ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (840)
  • Lunar and Planetary Science and Exploration  (465)
  • Earth Resources and Remote Sensing  (375)
  • FID-GEO-DE-7
  • Geoelektrik
  • Magnetismus
  • 2015-2019  (840)
  • 2016  (840)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-09-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37460 , EVA Technology Collaboration Workshop; 13-16 Sep. 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-21
    Description: Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CI(sub Green)). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 greater than 0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN40736 , Remote Sensing (e-ISSN 2072-4292); 8; 7; 597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-21
    Description: Pre-launch characterization and calibration of the thermal emissive spectral bands on the Joint Polar Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) is critical to ensure high quality data products for environmental and climate data records post-launch. A comprehensive test program was conducted at the Raytheon El Segundo facility in 2013-2014, including extensive environmental testing. This work is focused on the thermal band radiometric performance and stability, including evaluation of a number of sensor performance metrics and estimation of uncertainties. Analysis has shown that JPSS-1 VIIRS thermal bands perform very well in relation to their design specifications, and comparisons to the Suomi National Polar-orbiting Partnership (SNPP) VIIRS instrument have shown their performance to be comparable.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN29811 , Remote Sensing (ISSN 2072-4292); 8; 1; 47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-22
    Description: We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 6080) than previous solutions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN40220 , ICARUS (ISSN 0019-1035 ; e-ISSN 1090-2643); Volume 272; 228–245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-05
    Description: The Mars Reconnaissance Orbiter (MRO) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low-altitude science orbit. The spacecraft has been on station in its 255 x 320 km, sun-synchronous (~3 am-pm), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-0909 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-05
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-0864 , MEPAG Meeting; Mar 02, 2016 - Mar 03, 2016; Silver Spring, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to approximately 12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25 deg x 0.3125 deg resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29725 , Earth Science Division Poster Session 2016; Feb 10, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The Lunar Reconnaissance Orbiter (LRO) launched in 2009 to collect the dataset required for future surface missions and to answer key questions about the lunar surface environment. In the first seven years of operations, the Lunar Reconnaissance Orbiter Camera (LROC) acquired over a million images of the lunar surface and collected key stereo observations for the production of meter-scale digital terrain models. Due to the configuration of the LRO orbit, LROC and the other onboard instruments have the opportunity to acquire observations at or near the poles every two hours. The lunar south polar region is an area of interest for future surface missions due to the benign thermal environment and areas of near-continuous illumination. These persistently illuminated regions are also adjacent to permanently shadowed areas (e.g. floors of craters and local depressions) that are of interest to both scientists and engineers prospecting for cold-trapped volatiles on or near the surface for future in situ resource utilization. Using a terramechanics model based on surface properties derived during the Apollo and Luna missions, we evaluated the accessibility of different science targets and the optimal traverse paths for a given set of waypoints. Assuming a rover that relies primarily on solar power, we identified a traverse that would keep the rover illuminated for 94.43% of the year between 1 January 2021 and 31 December 2021. Throughout this year-long period, the longest eclipse endured by the rover would last only 101 hours and the rover would move a total of 22.11 km with an average speed of 2.5 m/hr (max speed=30 m/hr). During this time the rover would be able to explore a variety of targets along the connecting ridge between Shackleton and de Gerlache craters. In addition to the southern polar regions, we are also examining traverses around other key exploration sites such as Marius Hills, Ina-D, Rima Parry, and the Mairan Domes in efforts to aid future mission planners and assess the requirements for future roving prospectors (e.g., maximum speed, maximum slope, etc.).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37534 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN32001 , International Controlled Environment Conference ((CEC/AusPheno 2016); Sep 18, 2016 - Sep 23, 2016; Canberra; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Since early 2015, the Mars Exploration Rover Opportunity has been exploring the break in the rim of Endeavour Crater dubbed Marathon Valley by the rover team. Marathon Valley was identified by orbital hyperspectral data from the MRO CRISM as having a relatively strong spectral feature in the 2.3 micrometer region indicative of an Mg or Fe-OH combination overtone absorption band indicative of smectite clay. Earlier in its mission, Opportunity examined the Matijevic Hill region on the more northerly Cape York crater rim segment and found evidence for smectite clays in a stratigraphically lower, pre-impact formed unit dubbed the Matijevic formation. However, the smectite exposures in Marathon Valley appear to be associated with the stratigraphically higher Shoemaker formation impact breccia. Evidence for alteration in this unit in Marathon Valley is provided by Pancam multispectral observations in the 430 to 1010 nm visible/near infrared (VNIR) spectral range. Sinuous troughs ("red zones") contain fragmented cobbles and pebbles displaying higher blue-to-red slopes, moderately higher 535 nm band depths, elevated 754 to 934 nm, and negative 934 to 1009 nm slopes. The lack of an absorption at 864 to 904 nm indicates the lack of crystalline red hematite in these red zones, but likely an enrichment in nanophase ferric oxides. The negative 934 to 1009 nm slope is potentially indicative of the presence of adsorbed or structurally bound water. A scuff in a red zone near the southern wall of Marathon Valley uncovered light-toned soils and a pebble with an 803 to 864 nm absorption resembling that of light-toned Fe-sulfate bearing soils uncovered by the Spirit rover in the Columbia Hills of Gusev crater. APXS chemical measurements indicated enrichments of Mg and S in the scuff soils and the pebble, Joseph Field, with the strongest 803 nm band- consistent with Mg and Fe sulfates. The presence of Fe and Mg sulfates can be interpreted as evidence of a potentially later episode of aqueous alteration with an earlier, neutral to alkaline pH episode forming the Fe/Mg smectites and a later acid pH episode forming the Fe and Mg sulfates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36817 , Geological Society of America (GSA) Annual Meeting 2016; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: Mars Exploration Rover Opportunity is exploring the rim of 22 km diameter, Noachian-aged Endeavour crater. Marathon Valley cuts through the central region of the western rim providing a window into the local lower rim stratigraphic record. Spectra from the Compact Reconnaissance Imaging Spectrometer for Mars show evidence for the occurrence of Fe-Mg smectite in this valley, indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. The Alpha Particle X-ray Spectrometer has determined the compositions of 59 outcrop targets on untreated, brushed and abraded surfaces. Rocks in the Marathon Valley region are soft breccias composed of mm- to cm-sized darker clasts set in a lighter-toned, finegrained matrix. They are basaltic in non-volatile-element composition and compositionally similar to breccias investigated elsewhere on the rim. Alteration styles recorded in the rocks include: (1) Enrichments in Si, Al, Ti and Cr in more reddish-colored rock, consistent