ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (56)
  • Frontiers  (35)
  • AMS (American Meteorological Society)  (13)
  • American Chemical Society
  • American Physical Society
  • Annual Reviews
  • 2015-2019  (56)
  • 2005-2009
  • 1980-1984
  • 1930-1934
  • 2017  (56)
Collection
Source
Years
  • 2015-2019  (56)
  • 2005-2009
  • 1980-1984
  • 1930-1934
Year
  • 1
    Publication Date: 2020-02-06
    Description: The sediment-water interface is an important site for material exchange in marine systems and harbor unique microbial habitats. The flux of nutrients, metals, and greenhouse gases at this interface may be severely dampened by the activity of microorganisms and abiotic redox processes, leading to the “benthic filter” concept. In this study, we investigate the spatial variability, mechanisms and quantitative importance of a microbially-dominated benthic filter for dissolved sulfide in the Eastern Gotland Basin (Baltic Sea) that is located along a dynamic redox gradient between 65 and 173 m water depth. In August-September 2013, high resolution (0.25 mm minimum) vertical microprofiles of redox-sensitive species were measured in surface sediments with solid-state gold-amalgam voltammetric microelectrodes. The highest sulfide consumption (2.73–3.38 mmol m−2 day−1) occurred within the top 5 mm in sediments beneath a pelagic hypoxic transition zone (HTZ, 80–120 m water depth) covered by conspicuous white bacterial mats of genus Beggiatoa. A distinct voltammetric signal for polysulfides, a transient sulfur oxidation intermediate, was consistently observed within the mats. In sediments under anoxic waters (〉140 m depth), signals for Fe(II) and aqueous FeS appeared below a subsurface maximum in dissolved sulfide, indicating a Fe(II) flux originating from older sediments presumably deposited during the freshwater Ancylus Lake that preceded the modern Baltic Sea. Our results point to a dynamic benthic sulfur cycling in Gotland Basin where benthic sulfide accumulation is moderated by microbial sulfide oxidation at the sediment surface and FeS precipitation in deeper sediment layers. Upscaling our fluxes to the Baltic Proper; we find that up to 70% of the sulfide flux (2281 kton yr−1) toward the sediment-seawater interface in the entire basin can be consumed at the microbial mats under the HTZ (80–120 m water depth) while only about 30% the sulfide flux effuses to the bottom waters (〉120 m depth). This newly described benthic filter for the Gotland Basin must play a major role in limiting the accumulation of sulfide in and around the deep basins of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Nitrous oxide (N2O) is a powerful greenhouse gas principally produced by nitrification and denitrification in the marine environment. Observations were made in the eastern South Pacific (ESP), between 10° and 60°S, and ~75°–88°W, from intermediate waters targeting Antarctic Intermediate Water (AAIW) at potential density of 27.0–27.1 kg m−3. Between 60° and 20°S, a gradual equatorward increase of N2O from 8 to 26 nmol L−1 was observed at density 27.0–27.1 kg m−3 where AAIW penetrates. Positive correlations were found between apparent N2O production (ΔN2O) and O2 utilization (AOU), and between ΔN2O and NO−3, which suggested that local N2O production is predominantly produced by nitrification. Closer to the equator, between 20° and 10°S at AAIW core, a strong N2O increase up to 75 nmol L−1 was observed. Because negative correlations were found between ΔN2O vs. NO−3 and ΔN2O vs. N* (a Nitrogen deficit index) and because ΔN2O and AOU do not follow a linear trend, we suspect that, in addition to nitrification, denitrification also takes place in N2O cycling. By making use of water mass mixing analyses, we show that an increase in N2O occurs in the region where high oxygen from AAIW merges with low oxygen from Equatorial Subsurface Water (ESSW), creating favorable conditions for local N2O production. We conclude that the non-linearity in the relationship between N2O and O2 is a result of mixing between two water masses with very different source characteristics, paired with the different time frames of nitrification and denitrification processes that impact water masses en route before they finally meet and mix in the ESP region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (〈C14) and longer chain n-alkanes (〉C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Biodiversity and conservation data are generally costly to collect, particularly in the marine realm. Hence, data collected for a given—often scientific—purpose are occasionally contributed toward secondary needs, such as policy implementation or other types of decision-making. However, while the quality and accessibility of marine biodiversity and conservation data have improved over the past decade, the ways in which these data can be used to develop and implement relevant management and conservation measures and actions are not always explicit. For this reason, there are a number of scientifically-sound datasets that are not used systematically to inform policy and decisions. Transforming these marine biodiversity and conservation datasets into knowledge products that convey the information required by policy- and decision-makers is an important step in strengthening knowledge exchange across the science-policy interface. Here, we identify seven characteristics of a selection of online biodiversity and conservation knowledge products that contribute to their ability to support policy- and decision-making in the marine realm (as measured by e.g., mentions in policy resolutions/decisions, or use for reporting under selected policy instruments; use in high-level screening for areas of biodiversity importance). These characteristics include: a clear policy mandate; established networks of collaborators; iterative co-design of a user-friendly interface; standardized, comprehensive and documented methods with quality assurance; consistent capacity and succession planning; accessible data and value-added products that are fit-for-purpose; and metrics of use collated and reported. The outcomes of this review are intended to: (a) support data creators/owners/providers in designing and curating biodiversity and conservation knowledge products that have greater influence, and hence impact, in policy- and decision-making, and (b) provide recommendations for how decision- and policy-makers can support the development, implementation, and sustainability of robust biodiversity and conservation knowledge products through the framing of marine policy and decision-making frameworks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: One of the major challenges in ecological stoichiometry is to establish how environmental changes in resource availability may affect both the biochemical composition of organisms and the species composition of communities. This is a pressing issue in many coastal waters, where anthropogenic activities have caused large changes in riverine nutrient inputs. Here we investigate variation in the biochemical composition and synthesis of amino acids, fatty acids (FA), and carbohydrates in mixed phytoplankton communities sampled from the North Sea. The communities were cultured in chemostats supplied with different concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to establish four different types of resource limitations. Diatoms dominated under N-limited, N+P limited and P-limited conditions. Cyanobacteria became dominant in one of the N-limited chemostats and green algae dominated in the one P-limited chemostat and under light-limited conditions. Changes in nutrient availability directly affected amino acid content, which was lowest under N and N+P limitation, higher under P-limitation and highest when light was the limiting factor. Storage carbohydrate content showed the opposite trend and storage FA content seemed to be co-dependent on community composition. The synthesis of essential amino acids was affected under N and N+P limitation, as the transformation from non-essential to essential amino acids decreased at DIN:DIP ≤ 6. The simple community structure and clearly identifiable nutrient limitations confirm and clarify previous field findings in the North Sea. Our results show that different phytoplankton groups are capable of adapting their key biosynthetic rates and hence their biochemical composition to different degrees when experiencing shifts in nutrient availability. This will have implications for phytoplankton growth, community structure, and the nutritional quality of phytoplankton as food for higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 9321-9337.
