoned structures but also provide very accurate quantitative analysis, with precision approaching that of a single point analysis, when multiple-pixel averaging in compositionally homogeneous domains is utilized.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-11-01
    Description: This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-11-01
    Description: Carletonmooreite (IMA 2018-68), Ni3Si, is a new nickel silicide mineral that occurs in metal nodules from the Norton County aubrite meteorite. These nodules are dominated by low-Ni iron (kamacite), with accessory schreibersite, nickelphosphide, perryite, and minor daubréelite, tetrataenite, taenite, and graphite. The chemical composition of the holotype carletonmooreite determined by wavelength-dispersive electron-microprobe analysis is (wt%) Ni 82.8 ± 0.4, Fe 4.92 ± 0.09, and Si 13.08 ± 0.08 (n = 6, total = 100.81) giving an empirical formula of (Ni2.87Fe0.18)Σ3.05Si0.95, with an end-member formula of Ni3Si. Further grains discovered in the specimen after the new mineral submission extend the composition, i.e., (wt%) Ni 81.44 ± 0.82, Fe 5.92 ± 0.93, Cu 0.13 ± 0.02, and Si 13.01 ± 0.1 (n = 11, total = 100.51 ± 0.41), giving an empirical formula (Ni2.83Fe0.22Cu0.004)Σ3.05Si0.95. The backscat tered electron-diffraction patterns were indexed by the Pm3m auricupride (AuCu3)-type structure and give a best fit to synthetic Ni3Si, with a = 3.51(1) Å, V = 43.2(4) Å3, Z = 1, and calculated density of 7.89 g/cm3. Carletonmooreite is silver colored with an orange tinge, isotropic, with a metallic luster and occurs as euhedral to subhedral crystals 1 × 5 µm to 5 × 14 µm growing on tetrataenite into kamacite. The dominant silicide in the Norton County aubrite metal nodules is perryite (Ni,Fe)8(Si,P)3, with carletonmooreite restricted to localized growth on rare plessite fields. The isolated nature of small euhedral carletonmooreite single crystals suggests low-temperature growth via solid-state diffusion from the surrounding kamacite and epitaxial growth on the tetrataenite. This new mineral is named in honor of Carleton B. Moore, chemist and geologist, and founding director of the Center for Meteorite Studies at Arizona State University, for his many contributions to cosmochemistry and meteoritics.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-11-01
    Description: Spectral features of hydrogen defects in natural mantle minerals derive from physico-chemical conditions of the lithosphere. Although hydrogen defects in synthetic orthopyroxene have been well investigated, their complex spectral features in natural orthopyroxenes are still difficult to decipher. To clarify this issue, it is indispensable to reveal what happens to hydrogen defects during high-temperature processes, thereby fingerprinting the origins of hydrogen defects observed in natural orthopyroxene. Here, we carry out Fourier transform infrared spectroscopic studies on hydrogen defects of three natural orthopyroxenes at elevated temperatures to 1000 °C. Hydrogen defects display reversible disordering at temperatures above 700 °C, which is different from those at ambient conditions. Moreover, hydrogen diffusivities are significantly different between the orthopyroxene samples from different tectonic settings despite their similar iron contents. Even for the same crystal, different hydrogen defects display different diffusion behaviors. Hydrogen defects corresponding to the 3420 cm−1 band have the fastest diffusivity relative to the other hydrogen defects. Most importantly, hydrogen defects can redistribute in the crystal, with new hydrogen defects produced at the cost of the initial hydrogen defects rather than involving a reaction with an external hydrogen source. Combining these findings with previously reported hydrogen defects in natural olivine and clinopyroxene at high temperatures, we propose that: (1) to correctly relate hydrogen defects features to geological processes, it is imperative to understand their behavior and origin, and (2) hydrogen disordering should be taken into account when predicting and extrapolating data on physical properties of the mantle from room-temperature measurements.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-11-01