with leaching of more soluble cations and/or precipitation of Si +/- Al, Ti, Cr from fluids. Coprecipitation of Ge-rich phases with Si occurred in the western area only; high water:rock is indicated. Pancam multispectral observations indicate higher nanophase ferric oxide contents, but the rocks have lower Fe contents. The highly localized nature of the red zones indicate they cannot be the source of the widespread smectite signature observed from orbit. (2) Outcrops separated by approximately 65 m show common compositional changes between brushed and abraded (approximately 1 mm deep) targets: increases in S and Mg; decreases in Al, Cl and Ca. These changes are likely due to relatively recent, surface-related alteration of valley rocks and formation of surface coatings under low water:rock. (3) One target, from the center of a region of strong CRISM smectite signature, shows modest differences in composition (higher Si, K; lower Mn) compared to most Marathon Valley rocks, while another target approximately 40 cm away on the same outcrop does not; a change towards smectite bulk compositions is not observed. The smectite signature likely resulted from alteration under low water:rock such that primary minerals were partially altered to phyllosilicates, but wholesale leaching of cations by fluids did not occur.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36819 , Geological Society of America (GSA) Annual Meeting 2016; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38219 , AGU Fall Meeting 2016; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% +/- 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into 'dark' and 'light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold probability) is termed an outlier and those DM values that can belong to multiple types (i.e. showing weak probability of belonging to a specific cluster) are termed as Overlap. MODIS active fires are overlaid on the model domain to qualitatively evaluate the model-predicted Smoke aerosol types.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38148 , AGU Fall Meeting 2016; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29722 , NASA Ames Research Center Earth Science Division Poster Session; Feb 10, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN33094 , Tohuku Forum for Creativity International Workshop: Planetary Science and Space Exploration; Jul 04, 2016 - Jul 06, 2016; Sendai; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: The Staring OBservations of the Atmosphere (SOBA) Mission is a concept that was developed and matured under the guidance of the NASA Ames Project EXellence (APEX) program. If funded, it will provide an unprecedented opportunity to improve ash transport forecasts and climate model simulations associated with volcanic eruptions. NASA and National science objectives require a better understanding of volcanic aerosol and trace gas emissions, transport, chemical transformation, and deposition, since they impact Earth's climate and atmospheric composition, human health, and aviation safety. Natural hazards such as the 2010 eruption of the Eyjafjallajkull volcano in Iceland demonstrated how existing remote-sensing assets were inadequate for individual volcanic event monitoring. During this eruption, available instruments were unable to provide data necessary to initialize volcanic plume transport models so that they could accurately predict the quantity and location of volcanic ash. As a result, thousands of flights around the world were grounded unnecessarily, at great expense. Volcanoes can also play a large role in regulation of the Earth's climate, so SOBA observations will also be used to evaluate and improve volcanic aerosol and trace gas simulation in chemical transport models (CTMs) and global climate models (GCMs). We propose the development of an airborne remote sensing concept and field campaign that will respond to an eruption and provide near real time observations of a volcanic plume, specifically ash injection height, transport, aerosol microphysical physical properties, and the location and concentration of sulfur dioxide (SO2) (sulfate (SO42-) aerosol precursor). This airborne system will utilize a depolarization sensitive, downward looking Light Detection And Ranging (lidar) instrument and an ultraviolet (UV) imaging spectrometer, and will provide data to be ingested by volcanic ash advisory models. Furthermore, the lessons learned in the development of this system could eventually guide regular deployment of similar systems by NASA or other government agencies.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN31856 , Volcanic Impacts on Climate and Society (VICS) Workshop; Jun 06, 2016 - Jun 08, 2016; Palisades, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-19
    Description: The petrographic study of Itokawa particle, RA-QD02-0127 has been performed by SEM-EDS and optical microscope observations. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36527 , Meteoritical Society Annual Meeting (METSOC 2016); Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: This year marks the 40th year anniversary for the Antarctic Search for Meteorite (ANSMET) program. In 1976, the ANSMET program led the first expedition to Antarctica. The ANSMET program is a US-led field-based science project that recovers meteorite samples from Antarctica. Once a year from late November to late January, a field team consisting of 8 to 12 people, spends 6-8 weeks camping on the ice and collecting meteorites. Since 1976, more than 22,000 meteorite samples have been recovered. These meteorites come from asteroids, planets and other bodies of the solar system. Once collected, the Antarctic meteorites are shipped to NASA/Johnson Space Center (JSC) Houston, TX. in a refrigerated truck and are kept frozen to minimize oxidation until they are ready for initial processing. In Antarctica each meteorite is given a field tag which consists of numbers, once in the lab, this is replaced by an official tag, consisting of the Antarctic field location and year collected. The types and numbers of meteorites that have been classified include 849 carbonaceous chondrites, 135 enstatites, 512 achondrites, 64 stony, 115 irons, 48 others (27 R chondrites, 7 ungrouped), 6,161 H chondrites, 7,668 L chondrites, and 4,589 LL chondrites. Although 80-85 percent of the collected meteorites fall in the ordinary chondrite group, the other approximately 15 percent represent rare types of achondrites and carbonaceous chondrites. These rare meteorites include 25 lunar meteorites, 15 Martian meteorites, scores of various types of carbonaceous chondrites, and unique achondrites. The Antarctic meteorites that have been collected are processed in the Meteorite Processing Lab at JSC in Houston, TX. Initial processing of the meteorites begins with thawing/drying the meteorites in a nitrogen glove box for 24 to 48 hours. The meteorites are then photographed, measured, weighed and a description of the interior and exterior of each meteorite is written. The meteorite is broken and a representative sample, either a 1-3 gram chip or thin section is sent to the Smithsonian Institution for classification. After Antarctic meteorites have been classified and approved by the Nomenclature Committee of the Meteoritical Society, they are announced in the Antarctic Meteorite Newsletter, which is published twice per year (fall and spring) so that scientists may review which meteorites are available to study. Requests for Antarctic Meteorite samples are welcomed from research scientists, regardless of their current state of funding for meteorite studies. Since its inception over 3,300 requests have been made for pieces of these meteorites and over 400 investigators worldwide are active in the study of meteorites.. Research on these samples has been published in more than1500 peer reviewed articles; a listing of papers for any meteorite sample can be generated by accessing http://curator.jsc.nasa.gov/antmet/referencesearch.cfm. Antarctic meteorite samples requested by scientists are prepared several different ways. Most samples are prepared as chips, either using a rock splitter or using a chisel and chipping bowl. In special situations, a researcher may request a meteorite slab in which case the samples are cut using a diamond-bladed bandsaw inside of a dry nitrogen glove box. The meteorites are always cut in a 100 percent liquid-free environment. Additionally, thin/thick