    Publication Date: 2020-08-04
    Description: In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-11-20
    Description: Marine methane hydrate in sands has huge potential as an unconventional gas resource; however, no field test of their production potential had been conducted. Here, we report the world’s first offshore methane hydrate production test conducted at the eastern Nankai Trough and show key findings toward future commercial production. Geological analysis indicates that hydrate saturation reaches 80% and permeability in the presence of hydrate ranges from 0.01 to 10 mdarcies. Permeable (1–10 mdarcies) highly hydrate-saturated layers enable depressurization-induced gas production of approximately 20,000 Sm3/D with water of 200 m3/D. Numerical analysis reveals that the dissociation zone expands laterally 25 m at the front after 6 days. Gas rate is expected to increase with time, owing to the expansion of the dissociation zone. It is found that permeable highly hydrate-saturated layers increase the gas–water ratio of the production fluid. The identification of such layers is critically important to increase the energy efficiency and the technical feasibility of depressurization-induced gas production from hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-04-23
    Description: The ocean is a major sink for anthropogenic carbon dioxide (CO2), with the CO2 uptake causing changes to ocean chemistry. To monitor these changes and provide a chemical background for biological and biogeochemical studies, high quality partial pressure of CO2 (pCO2) sensors are required, with suitable accuracy and precision for ocean measurements. Optodes have the potential to measure in situ pCO2 without the need for wet chemicals or bulky gas equilibration chambers that are typically used in pCO2 systems. However, optodes are still in an early developmental stage compared to more established equilibrator-based pCO2 systems. In this study, we performed a laboratory-based characterization of a time-domain dual lifetime referencing pCO2 optode system. The pCO2 optode spot was illuminated with low intensity light (0.2 mA, 0.72 mW) to minimize spot photobleaching. The spot was calibrated using an experimental gas calibration rig prior to deployment, with a determined response time (τ63) of 50 s at 25°C. The pCO2 optode was deployed as an autonomous shipboard underway system across the high latitude North Atlantic Ocean with a resolution of ca.10 measurements per hour. The optode data was validated with a secondary shipboard equilibrator-based infrared pCO2 instrument, and pCO2 calculated from discrete samples of dissolved inorganic carbon and total alkalinity. Further verification of the pCO2 optode data was achieved using complimentary variables such as nutrients and dissolved oxygen. The shipboard precision of the pCO2 sensor was 9.5 μatm determined both from repeat measurements of certified reference materials and from the standard deviation of seawater measurements while on station. Finally, the optode deployment data was used to evaluate the physical and biogeochemical controls on pCO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 9 (1). pp. 413-444.
    Publication Date: 2020-06-11
    Description: Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-06
    Description: Carbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; 〉1 kDa) and the community development of free-living (0.2–3 μm) and particle-associated (PA) (3–10 μm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea. Furthermore, rates were determined for the extracellular enzymatic hydrolysis that catalyzes the initial step in bacterial organic matter remineralization. Concentrations of tCCHO greatly increased during bloom development, while the composition showed only minor changes over time. The combined concentration of glucose, galactose, fucose, rhamnose, galactosamine, glucosamine, and glucuronic acid in tCCHO was a significant factor shaping the community composition of the PA bacteria. The richness of PA bacteria greatly increased in the post-bloom phase. At the same time, the increase in extracellular β-glucosidase activity was sufficient to explain the observed decrease in tCCHO, indicating the efficient utilization of carbohydrates by the bacterioplankton community during the post-bloom phase. Our results suggest that carbohydrate concentration and composition are important factors in the multifactorial environmental control of bacterioplankton succession and the enzymatic hydrolysis of organic matter during phytoplankton blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-06
    Description: The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n=19) and LMA (n=17) sponges (575 specimens) present in the Sponge Microbiome Project. HMA sponges were associated with richer and more diverse microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. Microbial community structures differed between HMA and LMA sponges considering Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, from phylum to species. The largest proportion of microbiome variation was explained by the host identity. Several phyla, classes, and OTUs were found differentially abundant in either group, which were considered “HMA indicators” and “LMA indicators”. Machine learning algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine different classifiers, higher performances were achieved by Random Forest trained with phylum and class abundances. Random Forest with optimized parameters predicted the HMA-LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. These sponges were grouped in four clusters, from which the largest two were composed of species consistently predicted as HMA (n=44) and LMA (n=74). In summary, our analyses shown distinct features of the microbial communities associated with HMA and LMA sponges. The prediction of the HMA-LMA status based on the microbiome profiles of sponges demonstrates the application of machine learning to explore patterns of host-associated microbial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-06
