ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Annual Reviews
  • Oxford University Press
  • Periodicals Archive Online (PAO)
  • Springer Nature
  • Wiley-Blackwell
  • 2020-2023  (78)
Collection
Years
Year
  • 1
    Publication Date: 2022-01-07
    Description: Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-02
    Description: Crystalline rocks can produce dangerous radiation levels on the basis of their content in radioisotopes. Here, we report radiological data from 10 metamorphic and igneous rock samples collected from the crystalline basement of the Peloritani Mountains (southern Italy). In order to evaluate the radiological properties of these rocks, the gamma radiation and the radon emanation have been measured. Moreover, since some of these rocks are employed as building materials, we assess the potential hazard for population connected to their use. Gamma spectroscopy was used to measure the 226Ra, 232Th and 40K activity concentration, whereas the radon emanation was investigated by using a RAD 7 detector. The results show 226Ra, 232Th and 40K activity concentration values ranging from (17 ± 4) to (56 ± 8) Bq kg-1, (14 ± 3) to (77 ± 14) Bq kg-1 and (167 ± 84) to (1760 ± 242) Bq kg-1, respectively. Values of the annual effective dose equivalent outdoor range from 0.035 to 0.152 mSv y-1, whereas the gamma index is in the range of 0.22-0.98. The 222Rn emanation coefficient and the 222Rn surface exhalation rate vary from (0.63 ± 0.3) to (8.27 ± 1.6)% and from (0.12 ± 0.03) to (2.75 ± 0.17) Bq m-2 h-1, respectively. The indoor radon derived from the building use of these rocks induces an approximate contribution to the annual effective dose ranging from 8 to 176 μSv y-1. All the obtained results suggest that the crystalline rocks from the Peloritani Mountains are not harmful for the residential population, even though they induce annual effective doses due to terrestrial gamma radiation above the worldwide average values. Moreover, their use as building materials does not produce significant health hazards connected to the indoor radon exposure.
    Description: Published
    Description: 452–464
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-07
    Description: The Pollino range is a region of slow deformation where earthquakes generally nucleate on low-angle normal faults. Recent studies have mapped fault structures and identified fluid related dynamics responsible for historical and recent seismicity in the area. Here, we apply the coda-normalization method at multiple frequencies and scales to image the 3-D P-wave attenuation (QP) properties of its slowly deforming fault network. The wide-scale average attenuation properties of the Pollino range are typical for a stable continental block, with a dependence of QP on frequency of Q−1 P = (0.0011   0.0008) f (0.36 0.32). Using only waveforms comprised in the area of seismic swarms, the dependence of attenuation on frequency increases [Q−1 P = (0.0373   0.0011) f (−0.59 0.01)], as expected when targeting seismically active faults. A shallow very-low-attenuation anomaly (max depth of 4–5 km) caps the seismicity recorded within the western cluster 1 of the Pollino seismic sequence (2012, maximum magnitude Mw = 5.1). High-attenuation volumes below this anomaly are likely related to fluid storage and comprise the western and northern portions of cluster 1 and the Mercure basin. These anomalies are constrained to the NW by a sharp low-attenuation interface, corresponding to the transition towards the eastern unit of the Apennine Platform under the Lauria mountains. The low-seismicity volume between cluster 1 and cluster 2 (maximum magnitude Mw = 4.3, east of the primary) shows diffuse low-to-average attenuation features. There is no clear indication of fluid-filled pathways between the two clusters resolvable at our resolution. In this volume, the attenuation values are anyway lower than in recognized low-attenuation blocks, like the Lauria Mountain and Pollino Range. As the volume develops in a region marked at surface by small-scale cross-faulting, it suggests no actual barrier between clusters, more likely a system of small locked fault patches that can break in the future. Our model loses resolution at depth, but it can still resolve a 5-to-15-km-deep high-attenuation anomaly that underlies the Castrovillari basin. This anomaly is an ideal deep source for the SE-to-NW migration of historical seismicity. Our novel deep structural maps support the hypothesis that the Pollino sequence has been caused by a mechanism of deep and lateral fluid-induced migration.
    Description: Natural Environment Research Council (NERC) Centre for Doctoral Training (CDT) in Oil and Gas. University of Aberdeen.
    Description: Published
    Description: 536–547
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: body waves ; seismic attenuation ; seismic tomography ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carroll, E. L., Ott, P. H., McMillan, L. F., Galletti Vernazzani, B., Neveceralova, P., Vermeulen, E., Gaggiotti, O. E., Andriolo, A., Baker, C. S., Bamford, C., Best, P., Cabrera, E., Calderan, S., Chirife, A., Fewster, R. M., Flores, P. A. C., Frasier, T., Freitas, T. R. O., Groch, K., Hulva, P., Kennedy, A., Leaper, R., Leslie, M. S., Moore, M., Oliveira, L., Seger, J., Stepien, E. N., Valenzuela, L. O., Zerbini, A., & Jackson, J. A. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground. Journal of Heredity, 111(3), (2020): 263-276, doi:10.1093/jhered/esaa010.
    Description: As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile–Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile–Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile–Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile–Peru.
    Description: This work was supported by the EU BEST 2.0 medium grant 1594 and UK DARWIN PLUS grant 057 and additional funding from the World Wildlife Fund GB107301. The collection of the Chile–Peru sample was supported by the Global Greengrants Fund and the Pacific Whale Foundation. The collection of the Brazilian samples was supported through grants by the Brazilian National Research Council to Paulo H. Ott (CNPq proc. n° 144064/98-7) and Paulo A.C. Flores (CNPq proc. n° 146609/1999-9) and with support from the World Wildlife Fund (WWF-Brazil). The collection of the South African samples was supported by the Global Greengrants Fund, the Pacific Whale Foundation and Charles University Grant Agency (1140217). E.L.C. was partially supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand. This study forms part of the Ecosystems component of the British Antarctic Survey Polar Sciences for Planet Earth Programme, funded by the Natural Environment Research Council.
    Keywords: population structure ; connectivity ; migration ; gene flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ferrer-González, F. X., Widner, B., Holderman, N. R., Glushka, J., Edison, A. S., Kujawinski, E. B., & Moran, M. A. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME Journal, (2020), doi:10.1038/s41396-020-00811-y.
    Description: The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen (including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate). Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine, proline, and N-acetyl-d-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.
    Description: This work was supported by grants from the Gordon and Betty Moore Foundation (5503) and the National Science Foundation (IOS-1656311) to MAM, ASE, and EBK, and by the Simons Foundation grant 542391 to MAM within the Principles of Microbial Ecosystems (PriME) Collaborative.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-16
    Description: Of all the socio-economic changes caused by the Covid-19 pandemic, the disruption to workforce organizations will probably leave the largest indelible mark. The way work will be organized in the future will be closely linked to the experience of work-ing under the same institution’s response to the pandemic. This paper aims to fill the gap in knowledge about smart working (SW) in public organizations, with a focus on the experience of the employees of two Italian research organizations, CNR and INGV. Analysing primary data, it explored and assessed how SW had been experi-enced following the implementation of governmental measures aimed at limiting the spread of COVID-19
    Description: Published
    Description: 815–833
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-16
    Description: Data visualization, and to a lesser extent data sonification, are classic tools to the scientific community. However, these two approaches are very rarely combined, although they are highly complementary: our visual system is good at recognizing spatial patterns, whereas our auditory system is better tuned for temporal patterns. In this article, data representation methods are proposed that combine visualization, sonification, and spatial audio techniques, in order to optimize the user’s perception of spatial and temporal patterns in a single display, to increase the feeling of immersion, and to take advantage of multimodal integration mechanisms. Three seismic data sets are used to illustrate the methods, covering different physical phenomena, time scales, spatial distributions, and spatio-temporal dynamics. The methods are adapted to the specificities of each data set, and to the amount of information that the designer wants to display. This leads to further developments, namely the use of audification with two time scales, the switch from pure audification to time-modulated noise, and the switch from pure audification to sonic icons. First user feedback from live demonstrations indicates that the methods presented in this article seem to enhance the perception of spatio-temporal patterns, which is a key parameter to the understanding of seismically active systems, and a step towards apprehending the processes that drive this activity.
    Description: Published
    Description: 125–142
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-16
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: In a recent study (Jozinovi\'c et al, 2020) we showed that convolutional neural networks (CNNs) applied to network seismic traces can be used for rapid prediction of earthquake peak ground motion intensity measures (IMs) at distant stations using only recordings from stations near the epicenter. The predictions are made without any previous knowledge concerning the earthquake location and magnitude. This approach differs from the standard procedure adopted by earthquake early warning systems (EEWSs) that rely on location and magnitude information. In the previous study, we used 10 s, raw, multistation waveforms for the 2016 earthquake sequence in central Italy for 915 events (CI dataset). The CI dataset has a large number of spatially concentrated earthquakes and a dense station network. In this work, we applied the CNN model to an area around the VIRGO gravitational waves observatory sited near Pisa, Italy. In our initial application of the technique, we used a dataset consisting of 266 earthquakes recorded by 39 stations. We found that the CNN model trained using this smaller dataset performed worse compared to the results presented in the original study by Jozinovi\'c et al. (2020). To counter the lack of data, we adopted transfer learning (TL) using two approaches: first, by using a pre-trained model built on the CI dataset and, next, by using a pre-trained model built on a different (seismological) problem that has a larger dataset available for training. We show that the use of TL improves the results in terms of outliers, bias, and variability of the residuals between predicted and true IMs values. We also demonstrate that adding knowledge of station positions as an additional layer in the neural network improves the results. The possible use for EEW is demonstrated by the times for the warnings that would be received at the station PII.
    Description: RISE (Union's Horizon 2020 research and innovation programme, grant agreement No.821115)
    Description: Published
    Description: 704–718
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics ; machine learning ; ground motion prediction ; seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-21
    Description: The stability of the West Antarctic Ice Sheet is threatened by the incursion of warm Circumpolar Deepwater which flows southwards via cross-shelf troughs towards the coast there melting ice shelves. However, the onset of this oceanic forcing on the development and evolution of the West Antarctic Ice Sheet remains poorly understood. Here, we use single- and multichannel seismic reflection profiles to investigate the architecture of a sediment body on the shelf of the Amundsen Sea Embayment. We estimate the formation age of this sediment body to be around the Eocene-Oligocene Transition and find that it possesses the geometry and depositional pattern of a plastered sediment drift. We suggest this indicates a southward inflow of deep water which probably supplied heat and, thus, prevented West Antarctic Ice Sheet advance beyond the coast at this time. We conclude that the West Antarctic Ice Sheet has likely experienced a strong oceanic influence on its dynamics since its initial formation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-03
    Description: Short-term earthquake clustering properties in the Eastern Aegean Sea (Greece) area investigated through the application of an epidemic type stochastic model (Epidemic Type Earthquake Sequence; ETES). The computations are performed in an earthquake catalog covering the period 2008 to 2020 and including 2332 events with a completeness threshold of Mc = 3.1 and separated into two subcatalogs. The first subcatalog is employed for the learning period, which is between 2008/01/01 and 2016/12/31 (N = 1197 earthquakes), and used for the model’s parameters estimation. The second subcatalog from 2017/01/01 to 2020/11/10 (1135 earthquakes), in which the sequences of 2017 Mw = 6.4 Lesvos, 2017 Mw = 6.6 Kos and 2020 Mw = 7.0 Samos main shocks are included, and used for a retrospective forecast testing based on the constructed model. The estimated model parameters imply a swarm like behavior, indicating the ability of earthquakes of small to moderate magnitude above Mc to produce their own offsprings, along with the stronger earthquakes. The retrospective evaluation of the model is examined in the three aftershock sequences, where lack of foreshocks resulted in low predictability of the mainshocks, with estimated daily probabilities around 10– 5. Immediately after the mainshocks occurrence the model adjusts with notable resemblance between the expected and observed aftershock rates, particularly for earthquakes with M ≥ 3.5.
    Description: Published
    Description: 1085–1099
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-11-29
    Description: This work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.
    Description: Published
    Description: 3287–3315
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-12-01
    Description: Probabilistic earthquake locations provide confidence intervals for the hypocentre solutions such as errors encountered in the position, the origin time, and in magnitude. If the relationship of the parameters relative to the local arrangement of the seismic network is considered, such as the node distance, the number of stations, the seismic gap, and the quality of phase readings), the uncertainties can then provide insights on the location capability of the network. In this paper, we collect the earthquake data recorded from the Italian Seismic Network for a time span of 5 years. The data pertain to three different catalogues according to the progressive refinement phases of the location procedure: automatic location, revised location, and published location. By means of spatial analysis,we assess the distribution of the location-related and network-related estimators across the study area. These estimators are subsequently combined to assess the existence of spatial correlations at a local scale. The results indicate that the Italian network is generally able to provide robust locations at the national scale and for smaller earthquakes, and the elongated shape of Italy (and of its network) does not cause systematic bias in the locations. However, we highlight the existence of subregions in which the performance of the network is weaker. At present, a unique 2D, 3-layer velocity model is used for the earthquake location procedure, and this could represent the main limitation for the improvement of the locations. Therefore, the assessment of locally optimized velocity models is the priority for the homogenization and the improvement of the Italian Seismic Network performance.
