ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction
  • American Association for the Advancement of Science (AAAS)  (34)
  • American Chemical Society (ACS)
  • 2010-2014
  • 1990-1994  (34)
  • 1994  (34)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (34)
  • American Chemical Society (ACS)
Years
  • 2010-2014
  • 1990-1994  (34)
Year
  • 1
    Publication Date: 1994-01-07
    Description: Coexpression of the human Met receptor and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), in NIH 3T3 fibroblasts causes the cells to become tumorigenic in nude mice. The resultant tumors display lumen-like morphology, contain carcinoma-like focal areas with intercellular junctions resembling desmosomes, and coexpress epithelial (cytokeratin) and mesenchymal (vimentin) cytoskeletal markers. The tumor cells also display enhanced expression of desmosomal and tight-junction proteins. The apparent mesenchymal to epithelial conversion of the tumor cells mimics the conversion that occurs during embryonic kidney development, suggesting that Met-HGF/SF signaling plays a role in this process as well as in tumors that express both epithelial and mesenchymal markers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsarfaty, I -- Rong, S -- Resau, J H -- Rulong, S -- da Silva, P P -- Vande Woude, G F -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 7;263(5143):98-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ABL-Basic Research Program, National Cancer Institute (NCI)-Frederick Cancer Research and Development Center, MD 21702-1201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7505952" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Transformation, Neoplastic ; Desmosomes/ultrastructure ; Epithelial Cells ; Hepatocyte Growth Factor/metabolism/pharmacology ; Keratins/biosynthesis ; Kidney/embryology/metabolism ; Mesoderm/cytology ; Mice ; Mice, Nude ; Neoplasms, Experimental/metabolism/*pathology ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-met ; *Proto-Oncogenes ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Signal Transduction ; Transfection ; Vimentin/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-04
    Description: Conversion of external signals into proliferative responses may be mediated by interactions between signaling pathways that control cell proliferation. Interactions between G alpha s, the alpha subunit of the heterotrimeric guanine nucleotide binding protein that stimulates adenylyl cyclase, and Ras, an important element in growth factor signaling, were studied. Expression of activated G alpha s in NIH 3T3 cells increased intracellular concentrations of adenosine 3',5'-monophosphate (cAMP) and inhibited H-Ras-stimulated DNA synthesis and mitogen-activated protein kinase activity. Activated G alpha s and 8-Br-cAMP suppressed H-Ras-induced transformation of NIH 3T3 cells. Apparently, G alpha s inhibits proliferative signals from Ras by stimulating cAMP production and activating protein kinase A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, J -- Iyengar, R -- CA-44998/CA/NCI NIH HHS/ -- DK-38761/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 4;263(5151):1278-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, NY 10029.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8122111" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Cell Division ; Cell Line ; *Cell Transformation, Neoplastic ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation ; GTP-Binding Proteins/genetics/*physiology ; *Genes, ras ; Mice ; Mitogen-Activated Protein Kinase 1 ; Mutagenesis, Site-Directed ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-11-11
    Description: Signals mediated by the T cell receptor (TCR) are required for thymocyte maturation and selection. To examine the role of TCR zeta chain signals in development, TCR expression was restored in zeta-deficient mice with transgenic zeta chains that partially or completely lacked sequences required for signal transduction. The zeta chain played a role in thymic development by promoting TCR surface expression, but zeta-mediated signals were not essential because TCRs that contained signaling-deficient zeta chains promoted T cell maturation and transduced signals associated with thymic selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shores, E W -- Huang, K -- Tran, T -- Lee, E -- Grinberg, A -- Love, P E -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1047-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Products, Food and Drug Administration, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7526464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/analysis/genetics ; Antigens, CD4/analysis ; Antigens, CD5 ; Antigens, CD8/analysis ; Antigens, Differentiation, T-Lymphocyte/analysis ; *DNA-Binding Proteins ; Down-Regulation ; Gene Expression ; *Homeodomain Proteins ; Lectins, C-Type ; Lymph Nodes/immunology ; Membrane Proteins/genetics/*physiology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Proteins/genetics ; RNA, Messenger/genetics/metabolism ; Receptors, Antigen, T-Cell/genetics/*physiology ; Signal Transduction ; T-Lymphocytes/cytology/*immunology ; Thymus Gland/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-02
    Description: Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korach, K S -- New York, N.Y. -- Science. 1994 Dec 2;266(5190):1524-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Receptor Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7985022" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Estrogens/*physiology ; Female ; Heterozygote ; Homozygote ; Humans ; Infertility, Female/etiology ; Infertility, Male/etiology ; Male ; Mice ; Mice, Knockout ; Mutation ; Phenotype ; Receptors, Estrogen/genetics/*physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-01-07