sections of Antarctic meteorites are also prepared at JSC. The meteorite thin section lab at JSC can prepare standard 30-micron thin sections, thick sections of variable thickness (100 to 200 microns), or demountable sections using superglue, all section are prepared without using water. Although many of the techniques used back in the '70's are still used today, advances in computers, software, databases, available tools and instrumentation have helped to streamline and shorten the duration of the classification process. In conjunction with present day missions to asteroids and other planets, meteorite studies have not only led to a better understanding of the complex histories of these bodies but have also tied certain meteorite groups to particular asteroid bodies. New meteorite discoveries by the ANSMET program provide a cost effective method for obtaining samples of previously unsampled bodies, allowing scientists to learn more about the origin, composition, and evolution of the solar system. Preservation in our cleanrooms at NASA allows material to be archived for future generations and advances in instrumentation and analysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36539 , Annual Meeting of The Meteoritical Society; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched in early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to the current measurements from the GOSAT, GOME-2 and SCIAMACHY missions. In this contribution, we will provide an overview of existing global SIF data sets derived from space-based atmospheric spectrometers and will demonstrate the potential of such data to improve our knowledge of vegetation photosynthesis and gross primary production at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity in different ecosystems, including large crop belts worldwide, the Amazon rainforest and boreal evergreen forests.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN29386 , ESA Living Planet Conference; May 09, 2016 - May 13, 2016; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-19
    Description: The California Sacramento-San Joaquin River Delta is the hub for Californias water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29374 , Weed Science Society of America Conference 2016; Feb 08, 2016 - Feb 11, 2016; San Juan; Puerto Rico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29937 , Ames Earth Sciences Symposium; Feb 10, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and geochemical variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. Geochemical data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and geochemical trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35730 , 2016 Goldschmidt Conference; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-19
    Description: This paper will describe the information technologies developed by NASA and NOAA for the February 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) El Nio Southern Oscillation (ENSO) Campaign. The air vehicle is a NASA Global Hawk UAS, with a primary payload of four instruments, two developed by NASA, two developed by NOAA. The aircraft is based at the NASA Armstrong Flight Research Center, Edwards Air Force Base, California. The payload components are remotely operated by scientists at various facilities, and the data collected downloaded over satellite links in real time for analysis and collaboration. NOAA: Advanced Vertical Atmospheric Profiling System (AVAPS), developed by NCAR, which deploys dozens of dropsondes at altitudes up to 65,000 ft to collect high vertical resolution measurements of the temperature, pressure, relative humidity, and wind speed and direction. NASA: High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), a radar designed to examine the factors of storm intensity: formation, structure and intensification. NOAA: O3 Photometer (UAS-O3), designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS). NASA JPL: High Altitude MMIC Sounding Radiometer (HAMSR), an atmospheric microwave temperature and humidity sounder instrument that looks at the microwave spectrum.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN31846 , Annual Meeting Asia Oceania Geosciences Society; Jul 31, 2016 - Aug 05, 2016; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: I will describe water we have found in 4.5 billion year old extraterrestrial salt, and the organics that are also present. We hypothesize that organics being carried through the parent body of the halite have been deposited adjacent to the fluid inclusions, where they have been preserved against any thermal metamorphism. We are making bulk compositional, carbon and hydrogen isotopic measurements of solid organic phases associated with the aqueous fluid inclusions in the meteorites. We will compare these organics with those found in chondrites and Wild-2 comet coma particles to determine whether these classes of organics had an origin within aqueous solutions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-34653 , Origins of Life; Jan 17, 2016 - Jan 22, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-20
    Description: The NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddards AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sunsky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a wide dynamic range camera that provides a high precision solar position tracking signal as well as an image of the sky in the 45 field of view around the solar axis, which can be of great assistance in flagging data for cloud effects or other factors that might impact data quality.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37559 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the Summer of 2014, high resolution 3-D mapping of the low lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center Management develop future Master Plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes are going to be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk.The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the anticipated energy usage as climate changes, the Ames CASI team is collecting historical energy usage data from Ames facilities, historical weather data, and projected future weather parameters from the CASI Climate subgroup. This data will be incorporated into the RETScreen model to predict how energy usage at Ames will change over the coming century.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38053 , American Geophysical Union (AGU) Fall Meeting 2016; Dec 08, 2016 - Dec 12, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: We present interpreted data analysis using MAIAC (Multiangle implementation of Atmospheric Correction) retrievals and appropriate RAPid Update Cycle (RAP) meteorology to map respirable aerosol (PM2.5) for the period January and February, 2011. The San Joaquin Valley is one of the unhealthiest regions in the USA for PM2.5 and related morbidity. The methodology evaluated can be used for the entire moderate-resolution imaging spectrometer (MODIS, VIIRS) data record. Other difficult areas of the West: Riverside, CA, Salt Lake City, UT, and Doa Ana County, NM share similar difficulties and solutions. The maps of boundary layer depth for 1116 hr local time from RAP allows us to interpret aerosol optical thickness as a concentration of particles in a nearly well-mixed box capped by clean air. That mixing is demonstrated by DISCOVER-AQ data and afternoon samples from the airborne measurements, P3B (on-board) and B200 (HSRL2 lidar). This data and the PM2.5 gathered at the deployment sites allowed us to estimate and then evaluate consistency and daily variation of the AOT to PM2.5 relationship. Mixed-effects modeling allowed a refinement of that relation from day to day; RAP mixed layers explained the success of previous mixed-effects modeling. Compositional, size-distribution, and MODIS angle-of-regard effects seem to describe the need for residual daily correction beyond ML depth.We report on an extension method to the entire San Joaquin Valley for all days with MODIS imagery using the permanent PM2.5 stations, evaluated for representativeness. Resulting map movies show distinct sources, particularly Interstate-5 (at approx. 1km x 1km resolution) and the broader Bakersfield area. Accompanying winds suggest transport effects and variable pathways of pollution cleanout. Such estimates should allow morbiditymortality studies. They should be also useful for actual model assimilations, where composition and sources are uncertain. We conclude with a description of new work to extend these insights to similar regions, e.g. interior valleys of California, the Po Valley, the Mediterranean litoral, and the Ganges Plain.This work show generalizable use of remote sensing, a major goal of DISCOVER-AQ, Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38190 , AGU Fall Meeting; Dec 12, 2016 - Dec 26, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-20