    Description: Published
    Description: 1061–1076
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-12-06
    Description: This paper provides a new contribution to the construction of the complex and fragmentary mosaic of the Late Holocene earthquakes history of the İznik segment of the central strand of the North Anatolian Fault (CNAF) in Turkey. The CNAF clearly displays lower dextral slip rates with respect to the northern strand however, surface rupturing and large damaging earthquakes (M 〉 7) occurred in the past, leaving clear signatures in the built and natural environments. The association of these historical events to specific earthquake sources (e.g., Gemlik, İznik, or Geyve fault segments) is still a matter of debate. We excavated two trenches across the İznik fault trace near Mustafali, a village about 10 km WSW of İznik where the morphological fault scarp was visible although modified by agricultural activities. Radiocarbon and TL dating on samples collected from the trenches show that the displaced deposits are very recent and span the past 2 millennia at most. Evidence for four surface faulting events was found in the Mustafali trenches. The integration of these results with historical data and previous paleoseismological data yields an updated Late Holocene history of surface-rupturing earthquakes along the İznik Fault in 1855, 740 (715), 362, and 121 CE. Evidence for the large M7 + historical earthquake dated 1419 CE generally attributed to this fault, was not found at any trench site along the İznik fault nor in the subaqueous record. This unfit between paleoseismological, stratigraphic, and historical data highlights one more time the urge for extensive paleoseismological trenching and offshore campaigns because of the high potential to solve the uncertainties on the seismogenic history (age, earthquake location, extent of the rupture and size) of this portion of NAFZ and especially on the attribution of historical earthquakes to the causative fault.
    Description: Published
    Description: 115–128
    Description: 2T. Deformazione crostale attiva
    Description: N/A or not JCR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-11-29
    Description: In this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.
    Description: Published
    Description: 4199–4234
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-11-29
    Description: ShakeMap is the tool to evaluate the ground motion effect of earthquakes in vast areas. It is useful to delimit the zones where the shaking is expected to have been most significant, for civil defense rapid response. From the earthquake engineering point of view, it can be used to infer the seismic actions on the built environment to calibrate vulnerability models or to define the reconstruction policies based on observed damage vs shaking. In the case of long-lasting seismic sequences, it can be useful to develop ShakeMap envelopes, that is, maps of the largest ground intensity among those from the ShakeMap of (selected) events of a seismic sequence, to delimit areas where the effects of the whole sequence have been of structural engineering relevance. This study introduces ShakeMap envelopes and discusses them for the central Italy 2016–2017 seismic sequence. The specific goals of the study are: (i) to compare the envelopes and the ShakeMap of the main events of the sequence to make the case for sequence-based maps; (ii) to quantify the exceedance of design seismic actions based on the envelopes; (iii) to make envelopes available for further studies and the reconstruction planning; (iv) to gather insights on the (repeated) exceedance of design seismic actions at some sites. Results, which include considerations of uncertainty in ShakeMap, show that the sequence caused exceedance of design hazard in thousands of square kilometers. The most relevant effects of the sequence are, as expected, due to the mainshock, yet seismic actions larger than those enforced by the code for structural design are found also around the epicenters of the smaller magnitude events. At some locations, the succession of ground-shaking that has excited structures, provides insights on structural damage accumulation that has likely taken place; something that is not accounted for explicitly in modern seismic design. The envelopes developed are available as supplemental material.
    Description: Published
    Description: 5391–5414
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-12-24
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Ambient-noise records from the AlpArray network are used to measure Rayleigh wave phase velocities between more than 150,000 station pairs. From these, azimuthally anisotropic phase-velocity maps are obtained by applying the Eikonal tomography method. Several synthetic tests are shown to study the bias in the Ψ2 anisotropy. There are two main groups of bias, the first one caused by interference between refracted/reflected waves and the appearance of secondary wavefronts that affect the phase travel-time measurements. This bias can be reduced if the amplitude field can be estimated correctly. Another source of error is related to the incomplete reconstruction of the travel-time field that is only sparsely sampled due to the receiver locations. Both types of bias scale with the magnitude of the velocity heterogeneities. Most affected by the spurious Ψ2 anisotropy are areas inside and at the border of low-velocity zones. In the isotropic velocity distribution, most of the bias cancels out if the azimuthal coverage is good. Despite the lack of resolution in many parts of the surveyed area, we identify a number of anisotropic structures that are robust: in the central Alps, we find a layered anisotropic structure, arc-parallel at midcrustal depths and arc-perpendicular in the lower crust. In contrast, in the eastern Alps, the pattern is more consistently E-W oriented which we relate to the eastward extrusion. The northern Alpine forleand exhibits a preferential anisotropic orientation that is similar to SKS observations in the lowermost crust and uppermost mantle.
    Description: German Science Foundation (SPP-2017, Project Ha 2403/21-1); Swiss National Science Foundation SINERGIA Project CRSII2-154434/1 (Swiss-AlpArray); Progetto Pianeta Dinamico, finanziamento MUR-INGV, Task S2 – 2021
    Description: Published
    Description: 151–170
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismic anisotropy ; Seismic interferometry ; Seismic tomography ; Wave propagation ; Continental tectonics: compressional ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-12-15
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: To understand the seismotectonics and the seismic hazard of the study sector of the Northern Apennines (Italy), one of the most important earthquakes of magnitude Mw = 6.5 which struck the Lunigiana and Garfagnana areas (Tuscany) on 7 September 1920 should be studied. Given the early instrumental epoch of the event, neither geometric and kinematic information on the fault-source nor its fault-plane solution were available. Both areas were candidates for hosting the source fault and there was uncertainty between a normal fault with Apenninic direction or an anti-Apenninic strike-slip. We retrieved 11 focal parameters (including the fault-plane solution) of the 1920 earthquake. Only macroseismic intensity information (from 499 inhabited centres) through the KF-NGA inversion technique was used. This technique uses a Kinematic model of the earthquake source and speeds up the calculation by a Genetic Algorithm with Niching. The result is a pure dip-slip focal solution. The intrinsic ambiguities of the KF-NGA method (±180° on the rake angle; choice of the fault plane between the two nodal planes) were solved with field and seismotectonic evidence. The earthquake was generated by a normal fault (rake angle = 265° ± 8°) with an Apennine direction (114° ± 5°) and dipping 38° ± 6° towards SW. The likely candidate for hosting the source-fault in 1920 is the Compione-Comano fault that borders the NE edge of the Lunigiana graben. The KF-NGA algorithm proved to be invaluable for studying the kinematics of early instrumental earthquakes and allowed us to uniquely individuate, for the first time ever, the seismogenic source of the 1920 earthquake. Our findings have implications in hazard computation and seismotectonic contexts.
    Description: Published
    Description: 1465–1477
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Inverse theory ; Body waves ; Earthquake source observations ; Seismicity and tectonics ; Dynamics: seismotectonics ; Fractures, faults, and high strain deformation zones ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-12-22
    Description: Systematic variations in the crystal cargo and whole-rock isotopic compositions of mantle-derived basalts in the intraplate Dunedin Volcano (New Zealand) indicate the influence of a complex mantle-to-crust polybaric plumbing system. Basaltic rocks define a compositional spectrum from low-alkali basalts through mid-alkali basalts to high-alkali basalts. High-alkali basalts display clinopyroxene crystals with sector (hourglass) and oscillatory zoning (Mg#61–82) as well as Fe-rich green cores (Mg#43–69), whereas low-alkali basalts are characterized by clinopyroxenes with unzoned overgrowths (Mg#69–83) on resorbed mafic cores (Mg#78–88), coexisting with reversely zoned plagioclase crystals (An43–68 to An60–84 from core to rim). Complex magma dynamics are indicated by distinctive compositional variations in clinopyroxene phenocrysts, with Cr-rich zones (Mg#74–87) indicating continuous recharge by more mafic magmas. Crystallization of olivine, clinopyroxene and titanomagnetite occurred within a polybaric plumbing system extending from upper mantle to mid-crustal depths (485–1059 MPa and 1147–1286°C), whereas crystallization of plagioclase with subordinate clinopyroxene and titanomagnetite proceeded towards shallower crustal levels. The compositions of high-alkali basalts and mid-alkali basalts resemble those of ocean island basalts and are characterized by FOZO-HIMU isotopic signatures (87Sr/86Sri = 0.70277–0.70315, 143Nd/144Ndi = 0.51286–0.51294 and 206Pb/204Pb = 19.348–20.265), whereas low-alkali basalts have lower incompatible element abundances and isotopic compositions trending towards EMII (87Sr/86Sri = 0.70327–70397, 143Nd/144Ndi = 0.51282–0.51286 and 206Pb/204Pb = 19.278–19.793). High- and mid-alkali basalt magmas mostly crystallized in the lower crust, whereas low-alkali basalt magma recorded deeper upper mantle clinopyroxene crystallization before eruption. The variable alkaline character and isotope composition may result from interaction of low-alkaline melts derived from the asthenosphere with melts derived from lithospheric mantle, possibly initiated by asthenospheric melt percolation. The transition to more alkaline compositions was induced by variable degrees of melting of metasomatic lithologies in the lithospheric mantle, leading to eruption of predominantly small-volume, high-alkali magmas at the periphery of the volcano. Moreover, the lithosphere imposed a filtering effect on the alkalinity of these intraplate magmas. As a consequence, the eruption of low-alkali basalts with greater asthenospheric input was concentrated at the centre of the volcano, where the plumbing system was more developed.
    Description: Published
    Description: egab062
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: alkali basalts ; Dunedin Volcano ; thermobarometry ; primary magma ; lithospheric mantle filter ; Igneous Petrology ; Thermobarometry ; Mantle melting and metasomatism ; Magmatic plumbing systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-12-13
    Description: Analyzing seismic data to get information about earthquakes has always been a major task for seismologists and, more in general, for geophysicists. Recently, thanks to the technological development of observation systems, more and more data are available to perform such tasks. However, this data “grow up” makes “human possibility” of data processing more complex in terms of required efforts and time demanding. That is why new technological approaches such as artificial intelligence are becoming very popular and more and more exploited. In this paper, we explore the possibility of interpreting seismic waveform segments by means of pre-trained deep learning. More specifically, we apply convolutional networks to seismological waveforms recorded at local or regional distances without any pre-elaboration or filtering. We show that such an approach can be very successful in determining if an earthquake is “included” in the seismic wave image and in estimating the distance between the earthquake epicenter and the recording station.
    Description: Published
    Description: 1347–1359
    Description: 1T. Struttura della Terra
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-10-25
    Description: Themain climatological features of the ionospheric equivalent slab thickness (τ ) for the Northern hemispheremidlatitudes are analyzed. F2-layer peak electron density values recorded at three midlatitude ionospheric stations (Chilton 51.5° N, 0.6° W, U.K.; Roquetes 40.8° N, 0.5° E, Spain;Wallops Island 37.9° N, 75.5°W, USA) and vertical total electron content values from colocated ground-based Global Navigation Satellite System receivers are used to calculate a dataset of τ values for the last two solar cycles, considering only magnetically quiet periods. Results are presented both as grids of binned medians and as boxplots as a function of local time and month of the year, for different solar activity levels. Corresponding trends are first compared to those output by the midlatitude empirical model developed by Fox et al. (Radio Sci 26:429–438, 1991) and then discussed in the light of what is known so far. From this investigation, the strong need to implement an improved empirical model of τ has emerged. Both Space Weather and Space Geodesy applications might benefit from such model. Therefore, both the dataset and the methodology described in the paper represent a first fundamental step aimed at implementing an empirical climatological model of the ionospheric equivalent slab thickness. The study highlighted also that at midlatitudes τ shows the following main patterns: daytime values considerably smaller than nighttime ones (except in summer); well-defined maxima at solar terminator hours; a greater dispersion during nighttime and solar terminator hours; no clear and evident solar activity dependence.
    Description: Published
    Description: 124
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-11-26
    Description: The eruption of basaltic magmas dominates explosive volcanism on Earth and other planets within the Solar System. The mechanism through which continuous magma fragments into volcanic particles is central in governing eruption dynamics and the ensuing hazards. However, the mechanism of fragmentation of basaltic magmas is still disputed, with both viscous and brittle mechanisms having been proposed. Here we carry out textural analysis of the products of ten eruptions from seven volcanoes by scanning electron microscopy. We find broken crystals surrounded by intact glass that testify to the brittle fragmentation of basaltic magmas during explosive activity worldwide. We then replicated the natural textures of broken crystals in laboratory experiments where variably crystallized basaltic melt was fragmented by rapid deformation. The experiments reveal that crystals are broken by the propagation of a network of fractures through magma, and that afterwards the fractures heal by viscous flow of the melt. Fracturing and healing affect gas mobility, stress distribution, and bubble and crystal size distributions in magma. Our results challenge the idea that the grain size distribution of basaltic eruption products reflects the density of fractures that initially fragmented the magma and ultimately indicate that brittle fracturing and viscous healing of magma may underlie basaltic explosive eruptions globally.