    Description: Selective activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase type I (cAKI), but not type II, is sufficient to mediate inhibition of T cell replication induced through the antigen-specific T cell receptor-CD3 (TCR-CD3) complex. Immunocytochemistry and immunoprecipitation studies of the molecular mechanism by which cAKI inhibits TCR-CD3-dependent T cell replication demonstrated that regulatory subunit I alpha, along with its associated kinase activity, translocated to and interacted with the TCR-CD3 complex during T cell activation and capping. Regulatory subunit II alpha did not. When stimulated by cAMP, the cAKI localized to the TCR-CD3 complex may release kinase activity that, through phosphorylation, might uncouple the TCR-CD3 complex from intracellular signaling systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skalhegg, B S -- Tasken, K -- Hansson, V -- Huitfeldt, H S -- Jahnsen, T -- Lea, T -- New York, N.Y. -- Science. 1994 Jan 7;263(5143):84-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medical Biochemistry, University of Oslo, Blindern, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8272870" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/analysis/*metabolism ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase Type II ; Cyclic AMP-Dependent Protein Kinases/analysis/*metabolism ; Enzyme Activation ; Fluorescent Antibody Technique ; Humans ; Immunologic Capping ; *Intracellular Signaling Peptides and Proteins ; Lymphocyte Activation ; Phosphorylation ; Precipitin Tests ; Receptor-CD3 Complex, Antigen, T-Cell/analysis/*metabolism ; Signal Transduction ; T-Lymphocytes/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-09-16
    Description: To identify proteins that may participate in the activation of the protein kinase Raf, proteins that interact with Raf were selected in a two-hybrid screen. Two members of the 14-3-3 protein family were isolated that interacted with both the amino terminal regulatory regions of Raf and the kinase domain of Raf, but did not compete with the guanine nucleotide-binding protein Ras for binding to Raf. 14-3-3 proteins associated with Raf in mammalian cells and accompanied Raf to the membrane in the presence of activated Ras. In yeast cells expressing Raf and MEK, mammalian 14-3-3 beta or 14-3-3 zeta activated Raf to a similar extent as did expression of Ras. Therefore, 14-3-3 proteins may participate in or be required for the regulation of Raf function. These findings suggest a role for 14-3-3 proteins in Raf-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freed, E -- Symons, M -- Macdonald, S G -- McCormick, F -- Ruggieri, R -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1713-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, Richmond, CA 94806-5206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085158" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cytosol/enzymology ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; HeLa Cells ; Humans ; MAP Kinase Kinase 1 ; *Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Nerve Tissue Proteins/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/metabolism ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-raf ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development ; Signal Transduction ; *Tyrosine 3-Monooxygenase ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-03-25
    Description: The Drosophila decapentaplegic (dpp) gene encodes a transforming growth factor-beta (TGF-beta)-like protein that plays a key role in several aspects of development. Transduction of the DPP signal was investigated by cloning of serine-threonine kinase transmembrane receptors from Drosophila because this type of receptor is specific for the TGF-beta-like ligands. Here evidence is provided demonstrating that the Drosophila saxophone (sax) gene, a previously identified female sterile locus, encodes a TGF-beta-like type I receptor. Embryos from sax mothers and dpp embryos exhibit similar mutant phenotypes during early gastrulation, and these two loci exhibit genetic interactions, which suggest that they are utilized in the same pathway. These data suggest that sax encodes a receptor for dpp.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, T -- Finelli, A L -- Padgett, R W -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Rutgers University, Piscataway, NJ 08855-0759.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134837" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Drosophila/embryology/*genetics/metabolism ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Female ; *Genes, Insect ; Insect Hormones/genetics/*metabolism ; Male ; Molecular Sequence Data ; Mutation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/*genetics/metabolism ; Signal Transduction ; Transforming Growth Factor beta/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-06-03
