ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Notes: Abstract  The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-12-15
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-10-01
    Print ISSN: 0028-1042
    Electronic ISSN: 1432-1904
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-30
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-01
    Print ISSN: 0967-0645
    Electronic ISSN: 1879-0100
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 μmol m−2 d−1 and an overall emission of 0.18 Gg N2O y−1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-07
    Description: The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gases
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-31
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brase, Lisa; Bange, Hermann Werner; Lendt, Ralf; Sanders, Tina; Dähnke, Kirstin (2017): High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00162
    Publication Date: 2023-07-06
    Description: Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 ?mol m-2 d-1 and an overall emission of 0.18 Gg N2O y-1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.
    Keywords: Ammonium; Continuous flow analyser (AA3, Seal Analytics, Germany); Date/Time of event; DEPTH, water; Elbe Estuary; Event label; FerryBox system; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; Latitude of event; Longitude of event; LP201504; LP201504_Stat_1_1; LP201504_Stat_1_10; LP201504_Stat_1_11; LP201504_Stat_1_12; LP201504_Stat_1_13; LP201504_Stat_1_14; LP201504_Stat_1_15; LP201504_Stat_1_16; LP201504_Stat_1_17; LP201504_Stat_1_18; LP201504_Stat_1_19; LP201504_Stat_1_2; LP201504_Stat_1_3; LP201504_Stat_1_4; LP201504_Stat_1_5; LP201504_Stat_1_6; LP201504_Stat_1_7; LP201504_Stat_1_8; LP201504_Stat_1_9; LP201504_Stat_10_1; LP201504_Stat_10_10; LP201504_Stat_10_11; LP201504_Stat_10_12; LP201504_Stat_10_13; LP201504_Stat_10_14; LP201504_Stat_10_15; LP201504_Stat_10_16; LP201504_Stat_10_17; LP201504_Stat_10_18; LP201504_Stat_10_19; LP201504_Stat_10_2; LP201504_Stat_10_20; LP201504_Stat_10_3; LP201504_Stat_10_4; LP201504_Stat_10_5; LP201504_Stat_10_6; LP201504_Stat_10_7; LP201504_Stat_10_8; LP201504_Stat_10_9; LP201504_Stat_11_1; LP201504_Stat_11_10; LP201504_Stat_11_11; LP201504_Stat_11_12; LP201504_Stat_11_13; LP201504_Stat_11_14; LP201504_Stat_11_15; LP201504_Stat_11_16; LP201504_Stat_11_17; LP201504_Stat_11_18; LP201504_Stat_11_19; LP201504_Stat_11_2; LP201504_Stat_11_20; LP201504_Stat_11_3; LP201504_Stat_11_4; LP201504_Stat_11_5; LP201504_Stat_11_6; LP201504_Stat_11_7; LP201504_Stat_11_8; LP201504_Stat_11_9; LP201504_Stat_12_1; LP201504_Stat_12_10; LP201504_Stat_12_2; LP201504_Stat_12_3; LP201504_Stat_12_4; LP201504_Stat_12_5; LP201504_Stat_12_6; LP201504_Stat_12_7; LP201504_Stat_12_8; LP201504_Stat_12_9; LP201504_Stat_13_1; LP201504_Stat_13_10; LP201504_Stat_13_11; LP201504_Stat_13_12; LP201504_Stat_13_13; LP201504_Stat_13_14; LP201504_Stat_13_15; LP201504_Stat_13_2; LP201504_Stat_13_3; LP201504_Stat_13_4; LP201504_Stat_13_5; LP201504_Stat_13_6; LP201504_Stat_13_7; LP201504_Stat_13_8; LP201504_Stat_13_9; LP201504_Stat_14_1; LP201504_Stat_14_2; LP201504_Stat_14_3; LP201504_Stat_14_4; LP201504_Stat_14_5; LP201504_Stat_14_6; LP201504_Stat_15_1; LP201504_Stat_15_2; LP201504_Stat_15_3; LP201504_Stat_15_4; LP201504_Stat_17_1; LP201504_Stat_17_10; LP201504_Stat_17_11; LP201504_Stat_17_12; LP201504_Stat_17_13; LP201504_Stat_17_14; LP201504_Stat_17_15; LP201504_Stat_17_16; LP201504_Stat_17_17; LP201504_Stat_17_2; LP201504_Stat_17_3; LP201504_Stat_17_4; LP201504_Stat_17_5; LP201504_Stat_17_6; LP201504_Stat_17_7; LP201504_Stat_17_8; LP201504_Stat_17_9; LP201504_Stat_18_1; LP201504_Stat_18_2; LP201504_Stat_18_3; LP201504_Stat_19_1; LP201504_Stat_19_10; LP201504_Stat_19_11; LP201504_Stat_19_12; LP201504_Stat_19_13; LP201504_Stat_19_14; LP201504_Stat_19_15; LP201504_Stat_19_16; LP201504_Stat_19_2; LP201504_Stat_19_3; LP201504_Stat_19_4; LP201504_Stat_19_5; LP201504_Stat_19_6; LP201504_Stat_19_7; LP201504_Stat_19_8; LP201504_Stat_19_9; LP201504_Stat_2_1; LP201504_Stat_2_10; LP201504_Stat_2_11; LP201504_Stat_2_12; LP201504_Stat_2_13; LP201504_Stat_2_14; LP201504_Stat_2_15; LP201504_Stat_2_16; LP201504_Stat_2_17; LP201504_Stat_2_18; LP201504_Stat_2_19; LP201504_Stat_2_2; LP201504_Stat_2_3; LP201504_Stat_2_4; LP201504_Stat_2_5; LP201504_Stat_2_6; LP201504_Stat_2_7; LP201504_Stat_2_8; LP201504_Stat_2_9; LP201504_Stat_20_1; LP201504_Stat_20_10; LP201504_Stat_20_11; LP201504_Stat_20_12; LP201504_Stat_20_13; LP201504_Stat_20_14; LP201504_Stat_20_15; LP201504_Stat_20_16; LP201504_Stat_20_17; LP201504_Stat_20_18; LP201504_Stat_20_2; LP201504_Stat_20_3; LP201504_Stat_20_4; LP201504_Stat_20_5; LP201504_Stat_20_6; LP201504_Stat_20_7; LP201504_Stat_20_8; LP201504_Stat_20_9; LP201504_Stat_21_1; LP201504_Stat_21_10; LP201504_Stat_21_11; LP201504_Stat_21_12; LP201504_Stat_21_13; LP201504_Stat_21_14; LP201504_Stat_21_15; LP201504_Stat_21_16; LP201504_Stat_21_17; LP201504_Stat_21_18; LP201504_Stat_21_19; LP201504_Stat_21_2; LP201504_Stat_21_20; LP201504_Stat_21_21; LP201504_Stat_21_22; LP201504_Stat_21_23; LP201504_Stat_21_24; LP201504_Stat_21_25; LP201504_Stat_21_26; LP201504_Stat_21_27; LP201504_Stat_21_28; LP201504_Stat_21_29; LP201504_Stat_21_3; LP201504_Stat_21_30; LP201504_Stat_21_31; LP201504_Stat_21_32; LP201504_Stat_21_33; LP201504_Stat_21_34; LP201504_Stat_21_4; LP201504_Stat_21_5; LP201504_Stat_21_6; LP201504_Stat_21_7; LP201504_Stat_21_8; LP201504_Stat_21_9; LP201504_Stat_22_1; LP201504_Stat_22_10; LP201504_Stat_22_11; LP201504_Stat_22_12; LP201504_Stat_22_13; LP201504_Stat_22_14; LP201504_Stat_22_15; LP201504_Stat_22_16; LP201504_Stat_22_17; LP201504_Stat_22_18; LP201504_Stat_22_2; LP201504_Stat_22_3; LP201504_Stat_22_4; LP201504_Stat_22_5; LP201504_Stat_22_6; LP201504_Stat_22_7; LP201504_Stat_22_8; LP201504_Stat_22_9; LP201504_Stat_23_1; LP201504_Stat_23_10; LP201504_Stat_23_11; LP201504_Stat_23_12; LP201504_Stat_23_13; LP201504_Stat_23_14; LP201504_Stat_23_15; LP201504_Stat_23_16; LP201504_Stat_23_2; LP201504_Stat_23_3; LP201504_Stat_23_4; LP201504_Stat_23_5; LP201504_Stat_23_6; LP201504_Stat_23_7; LP201504_Stat_23_8; LP201504