    Description: Redox-sensitive mobilization of nutrients from sediments strongly affects the eutrophic state of the central Baltic Sea; a region associated with the spread of hypoxia and almost permanently anoxic and sulfidic conditions in the deeper basins. Ventilation of these basins depends on renewal by inflow of water enriched in oxygen (O2) from the North Sea, occurring roughly once per decade. Benthic fluxes and water column distributions of dissolved inorganic nitrogen species, phosphate (PO43-), dissolved inorganic carbon (DIC), sulfide (HS-), and total oxygen uptake (TOU) were measured along a depth gradient in the Eastern Gotland Basin (EGB). Campaigns were conducted during euxinic conditions of the deep basin in Aug./Sept. 2013 and after two inflow events in July/Aug. 2015 and March 2016 when O2 concentrations in deep waters reached 60 μM. The intrusion of O2-rich North Sea water into the EGB led to an approximate 33 and 10% reduction of the seabed PO43- and ammonium (NH4+) release from deep basin sediments. Post-inflow, the deep basin sediment was rapidly colonized by HS- oxidizing bacteria tentatively assigned to the family Beggiatoaceae, and HS- release was completely suppressed. The presence of a hypoxic transition zone (HTZ) between 80 and 120 m water depth was confirmed not only for euxinic deep-water conditions during 2013 but also for post-inflow conditions. Because deep-water renewal did not ventilate the HTZ, where PO43- and NH4+ fluxes were highest, high seabed nutrient release there was relatively unchanged. Extrapolation of the in situ nutrient fluxes indicated that, overall, the reduction in PO43- and NH4+ release in response to deep-water renewal can be considered as minor, reducing the internal nutrient load by 2 and 12% only, respectively. Infrequent inflow events thus have a limited capacity to sustainably reduce internal nutrient loading in the EGB and mitigate eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-06
    Description: Cold-water corals are important bioengineers that provide structural habitat for a diverse species community. About 70% of the presently known scleractinian cold-water corals are expected to be exposed to corrosive waters by the end of this century due to ocean acidification. At the same time, the corals will experience a steady warming of their environment. Studies on the sensitivity of cold-water corals to climate change mainly concentrated on single stressors in short-term incubation approaches, thus not accounting for possible long-term acclimatisation and the interactive effects of multiple stressors. Besides, preceding studies did not test for possible compensatory effects of a change in food availability. In this study a multifactorial long-term experiment (6 months) was conducted with end-of-the-century scenarios of elevated pCO2 and temperature levels in order to examine the acclimatisation potential of the cosmopolitan cold-water coral Lophelia pertusa to future climate change related threats. For the first time multiple ocean change impacts including the role of the nutritional status were tested on L. pertusa with regard to growth, “fitness,” and survival. Our results show that while L. pertusa is capable of calcifying under elevated CO2 and temperature, its condition (fitness) is more strongly influenced by food availability rather than changes in seawater chemistry. Whereas growth rates increased at elevated temperature (+4°C), they decreased under elevated CO2 concentrations (~800 μatm). No difference in net growth was detected when corals were exposed to the combination of increased CO2 and temperature compared to ambient conditions. A 10-fold higher food supply stimulated growth under elevated temperature, which was not observed in the combined treatment. This indicates that increased food supply does not compensate for adverse effects of ocean acidification and underlines the importance of considering the nutritional status in studies investigating organism responses under environmental changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-06
    Description: Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 μmol m−2 d−1 and an overall emission of 0.18 Gg N2O y−1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-06
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-07-27
    Description: In the colloidal synthesis of iron sulfides, a series of dialkyl disulfides, alkyl thiols, and dialkyl disulfides (allyl, benzyl, tert-butyl, and phenyl) were employed as sulfur sources. Their reactivity was found to tune the phase between pyrite (FeS2), greigite (Fe3S4), and pyrrhotite (Fe7S8). DFT was used to show that sulfur-rich phases were favored when the C–S bond strength was low in the organosulfurs, yet temperature dependent studies and other observations indicated the reasons for phase selectivity were more nuanced; the different precursors decomposed through different reaction mechanisms, some involving the oleylamine solvent. The formation of pyrite from diallyl disulfide was carefully studied as it was the only precursor to yield FeS2. Raman spectroscopy indicated that FeS2 forms directly without an FeS intermediate, unlike most synthetic procedures to pyrite. Diallyl disulfide releases persulfide (S–S)2– due to the lower C–S bond strength relative to the S–S bond strength, as well as facile decomposition in the presence of amines through SN2′ mechanisms at elevated temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (6). ES139-ES142.
    Publication Date: 2020-07-16
    Description: The 13th European Polar Low Workshop was organized by the European Polar Low Working Group (www.uni-trier.de/index.php?id=20308)and gathered scientists from nine countries focusing on polar mesocyclones in both hemispheres and other mesoscale weather phenomena such as katabatic winds, tip jets, boundary layer fronts, cold air outbreaks, and weather extremes in polar regions. Topics included experimental, climatological, theoretical, modeling, and remote sensing studies. The aim was to bring together scientists and forecasters to present their latest work and recent findings on these topics and to encourage discussions on improving forecasting and understanding of these phenomena.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 8913-8927.
    Publication Date: 2020-02-06
    Description: The regional climate model COSMOin Climate Limited-AreaMode (COSMO-CLM or CCLM) is used with a high resolution of 15km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 208C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice.Also, the 30-km version of theArctic SystemReanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 18C for the ocean and sea ice area. Thus,ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.58Cyr21 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 708N; for CCLM the warming amounts to an average of almost 58C for 2002/03–2011/12.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Earth and Planetary Sciences, 45 (1). pp. 593-617.
