ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus
  • Springer Science + Business Media
  • 2020-2022  (5,827)
  • 2005-2009  (12,428)
Collection
Years
Year
  • 101
    Publication Date: 2020-07-08
    Description: The hygroscopic behavior of black carbon (BC)-containing particles (BCPs) has a significant impact on global and regional climate change. However, the mechanism and factors controlling the hygroscopicity of BCPs from different carbon sources are not well understood. Here, we systematically measured the equilibrium and kinetics of water uptake by 15 different BCPs (10 herb-derived BCPs, 2 wood-derived BCPs, and 3 soot-type BCPs) using a gravimetric water vapor sorption method combined with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In the gravimetric analysis, the sorption–desorption equilibrium isotherms were measured under continuous-stepwise water vapor pressure conditions, while the kinetics was measured at a variety of humidity levels obtained by different saturated aqueous salt solutions. The equilibrium water uptake of the tested group of BCPs at high relative humidity (〉80 %) positively correlated to the dissolved mineral content (0.01–13.0 wt %) (R2=0.86, P=0.0001), the content of the thermogravimetrically analyzed organic carbon (OCTGA, 4.48–15.25 wt %) (R2=0.52, P=0.002), and the content of the alkali-extracted organic carbon (OCAE, 0.14–8.39 wt %) (R2=0.80, P=0.0001). In contrast, no positive correlation was obtained with the content of total organic carbon or elemental carbon. Among the major soluble ionic constituents, chloride and ammonium were each correlated with the equilibrium water uptake at high relative humidity. Compared with the herbal BCPs and soot, the woody BCPs had much lower equilibrium water uptake, especially at high relative humidity, likely due to the very low dissolved mineral content and OC content. The DRIFTS analysis provided generally consistent results at low relative humidity. The kinetics of water uptake (measured by pseudo-second-order rate constant) correlated to the content of OCTGA and OCAE as well as the content of chloride and ammonium at low relative humidity (33 %) but to the porosity of BCPs at high relative humidity (94 %). This was the first study to show that BCPs of different types and sources had greatly varying hygroscopic properties.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2020-07-10
    Description: The annual carbon and water dynamics of two eastern North American temperate forests were compared over a 6-year period from 2012 to 2017. The geographic location, forest age, soil, and climate were similar between the two stands; however, stand composition varied in terms of tree leaf-retention and shape strategy: one stand was a deciduous broadleaf forest, while the other was an evergreen needleleaf forest. The 6-year mean annual net ecosystem productivity (NEP) of the coniferous forest was slightly higher and more variable (218±109 g C m−2 yr−1) compared to that of the deciduous forest NEP (200±83 g C m−2 yr−1). Similarly, the 6-year mean annual evapotranspiration (ET) of the coniferous forest was higher (442±33 mm yr−1) than that of the deciduous forest (388±34 mm yr−1), but with similar interannual variability. Summer meteorology greatly impacted the carbon and water fluxes in both stands; however, the degree of response varied among the two stands. In general, warm temperatures caused higher ecosystem respiration (RE), resulting in reduced annual NEP values – an impact that was more pronounced at the deciduous broadleaf forest compared to the evergreen needleleaf forest. However, during warm and dry years, the evergreen forest had largely reduced annual NEP values compared to the deciduous forest. Variability in annual ET at both forests was related most to the variability in annual air temperature (Ta), with the largest annual ET observed in the warmest years in the deciduous forest. Additionally, ET was sensitive to prolonged dry periods that reduced ET at both stands, although the reduction at the coniferous forest was relatively larger than that of the deciduous forest. If prolonged periods (weeks to months) of increased Ta and reduced precipitation are to be expected under future climates during summer months in the study region, our findings suggest that the deciduous broadleaf forest will likely remain an annual carbon sink, while the carbon sink–source status of the coniferous forest remains uncertain.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2020-07-10
    Description: The RadAlp experiment aims at developing advanced methods for rainfall and snowfall estimation using weather radar remote sensing techniques in high mountain regions for improved water resource assessment and hydrological risk mitigation. A unique observation system has been deployed since 2016 in the Grenoble region of France. It is composed of an X-band radar operated by Météo-France on top of the Moucherotte mountain (1901 m  above sea level; hereinafter MOUC radar). In the Grenoble valley (220 m  above sea level; hereinafter a.s.l.), we operate a research X-band radar called XPORT and in situ sensors (weather station, rain gauge and disdrometer). In this paper we present a methodology for studying the relationship between the differential phase shift due to propagation in precipitation (Φdp) and path-integrated attenuation (PIA) at X band. This relationship is critical for quantitative precipitation estimation (QPE) based on polarimetry due to severe attenuation effects in rain at the considered frequency. Furthermore, this relationship is still poorly documented in the melting layer (ML) due to the complexity of the hydrometeors' distributions in terms of size, shape and density. The available observation system offers promising features to improve this understanding and to subsequently better process the radar observations in the ML. We use the mountain reference technique (MRT) for direct PIA estimations associated with the decrease in returns from mountain targets during precipitation events. The polarimetric PIA estimations are based on the regularization of the profiles of the total differential phase shift (Ψdp) from which the profiles of the specific differential phase shift on propagation (Kdp) are derived. This is followed by the application of relationships between the specific attenuation (k) and the specific differential phase shift. Such k–Kdp relationships are estimated for rain by using drop size distribution (DSD) measurements available at ground level. Two sets of precipitation events are considered in this preliminary study, namely (i) nine convective cases with high rain rates which allow us to study the ϕdp–PIA relationship in rain, and (ii) a stratiform case with moderate rain rates, for which the melting layer (ML) rose up from about 1000 up to 2500 m a.s.l., where we were able to perform a horizontal scanning of the ML with the MOUC radar and a detailed analysis of the ϕdp–PIA relationship in the various layers of the ML. A common methodology was developed for the two configurations with some specific parameterizations. The various sources of error affecting the two PIA estimators are discussed, namely the stability of the dry weather mountain reference targets, radome attenuation, noise of the total differential phase shift profiles, contamination due to the differential phase shift on backscatter and relevance of the k–Kdp relationship derived from DSD measurements, etc. In the end, the rain case study indicates that the relationship between MRT-derived PIAs and polarimetry-derived PIAs presents an overall coherence but quite a considerable dispersion (explained variance of 0.77). Interestingly, the nonlinear k–Kdp relationship derived from independent DSD measurements yields almost unbiased PIA estimates. For the stratiform case, clear signatures of the MRT-derived PIAs, the corresponding ϕdp value and their ratio are evidenced within the ML. In particular, the averaged PIA∕ϕdp ratio, a proxy for the slope of a linear k–Kdp relationship in the ML, peaks at the level of the copolar correlation coefficient (ρhv) peak, just below the reflectivity peak, with a value of about 0.42 dB per degree. Its value in rain below the ML is 0.33 dB per degree, which is in rather good agreement with the slope of the linear k–Kdp relationship derived from DSD measurements at ground level. The PIA∕ϕdp ratio remains quite high in the upper part of the ML, between 0.32 and 0.38 dB per degree, before tending towards 0 above the ML.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2020-07-10
    Description: The Spermonde Archipelago, off the coast of southwest Sulawesi, consists of more than 100 small islands and hundreds of shallow-water reef areas. Most of the islands are bordered by coral reefs that grew in the past in response to paleo relative sea-level changes. Remnants of these reefs are preserved today in the form of fossil microatolls. In this study, we report the elevation, age, and paleo relative sea-level estimates derived from fossil microatolls surveyed in five islands of the Spermonde Archipelago. We describe 24 new sea-level index points, and we compare our dataset with both previously published proxies and with relative sea-level predictions from a set of 54 glacial isostatic adjustment (GIA) models, using different assumptions on both ice melting histories and mantle structure and viscosity. We use our new data and models to discuss Late Holocene (0–6 ka) relative sea-level changes in our study area and their implications in terms of modern relative sea-level estimates in the broader South and Southeast Asia region.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2020-07-10
    Description: TROPOMI (the TROPOspheric Monitoring Instrument), on board the Sentinel-5 Precursor (S5P) satellite, has been monitoring the Earth's atmosphere since October 2017 with an unprecedented horizontal resolution (initially 7 km2×3.5 km2, upgraded to 5.5 km2×3.5 km2 in August 2019). Monitoring air quality is one of the main objectives of TROPOMI; it obtains measurements of important pollutants such as nitrogen dioxide, carbon monoxide, and formaldehyde (HCHO). In this paper we assess the quality of the latest HCHO TROPOMI products versions 1.1.(5-7), using ground-based solar-absorption FTIR (Fourier-transform infrared) measurements of HCHO from 25 stations around the world, including high-, mid-, and low-latitude sites. Most of these stations are part of the Network for the Detection of Atmospheric Composition Change (NDACC), and they provide a wide range of observation conditions, from very clean remote sites to those with high HCHO levels from anthropogenic or biogenic emissions. The ground-based HCHO retrieval settings have been optimized and harmonized at all the stations, ensuring a consistent validation among the sites. In this validation work, we first assess the accuracy of TROPOMI HCHO tropospheric columns using the median of the relative differences between TROPOMI and FTIR ground-based data (BIAS). The pre-launch accuracy requirements of TROPOMI HCHO are 40 %–80 %. We observe that these requirements are well reached, with the BIAS found below 80 % at all the sites and below 40 % at 20 of the 25 sites. The provided TROPOMI systematic uncertainties are well in agreement with the observed biases at most of the stations except for the highest-HCHO-level site, where it is found to be underestimated. We find that while the BIAS has no latitudinal dependence, it is dependent on the HCHO concentration levels: an overestimation (+26±5 %) of TROPOMI is observed for very low HCHO levels (8.0×1015 molec. cm−2). This demonstrates the great value of such a harmonized network covering a wide range of concentration levels, the sites with high HCHO concentrations being crucial for the determination of the satellite bias in the regions of emissions and the clean sites allowing a small TROPOMI offset to be determined. The wide range of sampled HCHO levels within the network allows the robust determination of the significant constant and proportional TROPOMI HCHO biases (TROPOMI =+1.10±0.05 ×1015+0.64±0.03 × FTIR; in molecules per square centimetre). Second, the precision of TROPOMI HCHO data is estimated by the median absolute deviation (MAD) of the relative differences between TROPOMI and FTIR ground-based data. The clean sites are especially useful for minimizing a possible additional collocation error. The precision requirement of 1.2×1016 molec. cm−2 for a single pixel is reached at most of the clean sites, where it is found that the TROPOMI precision can even be 2 times better (0.5–0.8×1015 molec. cm−2 for a single pixel). However, we find that the provided TROPOMI random uncertainties may be underestimated by a factor of 1.6 (for clean sites) to 2.3 (for high HCHO levels). The correlation is very good between TROPOMI and FTIR data (R=0.88 for 3 h mean coincidences; R=0.91 for monthly means coincidences). Using about 17 months of data (from May 2018 to September 2019), we show that the TROPOMI seasonal variability is in very good agreement at all of the FTIR sites. The FTIR network demonstrates the very good quality of the TROPOMI HCHO products, which is well within the pre-launch requirements for both accuracy and precision. This paper makes suggestions for the refinement of the TROPOMI random uncertainty budget and TROPOMI quality assurance values for a better filtering of the remaining outliers.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2020-07-10
    Description: This paper describes the implementation of a coupling between a three-dimensional ocean general circulation model (NEMO) and a wave model (WW3) to represent the interactions of upper-oceanic flow dynamics with surface waves. The focus is on the impact of such coupling on upper-ocean properties (temperature and currents) and mixed layer depth (MLD) at global eddying scales. A generic coupling interface has been developed, and the NEMO governing equations and boundary conditions have been adapted to include wave-induced terms following the approach of McWilliams et al. (2004) and Ardhuin et al. (2008). In particular, the contributions of Stokes–Coriolis, vortex, and surface pressure forces have been implemented on top of the necessary modifications of the tracer–continuity equation and turbulent closure scheme (a one-equation turbulent kinetic energy – TKE – closure here). To assess the new developments, we perform a set of sensitivity experiments with a global oceanic configuration at 1/4∘ resolution coupled with a wave model configured at 1/2∘ resolution. Numerical simulations show a global increase in wind stress due to the interaction with waves (via the Charnock coefficient), particularly at high latitudes, resulting in increased surface currents. The modifications brought to the TKE closure scheme and the inclusion of a parameterization for Langmuir turbulence lead to a significant increase in the mixing, thus helping to deepen the MLD. This deepening is mainly located in the Southern Hemisphere and results in reduced sea surface currents and temperatures.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2020-07-10
    Description: Snow instability tests provide valuable information regarding the stability of the snowpack. Test results are key data used to prepare public avalanche forecasts. However, to include them into operational procedures, a quantitative interpretation scheme is needed. Whereas the interpretation of the rutschblock test (RB) is well established, a similar detailed classification for the extended column test (ECT) is lacking. Therefore, we develop a four-class stability interpretation scheme. Exploring a large data set of 1719 ECTs observed at 1226 sites, often performed together with a RB in the same snow pit, and corresponding slope stability information, we revisit the existing stability interpretations and suggest a more detailed classification. In addition, we consider the interpretation of cases when two ECTs were performed in the same snow pit. Our findings confirm previous research, namely that the crack propagation propensity is the most relevant ECT result and that the loading step required to initiate a crack is of secondary importance for stability assessment. The comparison with the RB showed that the ECT classifies slope stability less reliably than the RB. In some situations, performing a second ECT may be helpful when the first test did not indicate rather unstable or stable conditions. Finally, the data clearly show that false-unstable predictions of stability tests outnumber the correct-unstable predictions in an environment where overall unstable locations are rare.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2020-07-10
    Description: Fires affect the composition of the atmosphere and Earth's radiation balance by emitting a suite of reactive gases and particles. An interactive fire module in an Earth system model (ESM) allows us to study the natural and anthropogenic drivers, feedbacks, and interactions of open fires. To do so, we have developed pyrE, the NASA GISS (Goddard Institute for Space Studies) interactive fire emissions module. The pyrE module is driven by environmental variables like flammability and cloud-to-ground lightning, calculated by the GISS ModelE ESM, and parameterized by anthropogenic impacts based on population density data. Fire emissions are generated from the flaming phase in pyrE (active fires). Using pyrE, we examine fire occurrence, regional fire suppression, burned area, fire emissions, and how it all affects atmospheric composition. To do so, we evaluate pyrE by comparing it to satellite-based datasets of fire count, burned area, fire emissions, and aerosol optical depth (AOD). We demonstrate pyrE's ability to simulate the daily and seasonal cycles of open fires and resulting emissions. Our results indicate that interactive fire emissions are biased low by 32 %–42 %, depending on emitted species, compared to the GFED4s (Global Fire Emissions Database) inventory. The bias in emissions drives underestimation in column densities, which is diluted by natural and anthropogenic emissions sources and production and loss mechanisms. Regionally, the resulting AOD of a simulation with interactive fire emissions is underestimated mostly over Indonesia compared to a simulation with GFED4s emissions and to MODIS AOD. In other parts of the world pyrE's performance in terms of AOD is marginal to a simulation with prescribed fire emissions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2020-07-10
    Description: We present particle optical properties of stratospheric smoke layers observed with multiwavelength polarization Raman lidar over Punta Arenas (53.2∘ S, 70.9∘ W), Chile, at the southernmost tip of South America in January 2020. The smoke originated from the record-breaking bushfires in Australia. The stratospheric aerosol optical thickness reached values up to 0.85 at 532 nm in mid-January 2020. The main goal of this rapid communication letter is to provide first stratospheric measurements of smoke extinction-to-backscatter ratios (lidar ratios) and particle linear depolarization ratios at 355 and 532 nm wavelengths. These aerosol parameters are important input parameters in the analysis of spaceborne CALIPSO and Aeolus lidar observations of the Australian smoke spreading over large parts of the Southern Hemisphere in January and February 2020 up to heights of around 30 km. Lidar and depolarization ratios, simultaneously measured at 355 and 532 nm, are of key importance regarding the homogenization of the overall Aeolus (355 nm wavelength) and CALIPSO (532 nm wavelength) lidar data sets documenting the spread of the smoke and the decay of the stratospheric perturbation, which will be observable over the entire year of 2020. We found typical values and spectral dependencies of the lidar ratio and linear depolarization ratio for aged stratospheric smoke. At 355 nm, the lidar ratio and depolarization ratio ranged from 53 to 97 sr (mean 71 sr) and 0.2 to 0.26 (mean 0.23), respectively. At 532 nm, the lidar ratios were higher (75–112 sr, mean 97 sr) and the depolarization ratios were lower with values of 0.14–0.22 (mean 0.18). The determined depolarization ratios for aged Australian smoke are in very good agreement with respective ones for aged Canadian smoke, observed with lidar in stratospheric smoke layers over central Europe in the summer of 2017. The much higher 532 nm lidar ratios, however, indicate stronger absorption by the Australian smoke particles.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2020-07-10
    Description: The QA4ECV (Quality Assurance for Essential Climate Variables) version 1.1 stratospheric and tropospheric NO2 vertical column density (VCD) climate data records (CDRs) from the OMI (Ozone Monitoring Instrument) satellite sensor are validated using NDACC (Network for the Detection of Atmospheric Composition Change) zenith-scattered light differential optical absorption spectroscopy (ZSL-DOAS) and multi-axis DOAS (MAX-DOAS) data as a reference. The QA4ECV OMI stratospheric VCDs have a small bias of ∼0.2 Pmolec.cm-2 (5 %–10 %) and a dispersion of 0.2 to 1 Pmolec.cm-2 with respect to the ZSL-DOAS measurements. QA4ECV tropospheric VCD observations from OMI are restricted to near-cloud-free scenes, leading to a negative sampling bias (with respect to the unrestricted scene ensemble) of a few peta molecules per square centimetre (Pmolec.cm-2) up to −10 Pmolec.cm-2 (−40 %) in one extreme high-pollution case. The QA4ECV OMI tropospheric VCD has a negative bias with respect to the MAX-DOAS data (−1 to −4 Pmolec.cm-2), which is a feature also found for the OMI OMNO2 standard data product. The tropospheric VCD discrepancies between satellite measurements and ground-based data greatly exceed the combined measurement uncertainties. Depending on the site, part of the discrepancy can be attributed to a combination of comparison errors (notably horizontal smoothing difference error), measurement/retrieval errors related to clouds and aerosols, and the difference in vertical smoothing and a priori profile assumptions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2020-07-10
    Description: Aside from many well-known sources, the greenhouse gas methane (CH4) was recently discovered entrapped in the sediments of Swiss Alpine glacier forefields derived from calcareous bedrock. A first study performed in one glacial catchment indicated that CH4 was ubiquitous in sediments and rocks and was largely of thermogenic origin. Here, we present the results of a follow-up study that aimed at (1) determining the occurrence and origin of sediment-entrapped CH4 in other calcareous glacier forefields across Switzerland and (2) providing an inventory of this sediment-entrapped CH4, i.e., determining the contents and total mass of CH4 present, and its spatial distribution within and between five different Swiss glacier forefields situated on calcareous formations of the Helvetic nappes in the Central Alps. Sediment and bedrock samples were collected at high spatial resolution from the forefields of Im Griess, Griessfirn, Griessen, Wildstrubel, and Tsanfleuron glaciers, representing different geographic and geologic regions of the Helvetic nappes. We performed geochemical analyses on gas extracted from sediments and rocks, including the determination of CH4 contents, stable carbon-isotope analyses (δ13CCH4), and the determination of gas-wetness ratios (ratio of CH4 to ethane and propane contents). To estimate the total mass of CH4 entrapped in glacier-forefield sediments, the total volume of sediment was determined based on the measured forefield area and either literature values of mean sediment thickness or direct depth measurements using electrical resistivity tomography. Methane was found in all sediments (0.08–73.81 µg CH4 g−1 dry weight) and most rocks (0.06–108.58 µg CH4 g−1) collected from the five glacier forefields, confirming that entrapped CH4 is ubiquitous in these calcareous formations. Geochemical analyses further confirmed a thermogenic origin of the entrapped CH4 (average δ13CCH4 of sediment of −28.23 (± 3.42) ‰; average gas-wetness ratio of 75.2 (± 48.4)). Whereas sediment-entrapped CH4 contents varied moderately within individual forefields, we noted a large, significant difference in the CH4 content and total CH4 mass (range of 200–3881 t CH4) between glacier forefields at the regional scale. The lithology and tectonic setting within the Helvetic nappes appeared to be dominant factors determining rock and sediment CH4 contents. Overall, a substantial quantity of CH4 was found to be entrapped in Swiss calcareous glacier forefields. Its potential release and subsequent fate in this environment is the subject of ongoing studies.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2020-07-06
    Description: On 5 March 2019 12:00 UTC, an atmospheric river (AR) made landfall in Santa Barbara, CA, and lasted approximately 30 h. While ARs are typical winter storms in the area, the extraordinary number of lightning strikes observed near coastal Santa Barbara made this event unique. The Earth Networks Global Lightning Network (ENGLN) detected 8811 lightning flashes around southern California (30 to 37∘ N and 130 to 115∘ W) in 24 h, which is roughly 2500 times the climatological flash rate in this region. The AR-related thunderstorm resulted in approximately 23.18 mm accumulated precipitation in 30 h in Santa Barbara. This article examines synoptic and mesoscale features conducive to this electrifying AR event, characterizing its uniqueness in the context of previous March events that made landfall in the region. We show that this AR was characterized by an unusual deep moist layer extending from the low to mid-troposphere in an environment with potential instability and low-elevation freezing level. Despite the negligible convective available potential energy (CAPE) during the peak of the thunderstorm near Santa Barbara, the lifting of layers with high water vapor content in the AR via warm conveyor belt and orographic forcing in a convectively unstable atmosphere resulted in the formation of hail and enhanced electrification.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2020-07-07
    Description: This paper presents the field validation of a method to estimate the local wind speed on different sectors of a turbine rotor disk. Each rotating blade is used as a scanning sensor that, traveling across the rotor disk, samples the inflow. From the local speed estimates, the method can reconstruct the vertical wind shear and detect the presence and location on an impinging wake shed by an upstream wind turbine. Shear and wake awareness have multiple uses, from turbine and farm control to monitoring and forecasting. This validation study is conducted with an experimental data set obtained with two multi-megawatt wind turbines and a hub-tall met mast. Practical and simple procedures are presented and demonstrated to correct for the possible miscalibration of sensors. Results indicate a very good correlation between the estimated vertical shear and the one measured by the met mast. Additionally, the proposed method exhibits a remarkable ability to locate and track the motion of an impinging wake on an affected rotor.