_Stat_23_9; LP201504_Stat_24_1; LP201504_Stat_24_10; LP201504_Stat_24_11; LP201504_Stat_24_12; LP201504_Stat_24_13; LP201504_Stat_24_14; LP201504_Stat_24_15; LP201504_Stat_24_16; LP201504_Stat_24_17; LP201504_Stat_24_18; LP201504_Stat_24_19; LP201504_Stat_24_2; LP201504_Stat_24_3; LP201504_Stat_24_4; LP201504_Stat_24_5; LP201504_Stat_24_6; LP201504_Stat_24_7; LP201504_Stat_24_8; LP201504_Stat_24_9; LP201504_Stat_3_1; LP201504_Stat_3_10; LP201504_Stat_3_11; LP201504_Stat_3_12; LP201504_Stat_3_13; LP201504_Stat_3_14; LP201504_Stat_3_15; LP201504_Stat_3_16; LP201504_Stat_3_17; LP201504_Stat_3_18; LP201504_Stat_3_19; LP201504_Stat_3_2; LP201504_Stat_3_20; LP201504_Stat_3_3; LP201504_Stat_3_4; LP201504_Stat_3_5; LP201504_Stat_3_6; LP201504_Stat_3_7; LP201504_Stat_3_8; LP201504_Stat_3_9; LP201504_Stat_4_1; LP201504_Stat_4_10; LP201504_Stat_4_11; LP201504_Stat_4_12; LP201504_Stat_4_13; LP201504_Stat_4_14; LP201504_Stat_4_15; LP201504_Stat_4_16; LP201504_Stat_4_17; LP201504_Stat_4_18; LP201504_Stat_4_19; LP201504_Stat_4_2; LP201504_Stat_4_20; LP201504_Stat_4_3; LP201504_Stat_4_4; LP201504_Stat_4_5; LP201504_Stat_4_6; LP201504_Stat_4_7; LP201504_Stat_4_8; LP201504_Stat_4_9; LP201504_Stat_5_1; LP201504_Stat_5_10; LP201504_Stat_5_11; LP201504_Stat_5_12; LP201504_Stat_5_13; LP201504_Stat_5_14; LP201504_Stat_5_15; LP201504_Stat_5_16; LP201504_Stat_5_17; LP201504_Stat_5_18; LP201504_Stat_5_19; LP201504_Stat_5_2; LP201504_Stat_5_20; LP201504_Stat_5_3; LP201504_Stat_5_4; LP201504_Stat_5_5; LP201504_Stat_5_6; LP201504_Stat_5_7; LP201504_Stat_5_8; LP201504_Stat_5_9; LP201504_Stat_6_1; LP201504_Stat_6_10; LP201504_Stat_6_11; LP201504_Stat_6_12; LP201504_Stat_6_13; LP201504_Stat_6_14; LP201504_Stat_6_15; LP201504_Stat_6_16; LP201504_Stat_6_17; LP201504_Stat_6_18; LP201504_Stat_6_19; LP201504_Stat_6_2; LP201504_Stat_6_20; LP201504_Stat_6_3; LP201504_Stat_6_4; LP201504_Stat_6_5; LP201504_Stat_6_6; LP201504_Stat_6_7; LP201504_Stat_6_8; LP201504_Stat_6_9; LP201504_Stat_7_1; LP201504_Stat_7_10; LP201504_Stat_7_11; LP201504_Stat_7_12; LP201504_Stat_7_13; LP201504_Stat_7_14; LP201504_Stat_7_15; LP201504_Stat_7_16; LP201504_Stat_7_17; LP201504_Stat_7_18; LP201504_Stat_7_19; LP201504_Stat_7_2; LP201504_Stat_7_20; LP201504_Stat_7_3; LP201504_Stat_7_4; LP201504_Stat_7_5; LP201504_Stat_7_6; LP201504_Stat_7_7; LP201504_Stat_7_8; LP201504_Stat_7_9; LP201504_Stat_8_1; LP201504_Stat_8_2; LP201504_Stat_8_3; LP201504_Stat_9_1; LP201504_Stat_9_10; LP201504_Stat_9_11; LP201504_Stat_9_12; LP201504_Stat_9_13; LP201504_Stat_9_14; LP201504_Stat_9_15; LP201504_Stat_9_2; LP201504_Stat_9_3; LP201504_Stat_9_4; LP201504_Stat_9_5; LP201504_Stat_9_6; LP201504_Stat_9_7; LP201504_Stat_9_8; LP201504_Stat_9_9; LP201506; LP201506_Stat_25_1; LP201506_Stat_25_10; LP201506_Stat_25_11; LP201506_Stat_25_12; LP201506_Stat_25_13; LP201506_Stat_25_14; LP201506_Stat_25_15; LP201506_Stat_25_16; LP201506_Stat_25_2; LP201506_Stat_25_3; LP201506_Stat_25_4; LP201506_Stat_25_5;
    Type: Dataset
    Format: text/tab-separated-values, 3585 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...