    Description: Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation features will be presented which indicate contrasts between the RAC and nonRAC cases, and which highlight key effects radiatively-active clouds have on physical and dynamical processes active in the current climate of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35548 , Meeting of the Division for Planetary Sciences; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-20
    Description: The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere could control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. Our current work builds on these initial investigations with a version of the NASA Ames Mars Global Climate Model (GCM) that includes a sophisticated CO2 cloud microphysical scheme. Processes of cloud nucleation, growth, sedimentation, and radiative effects are accounted for. Simulated results thus far agree well with the Colaprete et al. studythe zonally asymmetric nature of the atmospheric circulation produces enhanced snowfall over the residual cap hemisphere throughout much of the winter season. However, the predicted snowfall patterns vary significantly with season throughout the cap growth and recession phases. We will present a detailed analysis of the seasonal evolution of the predicted atmospheric circulation and snowfall patterns to more fully evaluate the hypothesis that the atmosphere controls the placement of the south residual cap.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35545 , Meeting of the Division for Planetary Science; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-20
    Description: Wintertime transient baroclinic eddies in the northern midlatitudes of Mars were identified in Viking Lander 2 (VL2, 48.3N, 134.0E) surface pressure data back in the early 1980s. Here we report the results of an analysis of REMS surface pressure data acquired by the Curiosity Rover in Gale Crater (4.5S, 137.4E) that suggests the meridional scale of these eddies is so large that the disturbances in the surface pressure fields they create extend across the equator and into the southern hemisphere. A power spectrum analysis of the seasonally detrended REMS pressure data from Ls=240-280 shows dominant periods of ~ 6 sols and ~2.2 sols (though with greatly reduced power) which are close the dominant periods of the transient eddies observed by VL2 at this season. Analysis of the surface pressure fields from the Ames Mars GCM for the same season also shows dominant periods at the grid points closest to VL2 and Gale Crater similar to those observed. In the model, the disturbances responsible for these oscillations are eastward traveling baroclinic eddies whose amplitudes are greatest at northern mid latitudes at this season, but whose meridional extent does indeed extend into the low latitudes of the southern hemisphere. REMS appears to be seeing the signature of these eddies, not only for this season but for the early fall and late winter seasons as well. While orbital images of the so called flushing storms, which more closely correspond to the shorter period waves, show dust-lifting frontal systems that cross the equator, REMS data - even though acquired at a longitude of comparatively weak storm activity - provide the first in-situ evidence that northern hemisphere transient eddies can be detected at the surface in low latitudes of the southern hemisphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35501 , Meeting of the Division for Planetary Sciences; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-20
    Description: NASA's Resource Prospector (RP) project intends to characterize the 3D distribution of volatiles in permanently shadowed regions at the lunar poles. One RP remote sensing instrument is a near-infrared spectrometer with an associated camera and radiometer, called the Near-InfraRed Volatile Spectrometer System (NIRVSS). In May 2016, NIRVSS, a Honeybee Robotics drill, and an Inficon mass spectrometer were placed in a vacuum chamber at Glenn Research Center. Also inside was a tube (1.2 m high x 25 cm diameter) filled with lunar simulant NU-LHT-3M, initially doped with a homogeneous water abundance of ~5%, chilled to cryogenic temperatures and exposed to a vacuum (~10e-6 Torr). During drilling, the NIRVSS instruments observed the cuttings pile as subsurface materials were emplaced on the surface. Spectral features associated with water ice, near 2000 and 3000 nm, were measured by the spectrometer during drilling. The spectral data documents development of a desiccated soil layer in the tube down to ~25-30 cm (confirmed by post-test soil analyses), formed during the initial pump down to vacuum. Drilling occurred in 10 cm segments, with the drill stem extracted and flutes brushed after each 10 cm depth. One exception to this was the 40 cm depth segment where the soil was delivered to a sample capture mechanism, and sealed for post-test analyses. To ~30 cm depth the greatest 2000 and 3000 nm signatures were associated with brushing of the drill flutes above the surface. At depths 〉40 cm the strongest ice signatures were associated with the drill clearing soil from the existing hole, or beginning to encounter new material. For these greater depths, brushing the flutes after extraction produced much weaker ice signatures than for shallower depths. This suggests that the soil may remain trapped in the exit funnel and is not emplaced on the surface. After each event creating strong ice signatures, these signatures decreased to near background levels in 5 minutes or less, due to surface exposure to vacuum.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN37110 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-20
    Description: Develop and incorporate a liquid water cycle into the NASA Ames Research Center (ARC) Mars Global Climate Model (GCM).
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN34533 , SS Poster Session; Aug 04, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASAs Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37509 , 2016 AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: We present two new products from near-infrared GOSAT observations: lower tropospheric (LMT, from 0-2.5 km) and upper tropospheric/stratospheric (U, above 2.5 km) carbon dioxide partial columns. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial columns significantly improve over the ACOS-GOSAT initial guess/a priori, with distinct patterns in the LMT and U seasonal cycles which match validation data. For land monthly averages, we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO2. In the southern hemisphere biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and CO/CO2 emission factor consistent with published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with monthly average error of 0.8 (1.4) ppm for ocean (land). The new LMT partial column is more locally influenced than the U partial column, meaning that local fluxes can now be separated from CO2 transported from far away.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37969 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: A Fourier Transform Spectrometer (FTS) was deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON) and has now been in operation for over 3 years. The data record from AFRC will be presented as well as airborne validation profiles obtained during the NASA SEAC4RS, SARP, KORUS-AQ, and ATom missions utilizing various NASA aircraft. One of the reasons that the AFRC location was selected is due to its proximity to a highly reflective lakebed, which has proven to be difficult for accurate satellite retrievals. As such, the data from AFRC has been used for OCO-2 calibration. In order for accurate calibration of OCO-2, the validity of the TCCON measurements must be established. To this end, integrated airborne in-situ vertical profiles will be presented and compared with the TCCON FTS measurements, where good agreement has been found.