    Print ISSN: 2366-7443
    Electronic ISSN: 2366-7451
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2020-07-07
    Description: As host to several world-class sediment-hosted Pb–Zn deposits and unknown quantities of conventional and unconventional gas, the variably inverted 1730–1640 Ma Calvert and 1640–1575 Ma Isa superbasins of northern Australia have been the subject of numerous seismic reflection studies with a view to better understanding basin architecture and fluid migration pathways. These studies reveal a structural architecture common to inverted sedimentary basins the world over, including much younger examples known to be prospective for oil and gas in the North Sea and elsewhere, with which they might be usefully compared. Such comparisons lend themselves to suggestions that the mineral and petroleum systems in Paleo–Mesoproterozoic northern Australia may have spatially, if not temporally overlapped and shared a common tectonic driver, consistent with the observation that basinal sequences hosting Pb–Zn mineralization in northern Australia are bituminous or abnormally enriched in hydrocarbons. Sediment-hosted Pb–Zn mineralization coeval with basin inversion first occurred during the 1650–1640 Ma Riversleigh Tectonic Event towards the close of the Calvert Superbasin with further pulses taking place during and subsequent to the onset of the 1620–1580 Ma Isa Orogeny and final closure of the Isa Superbasin. Mineralization is typically hosted by the post-rift or syn-inversion fraction of basin fill, contrary to existing interpretations of Pb–Zn ore genesis where the ore-forming fluids are introduced during the rifting or syn-extensional phase of basin development. Mineralizing fluids were instead expelled upwards during times of crustal shortening into structural and/or chemical traps developing in the hangingwalls of inverted normal faults. Inverted normal faults predominantly strike NNW and ENE, giving rise to a complex architecture of compartmentalized sub-basins whose individual uplifted basement blocks and doubly plunging periclinal folds exerted a strong control not only on the distribution and preservation of potential trap rocks but the direction of fluid flow, culminating in the co-location and trapping of mineralizing and hydrocarbon fluids in the same carbonaceous rocks. An important case study is the 1575 Ma Century Pb–Zn deposit where the carbonaceous host rocks served as both a reductant and basin seal during the influx of more oxidized mineralizing fluids, forcing the latter to give up their Pb and Zn metal. A transpressive tectonic regime in which basin inversion and mineralization were paired to folding, uplift, and erosion during arc–continent or continent–continent collision, and accompanied by orogen-parallel extensional collapse and strike-slip faulting best accounts for the observed relationships.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2020-07-07
    Description: The Observations for Model Intercomparison Project (Obs4MIPs) was initiated in 2010 to facilitate the use of observations in climate model evaluation and research, with a particular target being the Coupled Model Intercomparison Project (CMIP), a major initiative of the World Climate Research Programme (WCRP). To this end, Obs4MIPs (1) targets observed variables that can be compared to CMIP model variables; (2) utilizes dataset formatting specifications and metadata requirements closely aligned with CMIP model output; (3) provides brief technical documentation for each dataset, designed for nonexperts and tailored towards relevance for model evaluation, including information on uncertainty, dataset merits, and limitations; and (4) disseminates the data through the Earth System Grid Federation (ESGF) platforms, making the observations searchable and accessible via the same portals as the model output. Taken together, these characteristics of the organization and structure of obs4MIPs should entice a more diverse community of researchers to engage in the comparison of model output with observations and to contribute to a more comprehensive evaluation of the climate models. At present, the number of obs4MIPs datasets has grown to about 80; many are undergoing updates, with another 20 or so in preparation, and more than 100 are proposed and under consideration. A partial list of current global satellite-based datasets includes humidity and temperature profiles; a wide range of cloud and aerosol observations; ocean surface wind, temperature, height, and sea ice fraction; surface and top-of-atmosphere longwave and shortwave radiation; and ozone (O3), methane (CH4), and carbon dioxide (CO2) products. A partial list of proposed products expected to be useful in analyzing CMIP6 results includes the following: alternative products for the above quantities, additional products for ocean surface flux and chlorophyll products, a number of vegetation products (e.g., FAPAR, LAI, burned area fraction), ice sheet mass and height, carbon monoxide (CO), and nitrogen dioxide (NO2). While most existing obs4MIPs datasets consist of monthly-mean gridded data over the global domain, products with higher time resolution (e.g., daily) and/or regional products are now receiving more attention. Along with an increasing number of datasets, obs4MIPs has implemented a number of capability upgrades including (1) an updated obs4MIPs data specifications document that provides additional search facets and generally improves congruence with CMIP6 specifications for model datasets, (2) a set of six easily understood indicators that help guide users as to a dataset's maturity and suitability for application, and (3) an option to supply supplemental information about a dataset beyond what can be found in the standard metadata. With the maturation of the obs4MIPs framework, the dataset inclusion process, and the dataset formatting guidelines and resources, the scope of the observations being considered is expected to grow to include gridded in situ datasets as well as datasets with a regional focus, and the ultimate intent is to judiciously expand this scope to any observation dataset that has applicability for evaluation of the types of Earth system models used in CMIP.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2020-06-30
    Description: The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been taking limb-scattered measurements since April 2012. It is designed to produce ozone and aerosol vertical profiles at a 1.6 km vertical resolution over the entire sunlit globe. The Version 1.5 (V1.5) aerosol extinction retrieval algorithm provides aerosol extinction profiles using observed radiances at 675 nm. The algorithm assumes Mie theory and a gamma function aerosol size distribution for the stratospheric aerosol that is derived from results calculated by the Community Aerosol and Radiation Model for Atmospheres (CARMA). In this paper, we compare V1.5 LP aerosol profiles with SAGE III/ISS solar occultation observations for the period from June 2017 to May 2019, when both measurements were available to evaluate our ability to characterize background aerosol conditions. Overall, LP extinction profiles agree with SAGE III/ISS data to within ±25 % for altitudes between 19 and 27 km, even during periods perturbed by volcanic eruptions or intense forest fires. In this altitude range, the slope parameter of linear fitting of LP extinction values with respect to SAGE III/ISS measurements is close to 1.0, with Pearson correlation coefficients of r≥0.95, indicating that the LP aerosol data are reliable in that altitude range. Comparisons of extinction time series show that both instruments capture the variability of the stratospheric aerosol layer quite well, and the differences between the two instruments vary from 0 % to ±25 % depending on altitude, latitude, and time. In contrast, we find erroneous seasonal variations in the OMPS/LP Version 1.5 dataset, which usually exist below 20 km in the Southern Hemisphere due to the lack of sensitivity to particles when the scattering angle (SA) is greater than 145∘. We also find that LP-retrieved extinction is systematically higher than SAGE III/ISS observations at altitudes above 28 km and systematically lower below 19 km in the tropics with significant biases up to ±13 %. This is likely due in part to the fact that the actual aerosol size distribution is altitude dependent. There are also other reasons related to cloud contamination, wavelength limitations, aerosol loading, and the influence of the viewing configuration.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2020-06-30
    Description: Ship emissions in and around ports are of interest for urban air quality management in many harbour cities. We investigated the impact of regional and local ship emissions on urban air quality for 2012 conditions in the city of Gothenburg, Sweden, the largest cargo port in Scandinavia. In order to assess the effects of ship emissions, a coupled regional- and local-scale model system has been set up using ship emissions in the Baltic Sea and the North Sea as well as in and around the port of Gothenburg. Ship emissions were calculated with the Ship Traffic Emission Assessment Model (STEAM), taking into account individual vessel characteristics and vessel activity data. The calculated contributions from local and regional shipping to local air pollution in Gothenburg were found to be substantial, especially in areas around the city ports. The relative contribution from local shipping to annual mean NO2 concentrations was 14 % as the model domain average, while the relative contribution from regional shipping in the North Sea and the Baltic Sea was 26 %. In an area close to the city terminals, the contribution of NO2 from local shipping (33 %) was higher than that of road traffic (28 %), which indicates the importance of controlling local shipping emissions. Local shipping emissions of NOx led to a decrease in the summer mean O3 levels in the city by 0.5 ppb (∼2 %) on average. Regional shipping led to a slight increase in O3 concentrations; however, the overall effect of regional and the local shipping together was a small decrease in the summer mean O3 concentrations in the city. In addition, volatile organic compound (VOC) emissions from local shipping compensate up to 4 ppb of the decrease in summer O3 concentrations due to the NO titration effect. For particulate matter with a median aerodynamic diameter less than or equal to 2.5 µm (PM2.5), local ship emissions contributed only 3 % to the annual mean in the model domain, while regional shipping under 2012 conditions was a larger contributor, with an annual mean contribution of 11 % of the city domain average. Based on the modelled local and regional shipping contributions, the health effects of PM2.5, NO2 and ozone were assessed using the ALPHA-RiskPoll (ARP) model. An effect of the shipping-associated PM2.5 exposure in the modelled area was a mean decrease in the life expectancy by 0.015 years per person. The relative contribution of local shipping to the impact of total PM2.5 was 2.2 %, which can be compared to the 5.3 % contribution from local road traffic. The relative contribution of the regional shipping was 10.3 %. The mortalities due to the exposure to NO2 associated with shipping were calculated to be 2.6 premature deaths yr−1. The relative contribution of local and regional shipping to the total exposure to NO2 in the reference simulation was 14 % and 21 %, respectively. The shipping-related ozone exposures were due to the NO titration effect leading to a negative number of premature deaths. Our study shows that overall health impacts of regional shipping can be more significant than those of local shipping, emphasizing that abatement policy options on city-scale air pollution require close cooperation across governance levels. Our findings indicate that the strengthened Sulphur Emission Control Areas (SECAs) fuel sulphur limit from 1 % to 0.1 % in 2015, leading to a strong decrease in the formation of secondary particulate matter on a regional scale was an important step in improving the air quality in the city.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2020-06-30
    Description: Mobile-platform measurements provide new opportunities for characterizing spatial variations in air pollution within urban areas, identifying emission sources, and enhancing knowledge of atmospheric processes. The Aclima, Inc., mobile measurement and data acquisition platform was used to equip four Google Street View cars with research-grade instruments, two of which were available for the duration of this study. On-road measurements of air quality were made during a series of sampling campaigns between May 2016 and September 2017 at high (i.e., 1 s) temporal and spatial resolution at several California locations: Los Angeles, San Francisco, and the northern San Joaquin Valley (including nonurban roads and the cities of Tracy, Stockton, Manteca, Merced, Modesto, and Turlock). The results demonstrate that the approach is effective for quantifying spatial variations in air pollutant concentrations over measurement periods as short as 2 weeks. Measurement accuracy and precision are evaluated using results of weekly performance checks and periodic audits conducted through the sampler inlets, which show that research instruments located within stationary vehicles are capable of reliably measuring nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), methane (CH4), black carbon (BC), and particle number (PN) concentration, with bias and precision ranging from
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2020-07-02
    Description: The European Research Council (ERC) marks a new approach to investing in frontier research in Europe. Since its establishment, the ERC has taken numerous actions to tackle imbalances and monitors data from each call. The aim of this paper is to review descriptive statistics of men and women participating in ERC calls in the geosciences. The share of women applying for Starting Grants is on average around 30 %, whereas for Consolidator Grants and Advanced Grants the share is around 25 % and 11 % respectively. Success rate analysis shows no significant gender disparities. The paper provides an overview of the ERC peer-review system, discusses results specific to the geosciences compared to national funding and SHE Figures, and concludes with a review of past actions and future goals.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2020-07-02
    Description: As direct real-time analysis techniques, selective ion flow tube mass spectrometry (SIFT-MS) and proton-transfer reaction mass spectrometry (PTR-MS) provide online measurement of volatile organic compounds (VOCs). Both techniques are widely used across several disciplines, e.g., atmospheric chemistry, food science, and medicine. However, the humidity of the sampled air greatly influences the quantified mixing ratio and must be accounted for. Here we present several improvements to a Voice200ultra SIFT-MS instrument to reduce background levels and enhance sensitivity. Increasing the sample gas flow to 125 sccm enables limits of detection (LODs) at the sub-parts-per-billion (sub-ppb) level, and the resulting humidity dependence is overcome by calibrating for humidity as well. A comparison with a PTR-QMS 500 showed detection limits of the PTR-MS still being an order of magnitude lower, whereas sensitivity was higher for SIFT-MS, and its calibration was still more robust against humidity. Thus, SIFT-MS is a suitable, lower-cost, and easy-to-use alternative for atmospheric trace gas measurements of more complex mixtures, even with isomers, at a varying humidity range.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2020-07-02
    Description: The Minamata Convention on Mercury (Hg) entered into force in 2017, committing its 116 parties (as of January 2019) to curb anthropogenic emissions. Monitoring of atmospheric concentrations and trends is an important part of the effectiveness evaluation of the convention. A few years ago (in 2017) we reported an increasing trend in atmospheric Hg concentrations at the Cape Point Global Atmosphere Watch (GAW) station in South Africa (34.3535∘ S, 18.4897∘ E) for the 2007–2015 period. With 2 more years of measurements at Cape Point and the 2012–2017 data from Amsterdam Island (37.7983∘ S, 77.5378∘ E) in the remote southern Indian Ocean, a more complex picture emerges: at Cape Point the upward trend for the 2007–2017 period is still significant, but no trend or a slightly downward trend was detected for the period 2012–2017 at both Cape Point and Amsterdam Island. The upward trend at Cape Point is driven mainly by the Hg concentration minimum in 2009 and maxima in 2014 and 2012. Using ancillary data on 222Rn, CO, O3, CO2, and CH4 from Cape Point and Amsterdam Island, the possible reasons for the trend and its change are investigated. In a companion paper this analysis is extended for the Cape Point station by calculations of source and sink regions using backward-trajectory analysis.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2020-07-02
    Description: The Chinese government has made many efforts to mitigate fine particulate matter pollution in recent years by taking strict measures on air pollutant reduction, which has generated the nationwide improvements in air quality since 2013. However, under the stringent air pollution controls, how the wintertime PM2.5 concentration (i.e., the mass concentration of atmospheric particles with diameters less than 2.5 µm) varies and how much the meteorological conditions contribute to the interannual variations in PM2.5 concentrations are still unclear, and these very important for the local government to assess the emission reduction of the previous year and adjust mitigation strategies for the next year. The effects of atmospheric circulation on the interannual variation in wintertime PM2.5 concentrations over the Beijing–Tianjin–Hebei (BTH) region in the period of 2013–2018 are evaluated in this study. Generally, the transport of clean and dry air masses and an unstable boundary layer in combination with the effective near-surface horizontal divergence or pumping action at the top of the boundary layer benefits the horizontal or vertical diffusion of surface air pollutants. Instead, the co-occurrence of a stable boundary layer, frequent air stagnation, positive water vapor advection and deep near-surface horizontal convergence exacerbate the wintertime air pollution. Favorable circulation conditions lasting for 2–4 d are beneficial for the diffusion of air pollutants, and 3–7 d of unfavorable circulation events exacerbates the accumulation of air pollutants. The occurrence frequency of favorable circulation events is consistent with the interannual variation in seasonal mean PM2.5 concentrations. There is better diffusion ability in the winters of 2014 and 2017 than in other years. A 59.9 % observed decrease in PM2.5 concentrations in 2017 over the BTH region could be attributed to the improvement in atmospheric diffusion conditions. It is essential to exclude the contribution of meteorological conditions to the variation in interannual air pollutants when making a quantitative evaluation of emission reduction measurements.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2020-08-31