    Description: The Arabidopsis ABI1 locus is essential for a wide spectrum of abscisic acid (ABA) responses throughout plant development. Here, ABI1 was shown to regulate stomatal aperture in leaves and mitotic activity in root meristems. The ABI1 gene was cloned and predicted to encode a signaling protein. Although its carboxyl-terminal domain is related to serine-threonine phosphatase 2C, the ABI1 protein has a unique amino-terminal extension containing an EF hand calcium-binding site. These results suggest that the ABI1 protein is a Ca(2+)-modulated phosphatase and functions to integrate ABA and Ca2+ signals with phosphorylation-dependent response pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, J -- Bouvier-Durand, M -- Morris, P C -- Guerrier, D -- Chefdor, F -- Giraudat, J -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Sciences Vegetales, Centre National de la Recherche Scientifique UPR 40, Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7910981" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Arabidopsis/chemistry/cytology/*genetics/physiology ; *Arabidopsis Proteins ; Calcium/*metabolism ; Cloning, Molecular ; *Genes, Plant ; Mitosis ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphoprotein Phosphatases/chemistry/*genetics/*metabolism ; Phosphorylation ; Plants, Genetically Modified ; Polymorphism, Restriction Fragment Length ; Signal Transduction ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-02-25
    Description: The T cell antigen receptor (TCR) initiates signals by interacting with cytoplasmic protein tyrosine kinases (PTKs) through a 17-residue sequence motif [called the antigen recognition activation motif (ARAM)] that is contained in the TCR zeta and CD3 chains. TCR stimulation induces the tyrosine phosphorylation of several cellular substrates, including the ARAMs. Lck kinase activity is required for phosphorylation of two conserved tyrosine residues in an ARAM. This phosphorylation leads to the recruitment of a second cytoplasmic PTK, ZAP-70, through both of the ZAP-70 Src homology 2 domains and its phosphorylation. Thus, TCR signal transduction is initiated by the sequential interaction of two PTKs with TCR ARAMs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwashima, M -- Irving, B A -- van Oers, N S -- Chan, A C -- Weiss, A -- AR-20684/AR/NIAMS NIH HHS/ -- GM39553/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1136-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7509083" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD8/metabolism ; Cell Line ; Cytoplasm/enzymology ; Haplorhini ; Humans ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphotyrosine ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; Tumor Cells, Cultured ; Tyrosine/analogs & derivatives/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-03-04
    Description: The 2;5 chromosomal translocation occurs in most anaplastic large-cell non-Hodgkin's lymphomas arising from activated T lymphocytes. This rearrangement was shown to fuse the NPM nucleolar phosphoprotein gene on chromosome 5q35 to a previously unidentified protein tyrosine kinase gene, ALK, on chromosome 2p23. In the predicted hybrid protein, the amino terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma kinase (ALK). Expressed in the small intestine, testis, and brain but not in normal lymphoid cells, ALK shows greatest sequence similarity to the insulin receptor subfamily of kinases. Unscheduled expression of the truncated ALK may contribute to malignant transformation in these lymphomas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, S W -- Kirstein, M N -- Valentine, M B -- Dittmer, K G -- Shapiro, D N -- Saltman, D L -- Look, A T -- CA 21765/CA/NCI NIH HHS/ -- KO8 CA 01702/CA/NCI NIH HHS/ -- P01 CA 20180/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 4;263(5151):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8122112" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Brain/enzymology ; Cell Transformation, Neoplastic ; Chromosome Walking ; Chromosomes, Human, Pair 2 ; Chromosomes, Human, Pair 5 ; Cloning, Molecular ; Gene Expression Regulation, Neoplastic ; Humans ; Intestine, Small/enzymology ; Lymphoma, Large-Cell, Anaplastic/chemistry/enzymology/*genetics ; Male ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*genetics ; Phosphoproteins/chemistry/*genetics ; Promoter Regions, Genetic ; Protein-Tyrosine Kinases/chemistry/*genetics ; RNA, Messenger/genetics/metabolism ; Receptor Protein-Tyrosine Kinases ; Sequence Alignment ; Signal Transduction ; Testis/enzymology ; *Translocation, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1994-06-24
    Description: Mice lacking the known subunit of the type I interferon (IFN) receptor were completely unresponsive to type I IFNs, suggesting that this receptor chain is essential for type I IFN-mediated signal transduction. These mice showed no overt anomalies but were unable to cope with viral infections, despite otherwise normal immune responses. Comparison of mice lacking either type I or type II IFN receptors showed that, at least in response to some viruses, both IFN systems are essential for antiviral defense and are functionally nonredundant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, U -- Steinhoff, U -- Reis, L F -- Hemmi, S -- Pavlovic, J -- Zinkernagel, R M -- Aguet, M -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology I, University of Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009221" target="_blank"〉PubMed〈/a〉
    Keywords: Alphavirus Infections/immunology ; Animals ; Antibodies, Viral/biosynthesis ; Disease Susceptibility ; Immunity, Innate ; Interferon Type I/*physiology ; Interferon-gamma/*physiology ; Lymphocytic Choriomeningitis/immunology ; Membrane Proteins ; Mice ; Mutation ; Receptor, Interferon alpha-beta ; Receptors, Interferon/genetics/*physiology ; Rhabdoviridae Infections/immunology ; Semliki forest virus ; Signal Transduction ; T-Lymphocytes/immunology ; Vesicular stomatitis Indiana virus ; Virus Diseases/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakamura, Y -- Nakauchi, H -- New York, N.Y. -- Science. 1994 Apr 22;264(5158):588-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8160019" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Base Sequence ; Cell Division ; Cell Line ; Erythropoietin/pharmacology ; Hematopoietic Stem Cells/cytology/*metabolism ; Humans ; Molecular Sequence Data ; Receptors, Erythropoietin/chemistry/genetics/*physiology ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1994-12-09
