ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-09
    Description: We present a case study on the detection and quantification of seismic signals induced by operating wind turbines (WTs). We spatially locate the sources of such signals in data which were recorded at 11 seismic stations in 2011 and 2012 during the TIMO project (Deep Structure of the Central Upper Rhine Graben). During this time period, four wind farms with altogether 12 WTs were in operation near the town of Landau, Southwest Germany. We locate WTs as sources of continuous seismic signals by application of seismic interferometry and migration of the energy found in cross-correlograms. A clear increase of emitted seismic energy with rotor speed confirms that the observed signal is induced by WTs. We can clearly distinguish wind farms consisting of different types of WTs (different hub height and rotor diameter) corresponding to different stable frequency bands (1.3–1.6 Hz, 1.75–1.95 Hz and 2.0–2.2 Hz) which do not depend on wind speed. The peak frequency apparently is controlled by the elastic eigenmodes of the structure rather than the passing of blades at the tower. From this we conclude that vibrations are coupled into the ground at the foundation and propagate as Rayleigh waves (and not as infrasound). The migration velocity of 320 m/s corresponds to their group velocity. The applied migration method can contribute to the assessment of local sources of seismic noise. This topic gets growing attention in the seismological community. In particular, the recent boost of newly installed wind farms is a threat to seismological observatories such as the Black Forest Observatory (BFO) and the Gräfenberg array (GRF) or gravitational wave observatories (e.g. LIGO, VIRGO) in terms of a sensitivity degradation of such observatories. © 2018, Springer Nature B.V.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-05
    Description: By analysing long- and short-term seismological measurements at wind farms close to the town of Landau, SW Germany, we present new insights into ground motion signals from wind turbines (WTs) at local seismic stations. Because of their need to be located in similar regions with sparsely anthropogenic activities, wind turbines impact seismic stations and their recordings in a way that is not yet fully understood by researchers. To ensure the undisturbed recording tasks of a regional seismic array or a single station by a protected area around those endangered stations, it is very important to investigate the behavior of WTs as a seismic source. For that reason, we calculate averaged one-hour long spectra of the power spectral density (PSD) before and after the installation of a new wind farm within the investigated area. These PSD are ordered according to the rotation speed. We observe a clear increase of the PSD level after the WT installation in a frequency range of 0.5 to 10 Hz up to a distance of 5.5 km away from the WT. By analysing seismic borehole data, we also observe a decrease of the PSD of wind dependent signals with depth. The impact of wind-dependent signals is found to be much more pronounced for the shallower station (150 m depth) than for the deeper one (305 m depth). Using short-term profile measurements, we fit a power-law decay proportional to 1/rb to the main WT-induced PSD peaks and differentiate between near-field and far-field effects of ground motions. For low frequencies in the range from 1 to 4 Hz, we determine a b value of 0.78 to 0.85 for the far field, which is consistent with surface waves. The b value increases (up to 1.59) with increasing frequencies (up to 5.5 Hz), which is obviously due to attenuating effects like scattering or anelasticity. These results give a better understanding of the seismic wavefield interactions between wind turbines (or wind farms) with nearby seismic stations, including borehole installations, in a sedimentary setting. © 2017, Springer Science+Business Media B.V.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-25
    Print ISSN: 1569-4445
    Electronic ISSN: 1873-0604
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Abstract
    Description: SMARTIE1 is a joint seismological experiment of the Karlsruhe Institute of Technology (KIT) and the Leipzig University. We installed in total 36 seismic stations as ring-like and profile-like measurements near to a single wind turbine (WT) at the Fraunhofer Institute for Chemical Technology (ICT) in Pfinztal, SW Germany, for 21 days. The main goals of this project are a better understanding of a single WT as a seismic source and the development of propagation models for the WT-induced seismic signals, depending on the geological properties. Waveform data are available from the GEOFON data centre, under network code X8 (under CC-BY 4.0 license according to GIPP-rules), and are embargoed until Jan 2020.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; induced seismic signals ; wind turbine ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-23
    Description: Wind turbines produce mechanical energy that can propagate to the ground and disturb sensitive measurements such as seismic recordings. The aim of the large-scale experiment Seismic Monitoring And Research of wind Turbine Induced Emissions (SMARTIE1) at a single wind turbine in Pfinztal (SW Germany) is to understand how wind turbines emit seismic signals under different operating conditions and how these seismic signals propagate through the local subsurface. The main objectives of SMARTIE1 are the investigation of wind turbine induced seismic signals, the characteristics of their propagation behaviour, as well as the radiation pattern of a single wind turbine as defined using particle motions. Moreover, we quantify the emission of the wind turbine induced seismic signals with respect to the wind speed. The combination of the wind turbine's emission into the subsurface and the attenuation behaviour of the seismic signals (ground motion velocity) can be used to estimate protection radii around seismic stations to ensure the recording of seismic signals without noticeable influences of the wind turbines. In this study, we detect several discrete wind turbine induced frequency peaks ranging from 1 to 10 Hz. We identify a radiation pattern of the wind turbine, which could give further insights into the interaction between the movement of the wind turbine's nacelle and the generation of the wind turbine induced seismic signals. Using profile measurements with a maximum distance of almost 3 km each, we fit a power-law decay for power spectral density proportional to 1/rb. The attenuation factor, b, ranges from 0.7 to 1.3 for lower frequencies between 1 and 4 Hz, and increases to b = 2.3 for the higher frequency peak around 5.25 Hz. Finally, we present an example of estimation of a protection radius around the seismic station of the Collm Observatorium that is part of the German Regional Seismic Network. The example protection radius around Collm Observatorium regarding this single wind turbine is reached at a minimum distance of 3.7 km.
    Keywords: 511.22 ; 622.1592 ; Attenuation ; Seismic ; Surface waves
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...