    Description: This paper investigates the relative importance of turbulence and aerosol effects on the broadening of the droplet size distribution (DSD) during the early stage of cloud and raindrop formation. A parcel–DNS (direct numerical simulation) hybrid approach is developed to seamlessly simulate the evolution of cloud droplets in an ascending cloud parcel. The results show that turbulence and cloud condensation nuclei (CCN) hygroscopicity are key to the efficient formation of large droplets. The ultragiant aerosols can quickly form embryonic drizzle drops and thus determine the onset time of autoconversion. However, due to their scarcity in natural clouds, their contribution to the total mass of drizzle drops is insignificant. In the meantime, turbulence sustains the formation of large droplets by effectively accelerating the collisions of small droplets. The DSD broadening through turbulent collisions is significant and therefore yields a higher autoconversion rate compared to that in a nonturbulent case. It is argued that the level of autoconversion is heavily determined by turbulence intensity. This paper also presents an in-cloud seeding scenario designed to scrutinize the effect of aerosols in terms of number concentration and size. It is found that seeding more aerosols leads to higher competition for water vapor, reduces the mean droplet radius, and therefore slows down the autoconversion rate. On the other hand, increasing the seeding particle size can buffer such a negative feedback. Despite the fact that the autoconversion rate is prominently altered by turbulence and seeding, bulk variables such as liquid water content (LWC) stays nearly identical among all cases. Additionally, the lowest autoconversion rate is not co-located with the smallest mean droplet radius. The finding indicates that the traditional Kessler-type or Sundqvist-type autoconversion parameterizations, which depend on the LWC or mean radius, cannot capture the drizzle formation process very well. Properties related to the width or the shape of the DSD are also needed, suggesting that the scheme of Berry and Reinhardt (1974) is conceptually better. It is also suggested that a turbulence-dependent relative-dispersion parameter should be considered.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2020-08-31
    Description: The GEOS-Chem simulation of atmospheric CH4 was evaluated against observations from the Thermal and Near Infrared Sensor for Carbon Observations Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and the Total Carbon Column Observing Network (TCCON). We focused on the model simulations at the 4∘×5∘ and 2∘×2.5∘ horizontal resolutions for the period of February–May 2010. Compared to the GOSAT, TCCON, and ACE-FTS data, we found that the 2∘×2.5∘ model produced a better simulation of CH4, with smaller biases and a higher correlation to the independent data. We found large resolution-dependent differences such as a latitude-dependent XCH4 bias, with higher column abundances of CH4 at high latitudes and lower abundances at low latitudes at the 4∘×5∘ resolution than at 2∘×2.5∘. We also found large differences in CH4 column abundances between the two resolutions over major source regions such as China. These differences resulted in up to 30 % differences in inferred regional CH4 emission estimates from the two model resolutions. We performed several experiments using 222Rn, 7Be, and CH4 to determine the origins of the resolution-dependent errors. The results suggested that the major source of the latitude-dependent errors is excessive mixing in the upper troposphere and lower stratosphere, including mixing at the edge of the polar vortex, which is pronounced at the 4∘×5∘ resolution. At the coarser resolution, there is weakened vertical transport in the troposphere at midlatitudes to high latitudes due to the loss of sub-grid tracer eddy mass flux in the storm track regions. The vertical air mass fluxes are calculated in the model from the degraded coarse-resolution wind fields and the model does not conserve the air mass flux between model resolutions; as a result, the low resolution does not fully capture the vertical transport. This produces significant localized discrepancies, such as much greater CH4 abundances in the lower troposphere over China at 4∘×5∘ than at 2∘×2.5∘. Although we found that the CH4 simulation is significantly better at 2∘×2.5∘ than at 4∘×5∘, biases may still be present at 2∘×2.5∘ resolution. Their importance, particularly in regards to inverse modeling of CH4 emissions, should be evaluated in future studies using online transport in the native general circulation model as a benchmark simulation.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2020-08-31
    Description: We present field observations from coarse-grained streams in the Swiss Alps and the Peruvian Andes to explore the controls on the probability of material entrainment. We calculate shear stress that is expected for a mean annual water discharge and compare these estimates with grain-specific critical shear stresses that we use as thresholds. We find that the probability of material transport largely depends on the sorting of the bed material, expressed by the D96∕D50 ratio, and the reach gradient but not on mean annual discharge. The results of regression analyses additionally suggest that among these variables, the sorting exerts the largest control on the transport probability of grains. Furthermore, because the sorting is significantly correlated neither to reach gradient nor to water discharge, we propose that the granulometric composition of the material represents an independent, yet important control on the motion of clasts in coarse-grained streams.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2020-06-30
    Description: Here we present the rescue of sub-daily meteorological observations collected from 1884 to 1963 at Montevergine Observatory, located in the Southern Apennines in Italy. The recovered dataset consists of 3-daily observations of the following atmospheric variables: dry-bulb temperature, wet-bulb temperature, water vapour pressure, relative humidity, atmospheric pressure, cloud type, cloud cover, rainfall, snowfall and precipitation type. The data, originally available only as paper-based records, have been digitized following the World Meteorological Organization standard practices. After a cross-check, the digitized data went through three different automatic quality control tests: the gross error test, which verifies whether the data are within acceptable range limits; the tolerance test, which flags whether values are above or below monthly climatological limits that are defined in accordance with a probability distribution model specific to each variable; and the temporal coherency test, which checks the rate of change and flags unrealistic jumps in consecutive values. The result of this process is the publication of a new historical dataset that includes, for the first time, digitized and quality-controlled sub-daily meteorological observations collected since the late 19th century in the Mediterranean region north of the 37th parallel. These data are critical to enhancing and complementing previously rescued sub-daily historical datasets – which are currently limited to atmospheric pressure observations only – in the central and northern Mediterranean regions. Furthermore, the Montevergine Observatory (MVOBS) dataset can enrich the understanding of high-altitude weather and climate variability, and it contributes to the improvement of the accuracy of reanalysis products prior the 1950s. Data are available on the NOAA's National Centers for Environmental Information (NCEI) public repository and are associated with a DOI: https://doi.org/10.25921/cx3g-rj98 (Capozzi et al., 2019).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2020-06-30
    Description: Limited availability of ground measurements in the vast majority of river basins world-wide increases the value of alternative data sources such as satellite observations in hydrological modelling. This study investigates the potential of using remotely sensed river water levels, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River basin in Zambia. A distributed process-based rainfall–runoff model with sub-grid process heterogeneity was developed and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash–Sutcliffe efficiency of ENS,Q=0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95=0.61–0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q=-1.4 (ENS,Q,5/95=-2.3–0.38) with respect to discharge was obtained. The direct use of altimetry-based river levels frequently led to overestimated flows and poorly identified feasible parameter sets (ENS,Q,5/95=-2.9–0.10). Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an overestimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95=-2.6–0.25). However, accounting for river geometry proved to be highly effective. This included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth and applying the Strickler–Manning equation to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well, with an optimum of ENS,Q=0.60 (ENS,Q,5/95=-0.31–0.50). It was further shown that more accurate river cross-section data improved the water-level simulations, modelled rating curve, and discharge simulations during intermediate and low flows at the basin outlet where detailed on-site cross-section information was available. Also, increasing the number of virtual stations used for parameter selection in the calibration period considerably improved the model performance in a spatial split-sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data-scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in poorly gauged or ungauged basins.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2020-06-30
    Description: Forecasting the thermosphere (the atmosphere's uppermost layer, from about 90 to 800 km altitude) is crucial to space-related applications, from space mission design to re-entry operations, space surveillance and more. Thermospheric dynamics is directly linked to the solar dynamics through the solar UV (ultraviolet) input, which is highly variable, and through the solar wind and plasma fluxes impacting Earth's magnetosphere. The solar input is non-periodic and non-stationary, with long-term modulations from the solar rotation and the solar cycle and impulsive components, due to magnetic storms. Proxies of the solar input exist and may be used to forecast the thermosphere, such as the F10.7 radio flux and the Mg II EUV (extreme-ultraviolet) flux. They relate to physical processes of the solar atmosphere. Other indices, such as the Ap geomagnetic index, connect with Earth's geomagnetic environment. We analyse the proxies' time series comparing them with in situ density data from the ESA (European Space Agency) GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity mission, operational from March 2009 to November 2013, therefore covering the full rising phase of solar cycle 24, exposing the entire dynamic range of the solar input. We use empirical mode decomposition (EMD), an analysis technique appropriate to non-periodic, multi-scale signals. Data are taken at an altitude of 260 km, exceptionally low for a low-Earth-orbit (LEO) satellite, where density variations are the single most important perturbation to satellite dynamics. We show that the synthesized signal from optimally selected combinations of proxy basis functions, notably Mg II for the solar flux and Ap for the plasma component, shows a very good agreement with thermospheric data obtained by GOCE, during periods of low and medium solar activity. In periods of maximum solar activity, density enhancements are also well represented. The Mg II index proves to be, in general, a better proxy than the F10.7 index for modelling the solar flux because of its specific response to the UV spectrum, whose variations have the largest impact over thermospheric density.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2020-06-30
    Description: Isoprene-derived secondary organic aerosol (iSOA) is a significant contributor to organic carbon (OC) in some forested regions, such as tropical rainforests and the Southeastern US. However, its contribution to organic aerosol in urban areas that have high levels of anthropogenic pollutants is poorly understood. In this study, we examined the formation of anthropogenically influenced iSOA during summer in Beijing, China. Local isoprene emissions and high levels of anthropogenic pollutants, in particular NOx and particulate SO42-, led to the formation of iSOA under both high- and low-NO oxidation conditions, with significant heterogeneous transformations of isoprene-derived oxidation products to particulate organosulfates (OSs) and nitrooxy-organosulfates (NOSs). Ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was combined with a rapid automated data processing technique to quantify 31 proposed iSOA tracers in offline PM2.5 filter extracts. The co-elution of the inorganic ions in the extracts caused matrix effects that impacted two authentic standards differently. The average concentration of iSOA OSs and NOSs was 82.5 ng m−3, which was around 3 times higher than the observed concentrations of their oxygenated precursors (2-methyltetrols and 2-methylglyceric acid). OS formation was dependant on both photochemistry and the sulfate available for reactive uptake, as shown by a strong correlation with the product of ozone (O3) and particulate sulfate (SO42-). A greater proportion of high-NO OS products were observed in Beijing compared with previous studies in less polluted environments. The iSOA-derived OSs and NOSs represented 0.62 % of the oxidized organic aerosol measured by aerosol mass spectrometry on average, but this increased to ∼3 % on certain days. These results indicate for the first time that iSOA formation in urban Beijing is strongly controlled by anthropogenic emissions and results in extensive conversion to OS products from heterogenous reactions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2020-07-01
    Description: The Maxwell elasto-brittle (MEB) rheology is implemented in the Eulerian finite-difference (FD) modeling framework commonly used in classical viscous-plastic (VP) models. The role of the damage parameterization, the cornerstone of the MEB rheology, in the formation and collapse of ice arches and ice bridges in a narrow channel is investigated. Ice bridge simulations are compared with observations to derive constraints on the mechanical properties of landfast sea ice. Results show that the overall dynamical behavior documented in previous MEB models is reproduced in the FD implementation, such as the localization of the damage in space and time and the propagation of ice fractures in space at very short timescales. In the simulations, an ice arch is easily formed downstream of the channel, sustaining an ice bridge upstream. The ice bridge collapses under a critical surface forcing that depends on the material cohesion. Typical ice arch conditions observed in the Arctic are best simulated using a material cohesion in the range of 5–10 kN m−2. Upstream of the channel, fracture lines along which convergence (ridging) takes place are oriented at an angle that depends on the angle of internal friction. Their orientation, however, deviates from the Mohr–Coulomb theory. The damage parameterization is found to cause instabilities at large compressive stresses, which prevents the production of longer-term simulations required for the formation of stable ice arches upstream of the channel between these lines of fracture. Based on these results, we propose that the stress correction scheme used in the damage parameterization be modified to remove numerical instabilities.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2020-07-01
    Description: Based on the discourse analysis of articles collected between 2010 and 2016 from the Süddeutsche Zeitung – a leading local and German national newspaper – my aim is to reconstruct the central conditions limiting or enabling the participation of those citizens in the public discourse who are generally constructed as „migrants“. Therefore, I analyse the central elements of the discourse around the subject migration/integration. My analysis is guided by the ‚postmigrant debate‘, in particular by the approaches of the ‚differential inclusion‘ of migrantised groups and their ‚struggles of migration‘ combining it with critical race debates. My aim is to outline the different discursive ways that allow migrantised citizens to participate in public meaning making, and the ways, they use to contest majoritarian views. My analysis reveals their critical reconsideration of the system of differentiated inclusion, which is organizing the majoritarian discourse and ‚migrants‘ everyday lives. While the journalistic strategy exemplified within the analysis is working in support of the ‚migrant's perspectives‘, it simultaneously acts to normalize majoritarian position contra migration.
    Print ISSN: 0016-7312
    Electronic ISSN: 2194-8798
    Topics: Ethnic Sciences , Geography
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2020-07-01
    Description: The geometry and internal architecture of the Upper Jurassic carbonate depositional system in the epicontinental basin of central and western Europe and within the northern margin of the Tethyan shelf are hitherto only partly recognized, especially in areas with thick Cretaceous and younger cover such as the Miechów Trough. In such areas, seismic data are indispensable for the analysis of a carbonate depositional system, in particular for the identification of the carbonate buildups and the enveloping strata. The study area is located in the central part of the Miechów Trough that in the Late Jurassic was situated within the transition zone between the Polish part of the central and western European epicontinental basin and the Tethys Ocean. This paper presents the results of the interpretation of 2D seismic data calibrated by deep wells that document the presence of large Upper Jurassic carbonate buildups. The lateral extent of particular structures is in the range of 400–1000 m, and their heights are in the range of 150–250 m. The interpretation of seismic data revealed that the depositional architecture of the subsurface Upper Jurassic succession in the Miechów Trough is characterized by the presence of large carbonate buildups surrounded by basinal (bedded) limestone and marly-limestone deposits. These observations are compatible with depositional characteristics of well-recognized Upper Jurassic carbonate sediments that crop out in the adjacent Kraków–Częstochowa Upland. The presented study provides new information about carbonate open-shelf sedimentation within the transition zone in the Late Jurassic, which proves the existence of a much more extensive system of organic buildups which flourished in this part of the basin. The results obtained, due to the high quality of available seismic data, also provide an excellent generic reference point for seismic studies of carbonate buildups in other basins and of different ages.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2020-07-01
    Description: Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño–Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (δ18O, δD, d-excess parameter, δ17O, and 17Oexcess) and elemental (Mg∕Ca and Sr∕Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1 – diffuse flow, (ii) type 2 – fracture flow, and (iii) type 3 – combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water δ18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg∕Ca and Sr∕Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December–February), reflecting drier conditions and a lack of effective infiltration, and is weakest during the wet austral winter (July–September). The Sr∕Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr∕Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2020-07-01
    Description: Ensuring the highest quality standards at competitive prices is one of the greatest challenges in the manufacture of electronic products. The identification of flaws has the uppermost priority in the field of automotive electronics, particularly as a failure within this field can result in damages and fatalities. During assembling and soldering of printed circuit boards (PCBs) the circuit carriers can be subject to errors. Hence, automatic optical inspection (AOI) systems are used for real-time detection of visible flaws and defects in production. This article introduces an application strategy for combining a deep learning concept with an optical inspection system based on image processing. Above all, the target is to reduce the risk of error slip through a second inspection. The concept is to have the inspection results additionally evaluated by a convolutional neural network. For this purpose, different training datasets for the deep learning procedures are examined and their effects on the classification accuracy for defect identification are assessed. Furthermore, a suitable compilation of image datasets is elaborated, which ensures the best possible error identification on solder joints of electrical assemblies. With the help of the results, convolutional neural networks can achieve a good recognition performance, so that these can support the automatic optical inspection in a profitable manner. Further research aims at integrating the concept in a fully automated way into the production process in order to decide on the product quality autonomously without human interference.