    Description: Published
    Description: 248–254
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-02-11
    Description: Magmatism accompanies rifting along divergent plate boundaries, although its role before continental breakup remains poorly understood. For example, the magma-assisted Northern Main Ethiopian Rift (NMER) lacks current volcanism and clear tectono-magmatic relationships with its contiguous rift portions. Here we define its magmatic behaviour, identifying the most recent eruptive fissures (EF) whose aphyric basalts have a higher Ti content than those of older monogenetic scoria cones (MSC), which are porphyritic and plagioclase-dominated. Despite these differences, calculations highlight a similar parental melt for EF and MSC products, suggesting only a different evolutionary history after melt generation. While MSC magmas underwent a further step of storage at intermediate crustal levels, EF magmas rose directly from the base of the crust without contamination, even below older polygenetic volcanoes, suggesting rapid propagation of transcrustal dikes across solidified magma chambers. Whether this recent condition in the NMER is stable or transient, it indicates a transition from central polygenetic to linear fissure volcanism, indicative of increased tensile conditions and volcanism directly fed from the base of the crust, suggesting transition towards mature rifting.
    Description: Published
    Description: 21821
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Springer Nature
    Publication Date: 2021-12-24
    Description: This book serves as a guide to discovering the most interesting volcano sites in Italy. Accompanied by some extraordinary contemporary images of active Neapolitan volcanoes, it explains the main volcanic processes that have been shaping the landscape of the Campania region and influencing human settlements in this area since Greek and Roman times and that have prompted leading international scientists to visit and study this natural volcanology laboratory. While volcanology is the central topic, the book also addresses other aspects related to the area’s volcanism and is divided into three sections: 1) Neapolitan volcanic activity and processes (with a general introduction to volcanology and its development around Naples together with descriptions of the landscape and the main sites worth visiting); 2) Volcanoes and their interactions with local human settlements since the Bronze Age, recent population growth and the transformation of the territory; 3) The risks posed by Neapolitan Volcanoes, their recent activity and the problem of forecasting any future eruption.
    Description: Published
    Description: 2TM. Divulgazione Scientifica
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3npj Climate and Atmospheric Science, Springer Nature, 4(1), ISSN: 2397-3722
    Publication Date: 2022-02-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, W. M., Alexander, H., Bier, R. L., Miller, D. R., Muscarella, M. E., Pitz, K. J., & Smith, H. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiology Ecology, (2020): fiaa115, doi: 10.1093/femsec/fiaa115.
    Description: Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.
    Description: This work was supported by the National Science Foundation [OCE-1356192].
    Keywords: Auxotrophy ; Microbial community stability ; Microbial interactions ; Aquatic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Keller, A. G., Apprill, A., Lebaron, P., Robbins, J., Romano, T. A., Overton, E., Rong, Y., Yuan, R., Pollara, S., & Whalen, K. E. Characterizing the culturable surface microbiomes of diverse marine animals. FEMS Microbiology Ecology, 97(4), (2021): fiab040, https://doi.org/10.1093/femsec/fiab040.
    Description: Biofilm-forming bacteria have the potential to contribute to the health, physiology, behavior and ecology of the host and serve as its first line of defense against adverse conditions in the environment. While metabarcoding and metagenomic information furthers our understanding of microbiome composition, fewer studies use cultured samples to study the diverse interactions among the host and its microbiome, as cultured representatives are often lacking. This study examines the surface microbiomes cultured from three shallow-water coral species and two whale species. These unique marine animals place strong selective pressures on their microbial symbionts and contain members under similar environmental and anthropogenic stress. We developed an intense cultivation procedure, utilizing a suite of culture conditions targeting a rich assortment of biofilm-forming microorganisms. We identified 592 microbial isolates contained within 15 bacterial orders representing 50 bacterial genera, and two fungal species. Culturable bacteria from coral and whale samples paralleled taxonomic groups identified in culture-independent surveys, including 29% of all bacterial genera identified in the Megaptera novaeangliae skin microbiome through culture-independent methods. This microbial repository provides raw material and biological input for more nuanced studies which can explore how members of the microbiome both shape their micro-niche and impact host fitness.
    Description: Funding was provided by the National Science Foundation (Biological Oceanography) award #1657808 and National Institutes of Health grants 1R21-AI119311–01 to K. E. Whalen, as well as funding from the Koshland Integrated Natural Science Center and Green Fund at Haverford College. This constitutes scientific manuscript #298 from the Sea Research Foundation.
    Keywords: Bacteria ; SSU rRNA ; Coral ; Whale ; Microbiome ; Skin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, P., Huang, C., Lin, J., Jian, Z., Sun, Z., & Zhao, M. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting. National Science Review, 6(5), (2019): 902-913, doi:10.1093/nsr/nwz135.
    Description: The South China Sea, as ‘a non-volcanic passive margin basin’ in the Pacific, has often been considered as a small-scale analogue of the Atlantic. The recent ocean drilling in the northern South China Sea margin found, however, that the Iberian model of non-volcanic rifted margin from the Atlantic does not apply to the South China Sea. In this paper, we review a variety of rifted basins and propose to discriminate two types of rifting basins: plate-edge type such as the South China Sea and intra-plate type like the Atlantic. They not only differ from each other in structure, formation process, lifespan and geographic size, but also occur at different stages of the Wilson cycle. The intra-plate rifting occurred in the Mesozoic and gave rise to large oceans, whereas the plate-edge rifting took place mainly in the mid-Cenozoic, with three-quarters of the basins concentrated in the Western Pacific. As a member of the Western Pacific system of marginal seas, the South China Sea should be studied not in isolation on its origin and evolution, but in a systematic context to include also its neighboring counterparts.
    Description: This work was supported by the National Natural Science Foundation of China as a part of the ‘South China Sea Deep’ Project (91128000).
    Keywords: Rifting ; Marginal basin ; Passive margin ; South China Sea ; Western Pacific ; Subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-28
    Description: Relative relocation methods are commonly used to precisely relocate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-relocation process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a relocation strategy to work without a predefined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of meters wide on horizontal directions and around 100 meters in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of meters in the source area.
    Description: Published
    Description: 1244–1257
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-28
    Description: From the 2010s on, pattern classification has proven an effective method for flagging alerts of volcano unrest before eruptive activity at Mt. Etna, Italy. The analysis has been applied online to volcanic tremor data, and has supported the surveillance activity of the volcano that provides timely information to Civil Protection and other authorities. However, after declaring an alert, no one knows how long the volcano unrest will last and if a climactic eruptive activity will actually begin. These are critical aspects when considering the effects of a prolonged state of alert. An example of longstanding unrest is related to the Christmas Eve eruption in 2018, which was heralded by several months of almost continuous Strombolian activity. Here, we discuss the usage of thresholds to detect conditions leading to paroxysmal activity, and the challenges associated with defining such thresholds, leveraging a dataset of 52 episodes of lava fountains occurring in 2021. We were able to identify conservative settings regarding the thresholds, allowing for an early warning of impending paroxysm in almost all cases (circa 85% for the first 4 months in 2021, and over 90% for the whole year). The chosen thresholds also proved useful to predict that a paroxysmal activity was about to end. Such information provides reliable numbers for volcanologists for their assessments, based on visual information, which may not be available in bad weather or cloudy conditions.
    Description: Project IMPACT (A multidisciplinary Insight on the kinematics and dynamics of Magmatic Processes at Mt. Etna Aimed at identifying preCursor phenomena and developing early warning sysTems). IMPACT belongs to the Progetti Dipartimentali INGV [DIP7], https://progetti.ingv.it/index.php/it/progetti-dipartimentali/vulcani/impact#informazioni-sul-progetto.
    Description: Published
    Description: 17895
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Volcanic tremor ; Volcano monitoring ; Pattern recognition ; Self Organizing maps ; Fuzzy clustering ; Mt. Etna ; 04.06. Seismology ; 04.08. Volcanology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-11-14
    Description: Southern Ocean deep-water circulation plays an important role in the global carbon cycle. On geological time-scales, upwelling along the Chilean continental margin likely contributed to the deglacial atmospheric carbon dioxide rise, but little quantitative evidence exists of carbon storage. Here, we use a new X-ray Micro-Computer-Tomography method to assess foraminiferal test dissolution as proxy for paleo-carbonate ion concentrations [CO3^2−]. Our subantarctic Southeast Pacific sediment core depth transect shows significant deep-water [CO3^2−] variations during the Last Glacial Maximum and Deglaciation (10 – 22 ka BP). We provide evidence for an increase in [CO3^2−] during the early deglacial period (15-19 ka BP), followed by a ca. 40 µmol kg^-1 reduction in Lower Circumpolar Deepwater (CDW). This decreased Pacific to Atlantic export of low-carbon CDW contributed to significantly lowered carbon storage within the Southern Ocean, highlighting the importance of a dynamic Pacific–Southern Ocean deep-water reconfiguration for shaping late-glacial oceanic carbon storage, and subsequent deglacial oceanic-atmospheric CO2 transfer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sassenhagen, I., Erdner, D., Lougheed, B., Richlen, M., & SjÖqvist, C. Estimating genotypic richness and proportion of identical multi-locus genotypes in aquatic microalgal populations. Journal of Plankton Research, 44(4), (2022): 559-572, https://doi.org/10.1093/plankt/fbac034.
    Description: The majority of microalgal species reproduce asexually, yet population genetic studies rarely find identical multi-locus genotypes (MLG) in microalgal blooms. Instead, population genetic studies identify large genotypic diversity in most microalgal species. This paradox of frequent asexual reproduction but low number of identical genotypes hampers interpretations of microalgal genotypic diversity. We present a computer model for estimating, for the first time, the number of distinct MLGs by simulating microalgal population composition after defined exponential growth periods. The simulations highlighted the effects of initial genotypic diversity, sample size and intraspecific differences in growth rates on the probability of isolating identical genotypes. We estimated the genotypic richness for five natural microalgal species with available high-resolution population genetic data and monitoring-based growth rates, indicating 500 000 to 2 000 000 distinct genotypes for species with few observed clonal replicates (〈5%). Furthermore, our simulations indicated high variability in genotypic richness over time and among microalgal species. Genotypic richness was also strongly impacted by intraspecific variability in growth rates. The probability of finding identical MLGs and sampling a representative fraction of genotypes decreased noticeably with smaller sample sizes, challenging the detection of differences in genotypic diversity with typical isolate numbers in the field.
    Description: This work was supported by the Olle Engkvist foundation [200-0564 to I.S.]; the Swedish Research Council (Vetenskapsrådet) [2018-04992 to B.C.L.]; the Academy of Finland [321609 to C.S.]; the National Science Foundation [NSF OCE-1841811 to D.L.E. and M.L.R.]; and the National Institute of Environmental Health [NIEHS P01ES028949 to M.L.R.].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 13(1), pp. 1-10, ISSN: 2041-1723
    Publication Date: 2022-11-24
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Crossing a key atmospheric CO〈jats:sub〉2〈/jats:sub〉 threshold triggered a fundamental global climate reorganisation ~34 million years ago (Ma) establishing permanent Antarctic ice sheets. Curiously, a more dramatic CO〈jats:sub〉2〈/jats:sub〉 decline (~800–400 ppm by the Early Oligocene(~27 Ma)), postdates initial ice sheet expansion but the mechanisms driving this later, rapid drop in atmospheric carbon during the early Oligocene remains elusive and controversial. Here we use marine seismic reflection and borehole data to reveal an unprecedented accumulation of early Oligocene strata (up to 2.2 km thick over 1500 × 500 km) with a major biogenic component in the Australian Southern Ocean. High-resolution ocean simulations demonstrate that a tectonically-driven, one-off reorganisation of ocean currents, caused a unique period where current instability coincided with high nutrient input from the Antarctic continent. This unrepeated and short-lived environment favoured extreme bioproductivity and enhanced sediment burial. The size and rapid accumulation of this sediment package potentially holds ~1.067 × 10〈jats:sup〉15〈/jats:sup〉 kg of the ‘missing carbon’ sequestered during the decline from an Eocene high CO〈jats:sub〉2〈/jats:sub〉-world to a mid-Oligocene medium CO〈jats:sub〉2〈/jats:sub〉-world, highlighting the exceptional role of the Southern Ocean in modulating long-term climate.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-07-13
    Description: The stratified Chilean Comau Fjord sustains a dense population of the cold-water coral (CWC) Desmophyllum dianthus in aragonite supersaturated shallow and aragonite under- saturated deep water. This provides a rare opportunity to evaluate CWC fitness trade-offs in response to physico-chemical drivers and their variability. Here, we combined year-long reciprocal transplantation experiments along natural oceanographic gradients with an in situ assessment of CWC fitness. Following transplantation, corals acclimated fast to the novel environment with no discernible difference between native and novel (i.e. cross-transplanted) corals, demonstrating high phenotypic plasticity. Surprisingly, corals exposed to lowest ara- gonite saturation (Ωarag 〈 1) and temperature (T 〈 12.0 °C), but stable environmental condi- tions, at the deep station grew fastest and expressed the fittest phenotype. We found an inverse relationship between CWC fitness and environmental variability and propose to consider the high frequency fluctuations of abiotic and biotic factors to better predict the future of CWCs in a changing ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-06-24
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Page, H. N., Bahr, K. D., Cyronak, T., Jewett, E. B., Johnson, M. D., & McCoy, S. J. Responses of benthic calcifying algae to ocean acidification differ between laboratory and field settings. Ices Journal of Marine Science, 79(1), (2022): 1–11, https://doi.org/10.1093/icesjms/fsab232.