    Keywords: Earth Resources and Remote Sensing
    Type: A41F?0114 , ARC-E-DAA-TN38056 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the SouthEast Atlantic during the Austral Spring for three consecutive years from 20162018. The study area encompasses one of the Earths three semipermanent subtropical Stratocumulus (Sc) cloud decks,and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), butstill challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe anew algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER2and P3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrievalscheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a morerealistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloudretrievals from ORACLES, compared with standard RSP low-levelcloud retrieval method that has been validated against in situ observations.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37893 , American Geophysical Union (AGU) Fall Meeting 2016; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: Hydrogen cyanide (HCN) has successfully been used as a tracer of biomassburning in the context of aircraft campaigns. We show HCN observations fromAura-TES for a major fire in Indonesia in 2006, and globally over differentseasons. We develop a fire-influence flag for TES observations and show howthis relates to enhancements of other TES products, such as PAN, carbonmonoxide, and ozone.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37970 , American Geophysical Union (AGU) Fall Meeting 2016; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: In October 2015, the Environmental Protection Agency lowered the National Ambient Air Quality Standard for ozone (O3) from 75 ppbv to 70 ppbv. However, meeting the stricter air standards is a challenge for certain areas of California, like the San Joaquin Valley (SJV), where O3 levels are typically high due to topography, meteorology, and local emissions. Another factor potentially contributing to increased surface O3 is the trans-Pacific transport of O3 from Asia. The extent of which O3stems from local emissions or is transported across the Pacific, however, is unclear. The California Ozone Transport Study (CABOTS), a joint effort between the California Air Resource Board, the National Oceanic and Atmospheric Administration, and San Jose State University, was conducted during the spring and summer of 2016 in an attempt to answer this question.Nearly 10 science flights were carried out by the Alpha Jet Atmospheric eXperiment (AJAX) between June and August 2016, based out of the NASA Ames Research Center. A summary of airborne O3, CO2, CH4, H2O, formaldehyde (HCHO), and 3D wind measurements will be presented. AJAX flights connect the fixed-location measurements at Visalia (TOPAZ ozone lidar) and Bodega Bay (ozonesondes), while exploring the spatial heterogeneity of O3 concentrations across California and at various offshore locations. Preliminary analyses of these flights will investigate connections between offshore O3 and Central Valley O3. Vertical profiles, time series, and tracer-tracer correlations will be employed to identify the sources of O3 during these flights.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38055 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10 mean absolute error (MAE) for well-watered crops and within 15 across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8 MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by 20-40 relative to grower standard practices while maintaining crop yields and quality.
    Keywords: Earth Resources and Remote Sensing
    Type: NCTS# 25415-17 , ARC-E-DAA-TN37853 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN38000 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN37904 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN37830 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN33772 , Journal of Coastal Research (ISSN 0749-0208) (e-ISSN 1551-5036); Special 76; 44-55
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN38047 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN38046 , 2016 American Geophysical Union (AGU) Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: In the United States, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geolocation, and aggregation of various damage indicators collected during storm surveys.
    Keywords: Earth Resources and Remote Sensing
    Type: IN33B-1817 , MSFC-E-DAA-TN38017 , 2016 AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35019 , IEEE International Conference on Image Processing; Sep 25, 2016 - Sep 28, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Data from NASA's New Horizons encounter with Pluto in July 2015 revealed an astoundingly complex world. The surface seen on the encounter hemisphere ranged in age from ancient to recent. A vast craterless plain of slowly convecting solid nitrogen resides in a deep primordial impact basin, reminiscent of young enigmatic deposits in Mars' Hellas basin. Like Mars, regions of Pluto are dominated by valleys, though the Pluto valleys are thought to be carved by nitrogen glaciers. Pluto has fretted terrain and halo craters. Pluto is cut by tectonics of several different ages. Like Mars, vast tracts on Pluto are mantled by dust and volatiles. Just as on Mars, Pluto has landscapes that systematically vary with latitude due to past and present seasonal (and mega-seasonal) effects on two major volatiles. On Mars, those volatiles are H2O and CO2; on Pluto they are CH4 and N2. Like Mars, some landscapes on Pluto defy easy explanation. In the Plutonian arctic there is a region of large (approx. 40 km across) deep (approx. 3-4 km) pits that probably could not be formed by sublimation, or any other single process, alone. Equally bizarre is the Bladed terrain, which is composed of fields of often roughly aligned blade-like ridges covering the flanks and crests of broad regional swells. Topping the unexpected are two large mounds approximately150 km across, approx. 5-6 km high, with great central depressions at their summits. The central depressions are almost as deep as the mounds are tall. These mounds have many of the characteristics of volcanic mountains seen on Mars and elsewhere in the inner solar system. Hypotheses for the formation of these Plutonian mounds so far all have challenges, principally revolving around the need for H2O ice to support their relief and the difficulty imagining mechanisms that would mobilize H2O. From the perspective of one year after the encounter, our appreciation of the extent of Pluto's diversity and complexity is quite reminiscent of the perspective the science community had of Mars, with similar quality data sets, soon after the early reconnaissance of that planet in the late 1960s and early 70s. So certainly in this sense, Pluto is the new Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35698 , GSA 2016 Conference; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: As expanding service offerings and decreasing prices make the cloud increasingly attractive to Earth Science applications, there are nontrivial practical considerations which can hinder its meaningful use. In this talk, we will discuss architectural recommendations and lessons learned while working on EOSDIS' cloud efforts, particularly the NASA-compliant General Application Platform (NGAP) and its associated applications. Prominent in our findings is the importance of 12-factor design patterns and the powerful "wins" they enable in the cloud. We will share our strategies for "fast-tracking" applications to the cloud --whether they be legacy, planned for the future, or somewhere in between.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN37270 , American Geophyical Union (AGU); Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This pathfinder design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the landers ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concepts propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concepts propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37351 , AIAA Space 2016; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN34150 , MODIS/VIIRS 2016 Science Team Meeting; Jun 06, 2016 - Jun 10, 2016; Silver Spring, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN34151 , MODIS/VIIRS 2016 Science Team Meeting; Jun 06, 2016 - Jun 10, 2016; Silver Spring, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission, although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites, but has rarely been considered a major process for hydrous carbonaceous chondrites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37434 , Symposium on Antarctic Meteorites; Nov 29, 2016 - Dec 02, 2016; Tachikawa; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, and sea level has risen.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-25063 , Annual Meeting of the Asia Oceania Geoscience Society (AOGS) 2016; Jul 31, 2016 - Aug 05, 2016; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: A variety of processes have been considered possibly contributing the volatiles including noble gases to the atmospheres of the terrestrial planets (e.g., [1-3]). Special consideration has been given to the concept of accretion of volatile-rich materials by the forming planets. This might include infalling planetesimals and dust, and could include material from the outer asteroid belt, as well as cometary material from the outer solar system. Currently, the dominant source of extraterrestrial material accreted by the Earth is represented by micrometeorites (MMs) with sizes mostly in the 100-300 micron range [3, 4]). Their role has been assessed by [3], who conclude that accretion of early micrometeorites played a major role in the formation of the terrestrial atmosphere and oceans. We have therefore set out to investigate in more detail the inventory of noble gases in MMs. Here we summarize some of our results obtained on MMs collected in micrometeorite traps of the Transantarctic Mountains [5].