    Print ISSN: 2194-8771
    Electronic ISSN: 2194-878X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2020-06-30
    Description: The dynamics of the physicochemical and biological parameters were followed during the decline of a Cymodocea nodosa meadow in the northern Adriatic Sea from July 2017 to October 2018. During the regular growth of C. nodosa from July 2017 to March 2018, the species successfully adapted to the changes in environmental conditions and prevented H2S accumulation by its reoxidation, supplying the sediment with O2 from the water column and/or leaf photosynthesis. The C. nodosa decline was most likely triggered in April 2018 when light availability to the plant was drastically reduced due to increased seawater turbidity that resulted from increased terrigenous input, indicated by a decrease in salinity accompanied with a substantial increase in particulate matter concentration, combined with resuspension of sediment and elevated autotrophic biomass. Light reduction impaired photosynthesis of C. nodosa and the oxidation capability of belowground tissue. Simultaneously, a depletion of oxygen due to intense oxidation of H2S occurred in the sediment, thus creating anoxic conditions in most of the rooted areas. These linked negative effects on the plant performance caused an accumulation of H2S in the sediments of the C. nodosa meadow. During the decay of aboveground and belowground tissues, culminating in August 2018, high concentrations of H2S were reached and accumulated in the sediment as well as in bottom waters. The influx of oxygenated waters in September 2018 led to the re-establishment of H2S oxidation in the sediment and remainder of the belowground tissue. Our results indicate that if disturbances of environmental conditions, particularly those compromising the light availability, take place during the recruitment phase of plant growth when metabolic needs are at a maximum and stored reserves minimal, a sudden and drastic decline of the seagrass meadow occurs.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2020-06-30
    Description: At sea, wind forcing is responsible for the formation and development of surface waves and represents an important source of near-surface turbulence. Therefore, processes related to near-surface turbulence and wave breaking, such as sea spray emission and air–sea gas exchange, are often parameterised with wind speed. Thus, shipborne wind speed measurements provide highly relevant observations. They can, however, be compromised by flow distortion due to the ship's structure and objects near the anemometer that modify the airflow, leading to a deflection of the apparent wind direction and positive or negative acceleration of the apparent wind speed. The resulting errors in the estimated true wind speed can be greatly magnified at low wind speeds. For some research ships, correction factors have been derived from computational fluid dynamic models or through direct comparison with wind speed measurements from buoys. These correction factors can, however, lose their validity due to changes in the structures near the anemometer and, thus, require frequent re-evaluation, which is costly in either computational power or ship time. Here, we evaluate if global atmospheric reanalysis data can be used to quantify the flow distortion bias in shipborne wind speed measurements. The method is tested on data from the Antarctic Circumnavigation Expedition onboard the R/V Akademik Tryoshnikov, which are compared to ERA-5 reanalysis wind speeds. We find that, depending on the relative wind direction, the relative wind speed and direction measurements are biased by −37 % to +22 % and -17∘ to +11∘ respectively. The resulting error in the true wind speed is +11.5 % on average but ranges from −4 % to +41 % (5th and 95th percentile). After applying the bias correction, the uncertainty in the true wind speed is reduced to ±5 % and depends mainly on the average accuracy of the ERA-5 data over the period of the experiment. The obvious drawback of this approach is the potential intrusion of model biases in the correction factors. We show that this problem can be somewhat mitigated when the error propagation in the true wind correction is accounted for and used to weight the observations. We discuss the potential caveats and limitations of this approach and conclude that it can be used to quantify flow distortion bias for ships that operate on a global scale. The method can also be valuable to verify computational fluid dynamic studies of airflow distortion on research vessels.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2020-06-30
    Description: A number of seaside communities in Troms, northern Norway, are vulnerable to sudden weather-induced access disruptions due to high-impact weather and dependency on one or few roads. In this paper we study changes in winter weather known to potentially cause access disruptions in Troms, for the present climate (1958–2017) and two future periods (2041–2070; 2071–2100). We focus on climate indices associated with snow avalanches and weather that may lead to for example slippery road conditions. In two focus areas, the most important results show larger snow amounts now compared to 50 years ago, and heavy snowfall has become more intense and frequent. This trend is expected to turn in the future, particularly at low elevations where snow cover during winter might become a rarity by 2100. Strong snow drift, due to a combination of snowfall and wind speed, has slightly increased in the two focus areas, but a strong decrease is expected in the future due to less snow. Events of heavy rain during winter are rather infrequent in the present winter climate of Troms, but we show that these events are likely to occur much more often in all regions in the future.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2020-06-30
    Print ISSN: 2190-5010
    Electronic ISSN: 2190-5029
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2020-06-30
    Description: We document that the reliability of carbonate U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is improved by matching the aspect ratio of the LA single-hole drilling craters and propagating long-term excess variance and systematic uncertainties. We investigated the impact of different matrices and ablation crater geometries using U–Pb isotope analyses of one primary (WC-1) and two secondary reference materials (RMs). Validation RMs (VRMs) include a previously characterised one (ASH-15D) and a new candidate (JT), characterised by ID-TIMS (intercept age: 13.797±0.031 Ma) with excellent agreement to pooled LA-ICP-MS measurements (13.75±0.11 | 0.36 Ma), a U concentration of approx. 1 µg g−1 and 238U∕206Pb ratios from 5 to 460, defining the isochron well. Differences in ablation crater depth to diameter ratios (aspect ratio) introduce an offset due to downhole fractionation and/or matrix effects. This effect can be observed either when the crater size between U–Pb RM and the sample changes or when the ablation rate for the sample is different than for the RM. Observed deviations are up to 20 % of the final intercept age depending on the degree of crater geometry mismatch. The long-term excess uncertainty was calculated to be in the range of 2 % (ASH-15D) to 2.5 % (JT), and we recommend propagating this uncertainty into the uncertainty of the final results. Additionally, a systematic offset to the ID-TIMS age of 2 %–3 % was observed for ASH-15D but not for JT. This offset might be due to different ablation rates of ASH-15D compared to the primary RM or remaining matrix effects, even when the aspect ratios chosen are similar.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2020-06-30
    Description: High-time-resolution measurements of in situ aerosol and cloud properties provide the ability to study regional atmospheric processes that occur on timescales of minutes to hours. However, one limitation to this approach is that continuous measurements often include periods when the data collected are not representative of the regional aerosol. Even at remote locations, submicron aerosols are pervasive in the ambient atmosphere with many sources. Therefore, periods dominated by local aerosol should be identified before conducting subsequent analyses to understand aerosol regional processes and aerosol–cloud interactions. Here, we present a novel method to validate the identification of regional baseline aerosol data by applying a mathematical algorithm to the data collected at the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) user facility in the eastern North Atlantic (ENA). The ENA central facility (C1) includes an aerosol observing system (AOS) for the measurement of aerosol physical, optical, and chemical properties at time resolutions from seconds to minutes. A second temporary supplementary facility (S1), located ∼0.75 km from C1, was deployed for ∼1 year during the Aerosol and Cloud Experiments (ACE-ENA) campaign in 2017. First, we investigate the local aerosol at both locations. We associate periods of high submicron number concentration (Ntot) in the fine-mode condensation particle counter (CPC) and size distributions from the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) as a function of wind direction using a meteorology sensor with local sources. Elevated concentrations of Aitken-mode (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2020-06-30
    Description: Wet processes, including aqueous-phase chemistry, wet scavenging, and wet surface uptake during dry deposition, are important for global modeling of aerosols and aerosol precursors. In this study, we improve the treatments of these wet processes in the Goddard Earth Observing System with chemistry (GEOS-Chem) v12.6.0, including pH calculations for cloud, rain, and wet surfaces, the fraction of cloud available for aqueous-phase chemistry, rainout efficiencies for various types of clouds, empirical washout by rain and snow, and wet surface uptake during dry deposition. We compare simulated surface mass concentrations of aerosols and aerosol precursors with surface monitoring networks over the United States, European, Asian, and Arctic regions, and show that model results with updated wet processes agree better with measurements for most species. With the implementation of these updates, normalized mean biases (NMBs) of surface nitric acid, nitrate, and ammonium are reduced from 78 %, 126 %, and 45 % to 0.9 %, 15 %, and 4.1 % over the US sites, from 107 %, 127 %, and 90 % to −0.7 %, 4.2 %, and 16 % over European sites, and from 121 %, 269 %, and 167 % to −21 %, 37 %, and 86 % over Asian remote region sites. Comparison with surface measured SO2, sulfate, and black carbon at four Arctic sites indicated that those species simulated with the updated wet processes match well with observations except for a large underestimate of black carbon at one of the sites. We also compare our model simulation with aircraft measurement of nitric acid and aerosols during the Atmospheric Tomography Mission (ATom)-1 and ATom-2 periods and found a significant improvement of modeling skill of nitric acid, sulfate, and ammonium in the Northern Hemisphere during wintertime. The NMBs of these species are reduced from 163 %, 78 %, and 217 % to −13 %, −1 %, and 10 %, respectively. The investigation of impacts of updated wet process treatments on surface mass concentrations indicated that the updated wet processes have strong impacts on the global means of nitric acid, sulfate, nitrate, and ammonium and relative small impacts on the global means of sulfur dioxide, dust, sea salt, black carbon, and organic carbon.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2020-06-30
    Description: Haze pollution is affected by local air pollutants, regional transport of background particles and precursors, atmospheric chemistry related to secondary aerosol formation, and meteorological conditions conducive to physical, dynamical, and chemical processes. In the large, populated and industrialized areas like the Asian continental outflow region, the combination of regional transport and local stagnation often exacerbates urban haze pollution. However, the detailed chemical processes underlying the enhancement of urban haze induced by the combined effect of local emissions and transported remote pollutants are still unclear. Here, we demonstrate an important role of transported hygroscopic particles in increasing local inorganic aerosols, by studying the chemical composition of PM2.5 collected between October 2012 and June 2014 in Seoul, a South Korean megacity in the Asian continental outflow region, using the ISORROPIA II thermodynamic model. PM2.5 measured under the condition of regional transport from the upwind source areas in China was higher in mass concentration and richer in secondary inorganic aerosol (SIA) species (SO42-, NO3-, and NH4+) and aerosol liquid water (ALW) compared to that measured under non-transport conditions. The secondary inorganic species and ALW were both increased, particularly in cases with high PM2.5 levels, and this indicates inorganic species as a major driver of hygroscopicity. We conclude that the urban haze pollution in a continental outflow region like Seoul, particularly during the cold season, can be exacerbated by ALW in the transported particles, which enhances the nitrate partitioning into the particle phase in NOx- and NH3-rich urban areas. This study reveals the synergistic effect of remote and local sources on urban haze pollution in the downwind region and provides insight into the nonlinearity of domestic and foreign contributions to receptor PM2.5 concentrations in numerical air quality models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2020-06-30
    Description: The Antarctic ice sheet extent in the Weddell Sea embayment (WSE) during the Last Glacial Maximum (LGM; ca. 19–25 calibrated kiloyears before present, ka cal BP) and its subsequent retreat from the shelf are poorly constrained, with two conflicting scenarios being discussed. Today, the modern Brunt Ice Shelf, the last remaining ice shelf in the northeastern WSE, is only pinned at a single location and recent crevasse development may lead to its rapid disintegration in the near future. We investigated the seafloor morphology on the northeastern WSE shelf and discuss its implications, in combination with marine geological records, to create reconstructions of the past behaviour of this sector of the East Antarctic Ice Sheet (EAIS), including ice–seafloor interactions. Our data show that an ice stream flowed through Stancomb-Wills Trough and acted as the main conduit for EAIS drainage during the LGM in this sector. Post-LGM ice stream retreat occurred stepwise, with at least three documented grounding-line still-stands, and the trough had become free of grounded ice by ∼10.5 ka cal BP. In contrast, slow-flowing ice once covered the shelf in Brunt Basin and extended westwards toward McDonald Bank. During a later time period, only floating ice was present within Brunt Basin, but large “ice slabs” enclosed within the ice shelf occasionally ran aground at the eastern side of McDonald Bank, forming 10 unusual ramp-shaped seabed features. These ramps are the result of temporary ice shelf grounding events buttressing the ice further upstream. To the west of this area, Halley Trough very likely was free of grounded ice during the LGM, representing a potential refuge for benthic shelf fauna at this time.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2020-07-02
    Description: Expansion of the hydrologically connected area during rainfall events causes previously disconnected areas to contribute to streamflow. If these newly contributing areas have a different hydrochemical composition compared to the previously connected contributing areas, this may cause a change in stream water chemistry that cannot be explained by simple mixing of rainfall and baseflow. Changes in stormflow composition are, therefore, sometimes used to identify when transiently connected areas (or water sources) contribute to stormflow. We identified the dominant sources of streamflow for a steep 20 ha pre-Alpine headwater catchment in Switzerland and investigated the temporal changes in connectivity for four rainfall events based on stream water concentrations and groundwater level data. First, we compared the isotopic and chemical composition of stormflow at the catchment outlet to the composition of rainfall, groundwater and soil water. Three-component end-member mixing analyses indicated that groundwater dominated stormflow during all events, and that soil water fractions were minimal for three of the four events. However, the large variability in soil and groundwater composition compared to the temporal changes in stormflow composition inhibited the determination of the contributions from the different groundwater sources. Second, we estimated the concentrations of different solutes in stormflow based on the mixing fractions derived from two-component hydrograph separation using a conservative tracer (δ2H) and the measured concentrations of the solutes in baseflow and rainfall. The estimated concentrations differed from the measured stormflow concentrations for many solutes and samples. The deviations increased gradually with increasing streamflow for some solutes (e.g. iron and copper), suggesting increased contributions from riparian and hillslope groundwater with higher concentrations of these solutes and thus increased hydrological connectivity. The findings of this study show that solute concentrations partly reflect the gradual changes in hydrologic connectivity, and that it is important to quantify the variability in the composition of different source areas.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2020-07-02
    Description: We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM2.5) affect public health across the US.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2020-07-02
    Description: Late Quaternary volcanic basins are active landscapes from which detailed archives of past climate and seismic and volcanic activity can be obtained. A multidisciplinary study performed on a transect of sediment cores was used to reconstruct the depositional evolution of the high-elevation Laguna del Maule (LdM) (36∘ S, 2180 m a.s.l., Chilean Andes). The recovered 5 m composite sediment sequence includes two thick turbidite units (LT1 and LT2) and numerous tephra layers (23 ash and 6 lapilli). We produced an age model based on nine new 14C AMS dates, existing 210Pb and 137Cs data, and the Quizapú ash horizon (1932 CE). According to this age model, the relatively drier Early Holocene was followed by a phase of increased productivity during the mid-Holocene and higher lake levels after 4.0 ka cal BP. Major hydroclimate transitions occurred at ca. 11, 8.0, 4.0 and 0.5 ka cal BP. Decreased summer insolation and winter precipitation due to a southward shift in the southern westerly winds and a strengthened Pacific Subtropical High could explain Early Holocene lower lake levels. Increased biological productivity during the mid-Holocene (∼8.0 to 6.0 ka cal BP) is coeval with a warm–dry phase described for much of southern South America. Periods of higher lake productivity are synchronous to a higher frequency of volcanic events. During the Late Holocene, the tephra layers show compositional changes suggesting a transition from silica-rich to silica-poor magmas at around 4.0 ka cal BP. This transition was synchronous with increased variability of sedimentary facies and geochemical proxies, indicating higher lake levels and increased moisture at LdM after 4.0 ka cal BP, most likely caused by the inception of current El Niño–Southern Oscillation and Pacific Decadal Oscillation (ENSO–PDO) dynamics in central Chile.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2020-07-03
    Description: The Labrador Sea is important for the modern global thermohaline circulation system through the formation of intermediate Labrador Sea Water (LSW) that has been hypothesized to stabilize the modern mode of North Atlantic deep-water circulation. The rate of LSW formation is controlled by the amount of winter heat loss to the atmosphere, the expanse of freshwater in the convection region and the inflow of saline waters from the Atlantic. The Labrador Sea, today, receives freshwater through the East and West Greenland currents (EGC, WGC) and the Labrador Current (LC). Several studies have suggested the WGC to be the main supplier of freshwater to the Labrador Sea, but the role of the southward flowing LC in Labrador Sea convection is still debated. At the same time, many paleoceanographic reconstructions from the Labrador Shelf focussed on late deglacial to early Holocene meltwater run-off from the Laurentide Ice Sheet (LIS), whereas little information exists about LC variability since the final melting of the LIS about 7000 years ago. In order to enable better assessment of the role of the LC in deep-water formation and its importance for Holocene climate variability in Atlantic Canada, this study presents high-resolution middle to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years. Our records reveal that the LC underwent three major oceanographic phases from the mid- to late Holocene. From 6.2 to 5.6 ka, the LC experienced a cold episode that was followed by warmer conditions between 5.6 and 2.1 ka, possibly associated with the late Holocene thermal maximum. While surface waters on the Labrador Shelf cooled gradually after 3 ka in response to the neoglaciation, Labrador Shelf subsurface or bottom waters show a shift to warmer temperatures after 2.1 ka. Although such an inverse stratification by cooling of surface and warming of subsurface waters on the Labrador Shelf would suggest a diminished convection during the last 2 millennia compared to the mid-Holocene, it remains difficult to assess whether hydrographic conditions in the LC have had a significant impact on Labrador Sea deep-water formation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2020-07-03
    Description: The present generation of global climate models is characterised by insufficient reflection of short-wave radiation over the Southern Ocean due to a misrepresentation of clouds. This is a significant concern as it leads to excessive heating of the ocean surface, sea surface temperature biases and subsequent problems with atmospheric dynamics. In this study, we modify cloud microphysics in a recent version of the Met Office's Unified Model and show that choosing a more realistic value for the shape parameter of atmospheric ice crystals, in better agreement with theory and observations, benefits the simulation of short-wave radiation. In the model, for calculating the growth rate of ice crystals through deposition, the default assumption is that all ice particles are spherical in shape. We modify this assumption to effectively allow for oblique shapes or aggregates of ice crystals. Along with modified ice nucleation temperatures, we achieve a reduction in the annual-mean short-wave cloud radiative effect over the Southern Ocean by up to ∼4 W m−2 and seasonally much larger reductions compared to the control model. By slowing the growth of the ice phase, the model simulates substantially more supercooled liquid cloud.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2020-07-03
    Description: The Baltic Sea is a semi-enclosed, brackish water sea in northern Europe. The deep basins of the central Baltic Sea regularly show hypoxic conditions. In contrast, the northern parts of the Baltic Sea, the Bothnian Sea and Bothnian Bay, are well oxygenated. Lateral inflows or a ventilation due to convection are possible mechanisms for high oxygen concentrations in the deep water of the northern Baltic Sea. In March 2017, conductivity–temperature–depth (CTD) profiles and bottle samples, ice core samples, and brine were collected in the Bothnian Bay. In addition to hydrographic standard parameters, light absorption has been measured in all samples. A complementary numerical model simulation provides quantitative estimates of the spread of newly formed bottom water. The model uses passive and age tracers to identify and trace different water masses. Observations indicate a recent ventilation of the deep bottom water at one of the observed stations. The analysis of observations and model simulations shows that the Bothnian Bay is ventilated by dense water formed due to mixing of Bothnian Sea and Bothnian Bay surface water initializing lateral inflows. The observations show the beginning of the inflow and the model simulation demonstrates the further northward spreading of bottom water. These events occur during wintertime when the water temperature is low. Brine rejected during ice formation barely contributes to dense bottom water.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2020-07-03
    Description: Several climate oscillations have been reported from the early Holocene superepoch, the best known of which is the Preboreal oscillation (PBO). It is still unclear how the PBO and the number of climate oscillations observed in Greenland ice cores and European terrestrial records are related to one another. This is mainly due to uncertainties in the chronologies of the records. Here, we present new, high-resolution 10Be concentration data from the varved Meerfelder Maar sediment record in Germany, spanning the period 11 310–11 000 years BP. These new data allow us to synchronize this well-studied record, as well as Greenland ice core records, with the IntCal13 timescale via radionuclide wiggle matching. In doing so, we show that the climate oscillations identified in Greenland and Europe between 11 450 and 11 000 years BP were not synchronous but terminated and began, respectively, with the onset of a grand solar minimum. A similar spatial anomaly pattern is found in a number of modeling studies on solar forcing of climate in the North Atlantic region. We further postulate that freshwater delivery to the North Atlantic would have had the potential to amplify solar forcing through a slowdown of the Atlantic meridional overturning circulation (AMOC) reinforcing surface air temperature anomalies in the region.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2020-07-03
