ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (71)
  • In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS  (67)
  • General Chemistry
  • Seismology
  • GFZ Data Services  (71)
  • 2020-2024  (43)
  • 2015-2019  (28)
  • 1985-1989
  • 1950-1954
Collection
  • Data  (71)
Publisher
Language
Years
Year
  • 1
    Publication Date: 2022-11-29
    Description: Abstract
    Description: This dataset contains supplementary data concerning the SELASOMA project (GIPP-Project: Madagaskar; ID: 201204; FDSN-network code: ZE): (1) For stations with Cube data loggers, the raw data files are included. (2) For stations with EDL data loggers the log and auxiliary files are included. The main purpose of this dataset is to archive raw information on the timing quality, and to allow future use of alternative Cube-to-miniseed converters. Do not use this dataset if you are interested in continuous or event-based waveform data. Instead, refer to related dataset containing continuous waveforms . The dataset contains 1) log files for the stations with EDL data loggers (organized in sub-directories according to time range and station code); 2) separated MSEED-formatted data affected by some problems (organized in sub-directories according to time range and station code) and 3) raw CUBE-formatted data (organized in sub-directories according to time range and station name).
    Keywords: Seismology
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-29
    Description: Abstract
    Description: A temporary seismic array of short-period seismometers was installed in the 8-story AHEPA hospital, located in the city of Thessaloniki, N. Greece. The scope of the survey was to assess the dynamic characteristics of the RC-building by processing ambient vibration recordings of more than 40 seismic stations installed at different positions in the building. Part of the instruments was used in a soil experiment, outside of the hospital, to study possible Soil Structure Interaction phenomena. In addition to above experiments, a site-specific survey was performed in the Volvi basin, 30km ENE of the city of Thessaloniki. The scope of this experiment was to investigate the soil properties and the geometry of the subsurface geology.
    Keywords: Seismometers ; ambient noise ; building monitoring ; soil properties ; PASSIVE_SEISMIC 〉 STATIONS ; PASSIVE_SEISMIC 〉 STATIONS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; LAND ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Sarez Pamir aftershock seismic network was installed two months after the 7 December 2015, Mw7.2 Sarez Pamir earthquake in the eastern Pamir highland of Tajikistan. In the first recording period until September 2016, the stations were distributed along the Sarez-Karakul fault system. In September 2016 part of the stations were moved into the southern Pamir. In total the network consisted of eight stations on 13 sites, equipped with broad band, 3-component seismometers of type Trillium Compact. The data were recorded using Earth Data recorders (EDR), recording was continuous at a sample rate of 100Hz.The principal aim of the network was to record the aftershock sequence of the Sarez earthquake and to augment the coeval East Pamir China seismic network and the earlier TIPAGE and TIPTIMON seismic networks. Waveform data are available from the GEOFON data centre, under network code 9H, and are embargoed until January 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~90G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The East Pamir seismic network was located on the eastern flank of the Pamir highlands and the in the foreland of the adjacent Tarim Basin of western China. It was in operation between August 2015 and May 2017 and consisted of 30 broad band, 3-component seismometers of type Güralp CMG-3ESP or Nanometrics Trillium 120. The data were recorded using Earth Data PS6-24 "EDL" recorders, continuously at a sample rate of 100Hz, with an average station distance of ~20km. The network was designed to augment the earlier TIPAGE and TIPTIMON seismic networks.The principal aim of the network was to characterize the current deformation field in the region. It further recorded the 2015 M7.2 Sarez earthquake. Waveform data are available from the GEOFON data centre, under network code 8H, and are embargoed until January 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The KISS network was installed in the frame of the "Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system" project and recorded data between summer 2015 and summer 2016 in one of the world's largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~320G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Earthquake Early Warning and Rapid Response Systems (EEWRRS) should be a viable complement to other disaster risk reduction strategies, particularly in economically developing countries. The „Early Warning and Impact Forecasting“ group (GFZ, section 2.6) is actively involved in the development of novel strategies to develop scientific and technological solutions that may be efficiently applied in countries with limited resources. The proposed solution includes a risk estimation module that extracts from a portfolio of precomputed impact scenarios those matching the characterization of the event detected by an optimized real-time monitoring network. The real-time network integrates both local, on-site components based on low-cost, smart sensor platforms, as well as regional, sparse strong-motion stations. This hybrid solution allows for the optimization of the lead-time and is tailored to the seismotectonic features of the considered region. A prototype EEWRR System is being developed for the Kyrgyz Republic, with the support of the partner CAIAG and in collaboration with the Ministry of Emergency Solutions of the Government of the Kyrygz Republic (MES). Waveform data are available from the GEOFON data centre, under network code AD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The aim of this temporary experiment is to monitor the interaction between crustal fluids and earthquake occurrence. Two sites have been initially investigated: one is in the eastern sector of the Pollino mountain range, located at the border of Southern Apennines chain and Calabrian arc and the other is Mefite d'Ansanto moffete, one of the largest non-volcanic CO_2 emission in the world and located in Irpinia area, in the southern Apennines. The seismicity in the eastern sector of the Pollino range is very low except for a deep (〉20km) earthquake swarm which started in the middle of September 2017 and lasted for some weeks with events up to Ml=2.7. The Mefite d'Ansanto site sits at the northern end of the northern fault activated by the M_w 6.8 Irpinia earthquake in 1980 and in the well-known thermal anomaly area of the Mt. Forcuso. A ~10km radius area around Mefite steems out for a very low seismicity rate compared with the high seismicity activity of this portion of Southern Apennines. In the frame of a long-term collaborative efforts made by the German Research Centre for Geoscience (GFZ) and the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in the Pollino area a temporary network has been deployed to analyze the low earthquakes rate, the seismogenic structures and a possible signature of interaction with fluids redistribution within the crust. The temporary network consists of 3 seismic stations equipped with Trillium compact 120 sec. sensors and DCube digitizers using also CCube modules for real time data transmission. One single station with similar hardware has been used also to monitor the Mefite d'Ansanto in the Irpinia area with similar aim. Data is available from the GEOFON data centre, under network code YZ, and is embargoed until three years after the end of the experiments.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1600MB/month
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Abstract
    Description: SMARTIE1 is a joint seismological experiment of the Karlsruhe Institute of Technology (KIT) and the Leipzig University. We installed in total 36 seismic stations as ring-like and profile-like measurements near to a single wind turbine (WT) at the Fraunhofer Institute for Chemical Technology (ICT) in Pfinztal, SW Germany, for 21 days. The main goals of this project are a better understanding of a single WT as a seismic source and the development of propagation models for the WT-induced seismic signals, depending on the geological properties. Waveform data are available from the GEOFON data centre, under network code X8 (under CC-BY 4.0 license according to GIPP-rules), and are embargoed until Jan 2020.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; induced seismic signals ; wind turbine ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Our understanding of the effects of ice on channel morphodynamics and bedload transport in northern rivers, frozen for several months, are hindered by the difficulties of ‘seeing’ through the ice. We use continuous seismic records of a small network at the Sävar River in northern Sweden to interpret processes and quantify water and sediment fluxes. We apply a seismic inversion approach to determine seasonal differences in hydraulics and bedload sediment transport under ice-covered vs. open-channel flow conditions and provide a first-order estimation of sediment flux in that Fennoscandian river. Analysis of seismic signals of ice-cracking support our visual interpretation of ice break-up timing and the main ice break-up mechanism as thermal rather than mechanical. Waveform data are available from the GEOFON data centre, under network code 8E, and are available under CC-BY 4.0 license.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Abstract
