ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (38,137)
  • American Meteorological Society
  • Annual Reviews
  • 2015-2019  (41,187)
  • 1940-1944
  • 1930-1934
  • 2016  (41,187)
Collection
Years
  • 2015-2019  (41,187)
  • 1940-1944
  • 1930-1934
Year
  • 1
    Publication Date: 2016-12-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Proceedings in Applied Mathematics and Mechanics, Wiley, 16(1), pp. 313-314, ISSN: 16177061
    Publication Date: 2017-11-13
    Description: Ice of Antarctic ice shelves is assumed to behave on long-term as an incompressible viscous fluid, which is dominated on short time scales by the elastic response. Hence, a viscoelastic material model is required. The thermodynamic pressure is treated differently in elastic and viscous models. For small deformations, the elastic isometric stress for ν → 0.5 gives similar results to those solving for pressure in an incompressible laminar flow model. A viscous model, in which the thermodynamic pressure is approximated by an elastic isometric stress, can be easily extended to viscoelasticity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-23
    Description: Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings heat, fresh water and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations PW is tracked by a passive tracer, released in Bering Strait. Simulated PW water spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The other initiates in the vicinity of the Herald Canyon and transports PW along the continental slope of the East-Siberian Sea into the transpolar drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW waters into the Beaufort Gyre. Models suggest that the spread of PW through the Arctic Ocean depends on the atmospheric circulation. In the models the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind effects the simulated PW pathways by changing vertical shear of the relative vorticity of the ocean flow in the Canada Basin. This article is protected by copyright. All rights reserved.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 43(19), pp. 10394-10402, ISSN: 0094-8276
    Publication Date: 2019-07-17
    Description: We demonstrated atmospheric responses to a reduction in Arctic sea ice via simulations in which Arctic sea ice decreased stepwise from the present-day range to an ice-free range. In all cases, the tropospheric response exhibited a negative Arctic Oscillation (AO)-like pattern. An intensification of the climatological planetary-scale wave due to the present-day sea ice reduction on the Atlantic side of the Arctic Ocean induced stratospheric polar vortex weakening and the subsequent negative AO. Conversely, strong Arctic warming due to ice-free conditions across the entire Arctic Ocean induced a weakening of the tropospheric westerlies corresponding to a negative AO without troposphere-stratosphere coupling, for which the planetary-scale wave response to a surface heat source extending to the Pacific side of the Arctic Ocean was responsible. Because the resultant negative AO-like response was accompanied by secondary circulation in the meridional plane, atmospheric heat transport into the Arctic increased, accelerating the Arctic amplification.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-26
    Description: Improving the representation of the hydrological cycle in atmospheric general circulation models (AGCMs) is one of the main challenges in modeling the Earth’s climate system. One way to evaluate model performance is to simulate the transport of water isotopes. Among those available, tritium is an extremely valuable tracer, because its content in the different reservoirs involved in the water cycle (stratosphere, troposphere, and ocean) varies by order of magnitude. Previous work incorporated natural tritium into Laboratoire de Météorologie Dynamique Zoom (LMDZ)-iso, a version of the LMDZ general circulation model enhanced by water isotope diagnostics. Here for the first time, the anthropogenic tritium injected by each of the atmospheric nuclear bomb tests between 1945 and 1980 has been first estimated and further implemented in the model; it creates an opportunity to evaluate certain aspects of LDMZ over several decades by following the bomb tritium transient signal through the hydrological cycle. Simulations of tritium in water vapor and precipitation for the period 1950–2008, with both natural and anthropogenic components, are presented in this study. LMDZ-iso satisfactorily reproduces the general shape of the temporal evolution of tritium. However, LMDZ-iso simulates too high a bomb tritium peak followed by too strong a decrease of tritium in precipitation. The too diffusive vertical advection in AGCMs crucially affects the residence time of tritium in the stratosphere. This insight into model performance demonstrates that the implementation of tritium in an AGCM provides a new and valuable test of the modeled atmospheric transport, complementing water stable isotope modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/zip
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-14
    Description: Variations in oxygen isotope ratios (δ18O) measured from modern precipitation and geologic archives provide a promising tool for understanding modern and past climate dynamics and tracking elevation changes over geologic time. In areas of extreme topography, such as the Tibetan Plateau, the interpretation of δ18O has proven challenging. This study investigates the climate controls on temporal (daily and 6 h intervals) and spatial variations in present-day precipitation δ18O (δ18Op) across the Tibetan Plateau using a 30 year record produced from the European Centre/Hamburg ECHAM5-wiso global atmospheric general circulation model (GCM). Results indicate spatial and temporal agreement between model-predicted δ18Op and observations. Large daily δ18Op variations of 25 to +5‰ occur over the Tibetan Plateau throughout the 30 simulation years, along with interannual δ18Op variations of ~2‰. Analysis of extreme daily δ18Op indicates that extreme low values coincide with extreme highs in precipitation amount. During the summer, monsoon vapor transport from the north and southwest of the plateau generally corresponds with high δ18Op, whereas vapor transport from the Indian Ocean corresponds with average to low δ18Op. Thus, vapor source variations are one important cause of the spatial-temporal differences in δ18Op. Comparison of GCM and Rayleigh Distillation Model (RDM)-predicted δ18Op indicates a modest agreement for the Himalaya region (averaged over 86°–94°E), confirming application of the simpler RDM approach for estimating δ18Op lapse rates across Himalaya.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 43, pp. 7019-7027, ISSN: 0094-8276
    Publication Date: 2016-09-06
    Description: Sea ice leads in the Arctic are important features that give rise to strong localized atmospheric heating; they provide the opportunity for vigorous biological primary production, and predicting leads may be of relevance for Arctic shipping. It is commonly believed that traditional sea ice models that employ elastic-viscous-plastic (EVP) rheologies are not capable of properly simulating sea ice deformation, including lead formation, and thus, new formulations for sea ice rheologies have been suggested. Here we show that classical sea ice models have skill in simulating the spatial and temporal variation of lead area fraction in the Arctic when horizontal resolution is increased (here 4.5 km in the Arctic) and when numerical convergence in sea ice solvers is considered, which is frequently neglected. The model results are consistent with satellite remote sensing data and discussed in terms of variability and trends of Arctic sea ice leads. It is found, for example, that wintertime lead area fraction during the last three decades has not undergone significant trends.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Earth Surface, Wiley, 121, pp. 1849-1860, ISSN: 21699003
    Publication Date: 2016-11-14