    Publication Date: 2020-06-09
    Description: The evolutionary trajectory of early complex life on Earth is interpreted largely from the fossils of the Precambrian soft-bodied Ediacara Biota, which appeared and evolved during a time of dynamic biogeochemical and environmental fluctuation in the global ocean. The Ediacara Biota is historically divided into three successive Assemblages—the Avalon, the White Sea, and the Nama—which are marked by the appearance of novel biological traits and ecological strategies. In particular, the younger White Sea and Nama Assemblages record a “second wave” of ecological innovations, which included not only the development of uniquely Ediacaran body plans and ecologies, such as matground adaptations, but also the dual emergence of bilaterian-grade animals and Phanerozoic-style ecological innovations, including spatial heterogeneity, complex reproductive strategies, ecospace utilization, motility, and substrate competition. The late Ediacaran was an evolutionarily dynamic time characterized by strong environmental control over the distribution of taxa in time and space.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-06
    Description: Monthly time-series data (1998–2009) of bottom water oxygen, nitrate and nitrite concentrations from the outer shelf (150 m water depth) in the oxygen minimum zone offshore Peru were coupled to a layered biogeochemical sediment model to investigate benthic-pelagic coupling over multi-annual time scales. The model includes the mineralization of four reactive pools of particulate organic carbon (POC) with lifetimes of 0.13, 1.3, 20, and 1700 year that were constrained using empirical data. Total POC rain rates to the seafloor were derived from satellite based estimates of primary production. Solute fluxes and concentrations in sediment porewater showed highly dynamic behavior over the course of a typical year. Conversion of fixed N to N2 by denitrification varied from 1.1 mmol m−2 d−1 of N in winter to 1.8 mmol m−2 d−1 of N in summer with a long term mean N loss for the shelf of 1.5 mmol m−2 d−1 of N. Fixed N loss across the whole time-series agreed very well with a previously-published vertically-integrated sediment model for coupling the benthic and pelagic N cycle in regional and global models. Dissimilatory nitrate reduction to ammonium (DNRA) emerges as a major process in the benthic N cycle, producing on average 1.9 mmol m−2 d−1 of ammonium: more than twice the rate of ammonification of organic nitrogen. The model predicts sulfide emissions from the sediment of up to 1 mmol m−2 d−1 when POC rain rate exceeds 20 mmol m−2 d−1, in agreement with past observations of benthic sulfide fluxes and sulfide plume distributions in the water column. This study demonstrates that sediments on the Peruvian shelf are not static repositories that are independent of changes taking place in the water column. Our results strongly suggest the shelf sediments must exert an important feedback on biogeochemical processes in the overlying waters, and should be considered in regional model studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-02-06
    Description: Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum seepage) and SOFT sediment microbial communities shared 43% bacterial genuslevel 16S rRNA-based operational taxonomic units (OTU0:945) but shared only 23% archaeal OTU0:945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0:96.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-02-06
    Description: Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity, and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17–62% and 35–69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is nitrogen fixation, which decreases by 25–65% in the model during the LGM mainly in response to reduced N-loss, due to the lack of observations in the open ocean most notably in the tropical and subtropical southern hemisphere. Nevertheless, the model estimated large increase to the global nitrate inventory of 6.5–22% suggests it may play an important role enhancing the biological carbon pump that contributes to lower atmospheric CO2 during the LGM.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-06
    Description: Despite the huge extent of the ocean's surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean's surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (8). pp. 2921-2935.
    Publication Date: 2020-02-06
    Description: The ratio of global mean surface air temperature change to cumulative CO2 emissions, referred to as transient climate response to cumulative CO2 emissions (TCRE), has been shown to be approximately constant on centennial time scales. The mechanisms behind this constancy are not well understood, but previous studies suggest that compensating effects of ocean heat and carbon fluxes, which are governed by the same ocean mixing processes, could be one cause for this approximate constancy. This hypothesis is investigated by forcing different versions of the University of Victoria Earth System Climate Model, which differ in the ocean mixing parameterization, with an idealized scenario of 1% annually increasing atmospheric CO2 until quadrupling of the preindustrial CO2 concentration and constant concentration thereafter. The relationship between surface air warming and cumulative emissions remains close to linear, but the TCRE varies between model versions, spanning the range of 1.2°–2.1°C EgC−1 at the time of CO2 doubling. For all model versions, the TCRE is not constant over time while atmospheric CO2 concentrations increase. It is constant after atmospheric CO2 stabilizes at 1120 ppm, because of compensating changes in temperature sensitivity (temperature change per unit radiative forcing) and cumulative airborne fraction. The TCRE remains approximately constant over time even if temperature sensitivity, determined by ocean heat flux, and cumulative airborne fraction, determined by ocean carbon flux, are taken from different model versions with different ocean mixing settings. This can partially be explained with temperature sensitivity and cumulative airborne fraction following similar trajectories, which suggests ocean heat and carbon fluxes scale approximately linearly with changes in vertical mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-04-23
    Description: The trace metal iron (Fe) is an essential micronutrient for phytoplankton growth and limits, or co-limits primary production across much of the world's surface ocean. Iron is a redox sensitive element, with Fe(II) and Fe(III) co-existing in natural waters. Whilst Fe(II) is the most soluble form, it is also transient with rapid oxidation rates in oxic seawater. Measurements of Fe(II) are therefore preferably undertaken in situ. For this purpose an autonomous wet chemical analyzer based on lab-on-chip technology was developed for the in situ determination of the concentration of dissolved (〈0.45 μm) Fe species (Fe(II) and labile Fe) suitable for deployments in a wide range of aquatic environments. The spectrophotometric approach utilizes a buffered ferrozine solution and a ferrozine/ascorbic acid mixture for Fe(II) and labile Fe(III) analyses, respectively. Diffusive mixing, color development and spectrophotometric detection take place in three separate flow cells with different lengths such that the analyzer can measure a broad concentration range from low nM to several μM of Fe, depending on the desired application. A detection limit of 1.9 nM Fe was found. The microfluidic analyzer was tested in situ for nine days in shallow waters in the Kiel Fjord (Germany) along with other sensors as a part of the SenseOCEAN EU-project. The analyzer's performance under natural conditions was assessed with discrete samples collected and processed according to GEOTRACES protocol [acidified to pH 〈 2 and analyzed via inductively coupled plasma mass spectrometry (ICP-MS)]. The mechanical performance of the analyzer over the nine day period was good (consistent high precision of Fe(II) and Fe(III) standards with a standard deviation of 2.7% (n = 214) and 1.9% (n = 217), respectively, and successful completion of every programmed data point). However, total dissolved Fe was consistently low compared to ICP-MS data. Recoveries between 16 and 75% were observed, indicating that the analyzer does not measure a significant fraction of natural dissolved Fe species in coastal seawater. It is suggested that an acidification step would be necessary in order to ensure that the analyzer derived total dissolved Fe concentration is reproducible and consistent with discrete values.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-06
    Description: The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 9 (1). pp. 311-335.