    Description: Circadian rhythms of mammals are timed by an endogenous clock with a period of about 24 hours located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Light synchronizes this clock to the external environment by daily adjustments in the phase of the circadian oscillation. The mechanism has been thought to involve the release of excitatory amino acids from retinal afferents to the SCN. Brief treatment of rat SCN in vitro with glutamate (Glu), N-methyl-D-aspartate (NMDA), or nitric oxide (NO) generators produced lightlike phase shifts of circadian rhythms. The SCN exhibited calcium-dependent nitric oxide synthase (NOS) activity. Antagonists of NMDA or NOS pathways blocked Glu effects in vitro, and intracerebroventricular injection of a NOS inhibitor in vivo blocked the light-induced resetting of behavioral rhythms. Together, these data indicate that Glu release, NMDA receptor activation, NOS stimulation, and NO production link light activation of the retina to cellular changes within the SCN mediating the phase resetting of the biological clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, J M -- Chen, D -- Weber, E T -- Faiman, L E -- Rea, M A -- Gillette, M U -- NS22155/NS/NINDS NIH HHS/ -- R01 NS022155/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1713-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Structural Biology, University of Illinois, Urbana 61801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7527589" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/metabolism ; Animals ; Arginine/analogs & derivatives/pharmacology ; Biological Clocks/drug effects/*physiology ; Circadian Rhythm/drug effects/*physiology ; Glutamic Acid/*metabolism/pharmacology ; In Vitro Techniques ; Light ; N-Methylaspartate/pharmacology ; NG-Nitroarginine Methyl Ester ; Neurons, Afferent/physiology ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Retina/physiology ; Signal Transduction ; Suprachiasmatic Nucleus/drug effects/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Touchette, N -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):564-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939703" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Embryonic Development ; *Embryonic and Fetal Development ; *Gene Expression Regulation, Developmental ; Genes ; Humans ; *Morphogenesis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1994-06-10
    Description: A homozygous mutation in the kinase domain of ZAP-70, a T cell receptor-associated protein tyrosine kinase, produced a distinctive form of human severe combined immunodeficiency. Manifestations of this disorder included profound immunodeficiency, absence of peripheral CD8+ T cells, and abundant peripheral CD4+ T cells that were refractory to T cell receptor-mediated activation. These findings demonstrate that ZAP-70 is essential for human T cell function and suggest that CD4+ and CD8+ T cells depend on different intracellular signaling pathways to support their development or survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elder, M E -- Lin, D -- Clever, J -- Chan, A C -- Hope, T J -- Weiss, A -- Parslow, T G -- AI29313/AI/NIAID NIH HHS/ -- GM43574/GM/NIGMS NIH HHS/ -- RR01271/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of California, San Francisco 94143-0110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8202712" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cloning, Molecular ; Female ; Frameshift Mutation ; Gene Deletion ; Homozygote ; Humans ; Infant ; Male ; Molecular Sequence Data ; Polymerase Chain Reaction ; Protein-Tyrosine Kinases/*genetics/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Severe Combined Immunodeficiency/*genetics/immunology ; Signal Transduction ; T-Lymphocyte Subsets/*immunology ; Transfection ; Tumor Cells, Cultured ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: Rapid advances have been made in the understanding of the genetic basis of development and pattern formation in a variety of model systems. By examining the extent to which these developmental systems are conserved or altered between different organisms, insight can be gained into the evolutionary events that have generated the diversity of organisms around us. The molecular and genetic basis of early pattern formation in Drosophila melanogaster has been particularly well studied, and comparisons to other insects have revealed conservation of some aspects of development, as well as differences that may explain variations in early patterning events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patel, N H -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):581-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210-3399.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Drosophila melanogaster/*embryology/genetics ; *Embryonic Development ; Gene Expression Regulation, Developmental ; *Genes, Homeobox ; *Genes, Insect ; Insects/embryology/genetics ; Morphogenesis ; Phylogeny ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):561-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939701" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Developmental Biology/methods/trends ; *Embryonic Development ; *Embryonic and Fetal Development ; Genes ; Genes, Homeobox ; *Morphogenesis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1994-11-04