    Description: The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. On the other hand, high-resolution density measurements on firn cores in Antarctica and Greenland showed no clear seasonal cycle in the top few meters. A major caveat of most existing snow-pit and firn-core based studies is that they represent one vertical profile from a laterally heterogeneous density field. To overcome this, we created an extensive dataset of horizontal and vertical density data at Kohnen Station, Dronning Maud Land on the East Antarctic Plateau. We drilled and analyzed three 90 m long firn cores as well as 160 one meter long vertical profiles from two elongated snow trenches to obtain a two dimensional view of the density variations. The analysis of the 45 m wide and 1 m deep density fields reveals a seasonal cycle in density. However, the seasonality is overprinted by strong stratigraphic noise, making it invisible when analyzing single firn cores. Our density dataset extends the view from the local ice-core perspective to a hundred meter scale and thus supports linking spatially integrating methods such as radar and seismic studies to ice and firn cores.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-10-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-12-14
    Description: Deepwater circulation plays a central role in global climate. Compared with the Atlantic, the Pacific deepwater circulation’s history remains unclear. The Luzon overflow, a branch of the North Pacific deep water, determines the ventilation rate of the South China Sea (SCS) basin. Sedimentary magnetic properties in the SCS reflect millennial-scale fluctuations in deep current intensity and orientation. The data suggest a slightly stronger current at the Last Glacial Maximum compared to the Holocene. But, the most striking increase in deep current occurred during Heinrich stadial 1 (H1) and to a lesser extent during the Younger Dryas (YD). Results of a transient deglacial experiment suggest that the northeastern current strengthening at the entrance of the SCS during H1 and the YD, times of weak North Atlantic Deep Water formation, could be linked to enhanced formation of North Pacific Deep Water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-17
    Description: In recent years extensive studies on the Earth’s climate system have been carried out by means of advanced complex network statistics. The great majority of these studies, however, have been focusing on investigating correlation structures within single climatic fields directly on or parallel to the Earth’s surface. Here, we develop a novel approach of node weighted coupled network measures to study correlations between ocean and atmosphere in the Northern Hemisphere extratropics and construct 18 coupled climate networks, each consisting of two subnetworks. In all cases, one subnetwork represents monthly sea-surface temperature (SST) anomalies, while the other is based on the monthly geopotential height (HGT) of isobaric surfaces at different pressure levels covering the troposphere as well as the lower stratosphere. The weighted cross-degree density proves to be consistent with the leading coupled pattern obtained from maximum covariance analysis. Network measures of higher order allow for a further analysis of the correlation structure between the two fields and consistently indicate that in the Northern Hemisphere extratropics the ocean is correlated with the atmosphere in a hierarchical fashion such that large areas of the ocean surface correlate with multiple statistically dissimilar regions in the atmosphere. Ultimately we show that this observed hierarchy is linked to large-scale atmospheric variability patterns, such as the Pacific North American pattern, forcing the ocean on monthly time scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-01-20
    Description: Spectral albedo and transmittance in the range 400-900nm were measured on three separate dates on less than 15 cm thick new Arctic sea ice growing on Kongsfjorden, Svalbard at 78: 9 degrees N, 11: 9 degrees E. Inherent optical properties, including absorption coefficients of particulate and dissolved material, were obtained from ice samples and fed into a radiative transfer model, which was used to analyze spectral albedo and transmittance and to study the influence of clouds and snow on these. Integrated albedo and transmittance for photosynthetically active radiation (400-900 nm) were in the range 0.17-0.21 and 0.77-0.86, respectively. The average albedo and transmittance of the total solar radiation energy were 0.16 and 0.51, respectively. Values inferred from the model indicate that the ice contained possibly up to 40% brine and only 0.6% bubbles. Angular redistribution of solar radiation by clouds and snow was found to influence both the wavelength-integrated value and the spectral shape of albedo and transmittance. In particular, local peaks and depressions in the spectral albedo and spectral transmittance were found for wavelengths within atmospheric absorption bands. Simulated and measured transmittance spectra were within 5% for most of the wavelength range, but deviated up to 25% in the vicinity of 800 nm, indicating the need for more optical laboratory measurements of pure ice, or improved modeling of brine optical properties in this near-infrared wavelength region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-01-20
    Description: Spectral Radiation Buoys and ice mass balance buoys were deployed on first-year ice near the North Pole in April 2012 and 2013, collecting in-band (350-800nm) solar radiation and ice and snow mass balance data over the complete summer melt seasons. With complementary European ERA-Interim reanalysis, National Centers for Environmental Prediction (NCEP) Climate forecast system version 2 (CFSv2) analysis and satellite passive microwave data, we examine the evolution of atmospheric and surface melt conditions in the two differing melt seasons. Prevailing atmospheric conditions contributed to a longer and more continuous melt season in summer 2012 than in 2013, which was corroborated by in situ observations. ERA-Interim reanalysis data showed that longwave radiation likely played a key role in delaying the snowmelt onset in 2013. The earlier melt onset in 2012 reduced the albedo, providing a positive ice-albedo feedback at a time when solar insolation was high. Due to earlier melt onset and later freeze-up in 2012, more solar heat was deposited into the ice-ocean system than in 2013. Summer 2013 was characterized by later melt onset, intermittent freezing events and an earlier fall freeze-up, resulting in considerably fewer effective days of surface melt and a higher average albedo. Calculations for idealized seasonal albedo evolution show that moving the melt onset just 1week earlier in mid-June increases the total absorbed solar radiation by nearly 14% for the summer season. Therefore, the earlier melt onset may have been one of the most important factors driving the more dramatic melt season in 2012 than 2013, though atmospheric circulation patterns, e.g., cyclone in early August 2012, likely contributed as well.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-15
    Description: We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003–2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003–2013, Antarctica has been losing mass at a rate of −84 ± 22 Gt yr−1, with a sustained negative mean trend of dynamic imbalance of −111 ± 13 Gt yr−1. West Antarctica is the largest contributor with −112 ± 10 Gt yr−1, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of −28 ± 7 Gt yr−1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr−1 in East Antarctica due to a positive trend of surface mass balance anomalies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Permafrost and Periglacial Processes, Wiley, ISSN: 10456740
    Publication Date: 2016-10-13
    Description: Amplification of global warming in Arctic and boreal regions is causing significant changes to permafrost-affected landscapes. The nature and extent of the change is complicated by ecological responses that take place across strong gradients in environmental conditions and disturbance regimes. Emerging remote sensing techniques based on a growing array of satellite and airborne platforms that cover a wide range of spatial and temporal scales increasingly allow robust detection of changes in permafrost landscapes. In this review, we summarise recent developments (2010 − 15) in remote sensing applications to detect and monitor landscape changes involving surface temperatures, snow cover, topography, surface water, vegetation cover and structure, and disturbances from fire and human activities. We then focus on indicators of degrading permafrost, including thermokarst lakes and drained lake basins, thermokarst bogs and fens, thaw slumps and active-layer detachment slides, thermal erosion gullies, thermokarst pits and troughs, and coastal erosion and flooding. Our review highlights the expanding sensor capabilities, new image processing and multivariate analysis techniques, enhanced public access to data and increasingly long image archives that are facilitating novel insights into the multi-decadal dynamics of permafrost landscapes. Remote sensing methods that appear especially promising for change detection include: repeat light detection and ranging, interferometric synthetic aperture radar and airborne geophysics for detecting topographic and subsurface changes; temporally dense analyses at high spatial resolution; and multi-sensor data fusion. Remotely sensed data are also becoming used more frequently as driving parameters in permafrost model and mapping schemes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-08-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-11-15