    Description: Accurately predicting the effects of ocean and coastal acidification on marine ecosystems requires understanding how responses scale from laboratory experiments to the natural world. Using benthic calcifying macroalgae as a model system, we performed a semi-quantitative synthesis to compare directional responses between laboratory experiments and field studies. Variability in ecological, spatial, and temporal scales across studies, and the disparity in the number of responses documented in laboratory and field settings, make direct comparisons difficult. Despite these differences, some responses, including community-level measurements, were consistent across laboratory and field studies. However, there were also mismatches in the directionality of many responses with more negative acidification impacts reported in laboratory experiments. Recommendations to improve our ability to scale responses include: (i) developing novel approaches to allow measurements of the same responses in laboratory and field settings, and (ii) researching understudied calcifying benthic macroalgal species and responses. Incorporating these guidelines into research programs will yield data more suitable for robust meta-analyses and will facilitate the development of ecosystem models that incorporate proper scaling of organismal responses to in situ acidification. This, in turn, will allow for more accurate predictions of future changes in ecosystem health and function in a rapidly changing natural climate.
    Description: We would like to thank the Ocean Carbon and Biogeochemistry Program for organizing the fourth U.S. Ocean Acidification Principal Investigators meeting, which is where this synthesis was conceived. HNP was a postdoctoral research fellow at Mote Marine Laboratory. MDJ is a postdoctoral scholar at Woods Hole Oceanographic Institution. SJM is a Norma J. Lang early career fellow of the Phycological Society of America.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-06-22
    Description: In this paper we simulate the earthquake that hit the city of L'Aquila on the 6th of April 2009 using SPEED (SPectral Elements in Elastodynamics with Discontinuous Galerkin), an open-source code able to simulate the propagation of seismic waves in complex three-dimensional (3D) domains. Our model includes an accurate 3D recon- struction of the Quaternary deposits, according to the most up-to-date data obtained from the Microzonation studies in Central Italy and a detailed model of the topography incorporated using a newly developed tool (May et al. 2021). The sensitivity of our results with respect to dfferent kinematic seismic sources is inves- tigated. The results obtained are in good agreement with the recordings at the available seismic stations at epicentral distances within a range of 20km. Finally, a blind source prediction scenario application shows a reasonably good agreement between simulations and recordings can be obtained by simulating stochastic rupture realizations with basic input data. These results, although limited to nine simulated scenarios, demonstrate that it is possible to obtain a satisfactory reconstruction of a ground shaking scenario employing a stochastic source constrained on a limited amount of ex-ante information. A similar approach can be used to model future and past earthquakes for which little or no information is typically available, with potential relevant implications for seismic risk assessment.
    Description: Published
    Description: 29–49
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-06-22
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: On 29 December 2020, a shallow earthquake of magnitude Mw 6.4 struck northern Croatia, near the town of Petrinja, more than 24 hours after a strong foreshock (Ml 5). We formed a reconnaissance team of European geologists and engineers, from Croatia, Slovenia, France, Italy and Greece, rapidly deployed in the field to map the evidence of coseismic environmental effects. In the epicentral area, we recognized surface deformation, such as tectonic breaks along the earthquake source at the surface, liquefaction features (scattered in the fluvial plains of Kupa, Glina and Sava rivers), and slope failures, both caused by strong motion. Thanks to this concerted, collective and meticulous work, we were able to document and map a clear and unambiguous coseismic surface rupture associated with the main shock. The surface rupture appears discontinuous, consisting of multi-kilometer en échelon right stepping sections, along a NW-SE striking fault that we call the Petrinja-Pokupsko Fault (PPKF). The observed deformation features, in terms of kinematics and trace alignments, are consistent with slip on a right lateral fault, in agreement with the focal solution of the main shock. We found mole tracks, displacement on faults affecting natural features (e. g. drainage channels), scarplets, and more frequently breaks of anthropogenic markers (roads, fences). The surface rupture is observed over a length of ∼13 km from end-to-end, with a maximum displacement of 38 cm, and an average displacement of ∼10 cm. Moreover, the liquefaction extends over an area of nearly 600 km² around the epicenter. Typology of liquefaction features include sand blows, lateral spreading phenomenon along the road and river embankments, as well as sand ejecta of different grain size and matrix. Development of large and long fissures along the fluvial landforms, current or ancient, with massive ejections of sediments is pervasive. These features are sometimes accompanied by small horizontal displacements. Finally, the environmental effects of the earthquake appear to be reasonably consistent with the usual scaling relationships, in particular the surface faulting. This rupture of the ground occurred on or near traces of a fault that shows clear evidence of Quaternary activity. Further and detailed studies will be carried out to characterize this source and related faults in terms of future large earthquakes potential, for their integration into seismic hazard models.
    Description: Published
    Description: 1394–1418
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Seismicity and tectonics ; Earthquake hazards ; Coseismic effects ; M6.4 Petrinja earthquake (Croatia)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-08-16
    Description: The El Niño/Southern Oscillation (ENSO), the dominant driver of year-to-year climate variability in the equatorial Pacific Ocean, impacts climate pattern across the globe. However, the response of the ENSO system to past and potential future temperature increases is not fully understood. Here we investigate ENSO variability in the warmer climate of the mid-Pliocene (~3.0–3.3 Ma), when surface temperatures were ~2–3 °C above modern values, in a large ensemble of climate models—the Pliocene Model Intercomparison Project. We show that the ensemble consistently suggests a weakening of ENSO variability, with a mean reduction of 25% (±16%). We further show that shifts in the equatorial Pacific mean state cannot fully explain these changes. Instead, ENSO was suppressed by a series of off-equatorial processes triggered by a northward displacement of the Pacific intertropical convergence zone: weakened convective feedback and intensified Southern Hemisphere circulation, which inhibit various processes that initiate ENSO. The connection between the climatological intertropical convergence zone position and ENSO we find in the past is expected to operate in our warming world with important ramifications for ENSO variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-09-01
    Description: In the last years the scientific literature has been enriched with new models of the Moho depth in the Antarctica Continent derived by the seismic reflection technique and refraction profiles, receiver functions and seismic surface waves, but also by gravimetric observations over the continent. In particular, the gravity satellite missions of the last two decades have provided data in this remote region of the Earth and have allowed the investigation of the crust properties. Meanwhile, other important contributions in this direction has been given by the fourth International Polar Year (IPY, 2007–2008) which started seismographic and geodetic networks of unprecedented duration and scale, including airborne gravimetry over largely unexplored Antarctic frontiers. In this study, a new model for the Antarctica Moho depths is proposed. This new estimation is based on no satellite gravity measures, thanks to the availability of the gravity database ANTGG2015, that collects gravity data from ground-base, airborne and shipborne campaigns. In this new estimate of the Moho depths the contribution of the gravity measures has been maximized reducing any correction of the gravity measures and avoiding constraints of the solution to seismological observations and to geological evidence. With this approach a pure gravimetric solution has been determined. The model obtained is pretty in agreement with other Moho models and thanks to the use of independent data it can be exploited also for cross-validating different Moho depths solutions.
    Description: Published
    Description: 1404–1420
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Antarctica ; Moho ; Gravity inversion ; Collocation ; ANTGG2015
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Geophysical Journal International, Oxford University Press, 231, pp. 1959-1981
    Publication Date: 2022-09-16
    Description: Seismic reflection and refraction data were collected in 2007 and 2012 to reveal the crustal fabric on a single long composite profile offshore Prydz Bay, East Antarctica. A P-wave velocity model provides insights on the crustal fabric, and a gravity-constrained density model is used to describe the crustal and mantle structure. The models show that a 230-km- wide continent–ocean transition separates stretched continental from oceanic crust along our profile. While the oceanic crust close to the continent–ocean boundary is just 3.5–5 km thick, its thickness increases northwards towards the Southern Kerguelen Plateau to 12 km. This change is accompanied by thickening of a lower crustal layer with high P-wave velocities of up to 7.5 km s–1, marking intrusive rocks emplaced beneath the mid-ocean ridge under increasing influence of the Kerguelen plume. Joint interpretations of our crustal model, seismic reflection data and magnetic data sets constrain the age and extent of oceanic crust in the research area. Oceanic crust is shown to continue to around 160 km farther south than has been interpreted in previous data, with profound implications for plate kinematic models of the region. Finally, by combining our findings with a regional magnetic data compilation and regional seismic reflection data we propose a larger extent of oceanic crust in the Enderby Basin than previously known.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zakem, E. J., Mahadevan, A., Lauderdale, J. M., & Follows, M. J. Stable aerobic and anaerobic coexistence in anoxic marine zones. ISME Journal, 14, (2019): 288–301, doi: 10.1038/s41396-019-0523-8.
    Description: Mechanistic description of the transition from aerobic to anaerobic metabolism is necessary for diagnostic and predictive modeling of fixed nitrogen loss in anoxic marine zones (AMZs). In a metabolic model where diverse oxygen- and nitrogen-cycling microbial metabolisms are described by underlying redox chemical reactions, we predict a transition from strictly aerobic to predominantly anaerobic regimes as the outcome of ecological interactions along an oxygen gradient, obviating the need for prescribed critical oxygen concentrations. Competing aerobic and anaerobic metabolisms can coexist in anoxic conditions whether these metabolisms represent obligate or facultative populations. In the coexistence regime, relative rates of aerobic and anaerobic activity are determined by the ratio of oxygen to electron donor supply. The model simulates key characteristics of AMZs, such as the accumulation of nitrite and the sustainability of anammox at higher oxygen concentrations than denitrification, and articulates how microbial biomass concentrations relate to associated water column transformation rates as a function of redox stoichiometry and energetics. Incorporating the metabolic model into an idealized two-dimensional ocean circulation results in a simulated AMZ, in which a secondary chlorophyll maximum emerges from oxygen-limited grazing, and where vertical mixing and dispersal in the oxycline also contribute to metabolic co-occurrence. The modeling approach is mechanistic yet computationally economical and suitable for global change applications.
    Description: We are grateful for the thorough and thoughtful comments of two anonymous reviewers. We also thank Andrew Babbin for helpful comments. EJZ was supported by the Simons Foundation (Postdoctoral Fellowship in Marine Microbial Ecology). AM was supported by the Office of Naval Research (ONR #N000-14-15-1-2555). JML was supported by U.S. National Science Foundation (NSF #OCE-1259388). MJF was supported by the Gordon and Betty Moore Foundation (GBMF #3778) and the Simons Foundation: the Simons Collaboration on Ocean Processes and Ecology (SCOPE #329108) and the Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems (CBIOMES #549931).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lasek-Nesselquist, E., & Johnson, M. D. A phylogenomic approach to clarifying the relationship of Mesodinium within the Ciliophora: a case study in the complexity of mixed-species transcriptome analyses. Genome Biology and Evolution, 11(11), (2019): 3218–3232, doi:10.1093/gbe/evz233.
    Description: Recent high-throughput sequencing endeavors have yielded multigene/protein phylogenies that confidently resolve several inter- and intra-class relationships within the phylum Ciliophora. We leverage the massive sequencing efforts from the Marine Microbial Eukaryote Transcriptome Sequencing Project, other SRA submissions, and available genome data with our own sequencing efforts to determine the phylogenetic position of Mesodinium and to generate the most taxonomically rich phylogenomic ciliate tree to date. Regardless of the data mining strategy, the multiprotein data set, or the molecular models of evolution employed, we consistently recovered the same well-supported relationships among ciliate classes, confirming many of the higher-level relationships previously identified. Mesodinium always formed a monophyletic group with members of the Litostomatea, with mixotrophic species of Mesodinium—M. rubrum, M. major, and M. chamaeleon—being more closely related to each other than to the heterotrophic member, M. pulex. The well-supported position of Mesodinium as sister to other litostomes contrasts with previous molecular analyses including those from phylogenomic studies that exploited the same transcriptomic databases. These topological discrepancies illustrate the need for caution when mining mixed-species transcriptomes and indicate that identifying ciliate sequences among prey contamination—particularly for Mesodinium species where expression from stolen prey nuclei appears to dominate—requires thorough and iterative vetting with phylogenies that incorporate sequences from a large outgroup of prey.
    Description: We thank David Beaudoin and Holly V. Moeller for their assistance in collecting cells and extracting RNA. We thank the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution at the Marine Biological Laboratory for the generous use of their servers. This work was supported in part by a National Science Foundation grant to both authors (IOS 1354773).