    Description: The function of keratinocyte growth factor (KGF) in normal and wounded skin was assessed by expression of a dominant-negative KGF receptor transgene in basal keratinocytes. The skin of transgenic mice was characterized by epidermal atrophy, abnormalities in the hair follicles, and dermal hyperthickening. Upon skin injury, inhibition of KGF receptor signaling reduced the proliferation rate of epidermal keratinocytes at the wound edge, resulting in substantially delayed reepithelialization of the wound.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werner, S -- Smola, H -- Liao, X -- Longaker, M T -- Krieg, T -- Hofschneider, P H -- Williams, L T -- HL-43821/HL/NHLBI NIH HHS/ -- R01 HL32898/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):819-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Institute, University of California at San Francisco (UCSF) 94143-0130.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973639" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Cell Division ; Cell Movement ; Epidermis/pathology ; Epithelial Cells ; Fibroblast Growth Factor 10 ; Fibroblast Growth Factor 7 ; *Fibroblast Growth Factors ; Growth Substances/*physiology ; Hair/cytology/growth & development ; Keratinocytes/*cytology/physiology ; Mice ; Mice, Transgenic ; Phenotype ; Receptor, Fibroblast Growth Factor, Type 2 ; *Receptors, Fibroblast Growth Factor ; Receptors, Growth Factor/genetics/*physiology ; Signal Transduction ; Skin/*cytology ; Wound Healing/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1994-09-23
    Description: Plant disease resistance genes function is highly specific pathogen recognition pathways. PRS2 is a resistance gene of Arabidopsis thaliana that confers resistance against Pseudomonas syringae bacteria that express avirulence gene avrRpt2. RPS2 was isolated by the use of a positional cloning strategy. The derived amino acid sequence of RPS2 contains leucine-rich repeat, membrane-spanning, leucine zipper, and P loop domains. The function of the RPS2 gene product in defense signal transduction is postulated to involve nucleotide triphosphate binding and protein-protein interactions and may also involve the reception of an elicitor produced by the avirulent pathogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bent, A F -- Kunkel, B N -- Dahlbeck, D -- Brown, K L -- Schmidt, R -- Giraudat, J -- Leung, J -- Staskawicz, B J -- New York, N.Y. -- Science. 1994 Sep 23;265(5180):1856-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8091210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*genetics/microbiology ; *Arabidopsis Proteins ; Chromosome Mapping ; Cloning, Molecular ; Cosmids ; DNA, Complementary/genetics ; Genes, Bacterial ; *Genes, Plant ; Leucine Zippers ; Molecular Sequence Data ; Phenotype ; Plant Diseases/*genetics ; Plant Proteins/chemistry/*genetics ; Pseudomonas/genetics/pathogenicity ; Signal Transduction ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-18
    Description: Cultured embryonic cortical neurons from rats were used to explore mechanisms of activity-dependent neuronal survival. Cell survival was increased by the activation of voltage-sensitive calcium channels (VSCCs) but not by activation of N-methyl-D-aspartate receptors. These effects correlated with the expression of brain-derived neurotrophic factor (BDNF) induced by these two classes of calcium channels. Antibodies to BDNF (which block intracellular signaling by BDNF, but not by nerve growth factor, NT3, or NT4/5) reduced the survival of cortical neurons and reversed the VSCC-mediated increase in survival. Thus, endogenous BDNF is a trophic factor for cortical neurons whose expression is VSCC-regulated and that functions in the VSCC-dependent survival of these neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, A -- Carnahan, J -- Greenberg, M E -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 18;263(5153):1618-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7907431" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Brain-Derived Neurotrophic Factor ; Calcium Channels/*physiology ; Cell Division/drug effects ; Cell Survival/drug effects ; Cells, Cultured ; Cerebral Cortex/*cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Embryo, Mammalian ; Glutamates/pharmacology ; Glutamic Acid ; N-Methylaspartate/pharmacology ; Nerve Growth Factors/biosynthesis/genetics/immunology/*physiology ; Nerve Tissue Proteins/biosynthesis/genetics/immunology/*physiology ; Neurons/*cytology ; Phosphorylation ; Potassium Chloride/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1994-11-18
    Description: The T cell antigen receptor (TCR) beta chain regulates early T cell development in the absence of the TCR alpha chain. The developmentally controlled gene described here encodes the pre-TCR alpha (pT alpha) chain, which covalently associates with TCR beta and with the CD3 proteins forms a pre-TCR complex that transduces signals in immature thymocytes. Unlike the lambda 5 pre-B cell receptor protein, the pT alpha chain is a type I transmembrane protein whose cytoplasmic tail contains two potential phosphorylation sites and a Src homology 3 (SH3)-domain binding sequence. Pre-TCR alpha transfection experiments indicated that surface expression of the pre-TCR is controlled by additional developmentally regulated proteins. Identification of the pT alpha gene represents an essential step in the structure-function analysis of the pre-TCR complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saint-Ruf, C -- Ungewiss, K -- Groettrup, M -- Bruno, L -- Fehling, H J -- von Boehmer, H -- New York, N.Y. -- Science. 1994 Nov 18;266(5188):1208-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite INSERM 373, Institut Necker, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973703" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD3/metabolism ; Base Sequence ; Cell Line ; *Cloning, Molecular ; DNA, Complementary/genetics ; *Gene Expression Regulation, Developmental ; Gene Rearrangement ; Membrane Glycoproteins/chemistry/*genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Open Reading Frames ; Phosphorylation ; Polymerase Chain Reaction ; Rabbits ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/*genetics/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1994-01-07