    Description: Glacier-front dynamics is an important control on Greenland's ice mass balance. Warmer ocean waters trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. Here we present an approach to quantify the sensitivity and vulnerability of marine-terminating glaciers to ocean-induced melt. We develop a plan view model of Store Gletscher that includes a level set-based moving boundary capability, a parameterized ocean-induced melt, and a calving law with complete and precise land and fjord topographies to model the response of the glacier to increased melt. We find that the glacier is stabilized by a sill at its terminus. The glacier is dislodged from the sill when ocean-induced melt quadruples, at which point the glacier retreats irreversibly for 27 km into a reverse bed. The model suggests that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-12-21
    Description: Details of the characteristics of upward planetary wave propagation associated with Arctic sea-ice loss under present climate conditions are examined using reanalysis data and simulation results. Recent Arctic sea-ice loss results in increased stratospheric poleward eddy heat fluxes in the eastern and central Eurasia regions and enhanced upward propagation of planetary-scale waves in the stratosphere. A linear decomposition scheme reveals that this modulation of the planetary waves arises from coupling of the climatological planetary wave field with temperature anomalies for the eastern Eurasia region and with meridional wind anomalies for the central Eurasia region. Propagation of stationary Rossby wave packets results in a dynamic link between these temperature and meridional wind anomalies with sea-ice loss over the Barents–Kara Sea. The results provide strong evidence that recent Arctic sea-ice loss significantly modulates atmospheric circulation in winter to modify poleward eddy heat fluxes so as to drive stratosphere–troposphere coupling processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-09-13
    Description: A multi-year mooring record (2007-2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export, and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-10-17
    Description: Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne, and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated leveling of the different gravity data sets with respect to an Earth gravity model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth gravity models to be derived and represent a major step forward toward solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, ISSN: 0094-8276
    Publication Date: 2016-02-29
    Description: Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the “truth” disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-05-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-17
    Description: Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal δ13C records from the southern East Pacific Rise to characterize the δ13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial δ13C variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower δ13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable δ13C values of both water masses.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Global Biogeochemical Cycles, Wiley, 30(8), pp. 1145-1165, ISSN: 0886-6236
    Publication Date: 2019-07-17
    Description: About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80–400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2–2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of ~1500 cells/mL accelerate sinking by about 35–40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-08-23
    Description: Lake Baikal, the world's most voluminous freshwater lake, has experienced unprecedented warming during the last decades. A uniquely diverse amphipod fauna inhabits the littoral zone and can serve as a model system to identify the role of thermal tolerance under climate change. This study aimed to identify sublethal thermal constraints in two of the most abundant endemic Baikal amphipods, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, and Gammarus lacustris, a ubiquitous gammarid of the Holarctic. As the latter is only found in some shallow isolated bays of the lake, we further addressed the question whether rising temperatures could promote the widespread invasion of this non-endemic species into the littoral zone. Animals were exposed to gradual temperature increases (4 week, 0.8 °C/d; 24 h, 1 °C/h) starting from the reported annual mean temperature of the Baikal littoral (6 °C). Within the framework of oxygen- and capacity-limited thermal tolerance (OCLTT), we used a nonlinear regression approach to determine the points at which the changing temperature-dependence of relevant physiological processes indicates the onset of limitation. Limitations in ventilation representing the first limits of thermal tolerance (pejus (= “getting worse”) temperatures (Tp)) were recorded at 10.6 (95% confidence interval; 9.5, 11.7), 19.1 (17.9, 20.2), and 21.1 (19.8, 22.4) °C in E. verrucosus, E. cyaneus, and G. lacustris, respectively. Field observations revealed that E. verrucosus retreated from the upper littoral to deeper and cooler waters once its Tp was surpassed, identifying Tp as the ecological thermal boundary. Constraints in oxygen consumption at higher than critical temperatures (Tc) led to an exponential increase in mortality in all species. Exposure to short-term warming resulted in higher threshold values, consistent with a time dependence of thermal tolerance. In conclusion, species-specific limits to oxygen supply capacity are likely key in the onset of constraining (beyond pejus) and then life-threatening (beyond critical) conditions. Ecological consequences of these limits are mediated through behavioral plasticity in E. verrucosus. However, similar upper thermal limits in E. cyaneus (endemic, Baikal) and G. lacustris (ubiquitous, Holarctic) indicate that the potential invader G. lacustris would not necessarily benefit from rising temperatures. Secondary effects of increasing temperatures remain to be investigated.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Oceans, Wiley, 121, pp. 4928-4945, ISSN: 0148-0227
    Publication Date: 2019-07-17
    Description: A significant increase in sea surface temperature (SST) is observed over the midlatitude western boundary currents (WBCs) during the past century. However, the mechanism for this phenomenon remains poorly understood due to limited observations. In the present paper, several coupled parameters (i.e., sea surface temperature (SST), ocean surface heat fluxes, ocean water velocity, ocean surface winds and sea level pressure (SLP)) are analyzed to identify the dynamic changes of the WBCs. Three types of independent data sets are used, including reanalysis products, satellite-blended observations. and climate model outputs from the fifth phase of the Climate Model Intercomparison Project (CMIP5). Based on these broad ranges of data, we find that the WBCs (except the Gulf Stream) are intensifying and shifting toward the poles as long-term effects of global warming. An intensification and poleward shift of near-surface ocean winds, attributed to positive annular mode-like trends, are proposed to be the forcing of such dynamic changes. In contrast to the other WBCs, the Gulf Stream is expected to be weaker under global warming, which is most likely related to a weakening of the Atlantic Meridional Overturning Circulation (AMOC). However, we also notice that the natural variations of WBCs might conceal the long-term effect of global warming in the available observational data sets, especially over the Northern Hemisphere. Therefore, long-term observations or proxy data are necessary to further evaluate the dynamics of the WBCs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Solid Earth, Wiley, 121(10), pp. 7013-7023, ISSN: 0148-0227