    Description: Sound velocities of iron and iron-based alloys at high pressure and high temperature are crucial for understanding the composition and structure of Earth’s and other telluric planetary cores. In this study, we performed ultrasonic interferometric measurements of both compressional (νP) and shear (νS) velocities on a polycrystalline body-centered-cubic (bcc)-Fe90Ni10 up to 8 GPa and 773 K. The elastic moduli and their pressure and temperature derivatives are derived from least-square fits to third-order finite strain equations, yielding KS0 = 154.2(8) GPa, G0 = 73.2(2) GPa, KS0′ = 4.6(2), G0′ = 1.5(1), ∂KS/∂T = –0.028(1) GPa/K, and ∂G/∂T = –0.023(1) GPa/K. A comparison with literature data on bcc-Fe suggests that nickel not only decreases both P and S wave velocities but also weakens the temperature effects on the elastic moduli of Fe-Ni alloys.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-11-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-10-29
    Description: This work presents the integration of a gas-phase and particulate atmospheric emission inventory (AEI) for Argentina in high spatial resolution (0.025∘×0.025∘; approx. 2.5 km×2.5 km) considering monthly variability from 1995 to 2020. The new inventory, called GEAA-AEIv3.0M, includes the following activities: energy production, fugitive emissions from oil and gas production, industrial fuel consumption and production, transport (road, maritime, and air), agriculture, livestock production, manufacturing, residential, commercial, and biomass and agricultural waste burning. The following species, grouped by atmospheric reactivity, are considered: (i) greenhouse gases (GHGs) – CO2, CH4, and N2O; (ii) ozone precursors – CO, NOx (NO+NO2), and non-methane volatile organic compounds (NMVOCs); (iii) acidifying gases – NH3 and SO2; and (iv) particulate matter (PM) – PM10, PM2.5, total suspended particles (TSPs), and black carbon (BC). The main objective of the GEAA-AEIv3.0M high-resolution emission inventory is to provide temporally resolved emission maps to support air quality and climate modeling oriented to evaluate pollutant mitigation strategies by local governments. This is of major concern, especially in countries where air quality monitoring networks are scarce, and the development of regional and seasonal emissions inventories would result in remarkable improvements in the time and space chemical prediction achieved by air quality models. Despite distinguishing among different sectoral and activity databases as well as introducing a novel spatial distribution approach based on census radii, our high-resolution GEAA-AEIv3.0M shows equivalent national-wide total emissions compared to the Third National Communication of Argentina (TNCA), which compiles annual GHG emissions from 1990 through 2014 (agreement within ±7.5 %). However, the GEAA-AEIv3.0M includes acidifying gases and PM species not considered in TNCA. Temporal comparisons were also performed against two international databases: Community Emissions Data System (CEDS) and EDGAR HTAPv5.0 for several pollutants; for EDGAR it also includes a spatial comparison. The agreement was acceptable within less than 30 % for most of the pollutants and activities, although a 〉90 % discrepancy was obtained for methane from fuel production and fugitive emissions and 〉120 % for biomass burning. Finally, the updated seasonal series clearly showed the pollution reduction due to the COVID-19 lockdown during the first quarter of year 2020 with respect to same months in previous years. Through an open-access data repository, we present the GEAA-AEIv3.0M inventory as the largest and more detailed spatial resolution dataset for the Argentine Republic, which includes monthly gridded emissions for 12 species and 15 stors between 1995 and 2020. The datasets are available at https://doi.org/10.17632/d6xrhpmzdp.2 (Puliafito et al., 2021), under a CC-BY 4 license.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-11-01
    Description: In this paper, we report a first-principles Molecular Dynamics (FPMD) study of interfacial structures and acidity constants of goethite. The pKa values of the groups on (010), (110), and (021) surfaces (space group Pbnm) are derived with the FPMD based vertical energy gap technique. The results indicate that major reactive groups include ≡Fe2OH2 and ≡FeOH2 on (010), ≡FeOH2, ≡Fe3OLH, and ≡Fe3OUH on (110), and ≡FeOhH2 and ≡Fe2OH on (021). The interfacial structures were characterized in detail with a focus on the hydrogen bonding environment. With the calculated pKa values, the point of zero charges (PZCs) of the three surfaces are derived and the overall PZC range of goethite is found to be consistent with the experiment. We further discuss the potential applications of these results in future studies toward understanding the environmental processes of goethite.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-11-01
