ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2013-07-11
    Description: The paper presents some results of the study on aerosol variability in the period from 2003 to 2011 over the Eastern Europe region, with latitude ranging from 40° N to 60° N and longitude from 20° E to 50° E. The analysis was based on the POLDER/PARASOL and POLDER-2/ADEOS satellites and AERONET (AErosol RObotic NETwork) ground-based sun photometer observations. The aerosol optical thickness (AOT) of the studied area is characterized by values (referenced to 870 nm wavelength) ranging from 0.05 to 0.2, except for in the period of July–August 2010 with strong forest and peat wildfires when the AOT typical values range from 0.3 to 0.5 according to both retrievals. The analysis of seasonal dynamics of aerosol loading has revealed two AOT high value peaks. The spring peak observed in April–May is the result of solitary transportation of Saharan dust in the atmosphere over Eastern Europe, infrequent agricultural fires, transportation of sea salt aerosols by southern winds to Ukraine and Moldova from the Black and Azov seas. The autumn peak in August–September is associated with forest and peat wildfires, considerable transportation of Saharan dust and the presence of soil dust aerosols due to harvesting activity. The maximum values of AOT are observed in May 2006 (0.1–0.15), April 2009 (0.07–0.15) and August 2010 (0.2–0.5). Furthermore, the study has identified a distinct pattern of anthropogenic aerosols over the industrial areas, especially in central Ukraine and eastern Belarus as well as Moscow region in Russia. The comparison of the AOT derived by standard algorithm POLDER/PARASOL with those recomputed from AERONET inversions for fine mode particles with radius 〈 0.3 μm was performed over several AERONET sites. The correlation coefficients for the POLDER/AERONET AOT retrieval comparisons are equal: 0.78 for Moscow site, 0.76 – Minsk, 0.86 – Belsk, 0.81 – Moldova (period 2005–2009), 0.93 – Kyiv and 0.63 for Sevastopol sites (2008–2009). The deviations are explained by the spatial inhomogeneity of the surface polarization that has a stronger effect on aerosol retrieval for clear atmospheric conditions with low aerosol loading when surface impact on satellite observations is more pronounced. In addition, the preliminary analysis of the detailed aerosol properties derived by a new generation PARASOL algorithm was evaluated. The comparison of AOT and single scattering albedo retrieved from the POLDER/PARASOL observations over Kyiv with the closest AERONET retrievals within 30 min of satellite overpass time and with a cloudless day shows acceptable agreement of the aerosol dynamics. The correspondence of those data is observed even for extreme AOT440 value 1.14, which was caused by the forest and peat fires in August 2010.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-18
    Description: An optimization approach has been developed for simultaneous retrieval of aerosol properties and normalized water-leaving radiance (nLw) from multi-spectral, multi-angular, and polarimetric observations over ocean. The main features of the method are (1) use of a simplified bio-optical model to estimate nLw followed by an empirical refinement within a specified range to improve its accuracy; (2) improved algorithm convergence and stability by applying constraints on the spatial smoothness of aerosol loading and Chlorophyll-a (Chl-a) concentration across neighboring image patches and spectral constraints on aerosol optical properties and on nLw across relevant bands; and (3) enhanced Jacobian calculation by modeling and storing the radiative transfer (RT) in aerosol/Rayleigh mixed layer, pure Rayleigh scattering layers, and ocean medium separately and then coupling them to calculate the field at the sensor. This approach avoids unnecessary and time-consuming recalculations of RT in unperturbed layers in Jacobian evaluations. The Markov chain method is used to model RT in the aerosol/Rayleigh mixed layer and the doubling method is used for the uniform layers of the atmosphere-ocean system. Our optimization approach has been tested using radiance and polarization measurements acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over the AERONET USC_SeaPRISM ocean site (6 February 2013) and near the AERONET La Jolla site (14 January 2013), which respectively reported relatively high and low aerosol loadings. Validation of the results is achieved through comparisons to AERONET aerosol and ocean color products and retrievals performed using the Generalized Retrieval of Aerosol and Surface Properties algorithm (Dubovik et al., 2011) on AirMSPI data. Uncertainties of aerosol and nLw retrievals due to random and systematic instrument errors are analyzed by truth-in/truth-out tests with three Chl-a concentrations, five aerosol loadings, three different types of aerosols, and nine combinations of solar incidence and viewing geometries.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-24