    Description: – A temporary seismic network consisting of 48 long-term and 15 short-term stations was deployed from June 2021 to June 2022. The network comprises 27 broadband stations and 20 short period geophones from the Ruhr-University Bochum, the Geophysical Instrument Pool Potsdam (GIPP) and the RWTH Aachen. The inter-station spacing of the longer-term network is about 2 km and the total extent of the network is about 20 km. The densely populated area and vicinity of active pit mining demanded a balance between dense station placement and avoidance of anthropogenic noise sources. The network serves as a pre-study for the installment of a field laboratory in Eschweiler-Weisweiler, Germany. Details can be found in the accompanying data publication (Finger et al., in preparation). This project has been subsidized through the Cofund GEOTHERMICA, which is supported by the European Union’s HORIZON 2020 programme for research, technological development and demonstration under grant agreement No 731117. Furthermore, this study was supported by the Interreg North-West Europe (Interreg NWE) Programme through the Roll-out of Deep Geothermal Energy in North-West Europe (DGE-ROLLOUT) Project (http://www.nweurope.eu/DGE-Rollout), NWE 892. The Interreg NWE Programme is part of the European Cohesion Policy and is financed by the European Regional Development Fund (ERDF). Waveform data are available from the GEOFON data centre, under network code ZB. Data from some stations are embargoed until Januar 2026 but might be available on request.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismology ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Building monitoring and decentralized, on-site Earthquake Early Warning system for the Kyrgyz capital Bishkek. Several low cost sensors equipped with MEMS accelerometers have been installed in eleven buildings within the urban area of the city. The different sensing units communicate with each other via wireless links and the seismic data are streamed in real-time to data centres at GFZ and the Central Asian Institute for Applied Geoscience (CAIAG) using internet. Since each sensing unit has its own computing capabilities, software for data processing can be installed to perform decentralised actions. In particular, each sensing unit can perform event detection tasks and run software for on-site early warning. If a description for the vulnerability of the building is uploaded to the sensing unit, this can be exploited to introduce the expected probability of damage in the early-warning protocol customized for a specific structure. Waveform data are available from the GEOFON data centre, under network code KD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Volcanic eruptions are regularly observed on the island of Fogo, Cape Verde, with an average re-occurrence interval of ca. 20 years. However, the structure and extent of the related volcanic plumbing system are not well understood. Previous studies have investigated earthquakes related to magmatic processes connected with the Fogo volcano using conventional network configurations. Seismicity has been reported to occur mainly southwest of the island of Brava while a more recent study reports on activity focussed between Brava and Fogo. Multi-array seismology has the potential to significantly reduce the localization errors of seismic events in particular for those outside a station network and to lower the detection threshold. The subject of this study is the investigation of the local volcano-related seismicity applying multi-array methods which is a unique task amongst the research activities at German universities. The scientific aims are (a) to precisely map local events to constrain the structure of and the dynamic processes within the volcanic plumbing system, (b) to image the magma source region below the Fogo volcano using reflected and backscattered waves, and (c) to localize low-frequency volcanic tremor events. Waveform data are available from the GEOFON data centre, under network code 9J, and are embargoed until February 2022.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-10
    Description: Abstract
    Description: The Hungarian National Infrasound Network (HNIN) is a permanent infrasound network operated by the Kövesligethy Radó Seismological Observatory (Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences). The main purpose of the network is the continuous monitoring of seismo-acoustic events in Hungary and to provide high quality data for the seismological and geodynamic scientific research. The first infrasound array of the HNIN started its operation in 2017. Currently the network consists of one four-element array equipped with microbarographs. The PSZI infrasound array is co-located with a seismic three-component broadband station, PSZ, operated by the Hungarian National Seismological Network (HNSN). All data are acquired in real-time to the HNIN data centre located at the Kövesligethy Radó Seismological Observatory in Budapest that also operates HNSN. The HNSN/HNIN follows an open data policy, as seismic and infrasound waveform data are available in real time without any restriction within from the HNSN/HNIN data centre as well as from the European Integrated Data Archive via the GEOFON data centre.
    Keywords: Seismic monitoring ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 4 active stations
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-04-25
    Description: Abstract
    Description: The META-WT project was designed to perform a 4-weeks seismic experiment in Germany with a dense seismic array of ~400 three-component geophones that covered (1) a 2.5km x 2.5km wind farm area in Brandenburg, Germany, with almost 200 wind turbines (WTs) and a well-studied subsurface structure and (2) a 20-km long radial line from the center of the wind farm with one geophone every half-kilometer. The objective was to capture the spatio-temporal seismic wave-field signature of the wind farm from continuous recordings of ambient noise. Due to the dense interstation distance and proposed geometry the experiment allowed for analyzing both small-scale wave field characteristics at an unprecedented spatial resolution and the longer distance radiation pattern of the wind farm. Waveform data is available from the GEOFON data centre, under network code XF, and is embargoed until Jan 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~400G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-05-11
    Description: Abstract
    Description: The Illgraben is a 10 km² steep side valley located in Switzerland. This active debris flow catchment supplies 5-15% of the total sediment load of the Rhône River upstream of Lake Geneva. The 30-80° steep catchment slopes host frequent rock falls and slides. From 2012 to 2014, a network of up to ten Nanometrics Trillium Compact 120s broadband seismometers, sampled by Digos DataCube³ext loggers at 200 Hz (and later by centaur), was deployed in and around the catchment to monitor distributed geomorphic activity. Waveform data is available from the GEOFON data centre, under network code 9J, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-05-22
    Description: Abstract
    Description: “This ocean-bottom seismometer deployment is part of the SEAMSTRESS project examining tectonic stress effects on Arctic methane seepage. The project is led by PI Andreia Plaza-Faverola at the Centre for Arctic Gas Hydrates, University of Tromsö, Norway. A total of 10 ocean bottom seismometers (OBS) were deployed on Vestnesa Ridge, a sediment drift body just north Knipovich Ridge at its intersection with the Molloy Transform fault (cruise CAGE-20-5). The aim of the experiment was to look for stress release along faults that control seepage sites on Vestnesa Ridge. The network consisted of 8 Lobster type broadband OBS from the German Instrument Pool for Amphibian Seismology (DEPAS) and 2 3C geophones provided by the University of Tromsö. Instruments were free-fall deployed and spaced by about 10 km. They recorded continuously at 100 Hz for 11 months between August 2020 and July 2021.Short, intersecting refraction profiles were shot across all OBS stations, such that OBS positions at the seafloor could be determined within 10 m (cruise CAGE-21-3). Clock drift in this experiment was nonlinear and skew values were only obtained for 6 of the stations. Skew-corrected station VSN01 served as reference station to obtain the clock drift of all other stations using noise cross-correlation and subsequently correct also for the thus determined nonlinearity of time drift. Waveform data are available from the GEOFON data centre, under network code Y9 and are embargoed until July 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Ocean-bottom seismometer ; OBS ; Vestnesa Ridge ; passive seismology ; DEPAS ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-05-22
    Description: Abstract
    Description: This ocean-bottom seismometer deployment is part of the LoCHnESs (Loki Castle Hydrothermal iN-situ Experiements and Surveys) project examining hydrothermal fluid circulation at Loki's Castle vent field. The project is led by PI Thibaut Barreyre at the Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Norway. A total of 8 ocean bottom seismometers (OBS) were deployed near Loki's Castle vent field at the Mohns-Knipovich Ridge bend, Norwegian-Greenland Sea. The aim of the experiment was to monitor seismicity related to changes in the hydrothermal circulation system and to reveal interaction between an active detachment fault and the axial volcanic ridge hosting the vent site. The network consisted of 8 DEPAS Lobster type broadband OBS from the German Instrument Pool for Amphibian Seismology (DEPAS). Instruments were free-fall deployed and spaced by about 5-8 km. They recorded continuously at 100 Hz for 12 months between July 2019 and July 2020. Two instruments (LOK01 and LOK06) could only be deployed one month later and recorded at 250 Hz. OBS positions at the seafloor were determined by interpolation at 2/3 of the distance between the deployment and recovery position at the seafloor. Position accuracy is estimated to be about 100 m. Skew values were obtained for all stations and reached values of up to 24 s. Clock drift in this experiment was nonlinear. Skew-corrected station LOK02 served as reference station to obtain the clock drift of all other stations using noise cross-correlation and subsequently correct also for the thus determined nonlinearity of time drift. Waveform data are available from the GEOFON data centre, under network code 8M and are embargoed until July 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Ocean-bottom seismometer ; OBS ; Loki's Castle ; passive seismology ; DEPAS ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-06-12
    Description: Abstract
    Description: The Fagradalsfjall eruption from 19 March to 18 September 2021 featured lava fountaining episodes from 2 May to 14 June. These episodes were recorded as tremor pulses on our broadband seismic station NUPH (Nanometrics Trillium Compact 120s) at 5.5 km southeast of the active vent. We used the seismic data bandpass filtered between 1 and 4 Hz to mark the start and end of 7058 tremor pulses. The catalog hence comprises 14116 markers, that are statistically further evaluated in Eibl et al. (in review). From 2 May to 14 June, several changes in pulse duration and repose time were found and used to subdivide this time interval into 6 periods with characteristic pulse pattern. We find exponentially decreasing pulse durations, coexisting short and long pulses and stable pulse durations superimposed by gradually increasing or suddenly decreasing repose times. We discuss the findings in the context of an evolving shallow-conduit container, the crater geometries, partial collapses from the crater rim and the amount of accumulating outgassed magma in Eibl et al. (in review). This data publications releases the catalog of 14116 tremor pulses /lava fountaining episodes.