    Publication Date: 2016-11-14
    Description: The Suvarov Trough is a graben structure that deviates from the Danger Islands Troughs within the Manihiki Plateau, a Large Igneous Province (LIP) located in the Central Pacific. New high resolution seismic reflection data provide evidence that the graben formed in two phases during the Paleocene (65-45 Ma). In a first phase extension occurred in south-westward direction, pulling apart the northern part of the Suvarov Trough and a parallel trending, unnamed trough. In a second phase a change of extensional force direction occurred from southwest to west-northwest, forming the southern part of the Suvarov Trough that extends onto the High Plateau. The formation of the Suvarov Trough is accompanied by a series of normal fault systems that apparently formed simultaneously. Comparing the seismic results to existing Pacific paleo strain reconstructions, the timing of increased strain and local deformation direction fits well to our findings. We thus suggest that the multiple strike directions of the Suvarov Trough represent an extensional structure that was caused by the major, stepwise Pacific Plate reorganization during the Paleocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-03-05
    Description: In this paper impact of intensive biomass burning (BB) in North America in July 2015, on aerosol optical and microphysical properties measured in the European Arctic is discussed. This study was made within the framework of the Impact of Absorbing Aerosols on radiating forcing in the European Arctic (iAREA) project. During the BB event aerosol optical depth (AOD) at 500 nm exceeded 1.2 in Spitsbergen and 0.7 in Andenes (Norway). Ångström Exponent (AE) exceeded 1.4 while the absorbing Ångström Exponent (AAE) varied between 1 and 1.25. BB aerosols were observed in humid atmosphere with a total water vapor column between 2 and 2.5 cm. In such conditions aerosols are activated and may produce clouds at different altitudes. Vertical structure of aerosol plumes over Svalbard, obtained from ceilometers and lidars, shows variability of range corrected signal between surface and middle and upper troposphere. Aerosol backscattering coefficients show values up to 10 -5m-1sr-1at 532 nm. Aerosol surface observations indicate chemical composition typical for biomass burning particles and very high single scattering properties. Scattering and absorption coefficients at 530 nm were up to 130 and 15 Mm-1, respectively. Single scattering albedo at the surface varied from 0.9 to 0.94. The averaged values over the entire atmospheric column, ranged from 0.93 to 0.99. Preliminary statistics of model and sunphotometer data as well as previous studies indicate that this event, in the Arctic region, must be considered extreme (such AOD was not observed in Svalbard since 2005) with a significant impact on energy budget.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-01-09
    Description: Two full-year mooring records of sea ice, physical and bio-optical parameters illuminate tight temporal coupling between the retreating seasonal ice edge and the summer phytoplankton bloom on the Laptev Sea shelf. Our records showed no sign of pelagic under-ice blooms despite available nutrients and thinning sea ice in early summer; presumably because stratification had not yet developed. Chlorophyll blooms were detected immediately after the ice retreated in late May 2014 and late July 2015. Despite radically different timing, the blooms were similar in both magnitude and length, interpreted as community-level nutrient limitation. Acoustic backscatter records suggest the delayed 2015-bloom resulted in lower zooplankton abundance, perhaps due to a timing mismatch between ice algal and pelagic blooms and unfavorable thermal conditions. Our observations provide classical examples of ice-edge blooms and further emphasize the complexity of high-latitude shelves and the need to understand vertical mixing processes important for stratification and nutrient fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-01-11
    Description: Multiscale sea ice algae observations are fundamentally important for projecting changes to sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon previously established methodologies for deriving sea ice-algal chlorophyll a concentrations (chl a) from spectral radiation measurements, and applied these to larger-scale spectral surveys. We conducted four different under-ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and multi-NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance (N = 49) and radiance/transflectance (N = 50) measurements conducted during two cruises to the central Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robustness R2 and true prediction error estimates. For estimating the biomass of a large-scale data set, the EOF approach performed better than the NDI, due to its ability to account for the high variability of environmental properties experienced over large areas. Based on robustness and true prediction error, the three most reliable models, EOF-transmittance, EOF-transflectance, and NDI-transmittance, were applied to two remotely operated vehicle (ROV) and two Surface and Under-Ice Trawl (SUIT) spectral radiation surveys. In these larger-scale chl a estimates, EOF-transmittance showed the best fit to ice core chl a. Application of our most reliable model, EOF-transmittance, to an 85 m horizontal ROV transect revealed large differences compared to published biomass estimates from the same site with important implications for projections of Arctic-wide ice-algal biomass and primary production.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Oceans, Wiley, 121(4), pp. 2314-2346, ISSN: 0148-0227
    Publication Date: 2017-06-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-02-02
    Description: A bottom-simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow-spreading ridge segment of the Mid Atlantic Ridge system. Here, heat flow is high (up to 330 mW m-2), increasing towards the ridge axis. The coinciding maxima in across-margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic-rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-17
    Description: The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-03-25
    Description: Tectonic models predict that following breakup, rift margins undergo only decaying thermal subsidence during their postrift evolution. However, postbreakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone-East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of synrift deposition in the deep-sea basins and onset of (i) thermomechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermomechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf progradation on the NE Greenland margin. Given an estimated middle to late Miocene (~15–10Ma) age of the IMU, we speculate that the event is synchronous with uplift of the east and west Greenland margins. The correlation between margin uplift and plate motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intraplate stresses related to global tectonics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-03-10
    Description: Global climate change affects marine fish through drivers such as ocean warming, acidification and oxygen depletion, causing changes in marine ecosystems and socioeconomic impacts. While experimental and observational results can inform about anticipated effects of different drivers, linking between these results and ecosystem-level changes requires quantitative integration of physiological and ecological processes into models to advance research and inform management. We give an overview of important physiological and ecological processes affected by environmental drivers. We then provide a review of available modelling approaches for marine fish, analysing their capacities for process-based integration of environmental drivers. Building on this, we propose approaches to advance important research questions. Examples of integration of environmental drivers exist for each model class. Recent extensions of modelling frameworks increase the potential for including detailed mechanisms and improving model projections. Experimental results on energy allocation, behaviour and physiological limitations will advance the understanding of organism-level trade-offs and thresholds in response to multiple drivers. More explicit representation of life cycles and biological traits can improve description of population dynamics and adaptation, and data on food web topology and feeding interactions help to detail the conditions for possible regime shifts. Identification of relevant processes will also benefit the coupling of different models to investigate spatial–temporal changes in stock productivity and integrated responses of social–ecological systems. Thus, a more process-informed foundation for models will promote the integration of experimental and observational results and increase the potential for model-based extrapolations into a future under changing environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-11-15