    Publication Date: 2020-06-11
    Description: Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-02-06
    Description: Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2-), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2- produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2- was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2- each contributed N equally to N2O by a "hybrid-N2O" mechanism consistent with a reaction between NH2OH and NO2-, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0-34.4%) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia with 15NH4+ and NO2-. However, the site preference of dissolved N2O here was low (4.9%), indicating that another mechanism, not captured during the incubations, was important. Multiplex sequencing of 16S rRNA revealed distinct ammonia oxidizer communities: AOB dominated numerically in Lake Lugano, and AOA dominated in the seawater. Potential for hybrid N2O formation exists among both communities, and at least in AOB-dominated environments, acidification may accelerate this mechanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-02-06
    Description: Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-11-23
    Description: Combining state-of-the art digital imaging technology with different kinds of marine exploration techniques such as modern AUV (autonomous underwater vehicle), ROV (remote operating vehicle) or other monitoring platforms enables marine imaging on new spatial and/or temporal scales. A comprehensive interpretation of such image collections requires the detection, classification and quantification of objects of interest in the images usually performed by domain experts. However, the data volume and the rich content of the images makes the support by software tools inevitable. We define some requirements for marine image annotation and present our new online tool Biigle 2.0. It is developed with a special focus on annotating benthic fauna in marine image collections with tools customized to increase efficiency and effectiveness in the manual annotation process. The software architecture of the system is described and the special features of Biigle 2.0 are illustrated with different use-cases and future developments are discussed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-02-06
    Description: In coral reefs, sediments play a crucial role in element cycling by contributing to primary production and the remineralization of organic matter. We studied how future ocean acidification (OA) will affect biotic and abiotic processes in sediments from two coral reefs of the Great Barrier Reef, Australia. This was investigated in the laboratory under conditions where water-sediment exchange was dominated by molecular diffusion (Magnetic Island) or by porewater advection (Davies Reef). OA conditions (+ΔpCO2: 170–900 μatm, −ΔpH: 0.1–0.4) did not affect photosynthesis, aerobic and anaerobic organic matter remineralization, and growth of microphytobenthos. However, microsensor measurements showed that OA conditions reduced the porewater pH. Under diffusive conditions these changes were limited to the upper sediment layers. In contrast, advective conditions caused a deeper penetration of low pH water into the sediment resulting in an earlier pH buffering by dissolution of calcium carbonate (CaCO3). This increased the dissolution of Davis Reef sediments turning them from net precipitating (−0.8 g CaCO3 m−2 d−1) under ambient to net dissolving (1 g CaCO3 m−2 d−1) under OA conditions. Comparisons with in-situ studies on other reef sediments show that our dissolution rates are reasonable estimates for field settings. We estimate that enhanced dissolution due to OA will only have a minor effect on net ecosystem calcification of the Davies Reef flat (〈4%). However, it could decrease recent sediment accumulation rates in the lagoon by up to 31% (by 0.2–0.4 mm year−1), reducing valuable reef space. Furthermore, our results indicate that high-magnesium calcite is predominantly dissolving in the studied sediments and a drastic reduction in this mineral can be expected on Davis Reef lagoon in the near future, leaving sediments of an altered mineral composition. This study demonstrates that biotic sediment processes will likely not directly be affected by OA. Ensuing indirect effects of OA-induced sediment dissolution on biotic processes are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-02-06
    Description: Anthropogenic emissions of carbon dioxide (CO2) and the ongoing accumulation in the surface ocean together with concomitantly decreasing pH and calcium carbonate saturation states have the potential to impact phytoplankton community composition and therefore biogeochemical element cycling on a global scale. Here we report on a recent mesocosm CO2 perturbation study (Raunefjorden, Norway), with a focus on organic matter and phytoplankton dynamics. Cell numbers of three phytoplankton groups were particularly affected by increasing levels of seawater CO2 throughout the entire experiment, with the cyanobacterium Synechococcus and picoeukaryotes (prasinophytes) profiting, and the coccolithophore Emiliania huxleyi (prymnesiophyte) being negatively impacted. Combining these results with other phytoplankton community CO2 experiments into a data-set of global coverage suggests that, whenever CO2 effects are found, prymnesiophyte (especially coccolithophore) abundances are negatively affected, while the opposite holds true for small picoeukaryotes belonging to the class of prasinophytes, or the division of chlorophytes in general. Future reductions in calcium carbonate-producing coccolithophores, providing ballast which accelerates the sinking of particulate organic matter, together with increases in picoeukaryotes, an important component of the microbial loop in the euphotic zone, have the potential to impact marine export production, with feedbacks to Earth's climate system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-02-06
    Description: At the end of 2014, a Major Baltic Inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170-210 m) in the EGB, where the bottom water oxygen concentration was 30-45 μM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008-2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50% of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3-4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 μM nitrate in 2008-2010, but the oxygenation event created bottom water nitrate concentrations of about 10 μM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 47 (7). pp. 1685-1699.
    Publication Date: 2020-02-06
    Description: Seasonal variability in pathways of warm water masses toward the Kangerdlugssuaq Fjord-Glacier system (KF/KG), southeast Greenland, is investigated by backtracking Lagrangian particles seeded at the fjord mouth in a high-resolution regional ocean model simulation in the ice-free and the ice-covered seasons. The waters at KF are a mixture of Atlantic-origin water advected from the Irminger Basin (FF for Faxaflói), the deep waters from the Denmark Strait and the waters from the Arctic Ocean, both represented by the Kögur section (KO). Below 200m depth, the warm water is a mixture of FF and KO water masses, and is warmer in winter than in summer. We find that seasonal differences in pathways double the fraction of FF particles in winter, causing the seasonal warming and salinification. Seasonal temperature variations at the upstream sections (FF and KO) have a negligible impact on temperature variations near the fjord. Successful monitoring of heat flux to the fjord therefore needs to take place close to the fjord, and cannot be inferred from upstream conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-04-23