    Description: Methods
    Description: We installed a Trillium Compact 120 s seismometer (Nanometrics) as station NUPH (9F seismic network) at the southeast corner of Núpshlídarháls 5.5 km southeast of the eruptive site in Geldingadalir, Iceland. The instrument stood on a concrete base slab shielded from wind and rain using a bucket partly covered by rocks. The instrument was powered using batteries from 16 March, solar panels from 24 March and a wind generator at 10 m distance from 6 April 2021. Data were sampled at 200 Hz, they were stored on a Datacube and regularly downloaded. We used a compass to align the instrument to geographic north.
    Keywords: eruption catalogue ; Iceland ; seismology ; volcanic tremor ; lava fountaining ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 GEYSER ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-07-12
    Description: Abstract
    Description: From June to August 2021 the DEEPEN project deployed a dense seismic nodal network across the Hengill geothermal area in southwest Iceland to image and characterize faults and high-temperature zones at high resolution. The nodal network comprised 498 geophone nodes spread across the northern Nesjavellir and southern Hverahlíð geothermal fields and was complemented by an existing permanent and temporary backbone seismic network of a total of 44 short-period and broadband stations. In addition, two fiber optic telecommunication cables near the Nesjavellir geothermal power plant were interrogated with commercial DAS-interrogators. During the time of deployment, a vibroseis survey took place around the Nesjavellir power plant. The here published dataset contains a subset of the downsampled DAS-recordings from the eastern fiber optic array. To save storage space, only every fourth trace was made available. The original data were downsampled from 1000Hz to 250 Hz using the das-convert tool (https://doi.org/10.5880/GFZ.2.1.2021.005). Further traces or the original data can be obtained upon request. Waveform data are available from the GEOFON data centre, under network code ZH.
    Keywords: DAS ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~110G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-09-01
    Description: Abstract
    Description: We present a new, consistently processed seismicity catalogue for the Eastern and Southern Alps, based on the temporary dense Swath-D monitoring network. The final catalogue includes 6,053 earthquakes for the time period 2017-2019 and has a magnitude of completeness of −1.0ML. The smallest detected and located events have a magnitude of −1.7ML. Aimed at the low to moderate seismicity in the study region, we generated a multi-level, mostly automatic workflow which combines a priori information from local catalogues and waveform-based event detection, subsequent efficient GPU-based event search by template matching, P & S arrival time pick refinement and location in a regional 3-D velocity model. The resulting seismicity distribution generally confirms the previously identified main seismically active domains, but provides increased resolution of the fault activity at depth. In particular, the high number of small events additionally detected by the template search contributes to a more dense catalogue, providing an important basis for future geological and tectonic studies in this complex part of the Alpine orogen.
    Description: TableOfContents
    Description: Seismicity catalogue Python codes & metadata Seismicity cross-sections
    Keywords: Seismology ; Seismic Waveform Analysis ; Eastern Alps ; Earthquake ; Geophysics ; Template matching ; 4DMB ; 4D Mountain Building ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; geophysics ; seismology ; surface processes ; tectonics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-09-21
    Description: Abstract
    Description: The increasingly high number of big data applications in seismology has made quality control tools to filter, discard, or rank data of extreme importance. In this framework, machine learning algorithms, already established in several seismic applications, are good candidates to perform the task flexibility and efficiently. sdaas (seismic data/metadata amplitude anomaly score) is a Python library and command line tool for detecting a wide range of amplitude anomalies on any seismic waveform segment such as recording artifacts (e.g., anomalous noise, peaks, gaps, spikes), sensor problems (e.g., digitizer noise), metadata field errors (e.g., wrong stage gain in StationXML). The underlying machine learning model, based on the isolation forest algorithm, has been trained and tested on a broad variety of seismic waveforms of different length, from local to teleseismic earthquakes to noise recordings from both broadband and accelerometers. For this reason, the software assures a high degree of flexibility and ease of use: from any given input (waveform in miniSEED format and its metadata as StationXML, either given as file path or FDSN URLs), the computed anomaly score is a probability-like numeric value in [0, 1] indicating the degree of belief that the analyzed waveform represents an anomaly (or outlier), where scores ≤0.5 indicate no distinct anomaly. sdaas can be employed for filtering malformed data in a pre-process routine, assign robustness weights, or be used as metadata checker by computing randomly selected segments from a given station/channel: in this case, a persistent sequence of high scores clearly indicates problems in the metadata
    Keywords: Machine learning ; Isolation forest ; Sesimic data anomaly detection ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-10-18
    Description: Abstract
    Description: This data publication contains (i) a slab model of the Cascadia subduction zone, derived from receiver functions, parameterized as depth to the three interfaces: t (top), c (central) and m (Moho), in NetCDF format; (ii) the station measurements of all parameters in the model in tabular and Raysum model file format; (iii) the raw receiver functions in SAC format; and (iv) auxiliary scripts for loading and plotting the data. A total of 45,601 individual receiver functions recorded at 298 seismic stations distributed across the Cascadia forearc contributed to the slab model. For each station, 100 s recordings symmetric about the P -wave arrival (i.e. 50 s noise and 50 s signal) of earthquakes with magnitudes between 5.5 and 8, in the distance range between 30 and 100 degree, were downloaded from the Incorporated Research Institutions for Seismology (IRIS) data center, the Northern California Earthquake Data Center (NCEDC), and the Natural Resources Canada Data Center (NRCAN). After quality control, radial and transverse receiver functions were computed through frequency-domain simultaneous deconvolution, with an optimal damping factor found through generalized cross validation. The continental forearc and subducting slab were parameterized as three layers over a mantle half-space, with the subduction stratigraphy bounding interfaces labeled as t (top), c (central) and m (Moho). Synthetic receiver functions were calculated through ray-theoretical modeling of plane-wave scattering at the model interfaces. The thickness, S -wave velocity (VS) and P - to S -wave velocity ratio (VP/VS) of each layer, as well as the common strike and dip of the bottom two layers and the top of the half space (in total 11 parameters) were optimized simultaneously through a simulated annealing global parameter search scheme. The misfit was defined as the anti-correlation (1 minus the cross-correlation coefficient) between the observed and predicted receiver functions, bandpass filtered between 2 and 20 s period duration. In total, 171, 143 and 137 quality A nodes were determined to constrain the t, c and m interfaces, respectively. At the trench, 105 nodes at 3 km below the local bathymetry were inserted to constrain the t and c interfaces, and at 6.5 km deeper to constrain the m interface, representing typical sediment and igneous crustal thicknesses. A spline surface was fitted to these nodes to yield margin-wide depth models. The spline coefficients were found using singular value decomposition, with the nominal depth uncertainties supplied as weights. The solution was damped by retaining the 116, 117, and 116 largest singular values for the t, c and m interfaces, respectively, based on analysis of L-curves and the Akaike information criterion. The data set is the supplemental material to Bloch, W., Bostock, M. G., Audet, P. (2023) A Cascadia Slab Model from Receiver Functions. Geochemistry, Geophysics, Geosystems.