    Description: The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of 5.8 and 18.757 for εNd and 206Pb/204Pb, respectively, whereas glacial averages are 5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-01-15
    Description: In Antarctica, ice crystals emerge from ice shelf cavities and accumulate in unconsolidated layers beneath nearby sea ice. Such sub-ice platelet layers form a unique habitat and serve as an indicator for the state of an ice shelf. However, the lack of a suitable methodology impedes an efficient quantification of this phenomenon on scales beyond point measurements. In this study, we inverted multifrequency electromagnetic (EM) induction soundings, obtained on fast ice with an underlying platelet layer along profiles of 〉100 km length in the eastern Weddell Sea. EM-derived platelet layer thickness and conductivity are consistent with other field observations. Our results suggest that platelet layer volume is higher than previously thought in this region and that platelet layer ice volume fraction is proportional to its thickness. We conclude that multifrequency EM is a suitable tool to determine platelet layer volume, with the potential to obtain crucial knowledge of associated processes in otherwise inaccessible ice shelf cavities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-12-09
    Description: The West Antarctic Ice Sheet (WAIS) is considered the major contributor to global sea level rise in the Last Interglacial (LIG) and potentially in the future. Exposed fossil reef terraces suggest sea levels in excess of 7 meters in the last warm era, of which probably not much more than 2 meters are considered to originate from melting of the Greenland Ice Sheet. We simulate the evolution of the Antarctic Ice Sheet during the LIG with a 3D thermomechanical ice sheet model forced by an atmosphere ocean general circulation model (AOGCM). Our results show that high LIG sea levels, cannot be reproduced with the atmosphere-ocean forcing delivered by current AOGCMs. However, when taking reconstructed Southern Ocean temperature anomalies of several degrees, sensitivity studies indicate a Southern Ocean temperature anomaly threshold for total WAIS collapse of 2-3∘C, accounting for a sea level rise of 3-4 meters during the LIG. Potential future Antarctic Ice Sheet dynamics range from a moderate retreat to a complete collapse, depending on rate and amplitude of warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-06-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 43(10), pp. 5133-5142, ISSN: 0094-8276
    Publication Date: 2016-09-19
    Description: Substantial quantities of organic carbon (OC) are stored in the thick, ice-rich, and organic-rich sediments called yedoma deposits, distributed in eastern Siberia and Alaska today. Quantifying yedoma carbon stocks during the glacial period is important for understanding how much carbon could have been decomposed during the last deglaciation. Yet processes that yield the formation of thick frozen OC in yedoma deposits are missing in global carbon cycle models. Here we incorporate sedimentation parameterizations into the Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE-MICT) land surface model, which leads to reasonable results in OC vertical distribution and regional budgets, compared with site-specific observations and inventories for today's nondegraded yedoma region. Simulated total soil OC stock for the northern permafrost region during the Last Glacial Maximum (LGM) is 1536–1592 Pg C, of which 390–446 Pg C is within today's yedoma region. This result is an underestimation since we did not account for the potentially much larger yedoma area during the LGM than the present day.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-08-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-09-14
    Description: The Arctic sea-ice extent amounted to its record minimum to date in September 2012. Sea-ice decline increases the absorption of solar energy in the Arctic Ocean, affecting primary production and plankton community. How this will modulate the sinking of POC from the ocean surface remains a key question. In this study we use the 234Th/238U and 210Po/210Pb radionuclide pairs to estimate the magnitude of the POC export fluxes in the upper ocean of the central Arctic in summer 2012, covering time scales from weeks to months, respectively. The 234Th/238U proxy reveals that POC fluxes at the base of the euphotic zone were very low (2 ± 2 mmol C m-2 d-1) in August and September. Relationships obtained between the 234Th export fluxes and the phytoplankton community suggest that prasinophytes would have contributed significantly to downward fluxes in late summer, likely via incorporation into sea-ice algal aggregates and zooplankton-derived material. In turn, the magnitude of the depletion of 210Po in the upper water column over the entire study area indicates that particle export fluxes were more relevant before July/August than later in the season. 210Po fluxes and 210Po-derived POC fluxes correlated positively with sea-ice concentration, showing that particle sinking was more important under heavy sea-ice conditions than under partially ice covered regions. Although the POC fluxes were low, a large fraction of primary production (〉30%) was exported at the base of the euphotic zone in most of the study area during summer 2012, indicating a high export efficiency of the biological pump in the central Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Physical Oceanography, American Meteorological Society, 46(4), pp. 1231-1254
    Publication Date: 2016-11-03
    Description: The West Spitsbergen Current (WSC) is a topographically steered boundary current that transports warm Atlantic Water northward in Fram Strait. The 16 yr (1997–2012) current and temperature–salinity measurements from moorings in the WSC at 78°50′N reveal the dynamics of mesoscale variability in the WSC and the central Fram Strait. A strong seasonality of the fluctuations and the proposed driving mechanisms is described. In winter, water is advected in the WSC that has been subjected to strong atmospheric cooling in the Nordic Seas, and as a result the stratification in the top 250 m is weak. The current is also stronger than in summer and has a greater vertical shear. This results in an e-folding growth period for baroclinic instabilities of about half a day in winter, indicating that the current has the ability to rapidly grow unstable and form eddies. In summer, the WSC is significantly less unstable with an e-folding growth period of 2 days. Observations of the eddy kinetic energy (EKE) show a peak in the boundary current in January–February when it is most unstable. Eddies are then likely advected westward, and the EKE peak is observed 1–2 months later in the central Fram Strait. Conversely, the EKE in the WSC as well as in the central Fram Strait is reduced by a factor of more than 3 in late summer. Parameterizations for the expected EKE resulting from baroclinic instability can account for the observed EKE values. Hence, mesoscale instability can generate the observed variability, and high-frequency wind forcing is not required to explain the observed EKE.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Description: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Description: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Description: 2016-06-01
    Keywords: Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3139-3154, doi:10.1175/JPO-D-16-0042.1.