    Description: Regional-scale chemistry-transport models have coarse spatial resolution (coarser than 1 km ×1 km) and can thus only simulate background concentrations. They fail to simulate the high concentrations observed close to roads and in streets, where a large part of the urban population lives. Local-scale models may be used to simulate concentrations in streets. They often assume that background concentrations are constant and/or use simplified chemistry. Recently developed, the multi-scale model Street-in-Grid (SinG) estimates gaseous pollutant concentrations simultaneously at local and regional scales by coupling them dynamically. This coupling combines the regional-scale chemistry-transport model Polair3D and a street-network model, the Model of Urban Network of Intersecting Canyons and Highway (MUNICH), with a two-way feedback. MUNICH explicitly models street canyons and intersections, and it is coupled to the first vertical level of the chemical-transport model, enabling the transfer of pollutant mass between the street-canyon roof and the atmosphere. The original versions of SinG and MUNICH adopt a stationary hypothesis to estimate pollutant concentrations in streets. Although the computation of the NOx concentration is numerically stable with the stationary approach, the partitioning between NO and NO2 is highly dependent on the time step of coupling between transport and chemistry processes. In this study, a new nonstationary approach is presented with a fine coupling between transport and chemistry, leading to numerically stable partitioning between NO and NO2. Simulations of NO, NO2 and NOx concentrations over Paris with SinG, MUNICH and Polair3D are compared to observations at traffic and urban stations to estimate the added value of multi-scale modeling with a two-way dynamical coupling between the regional and local scales. As expected, the regional chemical-transport model underestimates NO and NO2 concentrations in the streets. However, there is good agreement between the measurements and the concentrations simulated with MUNICH and SinG. The two-way dynamic coupling between the local and regional scales tends to be important for streets with an intermediate aspect ratio and with high traffic emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2020-07-03
    Description: In this study, a thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS) method following sorbent tube sampling was developed for the determination of monoterpenes (MTs), sesquiterpenes (SQTs) and diterpenes (DTs) in gas-phase samples. The analytical figures of merit were determined, and the method performance was tested by conducting experiments related to, for example, sampling recovery, storage stability and ozone reactivity. The limit-of-quantification values were 13–518 pg (0.5–9.3 pptv), intermediate precision was in the range of 3 %–10 % and the expanded measurement uncertainty was in the range of 16 %–55 % for terpenes. The sampling recoveries of terpenes were approximately within 100±20 % with different inlet lines (15 m long Teflon and 1 m long heated stainless steel) and branch enclosure cuvette (6 L Teflon bag) tested. Ozone is an important factor causing losses of the studied compounds during sampling. Therefore, losses of terpenes upon ozone exposure were studied and the reaction rate coefficients were estimated. The ozone reaction rate coefficient (kO3) of ent-kaurene was experimentally estimated to be 2 orders of magnitude greater than the respective literature kO3 value, demonstrating the potential underestimation of DT contribution to atmospheric reactivity. The preliminary comparison between offline- and online-mode TD–GC–MS sampling and analysis revealed that diterpenes and oxygenated sesquiterpenes are lost in excessive amounts in online-mode sampling, hindering the online-mode applicability for the quantitative analysis of these compounds. A few applications to real samples were tested to identify DTs potentially emitted by boreal forest tree species. In dynamic headspace samples of pine needles and spruce twigs heated to 60 ∘C, five DTs and 13 DTs could be detected in emissions, respectively. The semi-quantitatively estimated emission rates of DTs were roughly 1 to 3 orders of magnitude lower than those of MTs and SQTs. Similarly, in spruce branch enclosure emissions from a living tree, six DTs were detected once the enclosure was heated to ca. 60 ∘C. In summary, the developed analytical procedure was demonstrated to be applicable for the analysis of MTs, SQTs and DTs. In addition, DTs could be detected in needles, twigs and branch enclosure emissions; however, high temperatures were required to promote the emissions and for obtaining detectable concentrations.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2020-07-02
    Description: The measurements of aerosol particles with a filter inlet for gases and aerosols (FIGAERO) together with a chemical ionisation mass spectrometer (CIMS) yield the overall chemical composition of the particle phase. In addition, the thermal desorption profiles obtained for each detected ion composition contain information about the volatility of the detected compounds, which is an important property for understanding many physical properties like gas–particle partitioning. We coupled this thermal desorption method with isothermal evaporation prior to the sample collection to investigate the chemical composition changes during isothermal particle evaporation and particulate-water-driven chemical reactions in α-pinene secondary organic aerosol (SOA) of three different oxidative states. The thermal desorption profiles of all detected elemental compositions were then analysed with positive matrix factorisation (PMF) to identify the drivers of the chemical composition changes observed during isothermal evaporation. The keys to this analysis were to use the error matrix as a tool to weight the parts of the data carrying most information (i.e. the peak area of each thermogram) and to run PMF on a combined data set of multiple thermograms from different experiments to enable a direct comparison of the individual factors between separate measurements. The PMF was able to identify instrument background factors and separate them from the part of the data containing particle desorption information. Additionally, PMF allowed us to separate the direct desorption of compounds detected at a specific elemental composition from other signals with the same composition that stem from the thermal decomposition of thermally instable compounds with lower volatility. For each SOA type, 7–9 factors were needed to explain the observed thermogram behaviour. The contribution of the factors depended on the prior isothermal evaporation. Decreased contributions from the factors with the lowest desorption temperatures were observed with increasing isothermal evaporation time. Thus, the factors identified by PMF could be interpreted as volatility classes. The composition changes in the particles due to isothermal evaporation could be attributed to the removal of volatile factors with very little change in the desorption profiles of the individual factors (i.e. in the respective temperatures of peak desorption, Tmax). When aqueous-phase reactions took place, PMF was able to identify a new factor that directly identified the ions affected by the chemical processes. We conducted a PMF analysis of the FIGAERO–CIMS thermal desorption data for the first time using laboratory-generated SOA particles. But this method can be applied to, for example, ambient FIGAERO–CIMS measurements as well. There, the PMF analysis of the thermal desorption data identifies organic aerosol (OA) sources (such as biomass burning or oxidation of different precursors) and types, e.g. hydrocarbon-like (HOA) or oxygenated organic aerosol (OOA). This information could also be obtained with the traditional approach, namely the PMF analysis of the mass spectra data integrated for each thermogram. But only our method can also obtain the volatility information for each OA source and type. Additionally, we can identify the contribution of thermal decomposition to the overall signal.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2020-07-03
    Description: In this study, the fine-scale responses of a stratified oligotrophic karstic lake (Kozjak Lake, Plitvice Lakes, Croatia; the lake fetch is 2.3 km, and the maximum depth is 46 m) to atmospheric forcing on the lake surface are investigated. Lake temperatures measured at a resolution of 2 min at 15 depths ranging from 0.2 to 43 m, which were observed during the 6 July–5 November 2018 period, were analyzed. The results show thermocline deepening from 10 m at the beginning of the observation period to 16 m at the end of the observation period, where the latter depth corresponds to approximately one-third of the lake depth. The pycnocline followed the same pattern, except that the deepening occurred throughout the entire period approximately 1 m above the thermocline. On average, thermocline deepening was 3–4 cm d−1, while the maximum deepening (12.5 cm d−1) coincided with the occurrence of internal seiches. Furthermore, the results indicate three different types of forcings on the lake surface; two of these forcings have diurnal periodicity – (1) continuous heat fluxes and (2) occasional periodic stronger winds – whereas forcing (3) corresponds to occasional nonperiodic stronger winds with steady along-basin directions. Continuous heat fluxes (1) produced forced diurnal oscillations in the lake temperature within the first 5 m of the lake throughout the entire observation period. Noncontinuous periodic stronger winds (2) resulted in occasional forced diurnal oscillations in the lake temperatures at depths from approximately 7 to 20 m. Occasional strong and steady along-basin winds (3) triggered both baroclinic internal seiches with a principal period of 8.0 h and barotropic surface seiches with a principal period of 9 min. Lake currents produced by the surface seiches under realistic-topography conditions generated baroclinic oscillations of the thermocline region (at depths from 9 to 17 m) with periods corresponding to the period of surface seiches (≈ 9 min), which, to the best of our knowledge, has not been reported in previous lake studies.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2020-07-03
    Description: The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July–August 2016 and January–February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NOy concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NOy. The severe model overestimate of NOy during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NOy partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3 % to 9 % and improves model–measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr−1 of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2020-07-03
    Description: Identification of atmospheric molecular clusters and measurement of their concentrations by atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometers may be affected by systematic error due to possible decomposition of clusters inside the instrument. Here, we perform numerical simulations of decomposition in an APi-TOF mass spectrometers and formation in the atmosphere of a set of clusters which involve a representative kind of highly oxygenated organic molecule (HOM), with the molecular formula C10H16O8. This elemental composition corresponds to one of the most common mass peaks observed in experiments on ozone-initiated autoxidation of α-pinene. Our results show that decomposition is highly unlikely for the considered clusters, provided their bonding energy is large enough to allow formation in the atmosphere in the first place.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2020-07-03
    Description: Anthropogenic aerosols impact cirrus clouds through ice nucleation, thereby changing the Earth's radiation budget. However, the magnitude and sign of anthropogenic forcing in cirrus clouds is still very uncertain depending on the treatments for ice-nucleating particles (INPs), the treatments for haze particle freezing, and the ice nucleation scheme. In this study, a new ice nucleation scheme (hereafter the HYBRID scheme) is developed to combine the best features of two previous ice nucleation schemes, so that global models are able to calculate the ice number concentration in both updrafts and downdrafts associated with gravity waves, and it has a robust sensitivity to the change of aerosol number. The scheme is applied in a box model, and the ice number concentrations (9.52±2.08 L−1) are somewhat overestimated but are in reasonable agreement with those from an adiabatic parcel model (9.40±2.31 L−1). Then, the forcing and cloud changes associated with changes in aircraft soot, sulfur emission, and all anthropogenic emissions between the preindustrial (PI) period and the present day (PD) are examined using the CESM/IMPACT global model with the HYBRID scheme. Aircraft soot emissions decrease the global average ice number concentration (Ni) by -1.0±2.4×107 m−2 (−1 %) (over the entire column) due to the inhibition of homogeneous nucleation and lead to a radiative forcing of -0.14±0.07 W m−2, while the increase in sulfur emissions increases the global average Ni by 7.3±2.9×107 m−2 (5 %) due to the increase in homogeneous nucleation and leads to a radiative forcing of -0.02±0.06 W m−2. The possible effects of aerosol and cloud feedbacks to the meteorological state in remote regions partly contribute to reduce the forcing and the change in Ni due to anthropogenic emissions. The radiative forcing due to all increased anthropogenic emissions from PI to PD is estimated to be -0.20±0.05 W m−2. If newly formed secondary organic aerosols (SOAs) act as INPs and inhibit homogeneous nucleation, the Ni formed from heterogeneous nucleation is increased. As a result, the inclusion of INPs from SOA increases the change in Ni to 12.0±2.3×107 m−2 (9 %) and increases (makes less negative) the anthropogenic forcing on cirrus clouds to -0.04±0.08 W m−2 from PI to PD.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2020-07-06
    Description: Based on the numerical weather prediction model COSMO of Germany's national meteorological service (Deutscher Wetterdienst, DWD), regional reanalysis datasets have been developed with grid spacing of up to 2 km. This development started as a fundamental research activity within the Hans-Ertel-Centre for Weather Research (HErZ) at the University of Bonn and the University of Cologne. Today, COSMO reanalyses are an established product of the DWD and have been widely used in applications on European and national German level. Successful applications of COSMO reanalyses include renewable energy assessments as well as meteorological risk estimates. The COSMO reanalysis datasets are now publicly available and provide spatio-temporal consistent data of atmospheric parameters covering both near-surface conditions and vertical profiles. This article reviews the status of the COSMO reanalyses, including evaluation results and applications. In many studies, evaluation of the COSMO reanalyses point to an overall good quality and often an added value compared to different contemporary global reanalysis datasets. We further outline current plans for the further development and application of regional reanalyses in the HErZ research group Cologne/Bonn in collaboration with the DWD.
    Print ISSN: 1992-0628
    Electronic ISSN: 1992-0636
    Topics: Natural Sciences in General
    Published by Copernicus on behalf of European Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2020-07-06
    Description: Many wetlands have been drained due to urbanization, agriculture, forestry or other purposes, which has resulted in a loss of their ecosystem services. To protect receiving waters and to achieve services such as flood control and storm water quality mitigation, new wetlands are created in urbanized areas. However, our knowledge of greenhouse gas exchange in newly created wetlands in urban areas is currently limited. In this paper we present measurements carried out at a created urban wetland in Southern Finland in the boreal climate. We conducted measurements of ecosystem CO2 flux and CH4 flux (FCH4) at the created storm water wetland Gateway in Nummela, Vihti, Southern Finland, using the eddy covariance (EC) technique. The measurements were commenced the fourth year after construction and lasted for 1 full year and two subsequent growing seasons. Besides ecosystem-scale fluxes measured by the EC tower, the diffusive CO2 and CH4 fluxes from the open-water areas (FwCO2 and FwCH4, respectively) were modelled based on measurements of CO2 and CH4 concentration in the water. Fluxes from the vegetated areas were estimated by applying a simple mixing model using the above-mentioned fluxes and the footprint-weighted fractional area. The half-hourly footprint-weighted contribution of diffusive fluxes from open water ranged from 0 % to 25.5 % in 2013. The annual net ecosystem exchange (NEE) of the studied wetland was 8.0 g C-CO2 m−2 yr−1, with the 95 % confidence interval between −18.9 and 34.9 g C-CO2 m−2 yr−1, and FCH4 was 3.9 g C-CH4 m−2 yr−1, with the 95 % confidence interval between 3.75 and 4.07 g C-CH4 m−2 yr−1. The ecosystem sequestered CO2 during summer months (June–August), while the rest of the year it was a CO2 source. CH4 displayed strong seasonal dynamics, higher in summer and lower in winter, with a sporadic emission episode in the end of May 2013. Both CH4 and CO2 fluxes, especially those obtained from vegetated areas, exhibited strong diurnal cycles during summer with synchronized peaks around noon. The annual FwCO2 was 297.5 g C-CO2 m−2 yr−1 and FwCH4 was 1.73 g C-CH4 m−2 yr−1. The peak diffusive CH4 flux was 137.6 nmol C-CH4 m−2 s−1, which was synchronized with the FCH4. Overall, during the monitored time period, the established storm water wetland had a climate-warming effect with 0.263 kg CO2-eq m−2 yr−1 of which 89 % was contributed by CH4. The radiative forcing of the open-water areas exceeded that of the vegetation areas (1.194 and 0.111 kg CO2-eq m−2 yr−1, respectively), which implies that, when considering solely the climate impact of a created wetland over a 100-year horizon, it would be more beneficial to design and establish wetlands with large patches of emergent vegetation and to limit the areas of open water to the minimum necessitated by other desired ecosystem services.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2020-07-07
    Description: We present multi-period modulation of energetic electron flux observed by the BeiDa Imaging Electron Spectrometer (BD-IES) on board a Chinese navigation satellite on 13 October 2015. Electron flux oscillations were observed at a dominant period of ∼190 s in consecutive energy channels from ∼50 to ∼200 keV. Interestingly, flux modulations at a secondary period of ∼400 s were also unambiguously observed. The oscillating signals at different energy channels were observed in sequence, with a time delay of up to ∼900 s. This time delay far exceeds the oscillating periods, by which we speculate that the modulations were caused by localized ultra-low-frequency (ULF) waves. To verify the wave–particle interaction scenario, we revisit the classic drift-resonance theory. We adopt the calculation method therein to derive the electron energy change in a multi-period ULF wave field. Then, based on the modeled energy change, we construct the flux variations to be observed by a virtual spacecraft. The predicted particle signatures well agree with the BD-IES observations. We demonstrate that the particle energy change might be underestimated in the conventional theories, as the Betatron acceleration induced by the curl of the wave electric field was often omitted. In addition, we show that azimuthally localized waves would notably extend the energy width of the resonance peak, whereas the drift-resonance interaction is only efficient for particles at the resonant energy in the original theory.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2020-07-06
    Description: Land transport is an important emission source of nitrogen oxides, carbon monoxide, and volatile organic compounds. The emissions of nitrogen oxides affect air quality directly. Further, all of these emissions serve as a precursor for the formation of tropospheric ozone, thus leading to an indirect influence on air quality. In addition, ozone is radiatively active and its increase leads to a positive radiative forcing. Due to the strong non-linearity of the ozone chemistry, the contribution of emission sources to ozone cannot be calculated or measured directly. Instead, atmospheric chemistry models equipped with specific source attribution methods (e.g. tagging methods) are required. In this study we investigate the contribution of land transport emissions to ozone and ozone precursors using the MECO(n) model system (MESSy-fied ECHAM and COSMO models nested n times). This model system couples a global and a regional chemistry climate model and is equipped with a tagging diagnostic. We investigate the combined effect of long-range-transported ozone and ozone which is produced by European emissions by applying the tagging diagnostic simultaneously and consistently on the global and regional scale. We performed two simulations each covering 3 years with different anthropogenic emission inventories for Europe. We applied two regional refinements, i.e. one refinement covering Europe (50 km resolution) and one covering Germany (12 km resolution). The diagnosed absolute contributions of land transport emissions to reactive nitrogen (NOy) near ground level are in the range of 5 to 10 nmol mol−1. This corresponds to relative contributions of 50 % to 70 %. The largest absolute contributions appear around Paris, southern England, Moscow, the Po Valley, and western Germany. The absolute contributions to carbon monoxide range from 30 nmol mol−1 to more than 75 nmol mol−1 near emission hot-spots such as Paris or Moscow. The ozone which is attributed to land transport emissions shows a strong seasonal cycle with absolute contributions of 3 nmol mol−1 during winter and 5 to 10 nmol mol−1 during summer. This corresponds to relative contributions of 8 % to 10 % during winter and up to 16 % during summer. The largest values during summer are confined to the Po Valley, while the contributions in western Europe range from 12 % to 14 %. Only during summer are the ozone contributions slightly influenced by the anthropogenic emission inventory, but these differences are smaller than the range of the seasonal cycle of the contribution to land transport emissions. This cycle is caused by a complex interplay of seasonal cycles of other emissions (e.g. biogenic) and seasonal variations of the ozone regimes. In addition, our results suggest that during events with large ozone values the ozone contributions of land transport and biogenic emissions increase strongly. Here, the contribution of land transport emissions peaks up to 28 %. Hence, our model results suggest that land transport emissions are an important contributor during periods with large ozone values.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2020-07-06
    Description: The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased to 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models, despite an increase in TCR between CMIP eras (mean TCR increased from 1.7 to 1.9 K). The evolution of the warming suggests, however, that several of the CMIP6 models apply too strong aerosol cooling, resulting in too weak mid-20th century warming compared to the instrumental record.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2020-07-06
    Description: We used physical models to investigate the structural evolution of segmented extensional rifts containing syn-rift evaporites and their subsequent inversion. An early stage of extension generated structural topography consisting of a series of en-échelon graben. Our salt analog filled these graben and the surroundings before continued extension and, finally, inversion. During post-salt extension, deformation in the subsalt section remained focused on the graben-bounding fault systems, whereas deformation in suprasalt sediments was mostly detached, forming a sigmoidal extensional minibasin system across the original segmented graben array. Little brittle deformation was observed in the post-salt section. Sedimentary loading from the minibasins drove salt up onto the footwalls of the subsalt faults, forming diapirs and salt-ridge networks on the intra-rift high blocks. Salt remobilization and expulsion from beneath the extensional minibasins was enhanced along and up the major relay or transfer zones that separated the original sub-salt grabens, forming major diapirs in these locations. Inversion of this salt-bearing rift system produced strongly decoupled shortening belts in basement and suprasalt sequences. Suprasalt deformation geometries and orientations are strongly controlled by the salt diapir and ridge network produced during extension and subsequent downbuilding. Thrusts are typically localized at minibasin margins where the overburden was thinnest, and salt had risen diapirically on the horst blocks. In the subsalt section, shortening strongly inverted sub-salt grabens, which uplifted the suprasalt minibasins. New pop-up structures also formed in the subsalt section. Primary welds formed as suprasalt minibasins touched down onto inverted graben. Model geometries compare favorably to natural examples such as those in the Moroccan High Atlas.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2009
    Description: 〈b〉Paleomagnetic determination of paleolatitude and rotation of Bering Island (Komandorsky Islands) Russia: comparison with rotations in the Aleutian Islands and Kamchatka〈/b〉〈br〉 P. S. Minyuk and D. B. Stone〈br〉 Stephan Mueller Spec. Publ. Ser., 4, 329-348, https://doi.org/10.5194/smsps-4-329-2009, 2009〈br〉 A paleomagnetic study was carried out on Paleogene sedimentary rocks from Bering Island, Komandorsky islands, located at the far western end of the Aleutian Island Arc. The age of these sediments has been debated at length, but the combination of magnetostratigraphy with the fossil record indicates that the base of the section is of early Eocene (approximately 55 Ma) and the top latest Eocene age. Paleomagnetic data were obtained from 260 samples from 60 individual bedding units. The combined data show a clockwise rotation 〈i〉R〈/i〉=26.3°±8.5°, 〈i〉F〈/i〉=8.1°±2.5° with respect to the North American Plate and 〈i〉R〈/i〉=38°±8.8°, 〈i〉F〈/i〉=8.7°±2.7° with respect to the Eurasian Plate. They also show a shallowing of the inclination which yields a paleolatitude of 53°, 12° south of its expected latitude. The shallowing may have a component due to compaction, but the wide variation in sampled lithologies, combined with internal consistency of the data set, would argue against the shallowing being significant. To compare these data with other Aleutian Arc data we compiled a comprehensive survey of all available data sets. Out of these we selected four islands for which the data passed basic reliability criteria, namely Umnak, Amlia, Amchitka and Medny islands. All four showed significant clockwise rotation with respect to both North American and Eurasian polar wander paths. Several mechanisms can generate the observed rotation, ranging from block rotation driven by oblique relative motion of the Pacific plate, through lateral transport along the curve of the arc, to whole-arc rotation about its eastern end. The distribution and age spread of the rotation data are insufficient to discriminate between mechanisms, but it seems likely that different mechanism may have operated at different times and in different locations.