    Keywords: Seismology ; Cascadia ; North America ; Reveiver Functions ; Subduction ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; lithosphere ; The Present
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-01-23
    Description: Abstract
    Description: The _ICDPEGER virtual network aggregates data collected as part of the ICDP Eger project in the NW Bohemia and Vogtland region at the border of the Czech Republic and Germany from 2017 until 2022. Data collected in the ICDP Eger will eventually consist of seismic and fluid data. Seismic data is from following components: the Landwüst 3D array S1-site (UP, GFZ, CU, UL/LfULG, network code 6A); the Tisová S2 site, (planned) (GFZ and UP, CU); the Studenec well S3 (IG CAS and CU); the Liba Maar well S4 (CU, GFZ and UP); the wells F1-F3 in Hartusov (CU and GFZ). Fluid data consists of the following components: CarbonNet (CU); Sibyllenbad and Bad Brambach (GFZ); as well as the wells F1-F3 in Hartusov (CU and GFZ). A selection of these are included in the virtual network and are available from the GEOFON data archive under the '_ICDPEGER network code. There is an embargo period of 3 years after data origin before data be made automatically open and available. Data are licensed and distributed with Creative Commons Attribution 4.0 International Public License (CC-BY-4.0) after the end of the embargo period.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-02-06
    Description: Abstract
    Description: The project DARE proposes an integrated study of seismic site effects on the deep and elongated Messinian Rhône Canyon (French Rhône Valley). Lithological information from boreholes reaching the bedrock and preliminary geophysical campaigns indicate that the canyon can reach locally 〉500 m and may be deeply incised. The strong material contrast between the sedimentary filling and the substratum, as well as its expected confined geometry make this canyon a good candidate for generating various kinds of multi-dimensional site effects. Waveform data are available from the GEOFON data centre, under network code Y7.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The Bransfield Strait is a seismically active extensional rift located between the Antarctic Peninsula and the South Shetland Islands. The Strait is partly located on continental crust including areas within the transition to seafloor spreading. The amphibious seismic network BRAVOSEIS is an international effort focused on the seismological research of submarine volcanoes and rift dynamics in the Bransfield Strait. This network is the onshore component of the entire network consisting of 15 broadband land stations deployed in the South Shetland Islands and Antarctic Peninsula between January 2018 and February 2020. The offshore components (network code ZX) include 9 broadband ocean bottom seismometers (OBS) across the Central Bransfield Basin and a group of 6 hydrophone moorings spanning the rift area of 200 x 100 km2, with inter-station distance of ~30 km. Additionally, a smaller offshore array consisting of 15 short-period OBSs with an aperture of 20 km and a narrow inter-station distance of ~4 km was deployed around the Orca submarine volcanic edifice south of King George Island. The data will be used to study the geodynamics of the Bransfield Strait and the evolution of the incipient rifting zone in the domain where extension has been suggested. Seismological methods will include earthquake location, source mechanism, surface wave analysis with ambient noise and earthquake data, receiver function and shear wave splitting. The results may shed light on the crustal structure and tectonic regime in the region and image the location and extent of magma accumulations related to submarine volcanic structures. Finally, the results should provide clues to assess the internal processes that occur in the submarine volcanoes of the area undergoing rifting. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until March 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The complete network consisted of 11 stations deployed on the island of Fogo, Cape Verde. Eight of the stations formed an arraywith an aperture of 700 m, deployed in the south of the island near the village of Achada Furna. Seven of the array stations were equipped with 3-component 4.5 Hz geophones, one with a Trillium Compact (broad-band) sensor. The remaing three stations were distributed across the island and equipped with Trillium Compact sensors. Data were recorded continuously from October 2015 to December 2016 with a sample rate of 200 Hz. Due to limited data storage, there are four recording gaps (20/12/2015-14/01/2016; 28/03/2016-04/04/2016; 17/06/2016-18/07/2016; 01/10/2016-18/10/2016). The network served as a pilot study for the more comprehensive study, FoMaPS, from 2017 to 2018 (FDSN code 9J), involving station deployments on Fogo and Brava. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until July 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-23
    Description: Abstract
    Description: DESTRESS is a Horizon-2020 supported project (Topic: Demonstration of renewable electricity and heating/cooling technologies) that is concerned with creating EGS (enhanced geothermal systems) for the more economical, sustainable and environmentally responsible exploitation of underground heat. The international consortium, representing academic, geothermal sites and industry, will utilize the latest developments in the use of hydraulic, chemical and thermal treatments for enhancing the productivity of geothermal reservoirs, with considerable interaction with various interests groups and the thorough assessment of the associated risk, in particular that associated with induced seismicity. The GFZ workgroup "Early warning and Impact Forecasting" is involved in the exposure modelling, vulnerability analysis and building monitoring of communities near geothermal production facilities, making use of tools developed both in previous and ongoing projects. Waveform data are available from the GEOFON data centre, under network code 2D, and are embargoed until Aug 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consistes in 6 stations surronding the fumarole field at Lastarria volcano. These stations were operative during one month with the final purpose of detect changes in the hydrothermal system triggered by passing of seismic waves produced by artificial explosions. Waveform data are available from the GEOFON data centre, under network code 2G, and are embargoed until 001 2019.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 9 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The goal of Inter-Wind is to investigate and predict the induced seismic signals of wind turbines at different locations in Southern Germany. The experiments involve various sensor types and data loggers.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~39GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-02-23
    Description: Abstract
    Description: IMAGE is a two year seismological experiment realized at the Reykjanes Peninsula by Philippe Jousset (GFZ Potsdam) and Gylfi P. Hersir (ISOR Iceland). Reykjanes Peninsula is located at the southwestern tip of Iceland, at the emergent part of the Mid-oceanic Ridge. This area has a high seismicity and is exploited for its high geothermal potential. The deployment is performed to carry out a local seismological study with techniques such as seismic tomography (earthquake based, e.g. Jousset et al., 2016, and ambient noise e.g., Martins et al., 2020). The aim of the seismic experiment is to monitor the seismic activity associated with the rift processes (Blank et al., 2020) and/or the induced seismicity. The network comprised 30 onland stations (GIPP) and 21 Ocean Bottom Seismometers (Lobsters, DEPAS). Onland stations were deployed from April 2014 until August 2015 and comprise 20 broadband seismic stations (Nanometrics Trillium Compact 120 s), 10 short-period sensors (Mark sensors 1 Hz) and data loggers (DATA-CUBE) with acquisition frequencies of 200 Hz. Sensors were buried 30-40 cm deep in the ground in containers. Data gaps are minimal, and occurred every 3 months when the batteries were exchanged and data downloaded from the DATA-CUBEs. OBS were deployed in August 2014 and recorded for about a year. From this dataset, a catalogue of about 2000 earthquakes could be extracted. Waveform data are available from the GEOFON data centre, under network code 4L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~3.2T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The main aim of this project is to investigate the crustal and mantle structure beneath the Longmenshan fault zone in China, based on a very dense passive seismology profile. The Longmenshan fault zone hosted the Wenchuan earthquake of May 2008 with a magnitude (Mw) of 7.9 and the Lushan earthquake of June 2013 with a magnitude (Mw) of 6.6. It is planned to mainly use the receiver-function method, to investigate the crustal and mantle structure beneath the Longmenshan fault zone. Waveform data are available from the GEOFON data center, under network code 4O, and are embargoed until February 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Earthquake ; Receiver functions ; Crustal and mantle structure ; China ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-02-23
    Description: Abstract
    Description: In the frame of the EU-project COSEISMIQ (COntrol SEISmicity and Manage Induced earthQuakes) natural and induced seismic events were monitored in Iceland. A temporary seismic network has been deployed in the Hengill geothermal region in Iceland, where the two largest geothermal power plants of the country are currently in operation. The GFZ contribution was the installation and operation of a small-scale seismic array in 2019-2021 in the vicinity of the broadband station MEI05 (ETH), in cooperation with ISOR (Iceland), ETH (Zurich) and DIAS (Dublin). This dataset is particularly valuable since a very dense network was deployed in a seismically active region where both induced and natural seismicity are occurring. For this reason, the collected COSEISMIQ-dataset can be used within a broad range of research topics in seismology ranging from the development and testing of new data analysis methods to induced seismicity and seismo-tectonics studies.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-02-23
    Description: Abstract
    Description: As part of project FUTUREVOLC, European volcanological supersite in Iceland: a monitoring system and network for the future, two 7-element seismic broadband arrays were installed outside the western margin of Vatnajökull glacier, Iceland. The goal was to study seismic tremor associated with floods originating in the eastern and western Skaftár cauldrons. A third temporary array was installed during the Bárðarbunga 2014-2015 volcanic eruption near the eruption site. The aim of the array installations was to discriminate between different seismic tremor sources, namely volcanic eruptions, lava flows, hydrothermal explosions and subglacial floods (jökulhlaups). The main aim of the two arrays installed on the western margin of Vatnajökull was to study their early-warning potential through the analysis of four subglacial floods observed during the study period. The seismic vibrations associated with these floods have an emergent start, are of long duration and are referred to as tremor or high-frequency noise. Due to the lack of clear discrete onsets they cannot be located using traditional earthquake location methods. Instead clusters of seismometers (called arrays) are employed to both locate the tremor source and determine the wave type in the tremor (surface vs. body waves). The array data recorded during the Bárðarbunga eruption were used to investigate the nature of shallow, pre-eruptive, long-duration seismic tremor activity related to shallow dyke formation. The sources of the tremor were found to locate at the eruption site and under ice cauldrons which formed on the ice surface during the first weeks of the unrest. Waveform data are available from the GEOFON data centre, under network code 5L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~570G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A line of 6 broadband seismometers have been deployed across a ridge in the Hualien County (Eastern Taiwan). From March 2015 to June 2016 the network has been continuously recording waves incoming from the Taiwanese regional seismicity. During that period, more than 2000 earthquakes with magnitudes Ml〉3 and distant from less than 200km were recorded. The hill is well approximated by a triangular topography of 3600m in length by 900m in height. Waveform data are open and available from the GEOFON data centre, under network code 5K.