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN32502 , Annual Meeting of The Meteoritical Society; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The main goal of this research is to design, fabricate, and test deployable VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. The proposed work provides a strong foundation for establishing a technology development path for maturing a truly global direct surface soil moisture (SM) and RZSM measurement system (Figure 1) over a variety of land covers with limited density restrictions. In SoOp methodology, signals transmitted by already existing transmitters (known as transmitters of opportunity, in this case the Military Satellite Communication (MilSatCom) System's UHF Follow-On program) are utilized to measure properties of reflecting targets by recording reflected signals using a simple passive microwave receiver.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN33411 , Progress in Electromagnetics Research Symposium (PIERS) 2016; Aug 08, 2016 - Aug 11, 2016; Shanghai; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37463 , 2016 EVA Technology Workshop; Sep 13, 2016 - Sep 15, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37464 , 2016 EVA Technology Workshop; Sep 13, 2016 - Sep 15, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN35478 , DragonCon; Sep 02, 2016 - Sep 05, 2016; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN35480 , DragonCon; Sep 02, 2016 - Sep 05, 2016; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GRC-E-DAA-TN28786 , AIAA SciTech Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Mars Design Reference Architecture 5.0:Lists in-situ resource utilization (ISRU) as enabling for robust human Mars missionsLO2LCH4 ascent propulsion 25,000 kg oxygen from atmosphere for ascent and life support Atmospheric based ISRU processes less operationally complex than surface based limited concept evaluation to date and Mars surface water property and distribution uncertainty would not allow [Mars soil water processing] to be base lined at this time Limited Concept Evaluation to Date Lunar regolith O2 extraction processing experience Lunar regolith is fluidized and heated to high temperatures with H2 to produce H2O from iron-bearing minerals Mars similarity concept: Soil placed in fluidized bed reactor Heated to moderate temperatures Inert gas flow used to fluidize the bed and help with water desorption Challenges: High-temperature dusty seals Working gas requires downstream separation and recycling to reduce consumables loss Batch process heating thermally inefficient.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GRC-E-DAA-TN28821 , AIAA Science and Technology Forum and Exposition (AIAA SciTech); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-View Sensor (SeaWiFS) algorithm atmospheric correction with approximately 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(sub 440)) is overestimated for AOD below approximately 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value less than approximately 0.96.AOD(sub 440) and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN35098 , Journal of Atmospheric & Oceanic Technology (e-ISSN 1520-0426); 33; 6; 1185-1209
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (〉 or = 50degN and 〉 or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover 〉500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN34846 , Review of Geophysics (e-ISSN 1944-9208); 54; 2; 447-485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi-functional high-precision scanning polarimeter and an imager-polarimeter should make a significant contribution to the study of natural and anthropogenic aerosols and their climatic and ecological effects.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31344 , Acta Astronautica (e-ISSN 0094-5765); 123; 292-300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The Northwest India Aquifer (NWIA) has been shown to have the highest groundwater depletion (GWD) rate globally, threatening crop production and sustainability of groundwater resources. Gravity Recovery and Climate Experiment (GRACE) satellites have been emerging as a powerful tool to evaluate GWD with ancillary data. Accurate GWD estimation is, however, challenging because of uncertainties in GRACE data processing. We evaluated GWD rates over the NWIA using a variety of approaches, including newly developed constrained forward modeling resulting in a GWD rate of 3.1 plus or minus 0.1 centimeters per acre (or 14 plus or minus 0.4 cubic kilometers per acre) for Jan 2005-Dec 2010, consistent with the GWD rate (2.8 centimeters per acre or 12.3 cubic kilometers per acre) from groundwater-level monitoring data. Published studies (e.g., 4 plus or minus 1 centimeter per acre or 18 plus or minus 4.4 cubic kilometers per acre) may overestimate GWD over this region. This study highlights uncertainties in GWD estimates and the importance of incorporating a priori information to refine spatial patterns of GRACE signals that could be more useful in groundwater resource management and need to be paid more attention in future studies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31611 , Scientific Reports; 6; 24398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Seismicity estimates play an important role in creating regional geological characterizations, which are useful for understanding a planet's formation and evolution, and are of key importance to site selection for landed missions. Here we investigate the regional effects of seismicity in planetary environments with the goal of determining whether such surface features on the Moon, could be triggered by fault motion.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN32312 , New Views of the Moon 2; May 24, 2016 - May 26, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Introduction: Seismicity estimates play an important role in creating regional geological characterizations, which are useful for understanding a planet's formation and evolution, and of key importance to site selection for landed missions. Here we investigate the regional effects of lunar seismicity with the goal of determining whether surface features such as landslides and boulder trails on the Moon are triggered by fault motion.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30561 , New Views of the Moon 2; May 24, 2016 - May 26, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN32152 , The Astrophysical Journal; 820; 2; 122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the aqueous formation of sulfate-bearing phases under acidic conditions on the surface of Mars including (1) sulfuric acid weathering of basaltic materials; (2) oxidative weathering of ultramafic igneous rocks containing sulfides; (3) acid fog weathering of basaltic materials, and (4) near-neutral pH subsurface solutions rich in Fe2(+) that were rapidly oxidized to Fe3(+), which produced excess acidity as iron was oxidized on exposure to O2 or photo-oxidized by ultraviolet radiation at the martian surface. Next, we briefly describe evidence for these hypothesis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36478 , International Acid Sulfate Soils Conference; Jul 17, 2016 - Jul 23, 2016; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36272 , New Views of the Moon 2; May 24, 2016 - May 26, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The leading hypothesis for the origin of the Moon is the giant impact model, which grew out of the post-Apollo science community. The hypothesis was able to explain the high E-M system angular momentum, the small lunar core, and consistent with the idea that the early Moon melted substantially. The standard hypothesis requires that the Moon be made entirely from the impactor, strangely at odds with the nearly identical oxygen isotopic composition of the Earth and Moon, compositions that might be expected to be different if Moon came from a distinct impactor. Subsequent geochemical research has highlighted the similarity of both geochemical and isotopic composition of the Earth and Moon, and measured small but significant amounts of volatiles in lunar glassy materials, both of which are seemingly at odds with the standard giant impact model. Here we focus on key geochemical measurements and spacecraft observations that have prompted a healthy re-evaluation of the giant impact model, provide an overview of physical models that are either newly proposed or slightly revised from previous ideas, to explain the new datasets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36280 , New Views of the Moon 2; May 24, 2016 - May 26, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The