    Description: Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, interleukin-11, and ciliary neurotrophic factor bind to receptor complexes that share the signal transducer gp130. Upon binding, the ligands rapidly activate DNA binding of acute-phase response factor (APRF), a protein antigenically related to the p91 subunit of the interferon-stimulated gene factor-3 alpha (ISGF-3 alpha). These cytokines caused tyrosine phosphorylation of APRF and ISGF-3 alpha p91. Protein kinases of the Jak family were also rapidly tyrosine phosphorylated, and both APRF and Jak1 associated with gp130. These data indicate that Jak family protein kinases may participate in IL-6 signaling and that APRF may be activated in a complex with gp130.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutticken, C -- Wegenka, U M -- Yuan, J -- Buschmann, J -- Schindler, C -- Ziemiecki, A -- Harpur, A G -- Wilks, A F -- Yasukawa, K -- Taga, T -- New York, N.Y. -- Science. 1994 Jan 7;263(5143):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry, RWTH Aachen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8272872" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, CD ; Base Sequence ; Cytokine Receptor gp130 ; Cytokines/pharmacology ; DNA-Binding Proteins/*metabolism ; Humans ; Interferon-Stimulated Gene Factor 3 ; Interferon-Stimulated Gene Factor 3, gamma Subunit ; Interferon-gamma/pharmacology ; Interleukin-6/*pharmacology ; Janus Kinase 1 ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Signal Transduction ; *Trans-Activators ; Transcription Factors/metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: The polarized microtubule cytoskeleton of the Drosophila oocyte directs the localization of the maternal determinants which establish the anterior-posterior (AP) axis of the embryo. Because the formation of this microtubule array is dependent on signals from the follicle cells that surround the oocyte, it has been proposed that AP polarity originates in the follicle cells. Here it is shown that the movement of the oocyte to the posterior of the egg chamber early in oogenesis determines AP polarity in the follicle cell layer, and also in the oocyte. Moreover, the generation of AP asymmetry requires signaling from the germ line to the soma and back again.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Reyes, A -- St Johnston, D -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):639-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome/CRC Institute, University of Cambridge, England.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939717" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila ; Embryo, Nonmammalian/*physiology ; Genes, Insect ; *Homeodomain Proteins ; Insect Hormones/genetics ; Microtubules/*physiology ; Models, Biological ; Mutation ; Oocytes/*physiology ; Oogenesis ; RNA, Messenger/genetics/metabolism ; Signal Transduction ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1994-08-12
    Description: Mitogen-activated protein (MAP) kinase kinase (MAPKK) activates MAP kinase in a signal transduction pathway that mediates cellular responses to growth and differentiation factors. Oncogenes such as ras, src, raf, and mos have been proposed to transform cells by prolonging the activated state of MAPKK and of components downstream in the signaling pathway. To test this hypothesis, constitutively active MAPKK mutants were designed that had basal activities up to 400 times greater than that of the unphosphorylated wild-type kinase. Expression of these mutants in mammalian cells activated AP-1-regulated transcription. The cells formed transformed foci, grew efficiently in soft agar, and were highly tumorigenic in nude mice. These findings indicate that constitutive activation of MAPKK is sufficient to promote cell transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansour, S J -- Matten, W T -- Hermann, A S -- Candia, J M -- Rong, S -- Fukasawa, K -- Vande Woude, G F -- Ahn, N G -- GM48521/GM/NIGMS NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 12;265(5174):966-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8052857" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Cell Division ; Cell Line ; *Cell Transformation, Neoplastic ; Enzyme Activation ; Genes, mos ; Mice ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Kinases/genetics/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1994-11-25
    Description: In this study, the cytokine-producing profile of progenitor T cells (pro-T cells) was determined. During screening of a complementary DNA library generated from activated mouse pro-T cells, a cytokine designated lymphotactin was discovered. Lymphotactin is similar to members of both the Cys-Cys and Cys-X-Cys chemokine families but lacks two of the four cysteine residues that are characteristic of the chemokines. Lymphotactin is also expressed in activated CD8+ T cells and CD4-CD8- T cell receptor alpha beta + thymocytes. It has chemotactic activity for lymphocytes but not for monocytes or neutrophils. The gene encoding lymphotactin maps to chromosome one. Taken together, these observations suggest that lymphotactin represents a novel addition to the chemokine superfamily.