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Ireland Array is an array of 20 broadband seismometers that was operated by the Dublin Institute for Advanced Studies across the Republic of Ireland. The array comprised up to 20 stations running simultaneously, all equipped with Trillium 120PA seismometers and Taurus data loggers. The 20 stations were installed in 2010–2012. Some of the stations were moved to new locations in Ireland in the course of the operation of the array, either in order to enhance the data sampling of the island or when the old deployment sites became unsuitable. Ireland Array dramatically increased the seismic data sampling of Ireland and enabled advances and discoveries in the studies of the structure and evolution of Ireland’s crust and lithosphere, seismicity of Ireland, and mechanisms of the Paleogene intraplate volcanism in Ireland and surroundings.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~2.4TB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consists of a vertical borehole array equipped with 3C sensors (geophones) for the analysis of swarm earthquakes in the Western Bohemia / Vogtland area located in the German/Czech border region. A surface array is completing the 3D observation of the wave field with 3C sensors (geophones). Waveform data is available from the GEOFON data centre, under network code 6A, and is embargoed until FEB 2035.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Germany ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~15T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The temporary seismic array of MySCOLAR in northern Myanmar consists of 30 broadband stations. The overall scientific goals are to understand the transition from continental collision to oceanic subduction, to quantify the partitioning of deformation in the accretionary prism, in the Burma Plate and along the strike-slip Sagaing fault system and to image the subducting Indian Plate beneath Myanmar and southwest China. The seismological analysis methods applied to this dataset will include location of local earthquakes and determining their focal mechanisms, surface wave tomography from ambient noise and earthquake data, body wave tomography from local and teleseismic earthquakes, full waveform inversion for Earth structure, receiver functions, and shear wave splitting. A subset of the stations was transmitting data in real time, and these stations contributed to real-time earthquake analysis by the Department of Meteorology and Hydrology (DMH) in Myanmar and the GEOFON earthquake monitoring service. Waveform data are available from the GEOFON data centre, under network code 6C.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-02-23
    Description: Abstract
    Description: We propose to investigate the structure and evolution of the Main Pamir Thrust (MPT) with a high-density seismological array. The MPT, with its surface expression along the east-west trending Alai Valley, marks the northern boundary of the Pamir. The Alai Valley, separating the Pamir and the Tien Shan, constitutes the last vestige of a formerly continuous basin that linked the Tarim and the Tajik Basins. The MPT manifests itself as a place of high seismic activity with frequently occurred disastrous earthquakes. The array is about 50 km long, consisted of 90 three-component geophones (stations G?? and C??) and 10 Trillium-Compact seismometers (stations T??), and equipped with 100 CUBE dataloggers. We will construct a high-resolution receiver function profile to image the MPT and accurately locate the local earthquakes associated with the MPT. Funded by BMBF, within the framework of CaTeNA project – Climatic and Tectonic Natural Hazards in Central Asia. Waveform data are available from the GEOFON data centre, under network code 7A and are embargoed until Jan 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Halmahera island belongs to the North Moluccas province (Maluku Utara), Indonesia. This K-shaped island is located in the eastern part of the Moluccas Sea, the only active arc-arc collision complex on the Earth. The western arm of the K forms a volcanic arc due to the former subduction of the Moluccas Sea plate underneath Halmahera. The region is characterized by intense seismic activity at crustal, intermediate depth, and along the subducting plate. At crustal level the Halmahera seismicity along the two eastern arms of the K show strike-slip faulting style. In November 2015 a localized intense and energetic seismic activity started around Jailolo volcano in the West Halmahera Regency. The seismic sequence intermittently lasted until February 2016 and hundreds of events were felt by the population and several buildings were destroyed and damaged by the shaking. The largest shocks of the sequence have been located by global agencies (GEOFON and GCMT) showing normal faulting style. The temporal evolution of the seismicity seems to be more swarm-like type activity instead of mainshock-aftershock sequence. In spring 2016 a research project has been funded by the German's Humanitarian Aid program in collaboration with BMKG, Indonesia, with the goal of understanding the origin of the intense seismic activity and the related hazard. In summer 2016 we instrumented the area with a dense seismic network composed of 29 short period and 6 broad-band seismometers. The instruments deployment aims at characterizing the seismicity of the Jailolo region in relationship with the 2015-2016 seismic activity. The network will help to understand the seismo-tectonic of the area and the relation between seismicity and the volcanic activity at Jailolo volcano and possible link with the 2015-2016 swarm. Should the seismic activity intensify as in November 2015, we can record it and narrow down the underlying physical mechanisms. Waveform data are available from the GEOFON data centre, under network code 7G, and are embargoed until the end of 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 900GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The PESO array provides two weeks of local seismological observation in the vicinity of the IPOC (Plate Boundary Observatory Network Northern Chile) station Patache (CX.PATCX) to investigate the subsurface structure and the ambient seismic field. Waveform data is available from the GEOFON data centre, under network code 7F, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Extensive passive seismic monitoring was carried out between September 2017 and September 2018 over the Los Humeros geothermal field in Mexico. This experiment, in addition to several geophysical, geological, and geochemical surveys was conducted in the framework of the European H2020 and Mexican CONACyT-SENER project GEMex for a better understanding of the structures and behavior of the local geothermal system currently under exploitation, and for investigating future development areas. 25 broadband stations (22 Trillium C-120s and 3 Trillium C-20 PH) recording at 200 Hz, and 20 short period stations (Mark L-4C-3D) recording at 100 Hz comprised the network which is sub-divided into two sub-networks. An inner and denser (~1.6-2 km inter-station distance) pseudo-rhomboidal array (27 stations) was laid out to cover the producing zone and retrieve local seismicity mainly associated to injection and production operations, and to comply with beamforming of ambient noise and time reverse imaging techniques. An outer and sparser (~5 km minimum spacing) array was placed at around 30 km radius surrounding the inner network, and was mainly dedicated to larger scale imaging techniques, such as seismic ambient noise tomography, and regional earthquakes tomography. The GEMex project is supported by the European Union’s Horizon 2020 programme for Research and Innovation under grant agreement No 727550 and the Mexican Energy Sustainability Fund CONACYT-SENER, project 2015-04-68074. Waveform data are available from the GEOFON data centre, under network code 6G and are embargoed until Jan 2023.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Strokkur_1yr is a one year seismological experiment realized at the most active geyser on Iceland by Eva Eibl (University of Potsdam) in collaboration with Thomas R. Walter, Phillippe Jousset, Torsten Dahm, Masoud Allahbakhshi, Daniel Müller from GFZ Potsdam and Gylfi P. Hersir from ISOR Iceland. The geyser is part of the Haukadalur geothermal area in south Iceland, which contains numerous geothermal anomalies, hot springs, and basins (Walter et al., 2018). Strokkur is a pool geyser and has a silica sinter edifice with a water basin on top, which is about 12 m in diameter with a central tube of more than 20 m depth. The aim of the seismic experiment is to monitor eruptions of Strokkur geyser from June 2017 to June 2018 using four broadband seismic stations (Nanometrics Trillium Compact Posthole 20 s). Sensors were buried 30–40 cm deep in the ground at distances of 38.8 m (G4, SE), 47.3 m (G3, SW), 42.5 m (G2, N), and 95.5 m (G1, NE) from Strokkur center. Data gaps represent 15–44 % of the records as during the winter period maintenance intervals were longer and battery drainage was high. However, at any given time, at least one station recorded the eruptions. From this dataset, converted to MSEED using Pyrocko, a catalogue of 70,000 eruptions was determined and further investigated in Eibl et al. (2020) Waveform data are available from the GEOFON data centre, under network code 7L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-02-22
    Description: Abstract
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-03-21
    Description: Abstract
    Description: To seismically monitor the GEOREAL hydraulic stimulation experiment, that took place during the period 6-15 November 2023, a station network was set up in the vicinity of the Kontinentale Tiefbohrung/ KTB deep crustal lab near Windischeschenbach, Germany. The network comprised both surface stations, shallow borehole (25-150 m deep) stations as well as a borehole chain at 2000 m depth in the main borehole, ca. 200m apart from the pilot borehole. First stations were installed in early 2022 and removed in mid-2024. A total of 600 m³ of water was injected into the 4 km deep pilot borehole (KTB-VB, 12° 7.16' E, 49° 48.98' N, 513.418 m above NN ). This volume was injected through a stuck packer in the cased borehole into the open borehole section a depth of 3.85-4 km. No induced seismicity was observed during the injection experiment. Waveform data is available from the GEOFON data centre, under network code 4R, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; MiniSEED ; Seismometers ; GIPP ; Local network
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Irpinia seismic Array is part of the DEnse mulTi-paramEtriC observations and 4D high resoluTion imaging (DETECT) project focused on the acquisition of a unique multiparametric dataset and fosters collaboration among various institutions. The University of Naples Federico II (UniNa) and the German Research Centre for Geosciences (GFZ) are leading this effort carried out in collaboration with various local institutions and supported by the local municipalities. The DETECT project aims at exploiting very dense seismic networks deployed across a segmented fault system (Irpinia and Pergola-Melandro) to foster the development of scientific integrated methodologies for monitoring and imaging the fault behavior during the inter-seismic phase. The Irpinia seismic Array consists of a dense constellation of seismic antennas using more than 200 seismic stations deployed for one year. Each seismic antenna, with maximum aperture of ~2 km, uses one broad-band sensor, one short period sensor with 1 Hz and 8 with 4.5 Hz natural frequency. The antennas are deployed above and near the fault segments that generated during the last centuries many strong earthquakes in the southern Apennines. Waveform data are available from the GEOFON data centre, under network code ZK.
