ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-07-10
    Description: TROPOMI (the TROPOspheric Monitoring Instrument), on board the Sentinel-5 Precursor (S5P) satellite, has been monitoring the Earth's atmosphere since October 2017 with an unprecedented horizontal resolution (initially 7 km2×3.5 km2, upgraded to 5.5 km2×3.5 km2 in August 2019). Monitoring air quality is one of the main objectives of TROPOMI; it obtains measurements of important pollutants such as nitrogen dioxide, carbon monoxide, and formaldehyde (HCHO). In this paper we assess the quality of the latest HCHO TROPOMI products versions 1.1.(5-7), using ground-based solar-absorption FTIR (Fourier-transform infrared) measurements of HCHO from 25 stations around the world, including high-, mid-, and low-latitude sites. Most of these stations are part of the Network for the Detection of Atmospheric Composition Change (NDACC), and they provide a wide range of observation conditions, from very clean remote sites to those with high HCHO levels from anthropogenic or biogenic emissions. The ground-based HCHO retrieval settings have been optimized and harmonized at all the stations, ensuring a consistent validation among the sites. In this validation work, we first assess the accuracy of TROPOMI HCHO tropospheric columns using the median of the relative differences between TROPOMI and FTIR ground-based data (BIAS). The pre-launch accuracy requirements of TROPOMI HCHO are 40 %–80 %. We observe that these requirements are well reached, with the BIAS found below 80 % at all the sites and below 40 % at 20 of the 25 sites. The provided TROPOMI systematic uncertainties are well in agreement with the observed biases at most of the stations except for the highest-HCHO-level site, where it is found to be underestimated. We find that while the BIAS has no latitudinal dependence, it is dependent on the HCHO concentration levels: an overestimation (+26±5 %) of TROPOMI is observed for very low HCHO levels (8.0×1015 molec. cm−2). This demonstrates the great value of such a harmonized network covering a wide range of concentration levels, the sites with high HCHO concentrations being crucial for the determination of the satellite bias in the regions of emissions and the clean sites allowing a small TROPOMI offset to be determined. The wide range of sampled HCHO levels within the network allows the robust determination of the significant constant and proportional TROPOMI HCHO biases (TROPOMI =+1.10±0.05 ×1015+0.64±0.03 × FTIR; in molecules per square centimetre). Second, the precision of TROPOMI HCHO data is estimated by the median absolute deviation (MAD) of the relative differences between TROPOMI and FTIR ground-based data. The clean sites are especially useful for minimizing a possible additional collocation error. The precision requirement of 1.2×1016 molec. cm−2 for a single pixel is reached at most of the clean sites, where it is found that the TROPOMI precision can even be 2 times better (0.5–0.8×1015 molec. cm−2 for a single pixel). However, we find that the provided TROPOMI random uncertainties may be underestimated by a factor of 1.6 (for clean sites) to 2.3 (for high HCHO levels). The correlation is very good between TROPOMI and FTIR data (R=0.88 for 3 h mean coincidences; R=0.91 for monthly means coincidences). Using about 17 months of data (from May 2018 to September 2019), we show that the TROPOMI seasonal variability is in very good agreement at all of the FTIR sites. The FTIR network demonstrates the very good quality of the TROPOMI HCHO products, which is well within the pre-launch requirements for both accuracy and precision. This paper makes suggestions for the refinement of the TROPOMI random uncertainty budget and TROPOMI quality assurance values for a better filtering of the remaining outliers.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-06
    Description: Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50 % can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations.For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12 % and 27 % and between 1 and 11×1014 molec cm−2, respectively. The median values among all stations are 13 % and 2.9×1014 molec cm−2 for the total systematic and random uncertainties.This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec cm−2) to highly polluted levels (7×1016 molec cm−2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-08
    Description: Among the more than twenty ground-based FTIR (Fourier Transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total columns time-series until now. Although several independent studies have shown that the FTIR measurements can provide accurate and precise formaldehyde total columns, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50 % can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from the past studies and have been applied consistently at the 21 participating stations, most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC), or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the systematic and random uncertainties of an individual HCHO total column measurement lie between 11 and 31 %; and between 1 and 11 × 1014  molec/cm2, respectively, with median values among all stations of 14 % and 2.6 × 1014 molec/cm2. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison to a global chemistry transport model shows its consistency, in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec/cm2) to highly polluted levels (7 × 1016 molec/cm2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time-series, some of them starting in the 1990's, are crucial for past and present satellite validation, and will be extended in the coming years for the next generation of satellite missions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...