    Print ISSN: 1868-4556
    Electronic ISSN: 1868-4564
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2009
    Description: 〈b〉Paleomagnetism of the Cretaceous rocks from Cape Kronotskiy, East Kamchatka and reconstruction of terrane trajectories in the NE Pacific area〈/b〉〈br〉 W. Harbert, N. V. Tsukanov, D. V. Alexeiev, C. Gaedicke, R. Freitag, B. V. Baranov, S. G. Skolotnev, W. Kramer, and W. Seifert〈br〉 Stephan Mueller Spec. Publ. Ser., 4, 313-327, https://doi.org/10.5194/smsps-4-313-2009, 2009〈br〉 The Kamchatka Peninsula of northeastern Russia is located along the northwestern margin of the Bering Sea and consists of zones of complexly deformed accreted terranes. Paleomagnetic samples were collected for study from a Late Cretaceous aged locality at Cape Kronotskiy (λ=54°44.8´ N, φ=162°1.29´ E). Two components of magnetization were observed. During stepwise thermal demagnetization, the B-magnetic component was observed up to 600°C having a direction and associated uncertainty in stratigraphic coordinates of 〈i〉D〈sub〉s〈/sub〉〈/i〉=300.7°, 〈i〉I〈sub〉s〈/sub〉〈/i〉=48.7°, α〈sub〉95〈/sub〉=10.9°, k-value=11.8, n=17. The B component paleolatitude calculated from the Fisher mean in stratigraphic coordinates and associated statistics are λ〈sub〉obs〈/sub〉=30.4° N or S, λ〈sub〉95〈/sub〉=8.9°, n=17 (sites), k-value=11. Our overall study paleolatitude result is similar to a previously reported paleomagnetic study completed within this unit. Terrane trajectories calculated using the finite rotation poles of Engebretson et al. (1985), which are corrected for either Pacific-hotspot drift or True Polar Wander hotspot-spin axis relative motion, show that the sampled unit represents a far traveled tectonostratigraphic terrane and support a model in which accretion (docking) events of this composite or superterrane with the North America plate occur at approximately 40 Ma.
    Print ISSN: 1868-4556
    Electronic ISSN: 1868-4564
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2009
    Description: 〈b〉Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation〈/b〉〈br〉 P. L. Tikhomirov, M. V. Luchitskaya, and I. R. Kravchenko-Berezhnoy〈br〉 Stephan Mueller Spec. Publ. Ser., 4, 289-311, https://doi.org/10.5194/smsps-4-289-2009, 2009〈br〉 The Cretaceous granitoid complexes of the Eastern Taigonos and the Prybrezhny Taigonos belts (southern part of the Taigonos Peninsula), Tanyurer pluton of the Okhotsk-Chukotka volcanic belt, and the Peekiney, Moltykan, and Telekay plutons of the Chaun tectonic zone are discussed in relation to their structural position, petrography, rock and mineral chemistry and physicochemical conditions of melt crystallization. These granitoid plutons were generated through melting of a compositionally heterogeneous crustal source, with direct contribution from mafic melts produced in the mantle wedge above active or extinct Benioff zones. Variations of the trace-element composition of granitoids are controlled to a greater extent by local compositional peculiarities of the source regions than by the geodynamic regime as such. The final crystallization of these plutons occurred at comparatively shallow depths, between 1–2 and 6–7 km, in a temperature interval of 700–770°C. The depth of emplacement of the bodies decreases with increasing distance from the areas with oceanic and transitional type crust, as does the degree of incompatible element enrichment of the mantle and crustal sources of melts. Variations in fo〈sub〉2〈/sub〉 values at the late stages of crystallization of the plutons reach 3–4 orders of magnitude, exceeding the limits of the quartz-fayalite-magnetite (QFM) and nickel-nickel oxide (NNO) buffer equilibria, which likely results from local variations of the source composition.
    Print ISSN: 1868-4556
    Electronic ISSN: 1868-4564
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2020-08-25
    Description: Improvement of cloud modelling for global and regional climate and weather studies requires comprehensive information on many cloud parameters. This information is delivered by remote observations of clouds from ground-based and space-borne platforms using different methods and processing algorithms. Cloud liquid water path (LWP) is one of the main obtained quantities. Previously, measurements of LWP by the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and AVHRR (Advanced Very High Resolution Radiometer) satellite instruments provided evidence for the systematic differences between LWP values over land and water areas in northern Europe. An attempt is made to detect such differences by means of ground-based microwave observations performed near the coastline of the Gulf of Finland in the vicinity of St Petersburg, Russia. The microwave radiometer (RPG-HATPRO, Radiometer Physics GmbH – Humidity And Temperature PROfiler), located 2.5 km from the coastline, is functioning in the angular scanning mode and is probing the air portions over land (at an elevation angle of 90∘) and over water (at seven elevation angles in the range 4.8–30∘). The influence of the land–sea LWP difference on the brightness temperature values in the 31.4 GHz spectral channel has been demonstrated, and the following features have been detected: (1) an interfering systematic signal is present in the 31.4 GHz channel, which can be attributed to the humidity horizontal gradient, (2) clouds over the opposite shore of the Gulf of Finland mask the LWP gradient effect. Preliminary results of the retrieval of LWP over water by the statistical regression method applied to the microwave measurements by HATPRO in the 31.4 and 22.24 GHz channels are presented. The monthly averaged results are compared to the corresponding values derived from the satellite observations by the SEVIRI instrument and from the reanalysis data.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2020-08-25
    Description: The isotopic signal (δ18O and δD) imprinted in ice cores from Antarctica is not solely generated by the temperature sensitivity of the isotopic composition of precipitation, but it also contains the signature of the intermittency of the precipitation patterns, as well as of post-deposition processes occurring at the surface and in the firn. This leads to a proxy signal recorded by the ice cores that may not be representative of the local climate variations. Due to precipitation intermittency, the ice cores only record brief snapshots of the climatic conditions, resulting in aliasing of the climatic signal and thus a large amount of noise which reduces the minimum temporal resolution at which a meaningful signal can be retrieved. The analyses are further complicated by isotopic diffusion, which acts as a low-pass filter that dampens any high-frequency changes. Here, we use reanalysis data (ERA-Interim) combined with satellite products of accumulation to evaluate the spatial distribution of the numerical estimates of the transfer function that describes the formation of the isotopic signal across Antarctica. As a result, the minimum timescales at which the signal-to-noise ratio exceeds unity range from less than 1 year at the coast to about 1000 years further inland. Based on solely physical processes, we are thus able to define a lower bound for the timescales at which climate variability can be reconstructed from the isotopic composition in ice cores.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2020-08-25
    Description: High-performance computing resources allow us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems on a global scale, and high-resolution models (HRMs) generally provide better simulation performance than low-resolution models (LRMs). In this study, we execute a next-generation model that is capable of simulating global aerosols using version 16 of the Nonhydrostatic Icosahedral Atmospheric Model (NICAM.16). The simulated aerosol distributions are obtained for 3 years with an HRM using a global 14 km grid spacing, an unprecedentedly high horizontal resolution and long integration period. For comparison, a NICAM with a 56 km grid spacing is also run as an LRM, although this horizontal resolution is still high among current global aerosol climate models. The comparison elucidated that the differences in the various variables of meteorological fields, including the wind speed, precipitation, clouds, radiation fluxes and total aerosols, are generally within 10 % of their annual averages, but most of the variables related to aerosols simulated by the HRM are slightly closer to the observations than are those simulated by the LRM. Upon investigating the aerosol components, the differences in the water-insoluble black carbon and sulfate concentrations between the HRM and LRM are large (up to 32 %), even in the annual averages. This finding is attributed to the differences in the aerosol wet deposition flux, which is determined by the conversion rate of cloud to precipitation, and the difference between the HRM and LRM is approximately 20 %. Additionally, the differences in the simulated aerosol concentrations at polluted sites during polluted months between the HRM and LRM are estimated with normalized mean biases of −19 % for black carbon (BC), −5 % for sulfate and −3 % for the aerosol optical thickness (AOT). These findings indicate that the impacts of higher horizontal grid spacings on model performance for secondary products such as sulfate, and complex products such as the AOT, are weaker than those for primary products, such as BC. On a global scale, the subgrid variabilities in the simulated AOT and cloud optical thickness (COT) in the 1∘×1∘ domain using 6-hourly data are estimated to be 28.5 % and 80.0 %, respectively, in the HRM, whereas the corresponding differences are 16.6 % and 22.9 % in the LRM. Over the Arctic, both the HRM and the LRM generally reproduce the observed aerosols, but the largest difference in the surface BC mass concentrations between the HRM and LRM reaches 30 % in spring (the HRM-simulated results are closer to the observations). The vertical distributions of the HRM- and LRM-simulated aerosols are generally close to the measurements, but the differences between the HRM and LRM results are large above a height of approximately 3 km, mainly due to differences in the wet deposition of aerosols. The global annual averages of the effective radiative forcings due to aerosol–radiation and aerosol–cloud interactions (ERFari and ERFaci) attributed to anthropogenic aerosols in the HRM are estimated to be -0.293±0.001 and -0.919±0.004 W m−2, respectively, whereas those in the LRM are -0.239±0.002 and -1.101±0.013 W m−2. The differences in the ERFari between the HRM and LRM are primarily caused by those in the aerosol burden, whereas the differences in the ERFaci are primarily caused by those in the cloud expression and performance, which are attributed to the grid spacing. The analysis of interannual variability revealed that the difference in reproducibility of both sulfate and carbonaceous aerosols at different horizontal resolution is greater than their interannual variability over 3 years, but those of dust and sea salt AOT and possibly clouds were the opposite. Because at least 10 times the computer resources are required for the HRM (14 km grid) compared to the LRM (56 km grid), these findings in this study help modelers decide whether the objectives can be achieved using such higher resolution or not under the limitation of available computational resources.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2020-08-25
    Description: Rockfalls are frequent and harmful phenomena occurring in mountain ranges, coastal cliffs, and slope cuts. Although several natural processes occur in their formation and triggering, rainfall is one of the most common causes. The prediction of rock failures is of social significance for civil protection purposes and can rely on the statistical analysis of past rainfall conditions that caused the failures. The paper describes the analysis of information on rainfall-induced rockfalls in Gran Canaria and Tenerife, Canary Islands (Spain). An analysis of the monthly rainfall versus the monthly distribution of rockfalls reveals that they are correlated for most of the year, except in summer, when other triggers act to induce collapses. National and regional catalogs with hourly and daily rainfall measurements are used to reconstruct the cumulated amount (E) and the duration (D) of the rainfall responsible for the rock failures. Adopting a consolidated statistical approach, new ED rainfall thresholds for possible rockfall occurrence and the associated uncertainties are calculated for the two test sites. As far as is known, this is the first attempt to predict this type of failure using the threshold approach. Using the rainfall information, a map of the mean annual rainfall is obtained for Gran Canaria and Tenerife, and it is used to assess the differences between the thresholds. The results of this study are expected to improve the ability to forecast rockfalls in the Canary Islands in view of implementing an early-warning system to mitigate the rockfall hazard and reduce the associated risk.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2020-08-25
    Description: Wind profiles are fundamental to the research and applications in boundary layer meteorology, air quality and numerical weather prediction. Large-scale wind profile data have been previously documented from network observations in several countries, such as Japan, the USA, various European countries and Australia, but nationwide wind profiles observations are poorly understood in China. In this study, the salient characteristics and performance of wind profiles as observed by the radar wind profiler network of China are investigated. This network consists of more than 100 stations instrumented with 1290 MHz Doppler radar designed primarily for measuring vertically resolved winds at various altitudes but mainly in the boundary layer. It has good spatial coverage, with much denser sites in eastern China. The wind profiles observed by this network can provide the horizontal wind direction, horizontal wind speed and vertical wind speed for every 120 m interval within the height of 0 to 3 km. The availability of the radar wind profiler network has been investigated in terms of effective detection height, data acquisition rate, data confidence and data accuracy. Further comparison analyses with reanalysis data indicate that the observation data at 89 stations are recommended and 17 stations are not recommended. The boundary layer wind profiles from China can provide useful input to numerical weather prediction systems at regional scales.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2020-08-25
    Description: Vehicular emissions contribute a significant portion to fine particulate matter (PM2.5) air pollution in urban areas. Knowledge of the relative contribution of gasoline- versus diesel-powered vehicles is highly relevant for policymaking, and yet there is a lack of an effective observation-based method to determine this quantity, especially for its robust tracking over a period of years. In this work, we present an approach to track separate contributions of gasoline and diesel vehicles through the positive matrix factorization (PMF) analysis of online monitoring data measurable by relatively inexpensive analytical instruments. They are PM2.5 organic and elemental carbon (OC and EC), C2–C9 volatile organic compounds (VOCs) (e.g., pentanes, benzene, xylenes, etc.), and nitrogen oxide concentrations. The method was applied to monitoring data spanning more than 6 years between 2011 and 2017 in a roadside environment in Hong Kong. We found that diesel vehicles accounted for ∼70 %–90 % of the vehicular PM2.5 (PMvehicle) over the years and the remainder from gasoline vehicles. The diesel PMvehicle during truck- and bus-dominated periods showed declining trends simultaneous with control efforts targeted at diesel commercial vehicles and franchised buses in the intervening period. The combined PMvehicle from diesel and gasoline vehicles by PMF agrees well with an independent estimate by the EC-tracer method, both confirming PMvehicle contributed significantly to the PM2.5 in this urban environment (∼4–8 µg m−3, representing 30 %–60 % in summer and 10 %–20 % in winter). Our work shows that the long-term monitoring of roadside VOCs and PM2.5 OC and EC is effective for tracking gaseous and PM pollutants from different vehicle categories. This work also demonstrates the value of an evidence-based approach in support of effective control policy formulation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2020-08-26
    Description: In lakes, large amounts of methane are produced in anoxic sediments. Methane-oxidizing bacteria effectively convert this potent greenhouse gas into biomass and carbon dioxide. These bacteria are present throughout the water column, where methane concentrations can range from nanomolar to millimolar. In this study, we tested the hypothesis that methanotroph assemblages in a seasonally stratified freshwater lake are adapted to the contrasting methane concentrations in the epi- and hypolimnion. We further hypothesized that lake overturn would change the apparent methane oxidation kinetics as more methane becomes available in the epilimnion. In addition to the change in the methane oxidation kinetics, we investigated changes in the transcription of genes encoding methane monooxygenase, the enzyme responsible for the first step of methane oxidation, with metatranscriptomics. Using laboratory incubations of the natural microbial communities, we show that the half-saturation constant (Km) for methane – the methane concentration at which half the maximum methane oxidation rate is reached – was 20 times higher in the hypolimnion than in the epilimnion during stable stratification. During lake overturn, however, the kinetic constants in the epi- and hypolimnion converged along with a change in the transcriptionally active methanotroph assemblage. Conventional particulate methane monooxygenase appeared to be responsible for methane oxidation under different methane concentrations. Our results suggest that methane availability is one important factor for creating niches for methanotroph assemblages with well-adapted methane oxidation kinetics. This rapid selection and succession of adapted lacustrine methanotroph assemblages allowed the previously reported high removal efficiency of methane transported to the epilimnion to be maintained – even under rapidly changing conditions during lake overturn. Consequently, only a small fraction of methane stored in the anoxic hypolimnion is emitted to the atmosphere.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2020-08-26
    Description: In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not well known due to the sparseness of official monitoring networks or unrealistic assumptions being made in urban-air-quality models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward because of the localized nature of air pollution and the large uncertainties associated with measurements of low-cost sensors. This study presents a practical approach to producing high-spatiotemporal-resolution maps of urban air pollution capable of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality model, driven by an open-source atmospheric-dispersion model and emission proxies from open-data sources, and (2) a practical spatial-interpolation scheme, capable of assimilating observations with different accuracies. The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy (defined as the ratio between the root mean square error and the mean of the observations) of 39 % within 2 km of an observation location and 53 % at larger distances. When low-cost measurements of the Urban AirQ campaign are included, the maps reveal more detailed concentration patterns in areas which are undersampled by the official network. It is shown that during the summer holiday period, NO2 concentrations drop about 10 %. The reduction is less in the historic city centre, while strongest reductions are found around the access ways to the tunnel connecting the northern and the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic flow is redirected to other main roads. Overall, it is shown that Retina can be applied for an enhanced understanding of reference measurements and as a framework to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2020-08-26
    Description: The nature and origin of the two large low-velocity provinces (LLVPs) in the lowest part of the mantle remain controversial. These structures have been interpreted as a purely thermal feature, accumulation of subducted oceanic lithosphere or a primordial zone of iron enrichment. Information regarding the density of the LLVPs would help to constrain a possible explanation. In this work, we perform a density inversion for the entire mantle, by constraining the geometry of potential density anomalies using tomographic vote maps. Vote maps describe the geometry of potential density anomalies according to their agreement with multiple seismic tomographies, hence not depending on a single representation. We use linear inversion and determine the regularization parameters using cross-validation. Two different input fields are used to study the sensitivity of the mantle density results to the treatment of the lithosphere. We find the best data fit is achieved if we assume that the lithosphere is in isostatic balance. The estimated densities obtained for the LLVPs are systematically positive density anomalies for the LLVPs in the lower 800–1000 km of the mantle, which would indicate a chemical component for the origin of the LLVPs. Both iron-enrichment and a mid-oceanic ridge basalt (MORB) contribution are in accordance with our data, but the required superadiabatic temperature anomalies for MORB would be close to 1000 K.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2020-08-26
    Description: Understanding the variability in aerosol concentrations (ACs) over China is a scientific challenge and is of practical importance. The present study explored the month-to-month variability in ACs over China based on simulations of an atmospheric chemical transport model with a fixed emissions level. The month-to-month variability in ACs over China is dominated by two principal modes: the first leading monopole mode and the second meridional dipole mode. The monopole mode mainly indicates enhanced ACs over eastern China, and the dipole mode displays a south–north out-of-phase pattern. The two leading modes are associated with different climatic systems. The monopole mode relates to the 3 months leading the El Niño–Southern Oscillation (ENSO), while the dipole mode connects with the simultaneous variation in the North Atlantic Oscillation (NAO) or the Northern Hemisphere Annular Mode (NAM). The associated anomalous dynamic and thermal impacts of the two climatic variabilities are examined to explain their contributions to the formation of the two modes. For the monopole mode, the preceding ENSO is associated with anomalous convergence, decreased planetary boundary layer height (PBLH), and negative temperature anomalies over eastern China, which are unfavorable for emissions. For the dipole mode, the positive NAO is accompanied by opposite anomalies in the convergence, PBLH, and temperature over southern and northern China, paralleling the spatial formation of the mode. This result suggests that the variations originating from the tropical Pacific and extratropical atmospheric systems contribute to the dominant variabilities of ACs over China.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2020-08-26