    Keywords: Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Array ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022). Waveform data are available from the GEOFON data centre, under network code 9N.
    Keywords: fibre optics ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Volcano ; Velocity ; DAS ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-04-11
    Description: Abstract
    Description: In January 2020, a swarm of earthquakes started under Thorbjorn volcano, Reykjanes, SW Iceland, associated to the uplift of up to 0.5 cm per day. Concern in Iceland was growing and the Iceland Meteorological Office suggested at that time that possibly magma intruded in the crust at shallow depth (3 to 9 km). The first eruption occurred on 19.03.2021, followed by many others in the foolwing years. The GFZ started a seismological Hazard and Risk Team (HART), as soon as February 2020 in cooperation with IMO, ISOR and the University of Iceland. The interrogator was located in Grindavik and was connected to a standard telecom cable. The full data dataset of this 5J network comprise 250 Tb of raw data. The standard infrastructure is not designed for such large data set. Therefore, we implement here several datasets, corresponding to several processing and associated publications. Specific full data set is available upon request to the authors. In Flovenz et al., 2022, the data subset comprise a selection of wave-forms recorded along an optical fibre of 21 km length. The subset consists of 40 channels at 100 Hz (spatially stacked 9x). The whole time period from January until August 2020 is covered, with a total size of 496 GB. The data is MiniSEED at 4096 bytes record length with STEIM2. In Maass et al., 2024, the data subset consists of two sections of contiguous channels (1701-2000 and 3921-4218, spatial sampling 4 meters) of dynamic strain rate down sampled at 5 Hz. The whole time period from January until August 2020 is covered, with a total size of 340 GB. The data is MiniSEED at 4096 bytes record length with STEIM2.
    Keywords: fibre optics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Volcano ; Velocity ; DAS ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~500G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-04-11
    Description: Abstract
    Description: The Eifel Large-N Seismic Network is a concentric network of about 80km aperture around the Laacher See. Instrumentation consists of broad band seismometers, short period instruments (1Hz eigenfrequency) and 4.5Hz geophones. While the broadband and short period stations cover the area rather homogeneously for about 12 month, the geophone stations were moved after 6 month from a layout focussed on the closer vicinity of the Laacher See onto a line crossing the network from south-west to north-east with a dense station spacing. The goal of the experiment is the structural investigation of the feeding system of the East Eifel and a detailed study of the tectonic and volcanic seismic activity in this area. Waveform data is available from the GEOFON data centre, under network code 6E.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Local network ; Temporary ; Large-N ; Volcano ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-04-11
    Description: Abstract
    Description: “Gakkel Deep is a pilot project that installed a network of four broadband ocean bottom seismometers (OBS) near Gakkel Deep, the deepest depression in the Arctic Ocean, at the eastern end of the ultraslow spreading Gakkel Ridge. The area is covered year-round by sea ice. In order to enable a safe recovery of the OBS in a sea ice covered ocean, the OBS were modified to include a positioning system that allows to track the instruments at meter accuracy during descent and ascent and when stuck beneath ice floes. This pilot studied aimed at testing the recovery procedure of the OBS, checking the performance of the modified instrument design, getting an overview of ambient seismic noise at the bottom of the Arctic Ocean and at contributing to a better understanding of the origin of the Gakkel Deep depression with more than 3000 m of topography. The network is shaped as a rectangle with 8 km and 10 km side length and is centered at about 82°N 119.5°E at water depths between 3600 m and 4100 m. It is positioned slightly to the east of the present plate boundary in an area with volcanic structures. Instruments from the German Instrument Pool of Amphibian Seismology (DEPAS) were deployed during RV Polarstern cruise PS115/2 on September 15, 2018. Instrument recovery was completed during RV Polarstern cruise PS122/1 on September 27, 2019. The data set contains about 377 days of continuous records at 250 Hz sample rate. The station locations were determined with Ultra Short Baseline (USBL) ranging, the accuracy is approx. 10 m. The non-linear clock drift was determined by means of noise cross-correlations and applied to the data set. Waveform data are available from the GEOFON data centre, under network code 8F and are embargoed until June 2025.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; OBS ; DEPAS ; Passive seismic ; Local network ; Temporary ; Velocity ; Hydrophones ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-04-23
    Description: Abstract
    Description: Strong earthquakes cause transient perturbations of the near Earth’s surface system. These include the widespread landsliding and subsequent mass movement and the loading of rivers with sediments. In addition, rock mass is shattered during the event, forming cracks that affect rock strength and hydrological conductivity. Often overlooked in the immediate aftermath of an earthquake, these perturbations can represent a major part of the overall disaster with an impact that can last for years before restoring to background conditions. Thus, the relaxation phase is part of the seismically induced change by an earthquake and needs to be monitored in order to understand the full impact of earthquakes on the Earth system. Early June 2015, shortly after the April 2015 Mw7.9 Gorkha earthquake, we installed an array of 12 seismometers and geophones and 6 weather stations in the upper Bhotekoshi catchment, covering an area of ~50 km2. The seismic network was optimized for the monitoring of Earth surface processes (landsliding, mass wasting river processes, debris flows) and for the monitoring of properties of the shallow subsurface by coda analysis. To achieve the latter aim and to probe different scales and depths, seismometers were installed with inter-station distances from about 80m to 9km. In particular, in each of two locations close to the Bhotekoshi river, three seismometers were installed in small arrays with inter-station distances of about 100m. The seismic array is part of a wider data acquisition strategy including hydrometric measurements and high resolution optical (RapidEye) and radar imagery (TanDEM TerraSAR-X). Waveform data is available from the GEOFON data centre, under network code XN.
    Keywords: Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; MiniSEED ; Passive seismic ; Seismometers ; Local network ; HART ; Temporary[g]
    Type: Dataset , Seismic Network
    Format: Over 500 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-04-26
    Description: Abstract
    Description: A network of 210 continuously running, digital seismic stations equipped with short-period sensors (200 stations) and broadband sensors (10 stations) was deployed in an area of ~8 x ~6 km in the Irish Midlands (north of Collinstown) for a time period of ~6 weeks. The network was part of the EU project VECTOR (https://vectorproject.eu) aiming to investigate – among others – possible solutions for least invasive forms of exploration for mineral resources. In this context the collected data was mainly used to derive a 3D model of the subsurface (seismic shear wave velocity) using ambient noise tomography (down to ~1.5km depth). We thank all field crews for their excellent work rendered to the project. Waveform data is available from the GEOFON data centre, under network code 7W, and is embargoed until Feb 2025.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Seismometers ; Geophone[g] ; Velocity ; MiniSEED ; Passive seismic ; GIPP ; MESI ; Raw[g] ; Local network ; Vertical component[g] ; Three-component[g] ; Land[g] ; Geophysics ; Natural
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-17
    Description: Abstract
    Description: The Irish Seismological Lithospheric Experiment (ISLE) was originally designed to investigate the deep lithospheric and asthenospheric structure across the late-Caledonian Iapetus Suture Zone in southern Ireland. The project was a collaboration between the Dublin Institute for Advanced Studies (DIAS), Ireland, and the Geophysical Institute (GPI) of the University of Karlsruhe, Germany. It was the first passive teleseismic experiment conducted in Ireland, building upon a large body of earlier work on the crustal structure offshore and onshore Ireland, based on controlled source seismics and potential field studies. The Irish Seismological Upper Mantle Experiment (ISUME) was a continuation of ISLE by DIAS to extend the data coverage to most of Ireland. Data are available at the GEOFON data centre under network code 1M.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 668.9GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-05-21
    Description: Abstract
    Description: A temporary seismic network was installed in Sri Lanka for a time period of 13 months. The stations were equipped with Earth Data EDR-210 digital recorders and Trillium 120 PA, Güralp C3E and Güralp CMG-3ESP broadband sensors. Main aim of the network is to shed light on the crustal and upper mantle structure beneath the island. Also local seismic activity is studied.