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelner, G S -- Kennedy, J -- Bacon, K B -- Kleyensteuber, S -- Largaespada, D A -- Jenkins, N A -- Copeland, N G -- Bazan, J F -- Moore, K W -- Schall, T J -- New York, N.Y. -- Science. 1994 Nov 25;266(5189):1395-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, DNAX Research Institute of Cellular and Molecular Biology, Palo Alto, CA 94304.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973732" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Calcium/metabolism ; Cell Line ; Chemokine CCL4 ; *Chemokines, C ; *Chemotaxis, Leukocyte ; Cytokines/pharmacology ; Hematopoietic Stem Cells/*immunology ; Humans ; Lymphokines/chemistry/genetics/isolation & purification/pharmacology/*physiology ; Macrophage Inflammatory Proteins ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Monokines/pharmacology ; Recombinant Proteins ; Sequence Alignment ; Sialoglycoproteins/chemistry/genetics/isolation & ; purification/pharmacology/*physiology ; Signal Transduction ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, A -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1413-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197454" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Membrane/*enzymology ; GTP-Binding Proteins/*physiology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Models, Biological ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-16
    Description: Multiple genetic changes occur during the evolution of normal cells into cancer cells. This evolution is facilitated in cancer cells by loss of fidelity in the processes that replicate, repair, and segregate the genome. Recent advances in our understanding of the cell cycle reveal how fidelity is normally achieved by the coordinated activity of cyclin-dependent kinases, checkpoint controls, and repair pathways and how this fidelity can be abrogated by specific genetic changes. These insights suggest molecular mechanisms for cellular transformation and may help to identify potential targets for improved cancer therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartwell, L H -- Kastan, M B -- CA 61949/CA/NCI NIH HHS/ -- ES 05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1821-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997877" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Aging ; *Cell Cycle ; *Cell Transformation, Neoplastic/genetics ; Cyclins/genetics/metabolism ; DNA Damage ; Humans ; Neoplasms/*etiology/pathology/prevention & control/therapy ; Signal Transduction ; Tumor Suppressor Protein p53/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1994-07-22
    Description: During the cell cycle, DNA is replicated and segregated equally into two daughter cells. The DNA damage checkpoint ensures that DNA damage is repaired before mitosis is attempted. Genetic studies of the fission yeast Schizosaccharomyces pombe have identified two genes, rad24 and rad25, that are required for this checkpoint. These genes encode 14-3-3 protein homologs that together provide a function that is essential for cell proliferation. In addition, S. pombe rad24 null mutants, and to a lesser extent rad25 null mutants, enter mitosis prematurely, which indicates that 14-3-3 proteins have a role in determining the timing of mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ford, J C -- al-Khodairy, F -- Fotou, E -- Sheldrick, K S -- Griffiths, D J -- Carr, A M -- New York, N.Y. -- Science. 1994 Jul 22;265(5171):533-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Centre, King Faisal Specialist Hospital, Riyadh, Saudi Arabia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8036497" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; *Cell Cycle Proteins ; Cell Division ; *DNA Damage ; DNA Helicases/chemistry/genetics/*physiology ; DNA Repair ; Fungal Proteins/chemistry/genetics/*physiology ; Genes, Fungal ; Intracellular Signaling Peptides and Proteins ; *Mitosis ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/genetics/*physiology ; Phenotype ; Schizosaccharomyces/cytology/genetics/*physiology/radiation effects ; *Schizosaccharomyces pombe Proteins ; Sequence Alignment ; Signal Transduction ; *Tyrosine 3-Monooxygenase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1994-11-11
    Description: The interleukin-2 receptor (IL-2R) consists of three subunits: the IL-2R alpha, IL-2R beta, and IL-2R gamma chains, the last of which is also used in the receptors for IL-4, IL-7, and IL-9. Stimulation with IL-2 induces the tyrosine phosphorylation and activation of the Janus kinases Jak1 and Jak3. Jak1 and Jak3 were found to be selectively associated with the "serine-rich" region of IL-2R beta and the carboxyl-terminal region of IL-2R gamma, respectively. Both regions were necessary for IL-2 signaling. Furthermore, Jak3-negative fibroblasts expressing reconstituted IL-2R became responsive to IL-2 after the additional expression of Jak3 complementary DNA. Thus, activation of Jak1 and Jak3 may be a key event in IL-2 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyazaki, T -- Kawahara, A -- Fujii, H -- Nakagawa, Y -- Minami, Y -- Liu, Z J -- Oishi, I -- Silvennoinen, O -- Witthuhn, B A -- Ihle, J N -- P30 CA21765/CA/NCI NIH HHS/ -- R01 DK42932/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1045-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Enzyme Activation ; Humans ; Interleukin-2/*pharmacology ; Janus Kinase 1 ; Janus Kinase 3 ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Interleukin-2/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1994-11-04