    Description: The data set “Spatial radionuclide deposition data from the 60 radial km area around the Chernobyl nuclear power plant: results from a sampling survey in 1987” is the latest in a series of data to be published by the Environmental Information Data Centre (EIDC) describing samples collected and analysed following the Chernobyl Nuclear Power Plant accident in 1986. The data result from a survey carried out by the Ukrainian Institute of Agricultural Radiology (UIAR) in April and May 1987 and includes sample site information, dose rate, radionuclide (zirconium-95, niobium-95, ruthenium-106, caesium-134, caesium-137 and cerium-144) deposition, and exchangeable (determined following 1M NH4Ac extraction of soils) caesium-134 and 137. The purpose of this paper is to describe the available data and methodology used for sample collection, sample preparation and analysis. The data will be useful in reconstructing doses to human and wildlife populations, answering the current lack of scientific consensus on the effects of radiation on wildlife in the Chernobyl Exclusion Zone and evaluating future management options for the Chernobyl-impacted areas of Ukraine and Belarus. The data and supporting documentation are freely available from the EIDC under the terms and conditions of the Open Government Licence (Kashparov et al., 2019; https://doi.org/10.5285/a408ac9d-763e-4f4c-ba72-73bc2d1f596d).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2020-08-26
    Description: In the first kilometers of the subsurface, temperature anomalies due to heat conduction processes rarely exceed 20–30 ∘C. When fault zones are sufficiently permeable, fluid flow may lead to much larger thermal anomalies, as evidenced by the emergence of thermal springs or by fault-related geothermal reservoirs. Hydrothermal convection triggered by buoyancy effects creates thermal anomalies whose morphology and amplitude are not well known, especially when depth- and time-dependent permeability is considered. Exploitation of shallow thermal anomalies for heat and power production partly depends on the volume and temperature of the hydrothermal reservoir. This study presents a non-exhaustive numerical investigation of fluid flow models within and around simplified fault zones, wherein realistic fluid and rock properties are accounted for, as are appropriate boundary conditions. 2D simplified models point out relevant physical mechanisms for geological problems, such as “thermal inheritance” or pulsating plumes. When permeability is increased, the classic “finger-like” upwellings evolve towards a “bulb-like” geometry, resulting in a large volume of hot fluid at shallow depth. In simplified 3D models wherein the fault zone dip angle and fault zone thickness are varied, the anomalously hot reservoir exhibits a kilometer-sized “hot air balloon” morphology or, when permeability is depth-dependent, a “funnel-shaped” geometry. For thick faults, the number of thermal anomalies increases but not the amplitude. The largest amplitude (up to 80–90 ∘C) is obtained for vertical fault zones. At the top of a vertical, 100 m wide fault zone, temperature anomalies greater than 30 ∘C may extend laterally over more than 1 km from the fault boundary. These preliminary results should motivate further geothermal investigations of more elaborated models wherein topography and fault intersections would be accounted for.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2020-08-26
    Description: This study focused on the hydrological and runoff formation processes of river water by using stable isotope tracing in the source regions of the Yangtze River during different ablation episodes in 2016 and the ablation period from 2016 to 2018. The effects of altitude on stable isotope characteristics for the river in the glacier permafrost area were greater than for the main stream and the permafrost area during the ablation period in 2016. There was a significant negative correlation (at the 0.01 level) between precipitation and δ18O, while a significant positive correlation was evident between precipitation and d-excess. More interestingly, significant negative correlations appeared between δ18O and temperature, relative humidity, and evaporation. A mixed segmentation model for end-members was used to determine the proportion of the contributions of different water sources to the target water body. The proportions of precipitation, supra-permafrost water, and glacier and snow meltwater for the main stream were 41.70 %, 40.88 %, and 17.42 %, respectively. The proportions of precipitation, supra-permafrost water, and glacier and snow meltwater were 33.63 %, 42.21 %, and 24.16 % for the river in the glacier permafrost area and 20.79 %, 69.54 %, and 9.67 %, respectively, for that in the permafrost area. The supra-permafrost water was relatively stable during the different ablation periods, becoming the main source of runoff in the alpine region, except for precipitation, during the ablation period.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2020-08-26
    Description: The coastal ocean is strongly affected by ocean acidification because of its shallow water depths, low volume, and the closeness to terrestrial dynamics. Earlier observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the southern part of the North Sea, a northwest European shelf sea, revealed lower acidification effects than expected. It has been assumed that anaerobic degradation and subsequent TA release in the adjacent back-barrier tidal areas (Wadden Sea) in summertime is responsible for this phenomenon. In this study the exchange rates of TA and DIC between the Wadden Sea tidal basins and the North Sea and the consequences for the carbonate system in the German Bight are estimated using a 3D ecosystem model. The aim of this study is to differentiate the various sources contributing to observed high summer TA in the southern North Sea. Measured TA and DIC in the Wadden Sea are considered as model boundary conditions. This procedure acknowledges the dynamic behaviour of the Wadden Sea as an area of effective production and decomposition of organic material. According to the modelling results, 39 Gmol TA yr−1 were exported from the Wadden Sea into the North Sea, which is less than a previous estimate but within a comparable range. The interannual variabilities in TA and DIC, mainly driven by hydrodynamic conditions, were examined for the years 2001–2009. Dynamics in the carbonate system are found to be related to specific weather conditions. The results suggest that the Wadden Sea is an important driver for the carbonate system in the southern North Sea. On average 41 % of TA inventory changes in the German Bight were caused by riverine input, 37 % by net transport from adjacent North Sea sectors, 16 % by Wadden Sea export, and 6 % were caused by internal net production of TA. The dominant role of river input for the TA inventory disappears when focusing on TA concentration changes due to the corresponding freshwater fluxes diluting the marine TA concentrations. The ratio of exported TA versus DIC reflects the dominant underlying biogeochemical processes in the Wadden Sea. Whereas aerobic degradation of organic matter played a key role in the North Frisian Wadden Sea during all seasons of the year, anaerobic degradation of organic matter dominated in the East Frisian Wadden Sea. Despite the scarcity of high-resolution field data, it is shown that anaerobic degradation in the Wadden Sea is one of the main contributors of elevated summer TA values in the southern North Sea.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2020-08-26
    Description: On 29 October 2018 a windsurfer's mast broke about 1 km offshore from Istria during a severe scirocco storm in the northern Adriatic Sea. He drifted in severe marine conditions until he eventually beached alive and well in Sistiana (Italy) 24 h later. We conducted an interview with the survivor to reconstruct his trajectory and to gain insight into his swimming and paddling strategy. Part of survivor's trajectory was verified using high-frequency radar surface current observations as inputs for Lagrangian temporal back-propagation from the beaching site. Back-propagation simulations were found to be largely consistent with the survivor's reconstruction. We then attempted a Lagrangian forward-propagation simulation of his trajectory by performing a leeway simulation using the OpenDrift tracking code using two object types: (i) person in water in unknown state and (ii) person with a surfboard. In both cases a high-resolution (1 km) setup of the NEMO v3.6 circulation model was employed for the surface current component, and a 4.4 km operational setup of the ALADIN atmospheric model was used for wind forcing. The best performance is obtained using the person-with-a-surfboard object type, giving the highest percentage of particles stranded within 5 km of the beaching site. Accumulation of particles stranded within 5 km of the beaching site saturates 6 h after the actual beaching time for all drifting-particle types. This time lag most likely occurs due to poor NEMO model representation of surface currents, especially in the final hours of the drift. A control run of wind-only forcing shows the poorest performance of all simulations. This indicates the importance of topographically constrained ocean currents in semi-enclosed basins even in seemingly wind-dominated situations for determining the trajectory of a person lost at sea.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2020-08-26
    Description: The present study estimates the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. Factors affecting the transfer of contamination, including water table depth, soil media, aquifer media, the impact of the vadose zone, topography, hydraulic conductivity, and land use, were used to calculate the DRASTIC and CDRASTIC indices. A sensitivity test was also performed to determine the sensitivity of the parameters. Results showed that the topographic layer displays a gentle slope in the aquifer. Most of the aquifer was covered with irrigated field crops and grassland with a moderate vegetation cover. In addition, the aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. The map removal sensibility analysis (MRSA) revealed the impact of the vadose zone (in the DRASTIC index) and hydraulic conductivity (in the CDRASTIC index) as the most important parameters in vulnerability evaluation. In both indices, the single-parameter sensibility analysis (SPSA) demonstrated net recharge as the most effective factor in vulnerability estimation. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2020-08-26
    Description: Detecting a tropospheric ozone trend from sparsely sampled ozonesonde profiles (typically once per week) is challenging due to the short-lived anomalies in the time series resulting from ozone's high temporal variability. To enhance trend detection, we have developed a sophisticated statistical approach that utilizes a geoadditive model to assess ozone variability across a time series of vertical profiles. Treating the profile time series as a set of individual time series on discrete pressure surfaces, a class of smoothing spline ANOVA (analysis of variance) models is used for the purpose of jointly modeling multiple correlated time series (on separate pressure surfaces) by their associated seasonal and interannual variabilities. This integrated fit method filters out the unstructured variation through a statistical regularization (i.e., a roughness penalty) by taking advantage of the additional correlated data points available on the pressure surfaces above and below the surface of interest. We have applied this technique to the trend analysis of the vertically correlated time series of tropospheric ozone observations from (1) IAGOS (In-service Aircraft for a Global Observing System) commercial aircraft profiles above Europe and China throughout 1994–2017 and (2) NOAA GML's (Global Monitoring Laboratory) ozonesonde records at Hilo, Hawaii, (1982–2018) and Trinidad Head, California (1998–2018). We illustrate the ability of this technique to detect a consistent trend estimate and its effectiveness in reducing the associated uncertainty in the profile data due to the low sampling frequency. We also conducted a sensitivity analysis of frequent IAGOS profiles above Europe (approximately 120 profiles per month) to determine how many profiles in a month are required for reliable long-term trend detection. When ignoring the vertical correlation, we found that a typical sampling strategy (i.e. four profiles per month) might result in 7 % of sampled trends falling outside the 2σ uncertainty interval derived from the full dataset with an associated 10 % of mean absolute percentage error. Based on a series of sensitivity studies, we determined optimal sampling frequencies for (1) basic trend detection and (2) accurate quantification of the trend. When applying the integrated fit method, we find that a typical sampling frequency of four profiles per month is adequate for basic trend detection; however, accurate quantification of the trend requires 14 profiles per month. Accurate trend quantification can be achieved with only 10 profiles per month if a regular sampling frequency is applied. In contrast, the standard separated fit method, which ignores the vertical correlation between pressure surfaces, requires 8 profiles per month for basic trend detection and 18 profiles per month for accurate trend quantification. While our method improves trend detection from sparse datasets, the key to substantially reducing the uncertainty is to increase the sampling frequency.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2020-04-24
    Description: Traditional methods for assessing fire danger often depend on meteorological forecasts, which have reduced reliability after ∼10 d. Recent studies have demonstrated long lead-time correlations between pre-fire-season hydrological variables such as soil moisture and later fire occurrence or area burned, yet the potential value of these relationships for operational forecasting has not been studied. Here, we use soil moisture data refined by remote sensing observations of terrestrial water storage from NASA's Gravity Recovery and Climate Experiment (GRACE) mission and vapor pressure deficit from NASA's Atmospheric Infrared Sounder (AIRS) mission to generate monthly predictions of fire danger at scales commensurate with regional management. We test the viability of predictors within nine US geographic area coordination centers (GACCs) using regression models specific to each GACC. Results show that the model framework improves interannual wildfire-burned-area prediction relative to climatology for all GACCs. This demonstrates the importance of hydrological information to extend operational forecast ability into the months preceding wildfire activity.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2020-04-24
    Description: Marine phytoplankton are responsible for half of the global net primary production and perform multiple other ecological functions and services of the global ocean. These photosynthetic organisms comprise more than 4300 marine species, but their biogeographic patterns and the resulting species diversity are poorly known, mostly owing to severe data limitations. Here, we compile, synthesize, and harmonize marine phytoplankton occurrence records from the two largest biological occurrence archives (Ocean Biogeographic Information System, OBIS; and Global Biodiversity Information Facility, GBIF) and three independent recent data collections. We bring together over 1.36 million phytoplankton occurrence records (1.28 million at the level of species) for a total of 1704 species, spanning the principal groups of the diatoms, dinoflagellates, and haptophytes, as well as several other groups. This data compilation increases the amount of marine phytoplankton records available through the single largest contributing archive (OBIS) by 65 %. Data span all ocean basins, latitudes, and most seasons. Analyzing the oceanic inventory of sampled phytoplankton species richness at the broadest spatial scales possible using a resampling procedure, we find that richness tends to saturate at ∼93 % of all species in our database in the pantropics, at ∼64 % in temperate waters, and at ∼35 % in the cold Northern Hemisphere, while the Southern Hemisphere remains under-explored. We provide metadata on the cruise, research institution, depth, and date for each data record, and we include phytoplankton cell counts for 193 763 records. We strongly recommend consideration of spatiotemporal biases in sampling intensity and varying taxonomic sampling scopes between research cruises or institutions when analyzing the occurrence data spatially. Including such information into predictive tools, such as statistical species distribution models, may serve to project the diversity, niches, and distribution of species in the contemporary and future ocean, opening the door for quantitative macroecological analyses of phytoplankton. PhytoBase can be downloaded from PANGAEA: https://doi.org/10.1594/PANGAEA.904397 (Righetti et al., 2019a).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2020-04-24
    Description: Increasing deoxygenation (loss of oxygen) of the ocean, including expansion of oxygen minimum zones (OMZs), is a potentially important consequence of global warming. We examined present-day variability of vertical distributions of 23 calanoid copepod species in the Eastern Tropical North Pacific (ETNP) living in locations with different water column oxygen profiles and OMZ intensity (lowest oxygen concentration and its vertical extent in a profile). Copepods and hydrographic data were collected in vertically stratified day and night MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) tows (0–1000 m) during four cruises over a decade (2007–2017) that sampled four ETNP locations: Costa Rica Dome, Tehuantepec Bowl, and two oceanic sites further north (21–22∘ N) off Mexico. The sites had different vertical oxygen profiles: some with a shallow mixed layer, abrupt thermocline, and extensive very low oxygen OMZ core; and others with a more gradual vertical development of the OMZ (broad mixed layer and upper oxycline zone) and a less extensive OMZ core where oxygen was not as low. Calanoid copepod species (including examples from the genera Eucalanus, Pleuromamma, and Lucicutia) demonstrated different distributional strategies (implying different physiological characteristics) associated with this variability. We identified sets of species that (1) changed their vertical distributions and depth of maximum abundance associated with the depth and intensity of the OMZ and its oxycline inflection points; (2) shifted their depth of diapause; (3) adjusted their diel vertical migration, especially the nighttime upper depth; or (4) expanded or contracted their depth range within the mixed layer and upper part of the thermocline in association with the thickness of the aerobic epipelagic zone (habitat compression concept). These distribution depths changed by tens to hundreds of meters depending on the species, oxygen profile, and phenomenon. For example, at the lower oxycline, the depth of maximum abundance for Lucicutia hulsemannae shifted from ∼600 to ∼800 m, and the depth of diapause for Eucalanus inermis shifted from ∼500 to ∼775 m, in an expanded OMZ compared to a thinner OMZ, but remained at similar low oxygen levels in both situations. These species or life stages are examples of “hypoxiphilic” taxa. For the migrating copepod Pleuromamma abdominalis, its nighttime depth was shallow (∼20 m) when the aerobic mixed layer was thin and the low-oxygen OMZ broad, but it was much deeper (∼100 m) when the mixed layer and higher oxygen extended deeper; daytime depth in both situations was ∼300 m. Because temperature decreased with depth, these distributional depth shifts had metabolic implications. The upper ocean to mesopelagic depth range encompasses a complex interwoven ecosystem characterized by intricate relationships among its inhabitants and their environment. It is a critically important zone for oceanic biogeochemical and export processes and hosts key food web components for commercial fisheries. Among the zooplankton, there will likely be winners and losers with increasing ocean deoxygenation as species cope with environmental change. Changes in individual copepod species abundances, vertical distributions, and life history strategies may create potential perturbations to these intricate food webs and processes. Present-day variability provides a window into future scenarios and potential effects of deoxygenation.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2020-04-24
    Description: Polar holes were observed in the high-latitude ionosphere during a series of multi-instrument case studies close to the Northern Hemisphere winter solstice in 2014 and 2015. These holes were observed during geomagnetically quiet conditions and under a range of solar activities using the European Incoherent Scatter (EISCAT) Svalbard Radar (ESR) and measurements from Global Navigation Satellite System (GNSS) receivers. Steep electron density gradients have been associated with phase scintillation in previous studies; however, no enhanced scintillation was detected within the electron density gradients at these boundaries. It is suggested that the lack of phase scintillation may be due to low plasma density levels and a lack of intense particle precipitation. It is concluded that both significant electron density gradients and plasma density levels above a certain threshold are required for scintillation to occur.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2020-04-24
    Description: Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2020-04-24
    Description: The seismic section image contains a wealth of texture detail information, which is important for the interpretation of the formation profile information. In order to enhance the texture detail of the image while keeping the structural information of the image intact, a multi-scale enhancement method based on wavelet transform is proposed. Firstly, the image is wavelet decomposed to obtain a low-frequency structural component and a series of high-frequency texture detail components. Secondly, bilateral texture filtering is performed on the low-frequency structural components to filter out high-frequency noise while maintaining the edges of the image; adaptive enhancement is performed on the high-frequency detail components to filter out low-frequency noise while enhancing detail. Finally, the processed high- and low-frequency components reconstructed by wavelets can obtain a seismic section image with enhanced detail. The method of this paper enhances the texture detail information in the image while preserving the edge of the image.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    Copernicus
    In: eEarth
    Publication Date: 2009
    Description: 〈b〉Thermogeodynamic manifestations in the Caucasus and their genesis〈/b〉〈br〉 G. E. Gugunava, J. K. Kiria, and T. B. Bochorishvili〈br〉 eEarth Discuss., 4, 77-89, doi:10.5194/eed-4-77-2009, 2009〈br〉 〈b〉Publication in eE not foreseen〈/b〉 (discussion: closed, 2 comments)〈br〉 In the work two aspects of thermal character are considered: first of all this is the connection of subduction phenomena with thermal life of the Caucasus on the basis of over interpreted data of magnetotelluric sounding, and secondly, origin of thermostressed condition of the Caucasus and its geological aspects which is manifested in the following: 〈br〉〈br〉 1. in the zones of anomalous thermodisplacements thermofaults should occur (Le Pishon et al., 1977). These thermofaults are in good correlation with deep faults which are distinguished by geological and seismic methods, these thermofaults may be earthquake sources (Spitak, Racha, etc. earthquakes), also may be channels through which magma derivates (giving mineral deposits) may penetrate on surface (Gugunava and Gijeishvili, 1989); 〈br〉〈br〉 2. in the body of sedimentary complex thermostressed seals and seal failures occur, which are apparently traps for oil-gas fluids. Good correlation of thermodense anomalies with oil deposits of the Caucasus is shown (Alexidze et al., 1985; Gugunava, 1980). 〈br〉〈br〉 Everything above mentioned was carried out within frames of stationary thermal model which did not allow us to reveal time characteristics of interconnection of geological medium and thermal field. 〈br〉〈br〉 Now investigations are being carried out within the frames of stationary thermal model and its interconnection with geological environment.
