ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-01
    Print ISSN: 0032-0633
    Electronic ISSN: 1873-5088
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: The goals of this research are (1) to prove the concept feasibility of a direct-drive electric propulsion system, and (2) to evaluate the performance and characteristics of a Russian TAL (Thruster with Anode Layer) operating in a long-pulse mode, powered by a capacitor-based power source developed at Space Power Institute. The TAL, designated D-55, is characterized by an external acceleration zone and is powered by a unique chemical double layer (CDL) capacitor bank with a capacitance of 4 F at a charge voltage of 400 V. Performance testing of this power supply on the TAL was conducted at NASA Lewis Research Center in Cleveland, OH. Direct thrust measurements of the TAL were obtained at CDL power levels ranging from 450 to 1750 W. The specific impulse encompassed a range from 1150 s to 2200 s, yielding thruster system efficiencies between 50 and 60%. Preliminary mission analysis of the CDL direct-drive concept and other electric propulsion options was performed for the ORACLE spacecraft in 6am/6pm and 12am/12pm, 300 km sun-synchronous orbits. The direct-drive option was competitive with the other systems by increasing available net mass between 5 and 42% and reducing two-year system wet mass between 18 and 63%. Overall, the electric propulsion power requirements for the satellite solar array were reduced between 57 and 91% depending oil the orbit evaluated The direct-drive, CDL capacitor-based concept in electric propulsion thus promises to be a highly-efficient, viable alternative for satellite operations in specific near-Earth missions.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Ground-based high-power CW lasers can be used to beam power to photovoltaic receivers in space that furnish electricity to space vehicles; this energy can also be used to power electric-propulsion orbital transfer vehicles. An account is presently given of the anticipated requirements for the pulsed FEL lasers, large adaptive optics, photovoltaic receivers, and high specific impulse electrical propulsion. Preliminary system analysis results are presented.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 92-3213
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Earth-Mars trajectories for multiple solar-powered spacecraft configurations were generated using Hall and ion propulsion systems utilizing the Direct Trajectory Optimization Method. Payload and power trades versus trip time were examined. Performance was compared for purely interplanetary flight and interplanetary flight with estimated spiral in to Mars orbit. Evaluating current ion and Hall thruster technologies, similar payload masses were delivered by each at equivalent trip times, but with the Hall thruster operating at a power level 10 kilowatts, on average, less than the ion thruster. The power difference for equivalent payload delivered should result in a significant cost savings.
    Keywords: Astrodynamics
    Type: NASA/TM-2003-212593 , E-14150 , NAS 1.15:212593 , AIAA Paper 2003-4574 , 39th Joint Propulsion Conference and Exhibit; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-1999-209307 , E-11833 , NAS 1.15:209307 , AIAA Paper 99-2872 , Joint Propulsion; Jun 20, 1999 - Jun 24, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This pathfinder design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the landers ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concepts propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concepts propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37351 , AIAA Space 2016; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.
    Keywords: Space Sciences (General)
    Type: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 29, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Neptune's moon Triton is a fascinating object, a dynamic moon with an atmosphere, and geysers. Triton is unique in the outer solar system in that it is most likely a captured Kuiper belt object (KBO), a leftover building block of the solar system. When Voyager flew by it was the coldest body yet found in our solar system (33 degrees Kelvin) and had volcanic activity, geysers, and a thin atmosphere. It is covered in ices made from nitrogen, water, and carbon-dioxide, and shows surface deposits of tholins, organic compounds that may be precursor chemicals to the origin of life. Exploring Triton will be a challenge well beyond anything done in previous missions; but the unique environment of Triton also allows some new possibilities for mobility. We developed a conceptual design of a Triton Hopping probe that both analyzes the surface and collects it for use to propel its hops. The Hopper would land near the South Pole in 2040 where geysers have been detected. Depending the details of propulsion chosen the Hopper should be able to jump over 300 kilometers in 60 hops or less, exploring the surface and thin atmosphere on its way. This craft will autonomously carry out detailed scientific investigations on the surface, below the surface (drilling) and in the upper atmosphere to provide unprecedented knowledge of a KBO-turned moon and expanding NASA's existing capabilities in deep space planetary exploration to include Hoppers using different ices for propellant. Triton is roughly 2700 kilometers in diameter with a surface of mostly frozen nitrogen, mostly water ice crust and core of metal and rock. Its gravity is half that of Earth's Moon and its atmosphere is 170,000th of Earth's or 0.3 of Mars.The mission concept studied investigated the full surface and atmospheric phenomenon: chemical composition of surface and near subsurface materials, the thin atmosphere, volcanic and geyser activity. Measurements of all these aspects of Triton's unique environment can only be made through focused in-situ exploration with a well-instrumented craft. And this craft will be provided revolutionary mobility, nearly global, using in-situ ices as propellants. While other concepts have looked at gathering gases at Mars to propel a hopper, long periods of time are needed to gather the thin CO2 atmosphere. Several gases, mainly nitrogen are on the surface in a readily dense ice form and just need to be picked up, vaporized and used for propellant.