    Keywords: Mesodinium ; Litostomatea ; ciliate phylogenomics ; mixed-species transcriptomes ; sequence contamination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ponnudurai, R., Heiden, S. E., Sayavedra, L., Hinzke, T., Kleiner, M., Hentschker, C., Felbeck, H., Sievert, S. M., Schlüter, R., Becher, D., Schweder, T., & Markert, S. Comparative proteomics of related symbiotic mussel species reveals high variability of host-symbiont interactions. ISME Journal, 14, (2019): 649–656, doi: 10.1038/s41396-019-0517-6.
    Description: Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host–microbe associations. However, how host–symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host–microbe interactions can be quite variable, even between closely related systems.
    Description: Thanks to captain, crew, and pilots of the research vessels Atlantis (ROV Jason cruise AT26–10 in 2014) and Meteor (cruise M82–3 in 2010). We thank Jana Matulla, Sebastian Grund, and Annette Meuche for excellent technical assistance during sample preparation, MS measurements in the Orbitrap Classic, and TEM imaging preparation, respectively. We appreciate Nikolaus Leisch’s help with TEM image interpretation, Inna Sokolova’s advice on bivalve physiology, and Marie Zühlke’s support during manuscript revision. RP was supported by the EU-funded Marie Curie Initial Training Network ‘Symbiomics’ (project no. 264774) and by a fellowship of the Institute of Marine Biotechnology e.V. TH was supported by the German Research Foundation DFG (grant MA 6346/2–1 to SM). The Atlantis cruise was funded by a grant of the US National Science Foundation’s Dimensions of Biodiversity program to SMS (OCE-1136727).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Miller, C. A., Holm, H. C., Horstmann, L., George, J. C., Fredricks, H. F., Van Mooy, B. A. S., & Apprill, A. Coordinated transformation of the gut microbiome and lipidome of bowhead whales provides novel insights into digestion. ISME Journal, 14, (2019): 688-701, doi: 10.1038/s41396-019-0549-y.
    Description: Whale digestion plays an integral role in many ocean ecosystems. By digesting enormous quantities of lipid-rich prey, whales support their energy intensive lifestyle, but also excrete nutrients important to ocean biogeochemical cycles. Nevertheless, whale digestion is poorly understood. Gastrointestinal microorganisms play a significant role in vertebrate digestion, but few studies have examined them in whales. To investigate digestion of lipids, and the potential contribution of microbes to lipid digestion in whales, we characterized lipid composition (lipidomes) and bacterial communities (microbiotas) in 126 digesta samples collected throughout the gastrointestinal tracts of 38 bowhead whales (Balaena mysticetus) harvested by Alaskan Eskimos. Lipidomes and microbiotas were strongly correlated throughout the gastrointestinal tract. Lipidomes and microbiotas were most variable in the small intestine and most similar in the large intestine, where microbiota richness was greatest. Our results suggest digestion of wax esters, the primary lipids in B. mysticetus prey representing more than 80% of total dietary lipids, occurred in the mid- to distal small intestine and was correlated with specific microorganisms. Because wax esters are difficult to digest by other marine vertebrates and constitute a large reservoir of carbon in the ocean, our results further elucidate the essential roles that whales and their gastrointestinal microbiotas play in the biogeochemical cycling of carbon and nutrients in high-latitude seas.
    Description: Devonshire Foundation (to CAM), Marine Mammal Center, Woods Hole Oceanographic Institution (WHOI; to CAM), WHOI Ocean Life Institute (to AA and CAM), Dalio Foundation’s Dalio Ocean Initiative (now ‘OceanX’) (to AA), National Science Foundation (OCE-1756254 and OPP-1543328 to BASVM). Samples were collected under Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service permit numbers 17350-00, 17350-01, and 17350-02 to North Slope Borough Department of Wildlife Management.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.
    Description: Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.
    Description: This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016).
    Keywords: DNA methylation ; evolution ; development ; reprogramming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Diaz Quiroz, J. F., Montiel-Gonzalez, Maria F., Nemes, Sonya E., Rangan, K. J., Levinson, S. R., Eisenberg, E., & Rosenthal, J. J. C. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Research, (2020): gkaa172, doi: 10.1093/nar/gkaa172.
    Description: In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome’s blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (〉70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
    Description: National Science Foundation (NSF) [IOS1557748 to J.R.]; United States–Israel Binational Science Foundation [BSF2013094 to J.R. and E.E.]; The Grass Foundation grant in support of the Doryteuthis pealeii Genome Project, and a gift by Mr. Edward Owens. Funding for open access charge: United States–Israel Binational Science Foundation [BSF2013094].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gazitua, M. C., Vik, D. R., Roux, S., Gregory, A. C., Bolduc, B., Widner, B., Mulholland, M. R., Hallam, S. J., Ulloa, O., & Sullivan, M. B. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. Isme Journal, (2020), doi:10.1038/s41396-020-00825-6.
    Description: Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.
    Description: We thank Sullivan Lab members and Heather Maughan for comments on the paper, Bess Ward for her contribution in the N-cycle context of our story, Kurt Hanselmann for his assistance in the calculations of the Gibbs-free energies, and the scientific party and crew of the R/V Atlantis (grant OCE-1356056 to MRM) for the sampling opportunity and support at sea. This work was funded in part by awards from the Agouron Institute to OU and MBS, a Gordon and Betty Moore Foundation Investigator Award (#3790) and NSF Biological Oceanography Awards (#1536989 and #1829831) to MBS, and the Millennium Science Initiative (grant ICN12_019-IMO) to OU. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Babbin, A. R., Tamasi, T., Dumit, D., Weber, L., Rodríguez, M. V. I., Schwartz, S. L., Armenteros, M., Wankel, S. D., & Apprill, A. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME Journal, (2020), doi:10.1038/s41396-020-00845-2.
    Description: Coral reef health depends on an intricate relationship among the coral animal, photosynthetic algae, and a complex microbial community. The holobiont can impact the nutrient balance of their hosts amid an otherwise oligotrophic environment, including by cycling physiologically important nitrogen compounds. Here we use 15N-tracer experiments to produce the first simultaneous measurements of ammonium oxidation, nitrate reduction, and nitrous oxide (N2O) production among five iconic species of reef-building corals (Acropora palmata, Diploria labyrinthiformis, Orbicella faveolata, Porites astreoides, and Porites porites) in the highly protected Jardines de la Reina reefs of Cuba. Nitrate reduction is present in most species, but ammonium oxidation is low potentially due to photoinhibition and assimilatory competition. Coral-associated rates of N2O production indicate a widespread potential for denitrification, especially among D. labyrinthiformis, at rates of ~1 nmol cm−2 d−1. In contrast, A. palmata displays minimal active nitrogen metabolism. Enhanced rates of nitrate reduction and N2O production are observed coincident with dark net respiration periods. Genomes of bacterial cultures isolated from multiple coral species confirm that microorganisms with the ability to respire nitrate anaerobically to either dinitrogen gas or ammonium exist within the holobiont. This confirmation of anaerobic nitrogen metabolisms by coral-associated microorganisms sheds new light on coral and reef productivity.
    Description: Research was conducted in the Gardens of the Queen, Cuba in accordance with the requirements of the Republic of Cuba, conducted under permit NV2370 and NV2568 issued by the Ministerio de Relaciones Exteriores. We gratefully acknowledge funding for this research by MIT Sea Grant award #2018-DOH-49-LEV, Simons Foundation award #622065, and MIT ESI seed funding to ARB, the MIT Montrym, Ferry, and mTerra Seed Grant Funds, and the generous contributions by Dr Bruce L. Heflinger.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Trembath-Reichert, E., Tully, B. J., & Huber, J. A. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. Isme Journal, (2020), doi:10.1038/s41396-020-00843-4.
    Description: The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust.
    Description: The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by NSF OCE-1062006, OCE-1745589 and OCE-1635208 to J.A.H. E.T.R. was supported by a NASA Postdoctoral Fellowship with the NASA Astrobiology Institute and a L’Oréal USA For Women in Science Fellowship. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and B.T. This is C-DEBI contribution number 548.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in da Fonseca, R. R., Couto, A., Machado, A. M., Brejova, B., Albertin, C. B., Silva, F., Gardner, P., Baril, T., Hayward, A., Campos, A., Ribeiro, A. M., Barrio-Hernandez, I., Hoving, H. J., Tafur-Jimenez, R., Chu, C., Frazao, B., Petersen, B., Penaloza, F., Musacchia, F., Alexander, G. C., Osorio, H., Winkelmann, I., Simakov, O., Rasmussen, S., Rahman, M. Z., Pisani, D., Vinther, J., Jarvis, E., Zhang, G., Strugnell, J. M., Castro, L. F. C., Fedrigo, O., Patricio, M., Li, Q., Rocha, S., Antunes, A., Wu, Y., Ma, B., Sanges, R., Vinar, T., Blagoev, B., Sicheritz-Ponten, T., Nielsen, R., & Gilbert, M. T. P. A draft genome sequence of the elusive giant squid, Architeuthis dux. Gigascience, 9(1), (2020): giz152. doi: 10.1093/gigascience/giz152.
    Description: Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea–dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
    Description: R.R.F. thanks the Villum Fonden for grant VKR023446 (Villum Fonden Young Investigator Grant), the Portuguese Science Foundation (FCT) for grant PTDC/MAR/115347/2009; COMPETE-FCOMP-01-012; FEDER-015453, Marie Curie Actions (FP7-PEOPLE-2010-IEF, Proposal 272927), and the Danish National Research Foundation (DNRF96) for its funding of the Center for Macroecology, Evolution, and Climate. H.O. thanks the Rede Nacional de Espectrometria de Massa, ROTEIRO/0028/2013, ref. LISBOA-01-0145-FEDER-022125, supported by COMPETE and North Portugal Regional Operational Programme (Norte2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). A.C. thanks FCT for project UID/Multi/04423/2019. M.P. acknowledges the support from the Wellcome Trust (grant number WT108749/Z/15/Z) and the European Molecular Biology Laboratory. M.P.T.G. thanks the Danish National Research Foundation for its funding of the Center for GeoGenetics (grant DNRF94) and Lundbeck Foundation for grant R52–5062 on Pathogen Palaeogenomics. S.R. was supported by the Novo Nordisk Foundation grant NNF14CC0001. A.H. is supported by a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (fellowship reference: BB/N020146/1). T.B. is supported by the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (training grant reference BB/M009122/1). This work was partially funded by the Lundbeck Foundation (R52-A4895 to B.B.). H.J.T.H. was supported by the David and Lucile Packard Foundation, the Netherlands Organization for Scientific Research (#825.09.016), and currently by the Deutsche Forschungsgemeinschaft (DFG) under grant HO 5569/2-1 (Emmy Noether Junior Research Group). T.V. and B. Brejova were supported by grants from the Slovak grant agency VEGA (1/0684/16, 1/0458/18). F.S. was supported by a PhD grant (SFRH/BD/126560/2016) from FCT. A.A. was partly supported by the FCT project PTDC/CTA-AMB/31774/2017. C.C. and Y.W. are partly supported by grant IIS-1526415 from the US National Science Foundation. Computation for the work described in this article was partially supported by the DeiC National Life Science Supercomputer at DTU.
    Keywords: Cephalopod ; Invertebrate ; Genome assembly
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tassia, M. G., David, K. T., Townsend, J. P., & Halanych, K. M. TIAMMAt: leveraging biodiversity to revise protein domain models, evidence from innate immunity. Molecular Biology and Evolution, 38(12), (2021): 5806–5818, https://doi.org/10.1093/molbev/msab258.
    Description: Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.
    Description: This work was supported by The National Science Foundation (Grant No. IOS—1755377 to K.M.H., Rita Graze, and Elizabeth Hiltbold Schwartz), and K.T.D. was supported by The National Science Foundation’s Graduate Research Fellowship Program.
    Keywords: Protein evolution ; Domain annotation ; Animal evolution ; Innate immunity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.
    Description: This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.
    Description: All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892.
    Keywords: Coastal morphodynamics ; Extreme storms ; Coastal modeling ; Sandy coasts ; Waves ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shoshan, Y., Liscovitch-Brauer, N., Rosenthal, J. J. C., & Eisenberg, E. Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods. Molecular Biology and Evolution, 38(9), (2021): 3775–3788, https://doi.org/10.1093/molbev/msab154.
    Description: RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.
    Description: This research was supported by a grants from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel (BSF2017262 to J.J.C.R. and E.E.), the Israel Science Foundation (3371/20 to E.E.) and the National Science Foundation (IOS 1827509 and 1557748 to J.J.C.R).
    Keywords: RNA editing ; Adaptation ; Evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-10-12
    Description: Author Posting. © The Author(s), 2022. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Integrative & Comparative Biology 62(3), (2022): 805-816, https://doi.org/10.1093/icb/icac108.