Moon contains broad and isolated areas of plains that have been recognized as mare, cryptomare, impact ejecta, or impact melt. These deposits have been extensively studied on the lunar nearside by remote sensing via telescopes and numerous spacecraft, and in some cases, in situ robotically and by astronauts. Only recently have the deposits on the entire farside been able to be observed and evaluated to the same degree. There are spatially extensive plains deposits located throughout the lunar farside highlands whose formation has remained ambiguous. Many of the plains deposits in the lunar farside highlands display higher albedos than mare materials. Some deposits are located in close proximity to relatively younger impact craters suggesting that plains could be composed of cryptomare or ejecta materials. Some deposits are within the range in which ejecta from large basin-forming events (e.g., SPA and Orientale) likely distributed large amounts of ejecta across the surface. Here we are conducting a series of observations and models in order to resolve the nature and origin of lunar farside plains deposits. Understanding these plains is important for understanding the volcanic and impact histories of the lunar farside, and is important for future mapping and thermal modeling studies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN31948 , Lunar and Planetary Science Conference (LPSC); Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN31008 , International Conference on Space Operations (SpaceOps 2016); May 16, 2016 - May 20, 2016; Daejeon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN31951 , Lunar and Planetary Science Conference (LPSC); Mar 21, 2015 - Mar 25, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN30842 , SERVIR Country Consultation and Needs Assessments Workshop for Disasters in Nepal; Mar 29, 2016; Kathmandu; Nepal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30733 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30725 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Since these techniques are very new and as they have never been used or this purpose. they will need to be replicated by several independent studies. These techniques may be very important if the optical imaging encounters difficulties, for example, if a sample is made of very dark or monochromatic material and in the case of very deep pits (〉500 microns) Based on the preliminary results, the LIBS continuum technique is more appropriate to the large pits produced by long ablations The relationship may work best homogeneous samples, but the continuum is collected with every LIBS analysis so does not require any addition to the experimental suite of techniques. The integration of a QCMB in the ablation chamber may be a very interesting solution to determine the ablated mass. Even if it only measures a fraction of the total mass, its sensitivity should be able to weigh hundreds of nanograms accumulated on the crystal during ablation and relate it to the actual ablated mass. In the future. these options may help in situ K-Ar dating to give the age of the rock with the best accuracy and precision.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30742 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30730 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: The Dhofar 961 lunar meteorite was found in 2003 in Oman. It is texturally paired with Dhofar 925 and Dhofar 960 (though Dhofar 961 is more mafic and richer in incompatible elements). Several lines of reasoning point to the South Pole-Aitken Basin (SPA) basin as a plausible source (Figure 2): Mafic character of the melt-breccia lithic clasts consistent the interior of SPA, rules out feldspathic highlands. Compositional differences from Apollo impact-melt groups point to a provenance that is separated and perhaps far distant from the Procellarum KREEP Terrane SPA "hot spots" where Th concentrations reach 5 ppm and it has a broad "background" of about 2 ppm, similar to lithic clasts in Dhofar 961 subsamples If true, impact-melt lithologies in this meteorite may be unaffected by the Imbrium-forming event that is pervasively found in our Apollo sample collection, and instead record the early impact history of the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30726 , Lunar and Planetary Science Conference; Mar 22, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. At the last Science Team Meeting, we described results using SRT AIRS Version-6.22. SRT Version-6.22 is now an official build at JPL called 6.2.4. Version-6.22 results are significantly improved compared to Version-6, especially with regard to water vapor and ozone profiles. We have adapted AIRS Version-6.22 to run with CrIS/ATMS, at the Sounder SIPS which processed CrIS/ATMS data for August 2014. JPL AIRS Version-6.22 uses the Version-6 AIRS tuning coefficients. AIRS Version-6.22 has at least two limitations which must be improved before finalization of Version-7: Version-6.22 total O3 has spurious high values in the presence of Saharan dust over the ocean; and Version-6.22 retrieved upper stratospheric temperatures are very poor in polar winter. SRT Version-6.28 addresses the first concern. John Blaisdell ran the analog of AIRS Version-6.28 in his own sandbox at JPL for the 14th and 15th of every month in 2014 and all of July and October for 2014. AIRS Version-6.28a is hot off the presses and addresses the second concern.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN30560 , AIRS Science Team Meeting; Mar 23, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of small bodies originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to low-albedo, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison with known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this. Multiple flybys suffice.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN29370 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35670 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LPI-Abstract-2459 , JSC-CN-35673 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35671 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35766 , New Views of the Moon 2 Workshop; May 24, 2016 - May 26, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The South Pole-Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. The SPA basin also has another convenient property, a geochemically distinct interior, unobscured by extensive mare basalt fill. A case has been made for the possible origin of the Dhofar 961 lunar meteorite in the South Pole-Aitken (SPA) basin, based on comparing its composition with Lunar Prospector gamma-ray data for the interior of the SPA basin. Dhofar 961 contains several different impact-melt (IM) lithologies. Jolliff et al. described two classes of mafic impact-melt lithologies, one dominated by olivine (Lithology A) and the other by plagioclase (An 95-96.5) (Lithology B). Broad-beam analyses of these lithologies yielded (is) approximately 14.0 wt% FeO, 11.7 wt% MgO, and 15.4 wt% Al2O3. Lithologies A and B differ by approximately 2.5% Al2O3, 1.5% FeO and 1.5% MgO, consistent with the occurrence of olivine phenocrysts in A and plagioclase clasts in B. Both lithologies are considerably more mafic than the Apollo mafic impact-melt breccias, corresponding to olivine gabbronorite. Joy et al. used U-Pb dating to investigate phosphate fragments in the Dhofar 961 matrix and impact-melt clasts. Matrix phosphates have 4.34 to 4 Ga ages, consistent with ancient KREEP-driven magmatic episodes and Pre-Nectarian ((is) greater than 3.92 Ga). Phosphates found within Dhofar 961 crystalline impact melt breccia clasts range from 4.26 to 3.89 Ga, potentially recording events throughout the basin forming epoch of lunar history. The youngest reset ages in the Dhofar 961 sample represent an upper limit for the time of formation of the meteorite. Joy et al suggested this age represents the final impact that mixed and consolidated several generations of precursor rocks into the Dhofar meteorite group, although they note that further age dating of all the stones is required to test this hypothesis. We received a split of Dhofar 961 from R. Zeigler consisting of a large clast of IM Lithology B, with some light-colored, friable matrix clinging to the external margins of the impact-melt clast. This lithology was not present in the samples investigated by Joy et al. and thus does not have corresponding U-Pb ages on it. We created multiple subsplits of both the IM and matrix lithologies, each weighing several tens of micrograms. We conducted Ar-40 Ar-39 dating of this candidate SPA material by high-resolution step heating and comparing it with the regolith that surrounds it.