    Description: The paper presents the study of aerosol variability in the period from 2003 to 2011 over Eastern Europe region with latitude ranging from 40° N to 60° N and longitude from 20° E to 50° E. The analysis was based on the POLDER/PARASOL and POLDER-2/ADEOS satellites and AERONET ground-based sunphotometer observations. The aerosol optical thickness (AOT) of the studied area is characterized by the values (referenced to 870 nm wavelength) ranging from 0.05 to 0.2 except the period of July–August 2010 with strong forest and peat wildfires when the AOT typical values range from 0.3 to 0.5. The analysis of seasonal dynamics of aerosol loading has revealed two AOT high value peaks. The first peak observed in April–May is the result of solitary transportation of Sahara dust in the atmosphere over Eastern Europe, infrequent agricultural fires, transportation of sea salt aerosols by southern winds to Ukraine and Moldova from the Black and Azov Seas. The second peak in August–September is associated with forest and peat wildfires, considerable transportation of Sahara dust and presence of soil dust aerosols due to harvesting activity. The maximum values of AOT are observed in May 2006 (0.1–0.15), April 2009 (0.07–0.15) and August 2010 (0.2–0.5). Furthermore, the study has identified a distinct pattern of anthropogenic aerosols over the industrial areas, especially in the central Ukraine, eastern Belarus, as well as Moscow, Nizhny Novgorod and Stavropol regions in Russia. The comparison of the fine mode AOT (particle radius 〈 0.3 μm) derived by standard algorithm POLDER/PARASOL from reflected polarized radiances with those recomputed from AERONET inversions was performed over a number of AERONET sites: over Kyiv and Sevastopol sites for the period of 2008–2009 and over Moscow, Minsk, Belsk, and Moldova sites for the period of 2005–2009. The correlation coefficients are 0.78 for Moscow, 0.76 – Minsk, 0.86 – Belsk, 0.93 – Kyiv, 0.81 – Moldova and 0.63 for Sevastopol sites. The deviations are explained by the spatial inhomogeneity of the surface polarization that has stronger effect on aerosol retrieval for clear atmospheric conditions with low aerosol loading when surface impact on satellite observations is more pronounced. In addition, the preliminary analysis of the detailed aerosol properties derived by new generation PARASOL algorithm was accomplished. The AOT and single scattering albedo retrieved by the algorithm over Kyiv were compared with the closest AERONET retrievals within two hour of satellite overpass time and the stable atmospheric conditions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-27
    Description: The paper presents an investigation of aerosol seasonal variations in several urban–industrial regions in Ukraine. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008–2013 data from two urban ground-based AERONET (AErosol RObotic NETwork) sites in Ukraine (Kyiv, Lugansk) as well as on satellite POLDER instrument data for urban–industrial areas in Ukraine. We also analyzed the data from one AERONET site in Belarus (Minsk) in order to compare with the Ukrainian sites. Aerosol amount and optical depth (AOD) values in the atmosphere columns over the large urbanized areas like Kyiv and Minsk have maximum values in the spring (April–May) and late summer (August), whereas minimum values are observed in late autumn. The results show that fine-mode particles are most frequently detected during the spring and late summer seasons. The analysis of the seasonal AOD variations over the urban–industrial areas in the eastern and central parts of Ukraine according to both ground-based and POLDER data exhibits the similar traits. The seasonal variation similarity in the regions denotes the resemblance in basic aerosol sources that are closely related to properties of aerosol particles. The behavior of basic aerosol parameters in the western part of Ukraine is different from eastern and central regions and shows an earlier appearance of the spring and summer AOD maxima. Spectral single-scattering albedo, complex refractive index and size distribution of aerosol particles in the atmosphere column over Kyiv have different behavior for warm (April–October) and cold seasons. The seasonal features of fine and coarse aerosol particle behavior over the Kyiv site were analyzed. A prevailing influence of the fine-mode particles on the optical properties of the aerosol layer over the region has been established. The back-trajectory and cluster analysis techniques were applied to study the seasonal back trajectories and prevailing directions of the arrived air mass for the Kyiv and Minsk sites.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-13