    Keywords: Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 295GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-05-21
    Description: Abstract
    Description: A temporary installation has been realized in the Netherlands, in the region of the Groningen gas field. The objective of this installation is to test the usage of a conventional array layout for detection of microseismicity. The region of the Groningen gas field is an excellent test ground, since the operating company NAM (Nederlandse Aardolie Maatschappij) installed a multitude of shallow borehole stations from 2014 to 2017, of which 65 – in addition to the already existing shallow borehole stations installed by KNMI (Koninklijk Nederlands Meteorologisch Instituut) – were already online during the time of measurement, thus ensuring an earthquake catalogue that is complete down to low magnitudes during the time of array installation. The site for the installation was decided together with local parties involved in the seismicity monitoring, i.e. KNMI and NAM, and was located close to the village of Wittewierum. Stations were installed from the 12th of July 2016 to the 29th of August 2016 (49 days). The array was composed of 9 stations. The array was constructed in three concentric rings of 75 m, 150 m and 225 m diameter including a central station, but the geometry had to be adapted to the local conditions. Each station consisted of a broadband sensor (Trillium 120 s), an acquisition system (CUBE datalogger), a battery, and a GPS antenna. The entire system was installed at ~1 m depth (apart from GPS and transmission antennas), requiring only the digging of shallow holes, one for the installation of a thin concrete plate and the sensor, another one for a box containing the remaining instrumentation. The array stations recorded continuously with little outages; only station WAR1 stopped recording on the 22nd of August and station WAR7 stopped recording from 20th to 22nd of August. Waveform data is available from the GEOFON data centre, under network code 1C, and is fully open.
    Keywords: Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 54GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The MI-DAM project will develop a robust, low-cost, and adaptable system that includes an early warning element and time-variable fragility functions. The system will continuously monitor the health of hydroelectric dams and the surrounding slopes, undertake on-site processing of recordings by multi-parameter sensors, and forward the most relevant information to response centers (e.g., civil protection). As an example, the project will focus on the Toktogul dam in Central Kyrgyzstan. Waveform data are available from the GEOFON data centre, under network code 1M, and is embargoed until Aug 2024.
    Keywords: Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 259GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-05-21
    Description: Abstract
    Description: 15 station seismological network spanning the North Anatolian Fault Zone (NAFZ) toward the east of Ismetpasa to detect possible microseismicity and slow slip events in the creeping section of the NAFZ. The network consists of 10 three component 4.5 Hz geophone sensors in combination with DATACUBE3 recorders and five Trillium Horizon 120 broadband seismometers connected to Centaur data loggers. Geophone stations are buried at shallow depths while two of the broadband seismometers are installed in-house at basement level. The other three Trillium sensors are posthole installations in the field. The seismic network spans the same part of the NAFZ that is also monitored by a GNSS network installed by École Normale Supérieure (ENS) with two broadband seismometers being co-located with GNSS sensors. In addition, a set of creepmeters is installed close to Ismetpasa at the western end of the seismological network. The aim of the seismological study is twofold: a) Finding possible seismological expressions of the slow slip transients visible in the GNSS data and b) detecting microseismicity that is not listed in the regional Turkish earthquake catalogs based on seismological networks with much larger station spacing in the study area. The obtained results will hopefully give new insights into the seismological characteristics of a segment of a major continental transform fault capable of hosting M7 events but showing at the same time transient slow slip events and seismic creep.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: ~307GB(still growing)
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The TOMO-ETNA experiment was focused on the base of generation and acquisition of seismic signal (active and passive) at Mt. Etna volcano and surrounding area. The terrestrial campaign consists in the deployment of 80 short-period three-component seismic stations (June 15 to July24), 17 Broadband seismometers (June 15 to October 30) provided by Helmholtz Centre Potsdam (GFZ) German Research Centre for Geosciences using the German Geophysical Instrument Pool Potsdam (GIPP Gerätepool Geophysik), and the coordination with 133 permanent seismic station belonging to the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV) of Italy. This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes were recorded. Until July the Oceanographic Vessel “Sarmiento de Gamboa” and the hydrographic vessel “Galatea” were responsible for the offshore activities, that included deployment of OBSs, and several marine activities. The vessel “Aegaeo” performed additional seismic, magnetic and gravimetric experiments until the end of November 2014. This experiment was part of the “Task 5.3 - Mt. Etna structure” of the “EU MED-SUV Project” concerned with the investigation of Mt. Etna volcano (seismic tomography experiment - TOMO-ETNA) by means of passive and active refraction/reflection seismic methods. It focused on the investigation of Etna’s roots and surrounding areas by means of passive and active seismic methods. Therefore, this experiment included activities both on-land and offshore with the main objective to obtain a new high-resolution tomography in order to improve the 3D image of the crustal structures existing beneath the Etna volcano and the northeast Sicily (Peloritani - Nebrodi chain) up to the Aeolian Islands. Waveform data are open and available from the GEOFON data centre, under network code 1T.
    Keywords: Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI ; Volcano
    Type: Dataset , Seismic Network
    Format: 137GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Project SWEAP (Southwest Indian Ridge Earthquakes and Plumes), a collaborative effort led by the Alfred-Wegener-Institute, installed a network of 10 broad-band ocean bottom seismometers (OBS) along the ultraslow-spreading Oblique Supersegment of the Southwest Indian Ridge. The presented data set covers the continuous records of 8 stations of the network provided by the DEPAS instrument pool. One station of the original network could not be recovered, another one did not return data. The instruments were spaced at roughly 15 km intervals in a triangular shape network to either side of the rift axis covering about 60 km along axis between 13°E and 13.8°E and 60 km across axis between 52°S and 52.6°S. The determination of the OBS positions is described by Schmid et al. (2016). The network design was optimized for detecting and locating deep seismicity in the area. The rift valley was filled with soft silica ooze, producing considerable delay of S-phases at selected stations. Instrument deployment started during RV Polarstern cruise ANT-XXIX/2 on December 05 2012. Instrument recovery was completed during RV Polarstern cruise ANT-XXIX/8 on November 26 2013. 5 Refraction seismic lines were acquired by RV Polarstern cruise ANT-XXIX/8 from November 17 to 19 in 2013. All OBS could be synchronized with the GPS clock upon recovery such that skew values describing the clock drift are available for all stations. The non-linear clock drift of station SWE05 was determined by means of noise cross-correlations and applied to the data set. All other stations show a linear drift, which was corrected.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DEPAS ; OBS
    Type: Dataset , Seismic Network
    Format: 161GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The unrest of el Hierro Islands started in 2011 with a submarine volcanic eruption. In order to better characterize unrest of El Hierro Island 9 landstations were installed on the Island of ElHierro (Figure 1) between March 2015 and June 2016. Waveform data are available from the GEOFON data centre, under network code 2L and are embargoed until Jan 2021.
    Keywords: Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 327GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The STRATEGy network was a temporary seismic network in the NW Argentinean Andean Foreland. It run for about 15 months between June 2016 and August 2017 and consisted of 13 stations for the most parts. Each station contains a Lennartz LE3D/5s seismometer, an Omnirecs DataCube³ext digitizer (100 Hz sampling rate) with external GPS antenna and internal flash memory. Station 14A consisted of a Mark L-4C-3D short-period sensor. The power was supplied through an external batteries that were recharged during the day via a solar panel. The sensors were oriented to magnetic north. The header of the waveform files (NSLC-IDs) still remained in its prior form (network code ST) and haven’t been adapted to the FDSN given code. Station codes (double digits) were assigned from North to South. The last digit of the station code is either A (for their initial position of a station site) or B (the station has been moved during the networks operation time due to low quality recordings at the respective initial site). Each site was chosen on 3 criteria: (1) minimizing the depth to bedrock, (2) maximizing remoteness, and (3) maximizing security, preferentially located within sight of nearby settlements. However, one station (02A) was lost due to theft and many others experienced recording gaps due to animals chewing on cables, malfunctions of electrical parts and mainly flooding of the stations during the austral summer monsoon. The overall network geometry evolved partially due to accessibility of remote locations, maintaining similar interstation distances and focusing around the epicenter of the Mw 5.7 El Galpón earthquake 9 months prior to the network’s starttime. The smallest depths to bedrock were achieved by concentrating the sites around two major bedrock ranges and their piedmont, Cerro Colorado and Sierra de la Candelaria. Waveform data are available from the GEOFON data centre, under network code 2S.