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29275 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29274 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29292 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Mesosiderites (MES) are a group of enigmatic stony-iron meteorites exhibiting fragmental matrix breccias and irregular textures; e.g. [1-3]. Mesosiderites contain roughly equal volumes metal (Fe-Ni) and silicates often intimately mixed together (Fig.1). The silicates mostly consist of basaltic, gabbroic, and pyroxenitic components, and appear similar to eucrites and howardites; [4-8]. But unlike HEDs - and other differentiated parent body meteorite groups e.g. ureilites - mesosiderites contain high metal abundances. Several studies have been published to reveal the processes leading to the formation of mesosiderites and attempt to classifiy them [1], [2], [10-15]. Because the silicate inclusions in mesosiderites are often strongly metamorphosed after formation, it is difficult to assess the origin of the silicates and implications for the differentiation process of their parent body [15-17]. Several workers have advanced a formation hypothesis for the mesosiderites where an impact between differentiated bodies occurred prior to 4.47 Ga ago (e.g. [13,18], which could explain the possible incomplete dispersal of the colliding bodies due to their low cosmic ray exposure ages and their special thermal history. However, [13] discuss and favor the model for formation of mesosiderites with the collision of two differentiated bodies, along with disruption events and gravitational re-assembly. The mesosiderites have numerous gabbroid melt clasts with anomalous rare-earth- element (REE) - especially positive Eu - values [19, 20]. HEDs do not show the same. However, the heating mechanisms of both mesosiderites and HED's are puzzling. Mesosiderites are remarkable, they consist of a mix of basalts, which are only found on or near planetary surfaces and undifferentiated metal [1,2]. The probable model is that an asteroid containing a metallic magma impacted onto a second asteroid covered with basalt [18,21]. The mix was then buried under an insulating regolith, and cooled slowly. During cooling and at low temperatures the redox reactions continued to occur and proceed (J.T. Wasson; in pers. comm. 2015).
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29272 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN30491 , Atmospheric Measurement Techniques; 9; 3; 955-962
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: A wide diversity of planetary surfaces in the solar system represent high priority targets for in situ compositional and contextual analysis as part of future missions. The planned mission portfolio will inform our knowledge of the chemistry at play on Mars, icy moons, comets, and primitive asteroids, which can lead to advances in our understanding of the interplay between inorganic and organic building blocks that led to the evolution of habitable environments on Earth and beyond. In many of these environments, the presence of water or aqueously altered mineralogy is an important indicator of habitable environments that are present or may have been present in the past. As a result, the search for complex organic chemistry that may imply the presence of a feedstock, if not an inventory of biosignatures, is naturally aligned with targeted analyses of water-rich surface materials. Here we describe the two-step laser mass spectrometry (L2MS) analytical technique that has seen broad application in the study of organics in meteoritic samples, now demonstrated to be compatible with an in situ investigation with technique improvements to target high priority planetary environments as part of a future scientific payload. An ultraviolet (UV) pulsed laser is used in previous and current embodiments of laser desorption/ionization mass spectrometry (LDMS) to produce ionized species traceable to the mineral and organic composition of a planetary surface sample. L2MS, an advanced technique in laser mass spectrometry, is selective to the aromatic organic fraction of a complex sample, which can provide additional sensitivity and confidence in the detection of specific compound structures. Use of a compact two-step laser mass spectrometer prototype has been previously reported to provide specificity to key aromatic species, such as PAHs, nucleobases, and certain amino acids. Recent improvements in this technique have focused on the interaction between the mineral matrix and the organic analyte. The majority of planetary targets of astrobiological interest are characterized by the presence of water or hydrated mineral phases. Water signatures can indicate a history of available liquid water that may have played an important role in the chemical environment of these planetary surfaces and subsurfaces. The studies we report here investigate the influence of water content on the detectability of organics by L2MS in planetary analog samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN29318 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The Lunar Atmosphere and Dust Environment Explorer (LADEE) was an orbital lunar science mission designed to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The LADEE mission goal was to determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gasses, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gasses of both lunar and extra-lunar origin. Another goal of LADEE was to determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN29659 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN30541 , Interdepartmental Hurricane Conference (IHC); Mar 15, 2016 - Mar 17, 2016; Miami, FL; United States|Tropical Cyclone Operations and Research Forum; Mar 15, 2016 - Mar 17, 2016; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35219 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The Mars rover Curiosity has encountered silica-enriched bedrock (as strata and as veins and associated halos of alteration) in the largely basaltic Murray Fm. of Mt. Sharp in Gale Crater. Alpha Particle X-ray Spectrometer (APXS) investigations of the Murray Fm. revealed decreasing Mg, Ca, Mn, Fe, and Al, and higher S, as silica increased (Fig. 1). A positive correlation between SiO2 and TiO2 (up to 74.4 and 1.7 wt %, respectively) suggests that these two insoluble elements were retained while acidic fluids leached more soluble elements. Other evidence also supports a silica-retaining, acidic alteration model for the Murray Fm., including low trace element abundances consistent with leaching, and the presence of opaline silica and jarosite determined by CheMin. Phosphate stability is a key component of this model because PO4 3- is typically soluble in acidic water and is likely a mobile ion in diagenetic fluids (pH less than 5). However, the Murray rocks are not leached of P; they have variable P2O5 (Fig. 1) ranging from average Mars (0.9 wt%) up to the highest values in Gale Crater (2.5 wt%). Here we evaluate APXS measurements of Murray Fm. bedrock and veins with respect to phosphate stability in acidic fluids as a test of the acidic alteration model for the Lower Mt. Sharp rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35224 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Meteorites falling in Antarctica are captured in ice and stored until the glacial flow transports them to the surface where they can be collected. Prior to collection, they are altered during interactions between the rock, the cryosphere, and the hydrosphere. The purpose of this study is to characterize the stable isotope values of terrestrial, secondary carbonate minerals from Ordinary Chondrite (OC) meteorites collected in Antarctica. This facilitates better understanding of terrestrial weathering in martian meteorites as well as mechanisms for weathering in cold, arid environments as an analog to Mars. OC samples were selected for analysis based upon size and collection proximity to known martian meteorites. They were also selected based on petrologic type (3+) such that they were likely to be carbonate-free before falling to Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35252 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35237 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of asteroids originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to dark, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison to known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35256 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...