    Description: Downfront, or downwelling favorable, winds are commonly found over buoyant coastal plumes. It is known that these winds can result in mixing of the plume with the ambient water and that the winds influence the transport, spatial extent, and stability of the plumes. In the present study, the interaction of the Ekman velocity in the surface layer and baroclinic instability supported by the strong horizontal density gradient of the plume is explored with the objective of understanding the potential vorticity and buoyancy budgets. The approach makes use of an idealized numerical model and scaling theory. It is shown that when winds are present the weak stratification resulting from vertical mixing and the strong baroclinicity of the front results in near-zero average potential vorticity q. For weak to moderate winds, the reduction of q by diapycnal mixing is balanced by the generation of q through the geostrophic stress term in the regions of strong horizontal density gradients and stable stratification. However, for very strong winds the wind stress overwhelms the geostrophic stress and leads to a reduction in q, which is balanced by the vertical mixing term. In the absence of winds, the geostrophic stress dominates mixing and the flow rapidly restratifies. Nonlinearity, extremes of relative vorticity and vertical velocity, and mixing are all enhanced by the presence of a coast. Scaling estimates developed for the eddy buoyancy flux, the surface potential vorticity flux, and the diapycnal mixing rate compare well with results diagnosed from a series of numerical model calculations.
    Description: This study was supported by NSF Grants OCE-1433170 (MAS) and OCE-1459677 (LNT).
    Description: 2017-04-07
    Keywords: Coastal flows ; Ekman pumping/transport ; Mesoscale processes ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3011-3029, doi:10.1175/JPO-D-15-0248.1.
    Description: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 (SFB754) ‘‘Climate–Biogeochemistry Interactions in the Tropical Ocean’’ and through several research cruises with R/V Meteor, R/V Maria S. Merian, andR/VL’Atalante by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B) and SACUS (03G0837A) and by European Union 7th Framework Programme (FP7 2007–13) under Grant Agreement 603521 PREFACE project.
    Keywords: Atlantic Ocean ; Ocean circulation ; In situ oceanic observations ; Ocean models ; Seasonal cycle ; Tropical variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2735-2768, doi:10.1175/JPO-D-15-0134.1.
    Description: In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.
    Description: The data collection and analysis was funded by NSF Grants ARC-0909373, OCE-113008, and OCE-1434041.
    Keywords: Geographic location/entity ; Estuaries ; Glaciers ; Circulation/ Dynamics ; Coastal flows ; Atm/Ocean Structure/ Phenomena ; Freshwater ; Snowmelt/icemelt ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2645-2662, doi:10.1175/JPO-D-15-0191.1.
    Description: The occurrence, drivers, and implications of small-scale O(2–5) km diameter coherent vortices, referred to as submesoscale eddies, over the inner shelf south of Martha’s Vineyard, Massachusetts, are examined using high-frequency (HF), radar-based, high-resolution (400 m) observations of surface currents. Within the 300 km2 study area, eddies occurred at rates of 1 and 4 day−1 in winter and summer, respectively. Most were less than 5 h in duration, smaller than 4 km in diameter, and rotated less than once over their lifespan; 60% of the eddies formed along the eastern edge of study area, adjacent to Wasque Shoal, and moved westward into the interior, often with relative vorticity greater than f. Eddy generation was linked to vortex stretching on the ebb and flood tide as well as the interaction of the spatially variable tide and the wind-driven currents; however, these features had complex patterns of surface divergence and stretching. Eddies located away from Wasque Shoal were related to the movement of wind-driven surface currents, as wind direction controlled where eddies formed as well as density effects. Using an analysis of particles advected within the radar-based surface currents, the observed eddies were found to be generally leaky, losing 60%–80% of particles over their lifespan, but still more retentive than the background flow. As a result, the combined translation and rotational effects of the observed eddies were an important source of lateral exchange for surface waters over the inner shelf.
    Description: The HF radar data utilized here were obtained using internal funding from the Woods Hole Oceanographic Institution. The analysis was supported by NSF OCE Grant 1332646.
    Description: 2017-02-19
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Currents ; Eddies ; Observational techniques and algorithms ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 361–367, doi:10.1175/JPO-D-15-0171.1.
    Description: Idealized laboratory experiments investigate the glacier–ocean boundary dynamics near a vertical glacier in a two-layer stratified fluid. Discharge of meltwater runoff at the base of the glacier (subglacial discharge) enhances submarine melting. In the laboratory, the effect of multiple sources of subglacial discharge is simulated by introducing freshwater at freezing temperature from two point sources at the base of an ice block representing the glacier. The buoyant plumes of cold meltwater and subglacial discharge water entrain warm ambient water, rise vertically, and interact within a layer of depth H2 if the distance between the sources x0 is smaller than H2α/0.35, where α is the entrainment constant. The plume water detaches from the glacier face at the interface between the two layers and/or at the free surface, as confirmed by previous numerical studies and field observations. A plume model is used to explain the observed nonmonotonic dependence of submarine melting on the sources’ separation. The distance between the two sources influences the entrainment of warm water in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Two interacting plumes located very close together are observed to melt approximately half as much as two independent plumes. The inclusion, or parameterization, of the dynamics regulating multiple plumes’ interaction is therefore necessary for a correct estimate of submarine melting. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation.
    Description: Support to C.C. was given by the NSF Project OCE-1130008 and OCE-1434041. V.M.G. received support from the “Gori” Fellowship.
    Description: 2016-07-01
    Keywords: Geographic location/entity ; Glaciers ; Circulation/ Dynamics ; Buoyancy ; Entrainment ; Ocean dynamics ; Small scale processes ; Models and modeling ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 327–348, doi:10.1175/JPO-D-15-0112.1.
    Description: Potential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.
    Description: Glider operations in the Gulf Stream were supported by the National Science Foundation under Grant OCE-0220769. Glider operations in the Gulf of Mexico were supported by BP. R.E.T. was supported by the Penzance Endowed Fund in Support of Assistant Scientists and the Independent Research and Development Program at WHOI.