    Description: The paper presents an investigation of aerosol seasonal variations in several urban sites in the East European region. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008–2012 data from three urban ground-based AERONET sites in Ukraine (Kyiv, Kyiv-AO, and Lugansk) and one site in Belarus (Minsk), as well as on satellite POLDER instrument data for urban areas in Ukraine. Aerosol amount and optical thickness values exhibit peaks in the spring (April–May) and late summer (August), whereas minimum values are seen in late autumn over the Kyiv and Minsk sites. The results show that aerosol fine mode particles are most frequently detected during the spring and late summer seasons. The seasonal variation similarity in the two regions points to the resemblance in basic aerosol sources which are closely related to properties of aerosol particles. However the aerosol amount and properties change noticeably from year to year and from region to region. The analysis of seasonal aerosol optical thickness variations over the urban sites in the eastern and western parts of Ukraine according to both ground-based and POLDER data exhibits the same traits. In particular, over Kyiv, the values of the Angstrom exponent are lower in April of 2011 than in 2009 and 2010, while aerosol optical thickness values are almost the same, which can be explained by an increase in the amount of coarse mode particles in the atmosphere, such as Saharan dust. Moreover, the coarse mode particles prevailed over suburbs and the center of Kyiv during a third of all available days of observation in 2012. In general, the fine and coarse mode particles' modal radii averaged over 2008–2012 range from 0.1 to 0.2 μm and 2 to 5 μm, respectively, during the period from April to September. The single scattering albedo and refractive index values of these particles correspond to a mix of urban-industrial, biomass burning, and dust aerosols. In addition, strongly absorbing particles were observed in the period from October to March, and the modal radius of fine and coarse mode particles changed from month to month widely.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi-functional high-precision scanning polarimeter and an imager-polarimeter should make a significant contribution to the study of natural and anthropogenic aerosols and their climatic and ecological effects.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31344 , Acta Astronautica (e-ISSN 0094-5765); 123; 292-300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The paper presents an investigation of aerosol seasonal variations in several urban-industrial regions in Ukraine. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008-2013 data from two urban ground-based AERONET (AErosol RObotic NETwork) sites in Ukraine (Kyiv, Lugansk) as well as on satellite POLDER instrument data for urban-industrial areas in Ukraine. We also analyzed the data from one AERONET site in Belarus (Minsk) in order to compare with the Ukrainian sites. Aerosol amount and optical depth (AOD) values in the atmosphere columns over the large urbanized areas like Kyiv and Minsk have maximum values in the spring (April-May) and late summer (August), whereas minimum values are observed in late autumn. The results show that fine-mode particles are most frequently detected during the spring and late summer seasons. The analysis of the seasonal AOD variations over the urban-industrial areas in the eastern and central parts of Ukraine according to both ground-based and POLDER data exhibits the similar traits. The seasonal variation similarity in the regions denotes the resemblance in basic aerosol sources that are closely related to properties of aerosol particles. The behavior of basic aerosol parameters in the western part of Ukraine is different from eastern and central regions and shows an earlier appearance of the spring and summer AOD maxima. Spectral single-scattering albedo, complex refractive index and size distribution of aerosol particles in the atmosphere column over Kyiv have different behavior for warm (April-October) and cold seasons. The seasonal features of fine and coarse aerosol particle behavior over the Kyiv site were analyzed. A prevailing influence of the fine-mode particles on the optical properties of the aerosol layer over the region has been established. The back-trajectory and cluster analysis techniques were applied to study the seasonal back trajectories and prevailing directions of the arrived air mass for the Kyiv and Minsk sites.
    Keywords: Environment Pollution; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN18985 , Atmospheric Measurement Techniques; 7; 5; 1459-1474
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN27623 , Advances in Astronomy and Space Physics; umn 5; 1; 11-16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...