    Description: Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes—summarized by the term ocean acidification (OA)—can significantly affect marine food webs and biogeochemical cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather eutrophic environments, while less attention has been paid to oligotrophic systems such as the subtropical ocean gyres. Here we report from a recent in situ mesocosm experiment off the coast of Gran Canaria in the eastern subtropical North Atlantic, where we investigated the influence of OA on the ecology and biogeochemistry of plankton communities in oligotrophic waters under close-to-natural conditions. This paper is the first in this Research Topic of Frontiers in Marine Biogeochemistry and provides (1) a detailed overview of the experimental design and important events during our mesocosm campaign, and (2) first insights into the ecological responses of plankton communities to simulated OA over the course of the 62-day experiment. One particular scientific objective of our mesocosm experiment was to investigate how OA impacts might differ between oligotrophic conditions and phases of high biological productivity, which regularly occur in response to upwelling of nutrient-rich deep water in the study region. Therefore, we specifically developed a deep water collection system that allowed us to obtain ~85 m3 of seawater from ~650 m depth. Thereby, we replaced ~20% of each mesocosm's volume with deep water and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom that developed in response to deep water addition. Such CO2-related shifts in plankton community composition could have consequences for ecosystem productivity, biomass transfer to higher trophic levels, and biogeochemical element cycling of oligotrophic ocean regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-04-23
    Description: Dissolved Fe(II) in seawater is deemed an important micronutrient for microbial organisms, but its analysis is challenging due to its transient nature. We conducted a series of Fe(II) method comparison experiments, where spikes of 5 to 31 nM Fe(II) were added to manipulated seawaters with varying dissolved oxygen (37 to 156 μM) concentrations. The observed Fe(II) concentrations from four analytical methods were compared: spectrophotometry with ferrozine, stripping voltammetry, and flow injection analysis using luminol (with, and without, a pre-concentration column). Direct comparisons between the different methods were undertaken from the derived apparent Fe(II) oxidation rate constant (k1). Whilst the two luminol based methods produced the most similar concentrations throughout the experiments, k1 was still subject to a 20–30% discrepancy between them. Contributing factors may have included uncertainty in the calibration curves, and different responses to interferences from Co(II) and humic/fulvic organic material. The difference in measured Fe(II) concentrations between the luminol and ferrozine methods, from 10 min–2 h after the Fe(II) spikes were added, was always relatively large in absolute terms (〉4 nM) and relative to the spike added (〉20% of the initial Fe(II) concentration). k1 derived from ferrozine observed Fe(II) concentrations was 3–80%, and 4–16%, of that derived from luminol observed Fe(II) with, and without, pre-concentration respectively. The poorest comparability of k1 was found after humic/fulvic material was added to raise dissolved organic carbon to 120 μM. A luminol method without pre-concentration then observed Fe(II) to fall below the detection limit (〈0.49 nM) within 10 min of a 17 nM Fe(II) spike addition, yet other methods still observed Fe(II) concentrations of 2.7 to 3.7 nM 30 min later. k1 also diverged accordingly with the ferrozine derived value 4% of that derived from luminol without pre-concentration. These apparent inconsistencies suggest that some inter-dataset differences in measured Fe(II) oxidation rates in natural waters may be attributable to differences in the analytical methods used rather than arising solely from substantial shifts in Fe(II) speciation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-04-23
    Description: The development of phosphate sensors suitable for long-term in situ deployments in natural waters, is essential to improve our understanding of the distribution, fluxes, and biogeochemical role of this key nutrient in a changing ocean. Here, we describe the optimization of the molybdenum blue method for in situ work using a lab-on-chip (LOC) analyzer and evaluate its performance in the laboratory and at two contrasting field sites. The in situ performance of the LOC sensor is evaluated using hourly time-series data from a 56-day trial in Southampton Water (UK), as well as a month-long deployment in the subtropical oligotrophic waters of Kaneohe Bay (Hawaii, USA). In Kaneohe Bay, where phosphate concentrations were characteristic of the dry season (0.13 ± 0.03 μM, n = 704), the in situ sensor accuracy was 16 ± 12% and a potential diurnal cycle in phosphate concentrations was observed. In Southampton Water, the sensor data (1.02 ± 0.40 μM, n = 1,267) were accurate to ±0.10 μM relative to discrete reference samples. Hourly in situ monitoring revealed striking tidal and storm derived fluctuations in phosphate concentrations in Southampton Water that would not have been captured via discrete sampling. We show the impact of storms on phosphate concentrations in Southampton Water is modulated by the spring-neap tidal cycle and that the 10-fold decline in phosphate concentrations observed during the later stages of the deployment was consistent with the timing of a spring phytoplankton bloom in the English Channel. Under controlled laboratory conditions in a 250 L tank, the sensor demonstrated an accuracy and precision better than 10% irrespective of the salinity (0–30), turbidity (0–100 NTU), colored dissolved organic matter (CDOM) concentration (0–10 mg/L), and temperature (5–20°C) of the water (0.3–13 μM phosphate) being analyzed. This work demonstrates that the LOC technology is mature enough to quantify the influence of stochastic events on nutrient budgets and to elucidate the role of phosphate in regulating phytoplankton productivity and community composition in estuarine and coastal regimes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-02-06
    Description: Dissolved organic matter (DOM) represents a major reservoir of carbon in the oceans. Environmental stressors such as ocean acidification (OA) potentially affect DOM production and degradation processes, e.g., phytoplankton exudation or microbial uptake and biotransformation of molecules. Resulting changes in carbon storage capacity of the ocean, thus, may cause feedbacks on the global carbon cycle. Previous experiments studying OA effects on the DOM pool under natural conditions, however, were mostly conducted in temperate and coastal eutrophic areas. Here, we report on OA effects on the existing and newly produced DOM pool during an experiment in the subtropical North Atlantic Ocean at the Canary Islands during an (1) oligotrophic phase and (2) after simulated deep water upwelling. The last is a frequently occurring event in this region controlling nutrient and phytoplankton dynamics. We manipulated nine large-scale mesocosms with a gradient of pCO2 ranging from ~350 up to ~1,030 μatm and monitored the DOM molecular composition using ultrahigh-resolution mass spectrometry via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). An increase of 37 μmol L−1 DOC was observed in all mesocosms during a phytoplankton bloom induced by simulated upwelling. Indications for enhanced DOC accumulation under elevated CO2 became apparent during a phase of nutrient recycling toward the end of the experiment. The production of DOM was reflected in changes of the molecular DOM composition. Out of the 7,212 molecular formulae, which were detected throughout the experiment, ~50% correlated significantly in mass spectrometric signal intensity with cumulative bacterial protein production (BPP) and are likely a product of microbial transformation. However, no differences in the produced compounds were found with respect to CO2 levels. Comparing the results of this experiment with a comparable OA experiment in the Swedish Gullmar Fjord, reveals similar succession patterns for individual compound pools during a phytoplankton bloom and subsequent accumulation of these compounds were observed. The similar behavior of DOM production and biotransformation during and following a phytoplankton bloom irrespective of plankton community composition and CO2 treatment provides novel insights into general dynamics of the marine DOM pool.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-02-06