    Description: 2016-07-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Boundary currents ; Potential vorticity ; Atm/Ocean Structure/ Phenomena ; Boundary currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1705-1716, doi:10.1175/JPO-D-15-0221.1.
    Description: A rapid and broadband (1 h, 1 〈 f 〈 400 Hz) increase in pressure and vertical velocity on the deep ocean floor was observed on seven instruments comprising a 20-km array in the northeastern subtropical Pacific. The authors associate the jump with the passage of a cold front and focus on the 4- and 400-Hz spectra. At every station, the time of the jump is consistent with the front coming from the northwest. The apparent rate of progress, 10–20 km h−1 (2.8–5.6 m s−1), agrees with meteorological observations. The acoustic radiation below the front is modeled as arising from a moving half-plane of uncorrelated acoustic dipoles. The half-plane is preceded by a 10-km transition zone, over which the radiator strength increases linearly from zero. With this model, the time derivative of the jump at a station yields a second and independent estimate of the front’s speed, 8.5 km h−1 (2.4 m s−1). For the 4-Hz spectra, the source physics is taken to be Longuet-Higgins radiation. Its strength depends on the quantity , where Fζ is the wave amplitude power spectrum and I the overlap integral. Thus, the 1-h time constant observed in the bottom data implies a similar time constant for the growth of the wave field quantity behind the front. The spectra at 400 Hz have a similar time constant, but the jump occurs 25 min later. The implications of this difference for the source physics are uncertain.
    Description: The OBSANP cruise was funded by the Office of Naval Research under Grants N00014-10-1-0987, N00014-14-1-0324, N00014-10-1-0510, and N00014-10-1-0990.
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Cold fronts ; Marine boundary layer ; Sea state
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 839-846, doi:10.1175/JTECH-D-15-0221.1.
    Description: During the Shallow Water Acoustic Experiment 2006 (SW06) conducted on the New Jersey continental shelf in the summer of 2006, detailed measurements of the ocean environment were made along a fixed reference track that was parallel to the continental shelf. The time-varying environment induced by nonlinear internal waves (NLIWs) was recorded by an array of moored thermistor chains and by X-band radars from the attending research vessels. Using a mapping technique, the three-dimensional (3D) temperature field for over a month of NLIW events is reconstructed and analyzed to provide a statistical summary of important NLIW parameters, such as the NLIW propagation speed, direction, and amplitude. The results in this paper can be used as a database for studying the NLIW generation, propagation, and fidelity of nonlinear internal wave models.
    Description: This research was supported by the Office of Naval Research Ocean Acoustics Program (322OA) through Grants N00014-10-1-0396 and N00014-11-1-0701.
    Description: 2016-10-18
    Keywords: Geographic location/entity ; Continental shelf/slope ; North America ; Observational techniques and algorithms ; Data processing ; In situ oceanic observations ; Sampling ; Mathematical and statistical techniques ; Statistics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3647-3660, doi:10.1175/JCLI-D-15-0626.1.
    Description: An assessment is made of the mean and variability of the net air–sea heat flux, Qnet, from four products (ECCO, OAFlux–CERES, ERA-Interim, and NCEP1) over the global ice-free ocean from January 2001 to December 2010. For the 10-yr “hiatus” period, all products agree on an overall net heat gain over the global ice-free ocean, but the magnitude varies from 1.7 to 9.5 W m−2. The differences among products are particularly large in the Southern Ocean, where they cannot even agree on whether the region gains or loses heat on the annual mean basis. Decadal trends of Qnet differ significantly between products. ECCO and OAFlux–CERES show almost no trend, whereas ERA-Interim suggests a downward trend and NCEP1 shows an upward trend. Therefore, numerical simulations utilizing different surface flux forcing products will likely produce diverged trends of the ocean heat content during this period. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the tropical regions. ECCO, which used ERA-Interim as initial surface forcings and is constrained by ocean dynamics and ocean observations, corrected the pattern. Among the four products, ECCO and OAFlux–CERES show great similarities in the examined spatial and temporal patterns. Given that the two estimates were obtained using different approaches and based on largely independent observations, these similarities are encouraging and instructive. It is more likely that the global net air–sea heat flux does not change much during the so-called hiatus period.
    Description: This paper is funded in part by the NOAA Climate Observation Division, Climate Program Office, under Grant NA09OAR4320129 and by the NOAA MAPP Climate Reanalysis Task Force Team under Grant NA13OAR4310106. The study was initiated when X. Liang was a postdoc at MIT, where he was supported in part by the NSF through Grant OCE-0961713, by NOAA through Grant NA10OAR4310135, and by the NASA Physical Oceanography Program through ECCO.
    Description: 2016-11-15
    Keywords: Physical Meteorology and Climatology ; Heat budgets/fluxes ; Surface fluxes ; Models and modeling ; Reanalysis data ; Variability ; Climate variability ; Interannual variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2201-2218, doi:10.1175/JPO-D-16-0020.1.
    Description: This paper aims to test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha’s Vineyard, Massachusetts. Specifically, this study investigates how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and underresolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading.
    Description: IR, AK, and SL were supported by the NSF OCE Grant 1332646. IR was also supported by NASA Grant NNX14AH29G.
    Description: 2016-12-29
    Keywords: Circulation/ Dynamics ; Coastal flows ; Diffusion ; Lagrangian circulation/transport ; Observational techniques and algorithms ; Radars/Radar observations ; Models and modeling ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2267–2268, doi:10.1175/JPO-D-16-0057.1.
    Description: The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-15-0061.1.
    Description: 2017-01-12
    Keywords: Circulation/ Dynamics ; Circulation/ Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3415-3427, doi:10.1175/JPO-D-16-0035.1.
    Description: The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to 1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment, jet oscillations, and the generation of internal waves are examined. The mean jet penetration is predicted well by a simple model based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the entrainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the higher peak exceeds the maximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is observed at higher Froude numbers.
    Description: This work was supported by the Linné FLOW Centre at KTH (E. E.), the European Research Council Grant ERC-2013-CoG-616186, TRITOS (L. B.), and the Swedish Research Council (VR), Outstanding Young Researcher Award (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.
    Description: 2017-05-10
    Keywords: Jets ; Mixing ; Oscillations ; Thermocline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 23–39, doi:10.1175/JPO-D-15-0075.1.