    Description: Skates are a diverse group of dorso-ventrally compressed cartilaginous fish found primarily in high-latitude seas. These slow-growing oviparous fish deposit their fertilized eggs into cases, which then rest on the seafloor. Developing skates remain in their cases for 1–4 years after they are deposited, meaning the abiotic characteristics of the deposition sites, such as current and substrate type, must interact with the capsule in a way to promote long residency. Egg cases are morphologically variable and can be identified to species. Both the gross morphology and the microstructures of the egg case interact with substrate to determine how well a case stays in place on a current-swept seafloor. Our study investigated the egg case hydrodynamics of eight North Pacific skate species to understand how their morphology affects their ability to stay in place. We used a flume to measure maximum current velocity, or “break-away velocity,” each egg case could withstand before being swept off the substrate and a tilt table to measure the coefficient of static friction between each case and the substrate. We also used the programing software R to calculate theoretical drag on the egg cases of each species. For all flume trials, we found the morphology of egg cases and their orientation to flow to be significantly correlated with break-away velocity. In certain species, the morphology of the egg case was correlated with flow rate required to dislodge a case from the substrate in addition to the drag experienced in both the theoretical and flume experiments. These results effectively measure how well the egg cases of different species remain stationary in a similar habitat. Parsing out attachment biases and discrepancies in flow regimes of egg cases allows us to identify where we are likely to find other elusive species nursery sites. These results will aid predictive models for locating new nursery habitats and protective policies for avoiding the destruction of these nursery sites.
    Description: This work was supported by the NSF-REU and FHL Blinks-Beacon for funding JNE. And the Stephen and Ruth Wainwright Endowed Fellowship, BEACON and Hoag Awards, Robert T. Paine Experimental and Field Ecology Award, FHL Award, FHL Marine Science Fund, FHL Student Fund (Kohn), Patricia L. Dudley Endowment for funding KCH.
    Description: 2023-07-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-27
    Description: Author Posting. © Oxford University Press, 2021. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Lund, S., Acton, G., Clement, B., Okada, M., & Keigwin, L. On the relationship between palaeomagnetic secular variation and excursions-records from MIS 8-ODP leg 172. Geophysical Journal International, 225(2), (2021): 1129-1141, https://doi.org/10.1093/gji/ggaa564.
    Description: Palaeomagnetic secular variation (PSV) and excursion data obtained across MIS 8 (243–300 ka) from the western North Atlantic Ocean ODP (Ocean Drilling Program) sites 1060–1063 show composite high-resolution PSV records (both directions and relative palaeointensity) developed for each site and intercompared. Two methods of chronostratigraphy allow us to date these records. First, we used published results that compared the calcium carbonate records of ODP Leg 172 sediments and tuned them with Milankovich cyclicity. We also compared our palaeointensity records with the PISO-1500 global palaeointensity record that was dated with oxygen isotope stratigraphy. We prefer the PISO-1500 record to date our cores. Two excursions are preserved in our PSV records—Excursions 8α and 9α. Our revised age estimates for both excursions are 8α (236.7–239.8 ka) and 9α (283.7–286.9 ka). We have compared shipboard measurements of the two excursions with u-channel measurements of selected excursion intervals. Excursion 8α is interpreted as a ‘Class II’ excursion (local reversal) with in-phase inclination and declination changes; Excursion 9α is a ‘Class I’ excursion with 90° out-of-phase inclination and declination changes. Averaged directions (after removal of true excursional directions) and relative palaeointensity in 3 and 9 ka overlapping intervals show significant PSV directional variability over 104 yr timescales that is regionally correlatable among the four sites. A notable pattern of angular dispersion variability involves most time spent with low (∼10°) dispersion, with three shorter intervals of high (∼25°) dispersion. The relative palaeointensity variability also shows significant variability over 104 yr timescales with three notable intervals of low palaeointensity in all four records and a direct correspondence between the three low-palaeointensity intervals and the three intervals of high angular dispersion. The two magnetic field excursions occur in two of the three low-palaeointensity/high-dispersion intervals. This suggests that the geomagnetic field operates in two states between reversals, one with regular to high palaeointensity and low directional variability and one with low palaeointensity and significantly higher directional variability and excursions.
    Keywords: Geomagnetic excursions ; Palaeointensity ; Palaeomagnetic secular variation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coskun, O. K., Vuillemin, A., Schubotz, F., Klein, F., Sichel, S. E., Eisenreich, W., & Orsi, W. D. Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks. Isme Journal. (2021), https://doi.org/10.1038/s41396-021-01066-x.
    Description: Thermodynamic models predict that H2 is energetically favorable for seafloor microbial life, but how H2 affects anabolic processes in seafloor-associated communities is poorly understood. Here, we used quantitative 13C DNA stable isotope probing (qSIP) to quantify the effect of H2 on carbon assimilation by microbial taxa synthesizing 13C-labeled DNA that are associated with partially serpentinized peridotite rocks from the equatorial Mid-Atlantic Ridge. The rock-hosted seafloor community was an order of magnitude more diverse compared to the seawater community directly above the rocks. With added H2, peridotite-associated taxa increased assimilation of 13C-bicarbonate and 13C-acetate into 16S rRNA genes of operational taxonomic units by 146% (±29%) and 55% (±34%), respectively, which correlated with enrichment of H2-oxidizing NiFe-hydrogenases encoded in peridotite-associated metagenomes. The effect of H2 on anabolism was phylogenetically organized, with taxa affiliated with Atribacteria, Nitrospira, and Thaumarchaeota exhibiting the most significant increases in 13C-substrate assimilation in the presence of H2. In SIP incubations with added H2, an order of magnitude higher number of peridotite rock-associated taxa assimilated 13C-bicarbonate, 13C-acetate, and 13C-formate compared to taxa that were not associated with peridotites. Collectively, these findings indicate that the unique geochemical nature of the peridotite-hosted ecosystem has selected for H2-metabolizing, rock-associated taxa that can increase anabolism under high H2 concentrations. Because ultramafic rocks are widespread in slow-, and ultraslow-spreading oceanic lithosphere, continental margins, and subduction zones where H2 is formed in copious amounts, the link between H2 and carbon assimilation demonstrated here may be widespread within these geological settings.
    Description: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 364653263—TRR 235 to WDO and WE, and under Germany’s Excellence Strategy—EXC 2077-390741603. The work was also supported by the Dalio Explore Fund and LMU Mentoring Program. Open Access funding enabled and organized by Projekt DEAL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J. J., Wiley, D. N., Silva, T. L., Robuck, A. R., Richardson, D. E., Glancy, S. G., Clancey, E., Giandonato, T., Solow, A. R., Thompson, M. A., Hong, P., Baumann, H., Kaufman, L., & Llopiz, J. K. Sensitivity of sand lance to shifting prey and hydrography indicates forthcoming change to the northeast US shelf forage fish complex. Ices Journal of Marine Science, 78(3), (2021): 1023–1037, https://doi.org/10.1093/icesjms/fsaa251.
    Description: Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century.
    Description: Research was funded by the Bureau of Ocean Energy Management (IA agreement M17PG0019; DNW, LK, HB, and JKL), including a subaward via the National Marine Sanctuary Foundation (18-11-B-203). Additional support came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (NA18OAR4170104, Project No. R/O-57; JKL, HB, and DNW) and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship programme. ARR was funded by an NOAA Nancy Foster Scholarship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-08-26
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Defining the regional variability of minimum magnitude for earthquake detection is crucial for planning seismic networks. Knowing the earthquake detection magnitude values is fundamental for the optimal location of new stations and to select the priority for reactivating the stations of a seismic network in case of a breakdown. In general, the assessment of earthquake detection is performed by analysing seismic noise with spectral or more sophisticated methods. Further, to simulate amplitude values at the recording sites, spectral methods require knowledge of several geophysical parameters including rock density, S-wave velocity, corner frequency, quality factor, site specific decay parameter and so on, as well as a velocity model for the Earth's interior. The simulation results are generally expressed in terms of Mw and therefore a further conversion must be done to obtain the values of local magnitude (ML), which is the parameter commonly used for moderate and small earthquakes in seismic catalogues. Here, the relationship utilized by a seismic network to determine ML is directly applied to obtain the expected amplitude [in mm, as if it were recorded by a Wood–Anderson (WA) seismometer] at the recording site, without any additional assumptions. The station detection estimates are obtained by simply considering the ratio of the expected amplitude with respect to the background noise, also measured in mm. The seismic noise level for the station is estimated starting from four waveforms (each signal lasting 1 min) sampled at various times of the day for a period of one week. The proposed method is tested on Italian seismic events occurring in 2019 by using the locations of 16.879 earthquakes recorded by 374 stations. The first results indicate that by evaluating the station noise level with 5-s windows, a representative sample of the variability in expected noise level is generated for every station, even if only 4 min of signal per day over a week of recordings is used. The method was applied to define the detection level of the Italian National Seismic Network (RSN). The RSN detection level represents a reference for the definition and application of guidelines in the field of monitoring of subsurface industrial activities in Italy. The proposed approach can be successfully applied to define the current performance of a local seismic network (managed by private companies) and to estimate the expected further improvements, requested to fulfil the guidelines with the installation of new seismic stations. This method has been tested in Italy and can be reproduced wherever the local magnitude ML, based on synthetic WA records, is used.
    Description: Published
    Description: 1283–1297
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Time-series analysis ; Earthquake ground motions ; Seismic noise ; Induced seismicity ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-08-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aoki, L. R., Brisbin, M. M., Hounshell, A. G., Kincaid, D. W., Larson, E., Sansom, B. J., Shogren, A. J., Smith, R. S., & Sullivan-Stack, J. Preparing aquatic research for an extreme future: call for improved definitions and responsive, multidisciplinary approaches. Bioscience, 72(6), (2022): 508-520, https://doi.org/10.1093/biosci/biac020.
    Description: Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-06-27
    Description: The sea ice surface temperature is important to understand the Arctic winter heat budget. We conducted 35 helicopter flights with an infrared camera in winter 2019/2020 during the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The flights were performed from a local, 5 to 10 km scale up to a regional, 20 to 40 km scale. The infrared camera recorded thermal infrared brightness temperatures, which we converted to surface temperatures. More than 150000 images from all flights can be investigated individually. As an advanced data product, we created surface temperature maps for every flight with a 1 m resolution. We corrected image gradients, applied an ice drift correction, georeferenced all pixels, and corrected the surface temperature by its natural temporal drift, which results in time-fixed surface temperature maps for a consistent analysis of one flight. The temporal and spatial variability of sea ice characteristics is an important contribution to an increased understanding of the Arctic heat budget and, in particular, for the validation of satellite products.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-06-07
    Description: Author Posting. © The Author(s), 2021. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Toxicological Sciences 182(20), (2021): 310-326, https://doi.org/10.1093/toxsci/kfab066.
    Description: Harmful algal blooms produce potent neurotoxins that accumulate in seafood and are hazardous to human health. Developmental exposure to the harmful algal bloom toxin, domoic acid (DomA), has behavioral consequences well into adulthood, but the cellular and molecular mechanisms of DomA developmental neurotoxicity are largely unknown. To assess these, we exposed zebrafish embryos to DomA during the previously identified window of susceptibility and used the well-known startle response circuit as a tool to identify specific neuronal components that are targeted by exposure to DomA. Exposure to DomA reduced startle responsiveness to both auditory/vibrational and electrical stimuli, and even at the highest stimulus intensities tested, led to a dramatic reduction of one type of startle (short-latency c-starts). Furthermore, DomA-exposed larvae had altered kinematics for both types of startle responses tested, exhibiting shallower bend angles and slower maximal angular velocities. Using vital dye staining, immunolabeling, and live imaging of transgenic lines, we determined that although the sensory inputs were intact, the reticulospinal neurons required for short-latency c-starts were absent in most DomA-exposed larvae. Furthermore, axon tracing revealed that DomA-treated larvae also showed significantly reduced primary motor neuron axon collaterals. Overall, these results show that developmental exposure to DomA targets large reticulospinal neurons and motor neuron axon collaterals, resulting in measurable deficits in startle behavior. They further provide a framework for using the startle response circuit to identify specific neural populations disrupted by toxins or toxicants and to link these disruptions to functional consequences for neural circuit function and behavior.
    Description: This research was supported by a WHOI Von Damm and Ocean Ridge Initiative Fellowships to J.M.P. and the Woods Hole Center for Oceans and Human Health (NIH: P01ES021923 and P01ES028938; NSF: OCE-1314642 and OCE-1840381).
    Description: 2022-06-07
    Keywords: domoic acid ; harmful algal blooms ; harmful algal bloom toxins ; developmental toxicity ; startle response ; escape response ; startle circuit
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-06-14
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Luo, E., Leu, A. O., Eppley, J. M., Karl, D. M., & DeLong, E. F. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. ISME Journal, 16, : 1627–1635, https://doi.org/10.1038/s41396-022-01202-1.
    Description: Sinking particles and particle-associated microbes influence global biogeochemistry through particulate matter export from the surface to the deep ocean. Despite ongoing studies of particle-associated microbes, viruses in these habitats remain largely unexplored. Whether, where, and which viruses might contribute to particle production and export remain open to investigation. In this study, we analyzed 857 virus population genomes associated with sinking particles collected over three years in sediment traps moored at 4000 m in the North Pacific Subtropical Gyre. Particle-associated viruses here were linked to cellular hosts through matches to bacterial and archaeal metagenome-assembled genome (MAG)-encoded prophages or CRISPR spacers, identifying novel viruses infecting presumptive deep-sea bacteria such as Colwellia, Moritella, and Shewanella. We also identified lytic viruses whose abundances correlated with particulate carbon flux and/or were exported from the photic to abyssal ocean, including cyanophages. Our data are consistent with some of the predicted outcomes of the viral shuttle hypothesis, and further suggest that viral lysis of both autotrophic and heterotrophic prokaryotes may play a role in carbon export. Our analyses revealed the diversity and origins of prevalent viruses found on deep-sea sinking particles and identified prospective viral groups for future investigation into processes that govern particle export in the open ocean.