    Description: A protein phosphatase was cloned that interacts with a serine-threonine receptor-like kinase, RLK5, from Arabidopsis thaliana. The phosphatase, designated KAPP (kinase-associated protein phosphatase), is composed of three domains: an amino-terminal signal anchor, a kinase interaction (KI) domain, and a type 2C protein phosphatase catalytic region. Association of RLK5 with the KI domain is dependent on phosphorylation of RLK5 and can be abolished by dephosphorylation. KAPP may function as a signaling component in a pathway involving RLK5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, J M -- Collinge, M A -- Smith, R D -- Horn, M A -- Walker, J C -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):793-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Missouri-Columbia 65211.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973632" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics ; *Arabidopsis Proteins ; Blotting, Southern ; Catalysis ; Genes, Plant ; Molecular Sequence Data ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Sequence Homology, Amino Acid ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: Mitogen-activated protein kinases (MAP kinases) are common components of signaling pathways induced by diverse growth stimuli. Although the guanidine nucleotide-binding Ras proteins are known to be upstream activators of MAP kinases, the extent to which MAP kinases directly contribute to the mitogenic effect of Ras is as yet undefined. In this study, inhibition of MAP kinases by the MAP kinase phosphatase MKP-1 blocked the induction of DNA synthesis in quiescent rat embryonic fibroblast REF-52 cells by an activated mutant of Ras, V12Ras. These results suggest an essential role for activation of MAP kinases in the transition from the quiescent to the DNA replication phase of the eukaryotic cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, H -- Tonks, N K -- Bar-Sagi, D -- CA53840/CA/NCI NIH HHS/ -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):285-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724-2208.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939666" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors ; *Cell Cycle Proteins ; Cell Line ; DNA/*biosynthesis ; Dual Specificity Phosphatase 1 ; Enzyme Activation ; G0 Phase ; HeLa Cells ; Humans ; Immediate-Early Proteins/*metabolism/pharmacology ; JNK Mitogen-Activated Protein Kinases ; Mitogen-Activated Protein Kinase 1 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Mutation ; *Phosphoprotein Phosphatases ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/*metabolism/pharmacology ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Rats ; S Phase ; Signal Transduction ; Transfection ; ras Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1994-04-15
    Description: A complementation strategy was developed to define the signaling pathways activated by the Bcr-Abl tyrosine kinase. Transformation inactive point mutants of Bcr-Abl were tested for complementation with c-Myc. Single point mutations in the Src-homology 2 (SH2) domain, the major tyrosine autophosphorylation site of the kinase domain, and the Grb-2 binding site in the Bcr region impaired the transformation of fibroblasts by Bcr-Abl. Hyperexpression of c-Myc efficiently restored transformation activity only to the Bcr-Abl SH2 mutant. These data support a model in which Bcr-Abl activates at least two independent pathways for transformation. This strategy may be useful for discerning signaling pathways activated by other oncogenes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Afar, D E -- Goga, A -- McLaughlin, J -- Witte, O N -- Sawyers, C L -- CA 01551/CA/NCI NIH HHS/ -- CA 53867/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 15;264(5157):424-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, University of California-Los Angeles 90024-1489.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8153630" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line ; *Cell Transformation, Neoplastic ; Fusion Proteins, bcr-abl/*genetics/physiology ; GRB2 Adaptor Protein ; Gene Expression ; *Genes, abl ; *Genes, myc ; Genetic Complementation Test ; Molecular Sequence Data ; Phosphorylation ; Point Mutation ; Proteins/metabolism ; Proto-Oncogene Proteins c-myc/genetics/physiology ; Rats ; Retroviridae/physiology ; Signal Transduction ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):368-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939678" target="_blank"〉PubMed〈/a〉
    Keywords: *GTP-Binding Proteins/isolation & purification/physiology ; History, 20th Century ; *Nobel Prize ; Signal Transduction ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-13
    Description: In both Drosophila melanogaster and Caenorhabditis elegans somatic sex determination, germline sex determination, and dosage compensation are controlled by means of a chromosomal signal known as the X:A ratio. A variety of mechanisms are used for establishing and implementing the chromosomal signal, and these do not appear to be similar in the two species. Instead, the study of sex determination and dosage compensation is providing more general lessons about different types of signaling pathways used to control alternative developmental states of cells and organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parkhurst, S M -- Meneely, P M -- New York, N.Y. -- Science. 1994 May 13;264(5161):924-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178152" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics ; *Dosage Compensation, Genetic ; *Drosophila Proteins ; Drosophila melanogaster/embryology/*genetics ; Female ; Genes, Helminth ; Genes, Insect ; Humans ; Insect Hormones/genetics ; Male ; Mammals/genetics ; *RNA-Binding Proteins ; *Sex Determination Analysis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...