    Keywords: Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 111GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The Liquiñe-Ofqui fault system (LOFS) in south-central Chile provides a natural laboratory to assess the interplay between magma/hydrothermal fluid flow and crustal deformation. Understanding these processes is of paramount importance for geothermal energy exploration and seismic hazard assessment. We deployed a dense seismic network (Sielfeld et al., 2019) at the northern termination of the LOFS in south-central Chile (~38°S) between 2014 March and 2015 June. The main aim was to better understand the significance and implications of seismic activity in relation to geological information such as the complex fault-fracture network, volcanoes, and the stress field estimated from geological data. As a result, the network was designed to monitor the northern segment of the LOFS on a more regional scale rather than concentration on the activity of one volcano. The network covered a ~200‐km‐long section of the Southern Volcanic Zone, including several Holocene stratovolcanoes (Callaqui, Copahue, Caviahue Caldera, Tolhuaca, Lonquimay, Llaima, Sierra Nevada, Sollipulli, Villarrica, Quetrupillán, Lanín (La), and Mocho‐Choshuenco). Waveform data are open and available under network code 3H from the GEOFON data centre under license CC BY 4.0.
    Keywords: LOFZ ; LOFS ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 636GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The experiments are performed down the Edward Bailey valley, in the Renland peninsula, Scoresby Sund, Greenland. General purpose: ambient seismic noise recordings are obtained to characterize the geometry/structure of the valley the geometry/structure of the glaciers the microseismicity of the glacier, the friction process, crack orientation and mechanisms the seismic activity of glacial rivers, the relation between hydrological flow and noise spectrum the localization and characterization of sub-glacial flow from surface recordings. Seismic stations were composed of 3C broadband Trillium compact seismometer, a Cube datalogger and a 12V (D-cell types, stacked) battery pack.The experiment splits into three surveys performed at three different sites, one after the other, from july to august 2016. In the first experiment, we deploy 11 stations, 9 of them on a flat sandy area covering, partly, immobile ice that seems to be blocked between the Bailey Glacier (upstream) and the Apusinikajik glacier (downstream). The 9 sensors are placed a few hundreds of meters from the Apusinikajik lateral front, the last 2 are placed on the glacier next to the collapsing front. In the second and third experiment (chronologically speaking), we deploy 10 and 8 stations, respectively. Each deployment is performed along a Bailey valley transect. The first one intercepts the front-end of the glacier and the sub-glacial river exit (flow of several m3/s). The second transect is performed some 850m upstream. Waveform data are available from the GEOFON data centre, under network code 3H, and are embargoed until summer of 2019.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 8.2GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Continuous passive seismic monitoring is carried out between September 2017 and December 2021 around the Theistareykir geothermal area located at the intersection between the active Northern Rift Zone and the active Tjörnes Fracture Zone in NE Iceland. This experiment, in addition to an extensive gravimetric monitoring survey, was conducted in the framework of the MicroGraviMoTiS project for a better understanding of the structures and behavior of the local geothermal system under exploitation and for further development of local and regional geothermal resources. 14 broadband stations (Trillium C-120s) recording at 200 Hz comprise the temporary network, that is installed to complement stations of the national seismological network of IMO and stations of Landsvirkjun, the National Power Company of Iceland. The stations were placed in and around the producing zone to primarily retrieve local natural and/or induced seismicity associated to the injection and production operations. The retrieved seismic data is also used for obtaining a representative 1D velocity model of the region, for computing a seismic ambient noise tomography, and for monitoring the system using coda wave interferometry techniques. Funding for this project is provided by the German Federal Ministry for Education and Research (MicroGraviMoTiS , BMBF, grant: 03G0858A), the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and Landsvirkjun. Waveform data are available from the GEOFON data center, under network code 3P, and are embargoed until December 2025.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI ; Volcano
    Type: Dataset , Seismic Network
    Format: 783GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-21
    Description: Abstract
    Description: This dataset includes five stations of an Ocean Bottom Seismometer (OBS) experiment conducted at the southern end of the Fonualei Rift and Spreading Center in the Lau Basin, southwestern Pacific. The OBS recorded continuously for 32-days on 4 components, including a hydrophone and a 3-component 4.5 Hz geophone. The experiment was conducted during RV Sonne cruise SO267, project ARCHIMEDES I.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; OBS
    Type: Dataset , Seismic Network
    Format: 61GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 8.3GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The Pamir-Hindu Kush region of Tajikistan and NE Afghanistan stands out due to its worldwide unique zone of intense intermediate depth seismicity, accommodating frequent Mw 7+ earthquakes with hypocenters reaching down to 250 km depth. With this network we aim to collect data allowing to characterize the active deformation within the Hindu Kush mountains and the Tajik-Afghan basin at the northwestern tip of the India-Asia collision zone. The network consists 15 sites (14 stations in Afghanistan, 1 station in Tajikistan), situated on top of the nest of intermediate depth seismicity and further west in the Afghan platform. The stations are equipped with short period Mark seismometers and Cube data recorders. Waveform data are available from the GEOFON data centre, under network code 4C, and are embargoed until 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 230.8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Cliffs line many erosional coastlines. Localized failures can cause land loss and hazard, and impact ecosystems and sediment routing. Links between cliff erosion and forcing mechanisms are poorly constrained, due to limitations of classic approaches. Combining multi-seasonal seismic and drone surveys, wave, precipitation and groundwater data we study drivers and triggers of seismically detected failures along the chalk cliffs on Germany's largest island, Rügen. The network consists of four (later five) seismic stations along the 8.6 km long chalk cliff coast. Waveform data are available from the GEOFON data centre, under network code 4K, and are embargoed until Jan 2021.
    Keywords: Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 624GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-05-28
    Description: Abstract
    Description: From June to August 2021 the DEEPEN project deployed a dense seismic network across the Hengill geothermal area in southwest Iceland to image and characterize faults and high-temperature zones at high resolution. The nodal network comprised 498 geophone nodes spread across the northern Nesjavellir and southern Hverahlíð geothermal fields and was complemented by an existing permanent and temporary backbone seismic network of a total of 44 short-period and broadband stations. In addition, two fiber optic telecommunication cables near the Nesjavellir geothermal power plant were interrogated with commercial DAS-interrogators. The here published dataset contains a subset of the downsampled DAS-recordings from the western fiber optic array. The original data were downsampled from 2000Hz to 250 Hz using the das-convert tool (https://doi.org/10.5880/GFZ.2.1.2021.005). Note that there was a problem with the GNSS timing in the original recorded data which caused significant temporal drift. This has mostly been corrected in the downsampled data, but some residual timing error may exist. Waveform data is available from the GEOFON data centre, under network code 1D, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DAS
    Type: Dataset , Seismic Network
    Format: 1700GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-06-13
    Description: Abstract
    Description: Raw-, SEG-Y and other supplementary data of the landside deployment from the amphibious wide-angle seismic experiment ALPHA are presented. The aim of this project was to reveal the crustal and lithospheric structure of the subducting Adriatic plate and the external accretionary wedge in the southern Dinarides. Airgun shots from the RV Meteor were recorded along two profiles across Montenegro and northern Albania.
    Keywords: Seismology ; Adriatic Plate ; Montenegro ; Albania ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 WIDE-ANGLE_REFLECTION_REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 AIRGUN_SOURCE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REGIONAL_SCALE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 DSS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; AMPHIBIOUS ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; CONTROLLED_SOURCE_SEISMOLOGY 〉 RAW_DATA ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-07-01
    Description: Abstract
    Description: The ability to use geothermal resources to generate heat in urban areas where the demand is greatest has the potential to significantly reduce our reliance on fossil fuels, and to support sustainable energy policies. Potential deep geothermal resources in challenging, lower-enthalpy EU settings remain poorly understood and largely untapped. The GEO-URBAN project aims to explore the potential for low enthalpy geothermal in urban environments. The project will focus on two target locations – Dublin, Ireland and Vallès, Spain – and will provide a feasibility analysis for the commercial development of deep geothermal resources in these regions. The overall objective of GEO-URBAN is to identify the geothermal resources available in two challenging urban locations and to demonstrate a commercialisation strategy that has the potential to be adapted in other similar locations. Waveform data is available from the GEOFON data centre, under network code 1V, and is {fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 114.4GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...