    Description: This project is funded by grants from the Simons Foundation (#329108 to EFD and DMK, #721223 to EFD, and #721252 to DMK) and the Gordon and Betty Moore Foundation (GBMF3777 to EFD and GBMF3794 to DMK). Partial support for EL was provided by the Natural Sciences and Engineering Research Council of Canada (PGSD3-487490-2016).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-07-06
    Description: Identifying and quantifying nitrogen pools is essential for understanding the nitrogen cycle in aquatic ecosystems. The ubiquitous diatoms represent an overlooked nitrate pool as they can accumulate nitrate intracellularly and utilize it for nitrogen assimilation, dissipation of excess photosynthetic energy, and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Here, we document the global co-occurrence of diatoms and intracellular nitrate in phototrophic microbial communities in freshwater (n = 69), coastal (n = 44), and open marine (n = 4) habitats. Diatom abundance and total intracellular nitrate contents in water columns, sediments, microbial mats, and epilithic biofilms were highly significantly correlated. In contrast, diatom community composition had only a marginal influence on total intracellular nitrate contents. Nitrate concentrations inside diatom cells exceeded ambient nitrate concentrations ∼100–4000-fold. The collective intracellular nitrate pool of the diatom community accounted for 〈1% of total nitrate in pelagic habitats and 65–95% in benthic habitats. Accordingly, nitrate-storing diatoms are emerging as significant contributors to benthic nitrogen cycling, in particular through Dissimilatory Nitrate Reduction to Ammonium activity under anoxic conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Breusing, C., Mitchell, J., Delaney, J., Sylva, S. P., Seewald, J. S., Girguis, P. R., & Beinart, R. A. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. Isme Journal, (2020), doi:10.1038/s41396-020-0707-2.
    Description: Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host–symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.
    Description: We thank the Schmidt Ocean Institute, the crew of the R/V Falkor and the pilots of the ROV ROPOS for facilitating the sample collections and shipboard experiments, and the Broad Institute Microbial ‘Omics Core for preparing and sequencing the transcriptomic libraries. This material is based in part upon work supported by the National Science Foundation under Grant Numbers NSF OCE-1536653 (to PRG), OCE-1536331 (to RAB and JSS), OCE-1819530 and OCE-1736932 (to RAB).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beckman, N. G., Asian, C. E., Rogers, H. S., Kogan, O., Bronstein, J. L., Bullock, J. M., Hartig, F., HilleRisLambers, J., Zhou, Y., Zurell, D., Brodie, J. F., Bruna, E. M., Cantrell, R. S., Decker, R. R., Efiom, E., Fricke, E. C., Gurski, K., Hastings, A., Johnson, J. S., Loiselle, B. A., Miriti, M. N., Neubert, M. G., Pejchar, L., Poulsen, J. R., Pufal, G., Razafindratsima, O. H., Sandor, M. E., Shea, K., Schreiber, S., Schupp, E. W., Snell, R. S., Strickland, C., & Zambrano, J. Advancing an interdisciplinary framework to study seed dispersal ecology. Aob Plants, 12(2), (2020): plz048, doi:10.1093/aobpla/plz048.
    Description: Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.
    Description: Ideas for this manuscript initiated during the Seed Dispersal Workshop held in May 2016 at the Socio-Environmental Synthesis Center in Annapolis, MD and supported by the US National Science Foundation Grant DEB-1548194 to N.G.B. and the National Socio-Environmental Synthesis Center under the US National Science Foundation Grant DBI-1052875. D.Z. received funding from the Swiss National Science Foundation (SNF, grant: PZ00P3_168136/1) and from the German Science Foundation (DFG, grant: ZU 361/1-1).
    Keywords: Analytical models ; demography ; global change ; individual-based models ; long-distance seed dispersal ; population models ; seed dispersal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bowen, J. L., Giblin, A. E., Murphy, A. E., Bulseco, A. N., Deegan, L. A., Johnson, D. S., Nelson, J. A., Mozdzer, T. J., & Sullivan, H. L. Not all nitrogen is created equal: differential effects of nitrate and ammonium enrichment in coastal wetlands. Bioscience, 70(12), (2020): 1108-1119, doi:10.1093/biosci/biaa140.
    Description: Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.
    Description: This work was supported by the following funding sources: National Science Foundation (NSF) grant no. DEB 1902712 to LAD, JLB, DSJ, and TJM; NSF grant no. DEB 1902695 to AEG; NSF grant no. DEB 1902704 to JAN; NSF grant no. DEB 1354214 to TJM; NSF grant no. DEB 1350491 to JLB; NSF grant no. OCE 1637630 to AEG and LAD; and additional funding from the Dorr Foundation, the Department of the Interior Northeast Climate Science Center (grant no. DOI G12AC00001), and a Bullard Fellowship (Harvard University) to LAD and from the National Academies of Science, Medicine, and Engineering Gulf Research Program to JAN. Resources purchased with funds from the NSF Biological Field Stations and Marine Laboratories program (grant no. DBI 1722553, to Northeastern University) were used to generate the data for the manuscript. Initial conversations on the effects of nutrient enrichment in marshes with Scott Warren and Bruce Peterson were critical in informing the work described in the manuscript. Sam Kelsey and Jane Tucker contributed to much of the N cycling biogeochemistry; Caitlin Bauer, Frankie Leach, Paige Weber, Emily Geoghegan and Sophie Drew assisted with field work; and Joe Vineis assisted with metagenomic analysis. This is contribution 3941 from the Virginia Institute of Marine Science. The data were compiled from multiple published sources. Links to published data can be found here: https://pie-lter.ecosystems.mbl.edu/data. The sequence data used to derive figure 6 are publicly available on the MG-RAST website under project number mgp84173.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirschberger, C., Sleight, V. A., Criswell, K. E., Clark, S. J., & Gillis, J. A. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Molecular Biology and Evolution, (2021): msab123, https://doi.org/10.1093/molbev/msab123
    Description: The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral patterning mechanisms within the developing mandibular, hyoid and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralising BMP and endothelin signalling pathways and their effectors, the joint markers nkx3.2 and gdf5 and pro-chondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, while differences in notch signalling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the dorsoventral axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
    Description: This work was supported by a Biotechnology and Biological Sciences Research Council Doctoral Training Partnership studentship to CH, by a Wolfson College Junior Research Fellowship and MBL Whitman Early Career Fellowship to VAS, and by a Royal Society University Research Fellowship (UF130182 and URF\R\191007), Royal Society Research Grant (RG140377) and University of Cambridge Sir Isaac Newton Trust Grant (14.23z) to JAG.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castro, S. P., Borton, M. A., Regan, K., de Angelis, I. H., Wrighton, K. C., Teske, A. P., Strous, M., & Ruff, S. E. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. Isme Journal. (2021), https://doi.org/10.1038/s41396-021-01026-5.
    Description: Hydrothermal sediments contain large numbers of uncultured heterotrophic microbial lineages. Here, we amended Guaymas Basin sediments with proteins, polysaccharides, nucleic acids or lipids under different redox conditions and cultivated heterotrophic thermophiles with the genomic potential for macromolecule degradation. We reconstructed 20 metagenome-assembled genomes (MAGs) of uncultured lineages affiliating with known archaeal and bacterial phyla, including endospore-forming Bacilli and candidate phylum Marinisomatota. One Marinisomatota MAG had 35 different glycoside hydrolases often in multiple copies, seven extracellular CAZymes, six polysaccharide lyases, and multiple sugar transporters. This population has the potential to degrade a broad spectrum of polysaccharides including chitin, cellulose, pectin, alginate, chondroitin, and carrageenan. We also describe thermophiles affiliating with the genera Thermosyntropha, Thermovirga, and Kosmotoga with the capability to make a living on nucleic acids, lipids, or multiple macromolecule classes, respectively. Several populations seemed to lack extracellular enzyme machinery and thus likely scavenged oligo- or monomers (e.g., MAGs affiliating with Archaeoglobus) or metabolic products like hydrogen (e.g., MAGs affiliating with Thermodesulfobacterium or Desulforudaceae). The growth of methanogens or the production of methane was not observed in any condition, indicating that the tested macromolecules are not degraded into substrates for methanogenesis in hydrothermal sediments. We provide new insights into the niches, and genomes of microorganisms that actively degrade abundant necromass macromolecules under oxic, sulfate-reducing, and fermentative thermophilic conditions. These findings improve our understanding of the carbon flow across trophic levels and indicate how primary produced biomass sustains complex and productive ecosystems.
    Description: We are grateful to the captain and crew of the R/V Atlantis AT37-06 as well as the crew of the human occupied vehicle Alvin for their tireless support. Sampling at Guaymas Basin was supported by NSF (OCE-1357238).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J. J., Deroba, J. J., Richardson, D. E., Ji, R., & Llopiz, J. K. Environmental drivers and trends in forage fish occupancy of the Northeast US shelf. Ices Journal of Marine Science, 78(10), (2021): 3687–3708, https://doi.org/10.1093/icesjms/fsab214.
    Description: The Northeast US shelf ecosystem is undergoing unprecedented changes due to long-term warming trends and shifts in regional hydrography leading to changes in community composition. However, it remains uncertain how shelf occupancy by the region's dominant, offshore small pelagic fishes, also known as forage fishes, has changed throughout the late 20th and early 21st centuries. Here, we use species distribution models to estimate the change in shelf occupancy, mean weighted latitude, and mean weighted depth of six forage fishes on the Northeast US shelf, and whether those trends were linked to coincident hydrographic conditions. Our results suggest that observed shelf occupancy is increasing or unchanging for most species in both spring and fall, linked both to gear shifts and increasing bottom temperature and salinity. Exceptions include decreases to observed shelf occupancy by sand lance and decreases to Atlantic herring's inferred habitat suitability in the fall. Our work shows that changes in shelf occupancy and inferred habitat suitability have varying coherence, indicating complex mechanisms behind observed shelf occupancy for many species. Future work and management can use these results to better isolate the aspects of forage fish life histories that are important for determining their occupancy of the Northeast US shelf.
    Description: Funding came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (NA18OAR4170104, Project number R/O-57; RJ and JKL) and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE1655686; RJ and JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Doo, S. S., Kealoha, A., Andersson, A., Cohen, A. L., Hicks, T. L., Johnson, Z., I., Long, M. H., McElhany, P., Mollica, N., Shamberger, K. E. F., Silbiger, N. J., Takeshita, Y., & Busch, D. S. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES Journal of Marine Science, 77(7-8), (2020): 2411-2422, https://doi.org/10.1093/icesjms/fsaa094.
    Description: A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.
    Description: SSD was funded by NSF OCE (grant # 1415268). DSB and PM were supported by the NOAA Ocean Acidification Program and Northwest Fisheries Science Center, MHL was supported by NSF OCE (grant # 1633951), ZIJ was supported by NSF OCE (grant # 1416665) and DOE EERE (grant #DE-EE008518), NJS was supported by NSF OCE (grant # 1924281), ALC was supported by NSF OCE (grant # 1737311), and AA was supported by NSF OCE (grant # 1416518). KEFS, AK, and TLH were supported by Texas A&M University. This is CSUN Marine Biology contribution (# 306).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2020. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Toxicological Sciences (2020): kfaa158, doi:10.1093/toxsci/kfaa158.
    Description: Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3′ UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3′ UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
    Description: National Institute of Health National Institute of Environmental Health Sciences Outstanding New Environmental Scientist (NIH R01ES024915 to N.A.); Woods Hole Center for Oceans and Human Health [National Institutes of Health (NIH) (Grant P01ES028938); National Science Foundation (Grant OCE-1840381) to M. E. Hahn, J. J. Stegeman, N.A., and S.K.].
    Description: 2021-10-16
    Keywords: dioxin-like PCBs ; development ; zebrafish ; epitranscriptomics ; m6A ; MeRIP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lamb, D. C., Hargrove, T. Y., Zhao, B., Wawrzak, Z., Goldstone, J. V., Nes, W. D., Kelly, S. L., Waterman, M. R., Stegeman, J. J., & Lepesheva, G. I. Concerning P450 evolution: structural analyses support bacterial origin of sterol 14α-demethylases. Molecular Biology and Evolution, (2020): msaa260, doi:10.1093/molbev/msaa260.
    Description: Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an “orphan” P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in 〉1,000 bacteria from nine different phyla, 〉50 of them being natural CYP51fx fusion proteins.
    Description: The study was supported by National Institutes of Health (Grant No. R01 GM067871 to G.I.L.) and by a UK-USA Fulbright Scholarship and the Royal Society (to D.C.L.).