    Print ISSN: 1815-381X
    Electronic ISSN: 1815-3828
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2009
    Description: 〈b〉Thermogeodynamic manifestations in the Caucasus and their genesis〈/b〉〈br〉 G. E. Gugunava, J. K. Kiria, and T. B. Bochorishvili〈br〉 eEarth Discuss., 4, 77-89, doi:10.5194/eed-4-77-2009, 2009〈br〉 〈b〉Publication in eE not foreseen〈/b〉 (discussion: closed, 2 comments)〈br〉 In the work two aspects of thermal character are considered: first of all this is the connection of subduction phenomena with thermal life of the Caucasus on the basis of over interpreted data of magnetotelluric sounding, and secondly, origin of thermostressed condition of the Caucasus and its geological aspects which is manifested in the following: 〈br〉〈br〉 1. in the zones of anomalous thermodisplacements thermofaults should occur (Le Pishon et al., 1977). These thermofaults are in good correlation with deep faults which are distinguished by geological and seismic methods, these thermofaults may be earthquake sources (Spitak, Racha, etc. earthquakes), also may be channels through which magma derivates (giving mineral deposits) may penetrate on surface (Gugunava and Gijeishvili, 1989); 〈br〉〈br〉 2. in the body of sedimentary complex thermostressed seals and seal failures occur, which are apparently traps for oil-gas fluids. Good correlation of thermodense anomalies with oil deposits of the Caucasus is shown (Alexidze et al., 1985; Gugunava, 1980). 〈br〉〈br〉 Everything above mentioned was carried out within frames of stationary thermal model which did not allow us to reveal time characteristics of interconnection of geological medium and thermal field. 〈br〉〈br〉 Now investigations are being carried out within the frames of stationary thermal model and its interconnection with geological environment.
    Print ISSN: 1815-3836
    Electronic ISSN: 1815-3844
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2009
    Description: 〈b〉Holocene evolution and sedimentation rate of Alikes Lagoon, Zakynthos island, Western Greece: preliminary results〈/b〉〈br〉 P. Avramidis and N. Kontopoulos〈br〉 eEarth, 4, 23-29, doi:10.5194/ee-4-23-2009, 2009〈br〉 In the present study we present preliminary results from Alikes lagoon in Zakynthos island, an area that is one of the most seismically active regions of Greece. In order to estimate – interpret the Holocene evolution of the area and to reconstruct the palaeoenvironmental changes, we based on data derived from a 21 m sediment core. Sediment types, structure, colour, as well as contact depths and bed characteristics were recorded in the field. Standarised sedimentological analysis was carried out, on 46 samples including grain size analysis, calculation of moment measures, and micro- and molluscan fossils of 17 selected samples. Moreover, radiocarbon age determinations have been made on individual 〈i〉Cardium〈/i〉 shells from two horizons and whole – core Magnetic Susceptibility (MS) measurements were taken. The interpretation of depositional environments suggests a coastal environment (restricted-shallow) with reduced salinity such as a lagoon margin and in a tidal flat and/or marsh particularly. The maximum age of the studied sediments is about 8500 BP. The rate of sedimentation between 8280 BP while 5590 BP was 5.3 mm/yr and between 5590 BP and modern times is on the order of 1.03 mm/yr. These sedimentation rates results are similar to other coastal areas of western Greece.
    Print ISSN: 1815-381X
    Electronic ISSN: 1815-3828
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2009
    Description: 〈b〉Morphology of the pore space in claystones – evidence from BIB/FIB ion beam sectioning and cryo-SEM observations〈/b〉〈br〉 G. Desbois, J. L. Urai, and P. A. Kukla〈br〉 eEarth, 4, 15-22, doi:10.5194/ee-4-15-2009, 2009〈br〉 The morphology of pore space has a strong effect on mechanical and transport properties of mudrocks and clay-rich fault gouge, but its characterization has been mostly indirect. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using high resolution SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure: large jagged pores in strain shadows of clastic grains, high aspect ratio pores between similarly oriented phyllosilicate grains and crescent-shaped pores in saddle reefs of folded phyllosilicates. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale in comparison to traditional pore size distributions calculated from mercury Injection experiments, explain slaking of clays by successive wetting and drying and provide the basis for microstructure-based models of transport in clays.
    Print ISSN: 1815-3836
    Electronic ISSN: 1815-3844
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2008
    Description: 〈b〉Foraminiferal response to environmental changes in Kiel Fjord, SW Baltic Sea〈/b〉〈br〉 A. Nikulina, I. Polovodova, and J. Schönfeld〈br〉 eEarth, 3, 37-49, doi:10.5194/ee-3-37-2008, 2008〈br〉 The living benthic foraminiferal assemblages in Kiel Fjord (SW Baltic Sea) were investigated in the years 2005 and 2006. The faunal studies were accomplished by geochemical analyses of surface sediments. In general, sediment pollution by copper, zinc, tin and lead is assessed as moderate in comparison with levels reported from other areas of the Baltic Sea. However, the inner Kiel Fjord is still exposed to a high load of metals and organic matter due to enhanced accumulation of fine-grained sediments in conjunction with potential pollution sources as shipyards, harbours and intensive traffic. The results of our survey show that the dominant environmental forcing of benthic foraminifera is nutrients availability coupled with human impact. A comparison with faunal data from the 1960s reveals apparent changes in species composition and population densities. The stress-tolerant species 〈i〉Ammonia beccarii〈/i〉 invaded Kiel Fjord. 〈i〉Ammotium cassis〈/i〉 had disappeared that reflects apparently the changes in salinity over the last 10 years. These changes in foraminiferal community and a significant increase of test abnormalities indicate an intensified environmental stress since the 1960s.
    Print ISSN: 1815-381X
    Electronic ISSN: 1815-3828
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2009
    Description: 〈b〉Holocene evolution and sedimentation rate of Alikes Lagoon, Zakynthos island, Western Greece: preliminary results〈/b〉〈br〉 P. Avramidis and N. Kontopoulos〈br〉 eEarth, 4, 23-29, doi:10.5194/ee-4-23-2009, 2009〈br〉 In the present study we present preliminary results from Alikes lagoon in Zakynthos island, an area that is one of the most seismically active regions of Greece. In order to estimate – interpret the Holocene evolution of the area and to reconstruct the palaeoenvironmental changes, we based on data derived from a 21 m sediment core. Sediment types, structure, colour, as well as contact depths and bed characteristics were recorded in the field. Standarised sedimentological analysis was carried out, on 46 samples including grain size analysis, calculation of moment measures, and micro- and molluscan fossils of 17 selected samples. Moreover, radiocarbon age determinations have been made on individual 〈i〉Cardium〈/i〉 shells from two horizons and whole – core Magnetic Susceptibility (MS) measurements were taken. The interpretation of depositional environments suggests a coastal environment (restricted-shallow) with reduced salinity such as a lagoon margin and in a tidal flat and/or marsh particularly. The maximum age of the studied sediments is about 8500 BP. The rate of sedimentation between 8280 BP while 5590 BP was 5.3 mm/yr and between 5590 BP and modern times is on the order of 1.03 mm/yr. These sedimentation rates results are similar to other coastal areas of western Greece.
    Print ISSN: 1815-3836
    Electronic ISSN: 1815-3844
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2008
    Description: 〈b〉Foraminiferal response to environmental changes in Kiel Fjord, SW Baltic Sea〈/b〉〈br〉 A. Nikulina, I. Polovodova, and J. Schönfeld〈br〉 eEarth, 3, 37-49, doi:10.5194/ee-3-37-2008, 2008〈br〉 The living benthic foraminiferal assemblages in Kiel Fjord (SW Baltic Sea) were investigated in the years 2005 and 2006. The faunal studies were accomplished by geochemical analyses of surface sediments. In general, sediment pollution by copper, zinc, tin and lead is assessed as moderate in comparison with levels reported from other areas of the Baltic Sea. However, the inner Kiel Fjord is still exposed to a high load of metals and organic matter due to enhanced accumulation of fine-grained sediments in conjunction with potential pollution sources as shipyards, harbours and intensive traffic. The results of our survey show that the dominant environmental forcing of benthic foraminifera is nutrients availability coupled with human impact. A comparison with faunal data from the 1960s reveals apparent changes in species composition and population densities. The stress-tolerant species 〈i〉Ammonia beccarii〈/i〉 invaded Kiel Fjord. 〈i〉Ammotium cassis〈/i〉 had disappeared that reflects apparently the changes in salinity over the last 10 years. These changes in foraminiferal community and a significant increase of test abnormalities indicate an intensified environmental stress since the 1960s.
    Print ISSN: 1815-3836
    Electronic ISSN: 1815-3844
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2008
    Description: 〈b〉Decline of coral reefs during late Paleocene to early Eocene global warming〈/b〉〈br〉 C. Scheibner and R. P. Speijer〈br〉 eEarth, 3, 19-26, doi:10.5194/ee-3-19-2008, 2008〈br〉 Since the 1980s the frequency of warming events has intensified and simultaneously widespread coral bleaching, and enhanced coral mortality have been observed. Yet, it remains unpredictable how tropical coral reef communities will react to prolonged adverse conditions. Possibly, coral reef systems are sufficiently robust to withstand continued environmental pressures. But if coral mortality increases, what will platform communities of the future look like? The co-evolution of early Paleogene carbonate platforms and palaeoclimate may provide insight. Here we document the impact of early Paleogene global warming on shallow-water carbonate platforms in the Tethys. Between 59 and 55 Ma, three discrete stages in platform development can be identified Tethys-wide: during the first stage carbonate platforms mainly consisted of coralgal reefs; during the second – transitional – stage coralgal reefs thrived only at middle latitudes and gave way to larger foraminifera as dominant carbonate producer in low latitudes; finally, during the third stage, newly developing larger foraminifera lineages completely took over the role as main carbonate-producing organisms in low to middle latitudes. We postulate that rising temperatures led to a stepwise demise of Paleocene coral reefs, giving way to an unprecedented expansion of larger foraminifera, dominating Tethyan platforms during the early Eocene.
    Print ISSN: 1815-381X
    Electronic ISSN: 1815-3828
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2008
    Description: 〈b〉Palaeomagnetic investigations of sediments cores from Axios zone (N. Greece): implications of low inclinations in the Aegean〈/b〉〈br〉 E. Aidona, D. Kondopoulou, R. Scholger, A. Georgakopoulos, and A. Vafeidis〈br〉 eEarth, 3, 7-18, doi:10.5194/ee-3-7-2008, 2008〈br〉 Sediment cores from 13 deep boreholes (1–4.1 km) distributed within Axios zone in Northern Greece have been studied by means of palaeomagnetism. Both low field magnetic susceptibility and intensity of the natural remanent magnetization (NRM) indicate rather weakly magnetised materials. A set of 390 samples have been subjected to thermal and alternative field demagnetization. Isothermal remanent magnetization (IRM) acquisition curves and thermomagnetic analysis suggest the dominance of magnetite. Thin sections from 30 selected samples were studied in order to more precisely characterise their magnetic mineralogy. This investigation also reveals the presence of magnetite and pyrite in framboidal form. An attempt to re-orient some of the samples was partially successful by using the viscous component and the anisotropy method. These techniques were applied in order to correct the palaeomagnetic directions due to the orientation ambiguity of the core samples. The corrected mean direction converges towards an eastward value, in agreement with the overall pattern of the onshore results from previous investigations in the study area. 〈br〉〈br〉 Finally, the observed inclinations of characteristic remanences in these rocks are much lower than the expected ones but converge with those obtained from formations on land.
    Print ISSN: 1815-3836
    Electronic ISSN: 1815-3844
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2008
    Description: 〈b〉Zoogeography of the bottom Foraminifera of the West-African coast〈/b〉〈br〉 V. Mikhalevich〈br〉 eEarth Discuss., 3, 1-9, doi:10.5194/eed-3-1-2008, 2008〈br〉 〈b〉Revised manuscript has not been submitted〈/b〉 (discussion: closed, 8 comments)〈br〉 The sediment samples from the continental shelf of West-Equatorial Africa (from the Strait of Gibraltar to the Niger estuary), depths ranging from 0 to 69 m were found to contain 176 bottom foraminiferal species. For the majority of them (126 species), their areas of occurrences were mapped and the peculiar features of the geographical range and distribution were studied. The species natural habitats were established based on the taxonomical revision of the species in study all over the World Ocean based on the collections of the Zoological Institute RAS and wide literary data. The method of perforated cards was used to mark the geographical locations of all of the species studied. In order to establish the species geographic zonal distribution (together with their depth habitat) the five characteristic groups of the species were separated: 1. pan-oceanic (cosmopolitan), 2. widely spread tropical-boreal, 3. tropical-law boreal, 4. tropical-subtropical, 5. tropical. The percent of the species of each group among the species composition was established for the fauna of each station and for the whole region.
    Print ISSN: 1815-3836
    Electronic ISSN: 1815-3844
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    Copernicus
    In: eEarth
    Publication Date: 2008
    Description: 〈b〉Zoogeography of the bottom Foraminifera of the West-African coast〈/b〉〈br〉 V. Mikhalevich〈br〉 eEarth Discuss., 3, 1-9, doi:10.5194/eed-3-1-2008, 2008〈br〉 〈b〉Revised manuscript has not been submitted〈/b〉 (discussion: closed, 8 comments)〈br〉 The sediment samples from the continental shelf of West-Equatorial Africa (from the Strait of Gibraltar to the Niger estuary), depths ranging from 0 to 69 m were found to contain 176 bottom foraminiferal species. For the majority of them (126 species), their areas of occurrences were mapped and the peculiar features of the geographical range and distribution were studied. The species natural habitats were established based on the taxonomical revision of the species in study all over the World Ocean based on the collections of the Zoological Institute RAS and wide literary data. The method of perforated cards was used to mark the geographical locations of all of the species studied. In order to establish the species geographic zonal distribution (together with their depth habitat) the five characteristic groups of the species were separated: 1. pan-oceanic (cosmopolitan), 2. widely spread tropical-boreal, 3. tropical-law boreal, 4. tropical-subtropical, 5. tropical. The percent of the species of each group among the species composition was established for the fauna of each station and for the whole region.
    Print ISSN: 1815-381X
    Electronic ISSN: 1815-3828
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...