    Keywords: Spacecraft Design, Testing and Performance; Fluid Mechanics and Thermodynamics; Lunar and Planetary Science and Exploration
    Type: NASA/TM-2018-219423 , E-19319 , GRC-E-DAA-TN30488
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per crewed expedition mission. Unlike the demonstration mission, a lengthy power outage due to the global dust storms that are known to occur on Mars would pose a safety hazard to a crewed mission. A similar fission versus solar power trade study performed by NASA in 2007 concluded that fission power was more reliable-with a much lower mass penalty-than solar power for this application. However, recent advances in solar cell and energy storage technologies and changes in operational assumptions prompted NASA to revisit the analysis. For the purpose of this exercise a particular landing site at Jezero Crater, located at 18o north latitude, was assumed. A fission power system consisting of four each 10 kW Kilopower fission reactors was compared to a distributed network of Orion-derived Ultraflex solar arrays and Lithium ion batteries mounted on every lander. The team found that a solar power system mass of about 9,800 kg would provide the 22 kilowatts (kW) keep-alive power needed to survive a dust storm lasting up to 120-days at average optical depth of 5, and 35 kW peak power for normal operations under clear skies. Although this is less than half the mass estimated during the 2007 work (which assumed latitudes up to 30o) it is still more than the 7,000 kg mass of the fission system which provides full power regardless of dust storm conditions.
    Keywords: Spacecraft Propulsion and Power; Astrodynamics
    Type: JSC-CN-35576 , AIAA Space 2016; Sep 13, 2016 - Sep 16, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: NASA is exploring options for its Next Generation Relay (NGR) architecture while the current Tracking Data Relay Satellite System (TDRSS) completes its mission. The plan is to start implementation of the NGR beginning around 2025. The new system of proposed relay satellites will greatly increase the data rates between low Earth orbiting (LEO) satellite missions and the NASA TDRSS relay satellites. This increase in data rates will allow an unprecedented increase in data throughput from the LEO satellite missions back to the principal investigators (PI). This can be accomplished at Ka-band frequencies with high order modulation or at optical frequencies using Differential Phase Shift Keying (DPSK). The first satellite in the next set of relay satellites will have to be backward compatible with current technology to support ongoing and planned missions. The new set of satellites will be launched over a 10-year period with design lifetimes of at least 15 years. To meet these requirements, we analyzed various architectures and designed both the communication payloads on the relay satellite and candidate payloads on the user spacecraft by utilizing optical heads already designed. From this analysis, a demonstration optical satellite named the Next Generation Optical Relay Pathfinder with Ka-band capabilities was proposed to be built and launched with the purpose of evaluating an integrated high-speed optical and Ka-band communication system. Given a cost limit for the demonstration satellite, various satellite configurations were developed by varying the number of optical communication payloads. The communication payload on the relay satellite consisted of three major sub-systems: 1) Optical communication payload, 2) Ka-band communication payload, 3) Digital processing and routing of signals. The size, mass (weight), and power (SWaP) of the communication payload and other sub-systems of the satellite were obtained. The NASA Glenn Research Center COMPASS team designed the Pathfinder satellite and performed a cost analysis for its build and launch. In this paper, we first describe the needs, drivers, and the associated challenges for the Next Generation Optical Relay Pathfinder to be capable of connecting multiple LEO and GEO satellites at high data rates. Second, we detail the concept of operations (ConOps) and the system architecture, including the satellite configurations considered, their attributes and limitations, and the size of the satellite needed for each configuration. Third, we provide a summary of the Next Generation Optical Relay Pathfinder satellite design trades and its key elements. Finally, we present the path needed for implementation and operations.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GRC-E-DAA-TN60823 , Ka and Broadband Communications Conference; Oct 15, 2018 - Oct 18, 2018; Niagara Falls; Canada|International Communications Satellite Systems Conference (ICSSC); Oct 15, 2018 - Oct 18, 2018; Niagara Falls; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...