    Keywords: sterol biosynthesis ; evolution ; cytochrome P450 ; CYP51 redox partner ; crystallography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zemeckis, D. R., Dean, M. J., DeAngelis, A. I., Van Parijs, S. M., Hoffman, W. S., Baumgartner, M. F., Hatch, L. T., Cadrin, S. X., & McGuire, C. H. Identifying the distribution of Atlantic cod spawning using multiple fixed and glider-mounted acoustic technologies. ICES Journal of Marine Science, 76(6), (2019): 1610-1625, doi: 10.1093/icesjms/fsz064.
    Description: Effective fishery management measures to protect fish spawning aggregations require reliable information on the spatio-temporal distribution of spawning. Spawning closures have been part of a suite of fishery management actions to rebuild the Gulf of Maine stock of Atlantic cod (Gadus morhua), but difficulties remain with managing rebuilding. The objective of this study was to identify the spatial and temporal distribution of cod spawning during winter in Massachusetts Bay to improve our understanding of cod spawning dynamics and inform fisheries management. Spawning was investigated in collaboration with commercial fishermen during three winter spawning seasons (October 2013–March 2016) using acoustic telemetry and passive acoustic monitoring equipment deployed in fixed-station arrays and mounted on mobile autonomous gliders. Tagged cod exhibited spawning site fidelity and spawning primarily occurred from early November through January with a mid-December peak and some inter-annual variability. The spatial distribution of spawning was generally consistent among years with multiple hotspots in areas 〉50 m depth. Current closures encompass most of spawning, but important areas are recommended for potential modifications. Utilizing multiple complementary technologies and deployment strategies in collaboration with commercial fishermen enabled a comprehensive description of spawning and provides a valuable model for future studies.
    Description: Year 1 was jointly funded by The Nature Conservancy and Massachusetts Division of Marine Fisheries. The remainder of this research was funded through the 2013–2014 NOAA Saltonstall Kennedy grant program (Award No. NA14NMF4270027) with additional support from the Nature Conservancy and Cabot Family Charitable Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dong, E., Zhang, Y., Song, Z., Zhang, T., Cai, C., & Fang, N. X. Physical modeling and validation of porpoises' directional emission via hybrid metamaterials. National Science Review, 6(5), (2019): 921-928, doi:10.1093/nsr/nwz085.
    Description: In wave physics and engineering, directional emission sets a fundamental limitation on conventional simple sources as their sizes should be sufficiently larger than their wavelength. Artificial metamaterial and animal biosonar both show potential in overcoming this limitation. Existing metamaterials arranged in periodic microstructures face great challenges in realizing complex and multiphase biosonar structures. Here, we proposed a physical directional emission model to bridge the gap between porpoises’ biosonar and artificial metamaterial. Inspired by the anatomical and physical properties of the porpoise's biosonar transmission system, we fabricated a hybrid metamaterial system composed of multiple composite structures. We validated that the hybrid metamaterial significantly increased directivity and main lobe energy over a broad bandwidth both numerically and experimentally. The device displayed efficiency in detecting underwater target and suppressing false target jamming. The metamaterial-based physical model may be helpful to achieve the physical mechanisms of porpoise biosonar detection and has diverse applications in underwater acoustic sensing, ultrasound scanning, and medical ultrasonography.
    Description: E.D., Y.Z., Z.S., T.Z. and C.C. acknowledge the financial support in part by the National Key Research and Development Program of China (2018YFC1407504), the National Natural Science Foundation of China (41676023, 41276040 and 41422604). N.X.F. acknowledges the support from the MIT Energy Initiative grant. Z.S. thanks the China Scholarship Council for the financial support of his oversea study in Woods Hole Oceanographic Institution.
    Keywords: porpoise's physical model ; metamaterials ; biosonar ; directional emission
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, J., Xu, Y., Sun, Z., & Zhou, Z. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems. National Science Review, 6(5), (2019): 877-881, doi:10.1093/nsr/nwz123.
    Description: The evolution of the South China Sea (SCS) is directly linked to the complex subduction systems of the surrounding Pacific, Philippine Sea and Indo-Australian Plates (Fig. 1a). Major advances in the last several years are providing new insights into the SCS-mantle dynamics, through regional seismic imaging of the upper mantle [1,2], unprecedented IODP drilling expeditions (349/367/368/368X) [3–5] that obtained the oceanic basement basalt samples for the first time, geochemical analyses of the SCS-mantle source compositions [6–8] and geodynamic modeling [9,10]. Furthermore, new geological mapping, seismic imaging [11,12] and IODP drilling [13,14] have revealed evidence for significantly greater magma production at the northern SCS rifted margin, in comparison to the magma-poor end-member of the Atlantic rifted margins. This paper provides a new perspective of the SCS-mantle dynamics inspired by new observations and geodynamic modeling. We first highlight new geophysical evidence for a broad region of low-seismic-velocity anomalies in the upper mantle beneath the northern SCS, abundant magmatism during continental breakup and post-seafloor spreading, and geochemical evidence for recycled oceanic components beneath the SCS. We then present new models of layered flows in the mantle beneath the SCS, revealing two modes of plate- and subduction-driven mantle upwelling, including (i) narrow centers of mantle upwelling at shallow depths induced by divergent plate motion at seafloor-spreading centers and (ii) broad zones of mantle upwelling as a result of subduction-induced mantle-return flows at greater depths. These new observations and geodynamic studies suggest strong links between mantle upwelling beneath the SCS and surrounding subducting plates.
    Description: This work was supported by the National Natural Science Foundation of China (41890813, 91628301, U1606401, 41976066, 91858207 and 41706056), the Chinese Academy of Sciences (Y4SL021001, QYZDY-SSW-DQC005 and 133244KYSB20180029), the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou, GML2019ZD0205), the National Key R&D Program of China (2018YFC0309800 and 2018YFC0310100), the State Oceanic Administration (GASI-GEOGE-02) and China Ocean Mineral Resources R&D Association (DY135-S2–1-04).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sun, Z., Lin, J., Qiu, N., Jian, Z., Wang, P., Pang, X., Zheng, J., & Zhu, B. The role of magmatism in the thinning and breakup of the South China Sea continental margin: Special Topic: the South China Sea Ocean Drilling. National Science Review, 6(5), (2019): 871-876, doi:10.1093/nsr/nwz116.
    Description: Magmatism plays a key role in the process of continental margin breakup and ocean formation. Even in the extremely magma-poor Iberia and Newfoundland margin, studies of field outcrops have shown that syn-rift magmatism had participated in rifting from a very early stage and contributed directly to the rifting process. The final transition from exhumed continental mantle to the ocean formation is also triggered by the accumulation and eruption of magma [1]. Therefore, Atlantic-type passive continental margins are classified into two end-members: magma-poor (non-volcanic) and magma-rich (volcanic). The differences between them lie in whether a large amount of intrusive and extrusive magmatism from the mantle plume/hotspot is involved in the syn-rift and breakup stages. A magma-rich margin [2] should include the following characteristics: (i) a high-velocity lower crust (HVLC) caused by syn-rift mafic magma underplating; (ii) continental crust intruded by abundant sills and dikes; (iii) a large volume of seaward-dipping reflectors (SDRs) caused by flood basalt eruption or tuffs. All other margins are classified as magma-poor margins.
    Description: We thank the research team project of Guangdong Natural Science Foundation (2017A030312002), IODP-China and South China Sea Deep Project (91628301) and K.C. Wong Education Foundation (GJTD-2018-13) for providing support for the research. This research was also supported by the China National Science and Technology Major Project (2016ZX05026–003), the joint foundation of the National Natural Science Foundation of China and Guangdong province (U1301233), as well as the National Natural Science Foundation of China (41576070 and 41890813).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mara, P., Vik, D., Pachiadaki, M. G., Suter, E. A., Poulos, B., Taylor, G. T., Sullivan, M. B., & Edgcomb, V. P. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME Journal, (2020), doi:10.1038/s41396-020-00739-3.
    Description: Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.
    Description: This work was supported by the National Science Foundation grant OCE-1336082 to VPE, OCE-1335436 to GTT, OCE-1536989, a Moore Foundation Award (#3790) to MBS, and WHOI subaward A101259 to MP. The sequencing conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-26
    Description: Author Posting. © Springer Nature , 2020. This article is posted here by permission of Springer Nature for personal use, not for redistribution. The definitive version was published in Nowacki, D. J., & Ganju, N. K. Sediment dynamics of a divergent bay-marsh complex. Estuaries and Coasts, (2020), doi:10.1007/s12237-020-00855-5.
    Description: Bay–marsh systems, composed of an embayment surrounded by fringing marsh incised by tidal channels, are widely distributed coastal environments. External sediment availability, marsh-edge erosion, and sea-level rise acting on such bay–marsh complexes may drive diverse sediment-flux regimes. These factors reinforce the ephemeral and dynamic nature of fringing marshes: material released by marsh-edge erosion becomes part of a bay–marsh exchange that fuels the geomorphic evolution of the coupled system. The dynamics of this sediment exchange determine the balance among seaward export, deposition on the embayment seabed, flux into tidal channels, and import to the marsh platform. In this work, we investigate the sediment dynamics of a transgressive bay–marsh complex and link them to larger-scale considerations of its geomorphic trajectory. Grand Bay, Alabama/Mississippi, is a shallow microtidal embayment surrounded by salt marshes with lateral erosion rates of up to 5 m year−1. We collected 6 months of oceanographic data at four moorings within Grand Bay and its tidal channels to assess hydrographic conditions and net sediment-flux patterns and augmented the observations with numerical modeling. The observations imply a divergent sedimentary system in which a majority of the suspended sediment is exported seaward, while a smaller fraction is imported landward via tidal channels, assisting in vertical marsh-plain accumulation, maintenance of channel and intertidal-flat morphologies, and landward transgression. These results describe a dynamic system that is responsive to episodic atmospheric forcing in the absence of a strong tidal signal and the presence of severe lateral marsh loss.
    Description: We thank the staff of the Grand Bay NERR for their role in facilitating fieldwork within Grand Bay. Jonathan Pitchford, also of the Grand Bay NERR, provided the SET data. Giulio Mariotti and an anonymous reviewer are acknowledged for their helpful comments.
    Keywords: Salt marsh ; Geomorphic trajectory ; Sediment flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bayer, B., Saito, M. A., McIlvin, M. R., Lucker, S., Moran, D. M., Lankiewicz, T. S., Dupont, C. L., & Santoro, A. E. (2020). Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. Isme Journal, doi:10.1038/s41396-020-00828-3.
    Description: The genus Nitrospira is the most widespread group of nitrite-oxidizing bacteria and thrives in diverse natural and engineered ecosystems. Nitrospira marina Nb-295T was isolated from the ocean over 30 years ago; however, its genome has not yet been analyzed. Here, we investigated the metabolic potential of N. marina based on its complete genome sequence and performed physiological experiments to test genome-derived hypotheses. Our data confirm that N. marina benefits from additions of undefined organic carbon substrates, has adaptations to resist oxidative, osmotic, and UV light-induced stress and low dissolved pCO2, and requires exogenous vitamin B12. In addition, N. marina is able to grow chemoorganotrophically on formate, and is thus not an obligate chemolithoautotroph. We further investigated the proteomic response of N. marina to low (∼5.6 µM) O2 concentrations. The abundance of a potentially more efficient CO2-fixing pyruvate:ferredoxin oxidoreductase (POR) complex and a high-affinity cbb3-type terminal oxidase increased under O2 limitation, suggesting a role in sustaining nitrite oxidation-driven autotrophy. This putatively more O2-sensitive POR complex might be protected from oxidative damage by Cu/Zn-binding superoxide dismutase, which also increased in abundance under low O2 conditions. Furthermore, the upregulation of proteins involved in alternative energy metabolisms, including Group 3b [NiFe] hydrogenase and formate dehydrogenase, indicate a high metabolic versatility to survive conditions unfavorable for aerobic nitrite oxidation. In summary, the genome and proteome of the first marine Nitrospira isolate identifies adaptations to life in the oxic ocean and provides insights into the metabolic diversity and niche differentiation of NOB in marine environments.
    Description: We thank John B. Waterbury and Frederica Valois for providing the culture of Nitrospira marina Nb-295T and for continued advice about cultivation. The N. marina genome was sequenced as part of US Department of Energy Joint Genome Institute Community Sequencing Project 1337 to CLD, AES, and MAS in collaboration with the user community. We thank Claus Pelikan for bioinformatic assistance. This research was supported by a Simons Foundation Early Career Investigator in Marine Microbiology and Evolution Award (345889) and US National Science Foundation (NSF) award OCE-1924512 to AES. Proteomics analysis was supported by NSF awards OCE-1924554 and OCE-1850719, and NIH award R01GM135709 to MAS. BB was supported by the Austrian Science Fund (FWF) Project Number: J4426-B (“The influence of nitrifiers on the oceanic carbon cycle”), SL by the Netherlands Organization for Scientific Research (NWO) grant 016.Vidi.189.050, and CLD by NSF award OCE-125999.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...