    Description: Ecological research in recent decades revealed that species loss has a predominantly negative effect on ecosystem functioning and stability. Most of these studies were based on random species loss scenarios, but extinctions in nature are not random. Recent experimental studies using macroscopic communities largely advanced knowledge about the effects of non-random species loss. However, in microscopic communities like the phytoplankton, implementing realistic species loss scenarios is challenging and experimental data are scarce. Creating more realistic experiments to study the role of phytoplankton diversity for ecosystem functioning is particularly important, as they provide up to 50% of global primary productivity, form the basis of all pelagic food webs, and are important for biogeochemical cycling. In this study, we experimentally tested and evaluated three methods for non-random species loss in a natural marine phytoplankton community. Dilution, filtration, and heat stress removed the targeted rare, large, and sensitive species, respectively. All these species groups are extremely vulnerable to extinction in future climate scenarios and play important roles in the communities. Dilution and filtration with a fine mesh additionally decreased initial biomass, which increased the variability of species left in the respective replicates. The methods tested in this study can be used to non-randomly manipulate phytoplankton species diversity in communities used for experiments. However, in studies where species identities are more important than species richness, the dilution and filtration methods should be modified to eliminate the effect of decreasing initial biomass.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-02-06
    Description: Microbial communities associated with deep-sea corals are beginning to be studied in earnest and the contribution of the microbiome to host organismal function remains to be investigated. In this regard, the ability of the microbiome to adjust to prevailing environmental conditions might provide clues to its functional importance. In this study, we characterized bacterial community composition associated with the deep-sea coral Eguchipsammia fistula under natural (in situ) and aquaria (ex situ) settings using 16S rRNA gene amplicon sequencing. We compared freshly collected Red Sea coral specimens with those reared for 〉1 year at conditions that partially differed from the natural environment, in particular regarding increased oxygen and food availability under ex situ conditions. We found substantial differences between the microbiomes associated with corals under both environmental settings. The core microbiome comprised only six bacterial taxa consistently present in all corals, whereas the majority of bacteria were exclusively associated either with freshly collected corals or corals under long-term reared aquaria settings. Putative functional profiling of microbial communities showed that corals in their natural habitat were enriched for processes indicative of a carbon- and nitrogen-limited environment, which might be reflective of differences in diet under in situ and ex situ conditions. The ability of E. fistula to harbor distinct microbiomes under different environmental settings might contribute to the flexibility and phenotypic plasticity of this cosmopolitan coral. Future efforts should further assess the role of these different bacteria in holobiont function, in particular since E. fistula is naturally present in markedly different environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-02-06
    Description: The sea surface microlayer (SML) is the thin boundary layer between the ocean and the atmosphere, making it important for air-sea exchange processes. However, little is known about what controls organic matter composition in the SML. In particular, there are only few studies available on the differences of the SML of various oceanic systems. Here, we compared the organic matter and neuston species composition in the SML and the underlying water (ULW) at 11 stations with varying distance from the coast in the Peruvian upwelling regime, a system with high emissions of climate relevant trace gases, such as N2O and CO2. In the open ocean, organic carbon, and amino acids were highly enriched in the SML compared to the ULW. The enrichment decreased at the coastal stations and vanished in the upwelling regime. At the same time, the degradation of organic matter increased from the open ocean to the upwelling stations. This suggests that in the open ocean, upward transport processes or new production of organic matter within the SML are faster than degradation processes. Phytoplankton was generally not enriched in the SML, one group though, the Trichodesmium-like TrL (possibly containing Trichodesmium), were enriched in the open ocean but not in the upwelling region indicating that they find a favorable habitat in the open ocean SML. Our data show that the SML is a distinct habitat; its composition is more similar among different systems than between SML and ULW of a single station. Generally the enrichment of organic matter is assumed to be reduced when encountering low primary production and high wind speeds. However, our study shows the highest enrichments of organic matter in the open ocean which had the lowest primary production and the highest wind speeds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (2). pp. 509-525.
    Publication Date: 2020-10-22
    Description: By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, we find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981-1990, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991-2000. The atmospheric response over the North Pacific during 1981-1990 is eddy-mediated, equivalent barotropic and concentrated in the east. In contrast, the atmospheric response during 1991-2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981-1990 to mean flow divergence over the western North Pacific in 1991-2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by our AGCM experiments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Chemical Society
    In:  The Journal of Organic Chemistry, 82 (1). pp. 269-275.
    Publication Date: 2020-01-02
    Description: A synthesis of the 12,12′-azo-analogue of ritterazine N from hecogenin is reported. Ring contraction of two 6/5 bicyclic ring systems, one trans-fused and another spiro, to 5/5 spiro ring systems is accomplished with excellent stereochemical control. Key transformations include an abnormal Baeyer–Villiger oxidation, a Norrish type I cleavage, an intramolecular dipolar [3 + 2] cycloaddition, and an intramolecular oxymecuration. Failing to uncover the β-OH ketone from the isoxazoline ring, we end up with a synthesis of a cyclic analogue of ritterazine N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-09-02
    Description: Marine plastic debris is a global environmental problem. Surveys have shown that 〈5 mm plastic particles, known as microplastics, are significantly more abundant in surface seawater and on shorelines than larger plastic particles are. Nevertheless, quantification of microplastics in the environment is hampered by a lack of adequate high-throughput methods for distinguishing and quantifying smaller size fractions (〈1 mm), and this has probably resulted in an underestimation of actual microplastic concentrations. Here we present a protocol that allows high-throughput detection and automated quantification of small microplastic particles (20–1000 μm) using the dye Nile red, fluorescence microscopy, and image analysis software. This protocol has proven to be highly effective in the quantification of small polyethylene, polypropylene, polystyrene, and nylon-6 particles, which frequently occur in the water column. Our preliminary results from sea surface tows show a power-law increase in small microplastics (i.e., 〈1 mm) with a decreasing particle size. Hence, our data help to resolve speculation about the “apparent” loss of this fraction from surface waters. We consider that this method presents a step change in the ability to detect small microplastics by substituting the subjectivity of human visual sorting with a sensitive and semiautomated procedure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-12-17
    Description: The Ignik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for C02 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure C02 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of C02 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of C02, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and ( 3) an extended ( 30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of C02 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; (2) gas hydrate test wells must be carefully designed to enable rapid remediation of wellbore blockages that will occur during any cessation in operations; (3) sand production during hydrate production likely can be managed through standard engineering controls; and ( 4) reservoir heat exchange during depressurization was more favorable than expected-mitigating concerns for near-wellbore freezing and enabling consideration of more aggressive pressure reduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (12). pp. 4337-4350.