    Description: Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more nonlinear convective dynamics. In this study, we investigate the degree of the non-Gaussianity of forecast error distributions at 1 km resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observation number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for Advanced Library and Environment) model and the LETKF (local ensemble transform Kalman filter) assimilating phased array radar observations every 30 s. The results show that non-Gaussianity develops rapidly within convective clouds and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to 40 % when the assimilation window is shortened from 5 min to 30 s, particularly for vertical velocity and radar reflectivity.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-11-01
    Description: Two feature-based verification methods, thus far only used for the diagnostic evaluation of atmospheric models, have been applied to compare ∼7 km resolution pre-operational analyses of chlorophyll-a (Chl-a) concentrations to a 1 km gridded satellite-derived Chl-a concentration product. The aim of this study was to assess the value of applying such methods to ocean models. Chl-a bloom objects were identified in both data sets for the 2019 bloom season (1 March to 31 July). These bloom objects were analysed as discrete (2-D) spatial features, but also as space–time (3-D) features, providing the means of defining the onset, duration and demise of distinct bloom episodes and the season as a whole. The new feature-based verification methods help reveal that the model analyses are not able to represent small coastal bloom objects, given the coarser definition of the coastline, also wrongly producing more bloom objects in deeper Atlantic waters. Model analyses' concentrations are somewhat higher overall. The bias manifests itself in the size of the model analysis bloom objects, which tend to be larger than the satellite-derived bloom objects. The onset of the bloom season is delayed by 26 d in the model analyses, but the season also persists for another month beyond the diagnosed end. The season was diagnosed to be 119 d long in the model analyses, compared to 117 d from the satellite product. Geographically, the model analyses and satellite-derived bloom objects do not necessarily exist in a specific location at the same time and only overlap occasionally.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-11-01
    Description: The observing system design of multidisciplinary field measurements involves a variety of considerations on logistics, safety, and science objectives. Typically, this is done based on investigator intuition and designs of prior field measurements. However, there is potential for considerable increases in efficiency, safety, and scientific success by integrating numerical simulations in the design process. Here, we present a novel numerical simulation–environmental response function (NS–ERF) approach to observing system simulation experiments that aids surface–atmosphere synthesis at the interface of mesoscale and microscale meteorology. In a case study we demonstrate application of the NS–ERF approach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19). During CHEESEHEAD19 pre-field simulation experiments, we considered the placement of 20 eddy covariance flux towers, operations for 72 h of low-altitude flux aircraft measurements, and integration of various remote sensing data products. A 2 h high-resolution large eddy simulation created a cloud-free virtual atmosphere for surface and meteorological conditions characteristic of the field campaign domain and period. To explore two specific design hypotheses we super-sampled this virtual atmosphere as observed by 13 different yet simultaneous observing system designs consisting of virtual ground, airborne, and satellite observations. We then analyzed these virtual observations through ERFs to yield an optimal aircraft flight strategy for augmenting a stratified random flux tower network in combination with satellite retrievals. We demonstrate how the novel NS–ERF approach doubled CHEESEHEAD19's potential to explore energy balance closure and spatial patterning science objectives while substantially simplifying logistics. Owing to its modular extensibility, NS–ERF lends itself to optimizing observing system designs also for natural climate solutions, emission inventory validation, urban air quality, industry leak detection, and multi-species applications, among other use cases.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...