    Publication Date: 2020-02-06
    Description: Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-11-18
    Description: To be able to adequately assess potential environmental impacts of deep-sea polymetallic nodule mining, the establishment of a proper environmental baseline, incorporating both spatial and temporal variability, is essential. The aim of the present study was to evaluate both spatial and intra-annual variability in meiofauna (higher taxa) and nematode communities (families and genera, and Halalaimus species) within the license area of Global Sea mineral Resources (GSR) in the northeastern Clarion Clipperton Fracture Zone (CCFZ), and to determine the efficiency of the current sampling of meiofauna and nematode diversity. In October 2015, three polymetallic nodule-bearing sites, about 60–270 km apart, located at similar depths (ca. 4,500 m) were sampled, of which one site was sampled in April in that same year. Despite the relatively large geographical distances and the statistically significant, but small, differences in sedimentary characteristics between sites, meiofauna and nematode communities were largely similar in terms of abundance, composition and diversity. Between-site differences in community composition were mainly driven by a set of rare and less abundant taxa. Moreover, although surface primary productivity in April exceeded that in October, no significant changes were observed in sedimentary characteristics or in meiofauna and nematode communities. At all sites and in both periods, Nematoda were the prevailing meiofaunal phylum, which was in turn dominated by Monhysterid genera and Acantholaimus. Our findings support the earlier purported notion of a low degree of endemism for nematode genera and meiofauna taxa in the deep sea, and hint at the possibility of large distribution ranges for at least some Halalaimus species. Taxon richness estimators revealed that the current sampling design was able to characterize the majority of the meiofauna and nematode taxa present. To conclude, implications of the present findings for environmental management and future research needs are provided.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-01-03
    Description: Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and and thus provides little basis for revising this lower bound.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-09-19
    Description: Water masses influenced by oxygen minimum zones (OMZ) feature low inorganic nitrogen (N) to phosphorus (P) ratios. The surplus of P over N is thought to favor non-Redfield primary production by bloom-forming phytoplankton species. Additionally, excess phosphate (P*) is thought to provide a niche for nitrogen fixing organisms. In order to assess the effect of low inorganic nutrient ratios on the stoichiometry and composition of primary producers, biogeochemical measurements were carried out in 2012 during a research cruise in the eastern tropical South Pacific (ETSP). Based on pigment analyses, a succession of different phytoplankton functional groups was observed along onshore—offshore transects with diatoms dominating the productive upwelling region, and prymnesiophytes, cryptophytes, and Synechococcus prevailing in the oligotrophic open ocean. Although inorganic nutrient supply ratios were below Redfield proportions throughout the sampling area, the stoichiometry of particulate organic nitrogen to phosphorus (PON:POP) generally exceeded ratios of 16:1. Despite PON:POP ≥ 16, high P*-values in the surface layer (0–50 m) above the shelf rapidly decreased as water masses were advected offshore. There are three mechanisms which can explain these observations: (1) non-Redfield primary production, where the excess phosphorus in the biomass is directly released as dissolved organic phosphorus (DOP), (2) non-Redfield primary production, which is masked by a particulate organic matter pool mainly consisting of P-depleted detrital biomass, and/or (3) Redfield primary production combined with dinitrogen (N2) fixation. Our observations suggest that the three processes occur simultaneously in the study area; quantifying the relative importance of each of these mechanisms needs further investigation. Therefore, it remains uncertain whether the ETSP is a net sink for bioavailable N or whether the N-deficit in this area is replenished locally.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-11-08
    Description: This article investigates the dynamics and temporal evolution of the Atlantic Multidecadal Variability (AMV) in a coupled climate model. The model contains a correction to the North Atlantic flow field to improve the path of the North Atlantic Current, thereby alleviating the surface cold bias, a common problem with climate models, and offering a unique opportunity to study the AMV in a model. Changes in greenhouse gas forcing or aerosol loading are not considered. A striking feature of our results is the contrast between the western and eastern sides of the subpolar gyre in the model. On the western side, heat supply from the ocean plays a major role, with most of this heat being given up to the atmosphere in the warm phase, largely symmetrically about the time of the AMV maximum. By contrast, on the eastern side, the ocean gains heat from the atmosphere, with relatively little role for ocean heat supply in the years before the AMV maximum. Thereafter, the balance changes with heat now being removed from the eastern side by the ocean leading to a reducing ocean heat content, behavior we associate with the establishment of an intergyre gyre at the time of the AMV maximum. In the warm phase, melting sea-ice leads to a freshening of surface waters northeast of Greenland which travel southward into the Irminger and Labrador Sea, shutting down convection and terminating the AMV warm phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-11-29
    Description: Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first major step of carbon fixation in the Calvin-Benson-Bassham (CBB) cycle. This autotrophic CO2 fixation cycle accounts for almost all the assimilated carbon on Earth. Due to the primary role that RubisCO plays in autotrophic carbon fixation, it is important to understand how its gene expression is regulated and the enzyme is activated. Since the majority of all microorganisms are currently not culturable, we used a metagenomic approach to identify genes and enzymes associated with RubisCO expression. The investigated metagenomic DNA fragment originates from the deep-sea hydrothermal vent field Nibelungen at 8 degrees 18 ' S along the Mid-Atlantic Ridge. It is 13,046 bp and resembles genes from Thiomicrospira crunogena. The fragment encodes nine open reading frames (ORFs) which include two types of RubisCO, form I (CbbL/S) and form II (CbbM), two LysR transcriptional regulators (LysR1 and LysR2), two von Willebrand factor type A (CbbO-m and CbbO-1), and two AAA+ ATPases (CbbQ-m and CbbQ-1), expected to function as RubisCO activating enzymes. In silico analyses uncovered several putative LysR binding sites and promoter structures. Functions of some of these DNA motifs were experimentally confirmed. For example, according to mobility shift assays LysR1's binding ability to the intergenic region of lysR1 and cbbL appears to be intensified when CbbL or LysR2 are present. Binding of LysR2 upstream of cbbM appears to be intensified if CbbM is present. Our study suggests that CbbQ-m and CbbO-m activate CbbL and that LysR1 and LysR2 proteins promote CbbQ-m/CbbO-m expression. CbbO-1 seems to activate CbbM and CbbM itself appears to contribute to intensifying LysR's binding ability and thus its own transcriptional regulation. CbbM furthermore appears to impair cbbL expression. A model summarizes the findings and predicts putative interactions of the different proteins influencing RubisCO gene regulation and expression.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-04-08
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...