    Description: The mechanism responsible for the annual cycle of the flow through the straits of the Japan Sea is investigated using a two-layer model. Observations show maximum throughflow from summer to fall and minimum in winter, occurring synchronously at the three major straits: Tsushima, Tsugaru, and Soya Straits. This study finds the subpolar winds located to the north of Japan as the leading forcing agent, which first affects the Soya Strait rather than the Tsushima or Tsugaru Straits. The subpolar winds generate baroclinic Kelvin waves along the coastlines of the subpolar gyre, affect the sea surface height at the Soya Strait, and modify the flow through the strait. This causes barotropic adjustment to occur inside the Japan Sea and thus affect the flow at the Tsugaru and Tsushima Straits almost synchronously. The barotropic adjustment mechanism explains well why the observations show a similar annual cycle at the three straits. The annual cycle at the Tsugaru Strait is further shown to be weaker than that in the other two straits based on frictional balance around islands, that is, frictional stresses exerted around an island integrate to zero. In the Tsugaru Strait, the flows induced by the frictional integrals around the northern (Hokkaido) and southern (Honshu) islands are in opposite directions and tend to cancel out. Frictional balance also suggests that the annual cycle at the Tsugaru Strait is likely in phase with that at the Soya Strait because the length scale of the northern island is much shorter than that of the southern island.
    Description: S. Kida is supported by KAKENHI (22106002). B. Qiu is supported by NASA (NNX13AE15G). J. Yang is supported by the U.S. National Science Foundation. X. Lin is supported by the Natural Science Foundation of China (41222037 and U1406401), China’s National Basic Research Priorities Programme (2013CB956202), and the Global Air-Sea Interaction Project (GASI-03-01-01-02).
    Description: 2016-07-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 107–124, doi:10.1175/JPO-D-15-0082.1.
    Description: By taking into account the contributions of both locally and remotely generated internal tides, the tidal mixing in the Luzon Strait (LS) and the South China Sea (SCS) is investigated through internal-tide simulation and energetics analysis. A three-dimensional nonhydrostatic high-resolution model driven by four primary tidal constituents (M2, S2, K1, and O1) is used for the internal-tide simulation. The baroclinic energy budget analysis reveals that the internal tides radiated from the LS are the dominant energy source for the tidal dissipation in the SCS. In the LS, the estimated depth-integrated turbulent kinetic energy dissipation exceeds O(1) W m−2 atop the two subsurface ridges, with a dissipation rate of 〉O(10−7) W kg−1 and diapycnal diffusivity of ~O(10−2) m2 s−1. In the SCS, the most intense turbulence occurs in the deep-water basin with a dissipation rate of O(10−8–10−6) W kg−1 and diapycnal diffusivity of O(10−3–10−1) m2 s−1 within the ~2000-m water column above the seafloor as well as in the shelfbreak region with a dissipation rate of O(10−7–10−6) W kg−1 and diapycnal diffusivity of O(10−4–10−3) m2 s−1. These estimated values are consistent with observations reported in previous studies and are at least one order of magnitude larger than those based solely on locally generated internal tides.
    Description: This work is jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11010304, XDA11010204), the MOST of China (2014CB953904), the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201305), and National Natural Science Foundation of China (41376021, 41306013). ZL’s participation of this work was supported by the National Natural Science Foundation of China (41476006), the Natural Science Foundation of Fujian Province of China (2015J06010), and the National Basic Research Program of China (2012CB417402).
    Description: 2016-07-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 233–254, doi:10.1175/JPO-D-15-0025.1.
    Description: The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.
    Description: The DIMES experiment was funded by the U.K. Natural Environment Research Council (NERC) and the U.S. National Science Foundation (NSF). ACNG acknowledges the support of a Philip Leverhulme Prize, the Royal Society, and the Wolfson Foundation. JDZ acknowledges the support of a NERC Research Fellowship.
    Description: 2016-07-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3155-3163, doi:10.1175/JPO-D-16-0123.1.
    Description: Idealized laboratory experiments have been conducted in a two-layer stratified fluid to investigate the leading-order dynamics that control submarine melting and meltwater export near a vertical ice–ocean interface as a function of subglacial discharge. In summer, the discharge of surface runoff at the base of a glacier (subglacial discharge) generates strong buoyant plumes that rise along the glacier front entraining ambient water along the way. The entrainment enhances the heat transport toward the glacier front and hence the submarine melt rate increases with the subglacial discharge rate. In the laboratory, the effect of subglacial discharge is simulated by introducing freshwater at freezing temperature from a point source at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous observational and numerical studies. Buoyant plumes rise vertically until they find either their neutrally buoyant level or the free surface. Hence, the meltwater can deposit within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The heat budget in the tank, calculated following a new framework, gives estimates of submarine melt rate that increase with the subglacial discharge and are in agreement with the directly measured submarine melting. This laboratory study provides the first direct measurements of submarine melt rates for different subglacial discharges, and the results are consistent with the predictions of previous theoretical and numerical studies.
    Description: Support to C. C. was given by the NSF project OCE- 1130008 and OCE-1434041. M. G. received support from the ‘‘Gori’’ Fellowship.
    Description: 2017-04-07
    Keywords: Glaciers ; Buoyancy ; Density currents ; Turbulence ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1391-1407, doi:10.1175/BAMS-D-15-00032.1.
    Description: Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 × 100 km2. In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability.
    Description: 2017-02-28
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 6201-6221, doi:10.1175/JCLI-D-15-0694.1.
    Description: Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
    Description: This study was supported by the Australian Research Council (ARC) under ARC-DP1094784, ARC-DP-150101331, ARC-FL100100214, and funding for C.C.U. from the National Science Foundation under AGS-1602455 and the ARC Centre of Excellence for Climate System Science.
    Description: 2017-02-19
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Atm/Ocean Structure/ Phenomena ; Drought ; Precipitation ; Physical Meteorology and Climatology ; Climate variability ; Forecasting ; Climate prediction ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3263-3278, doi:10.1175/JPO-D-16-0091.1.
    Description: The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m2 s−1, which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models.
    Description: GEMacknowledges the support from theHowland Postdoctoral Program Fund at WHOI and the Stanback Fellowship Fund at Caltech.MAS was supported by NSF Grants PLR-1415489 and OCE-1232389. AFT acknowledges support from NASA Award NNN12AA01C.
    Description: 2017-04-20
    Keywords: Arctic ; Eddies ; Ekman pumping/transport ; Large-scale motions ; Ocean circulation ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 551-568, doi:10.1175/JPO-D-15-0047.1.
    Description: There exists a good deal of indirect evidence, from several locations around the world, that there is a substantial eddy field over continental shelves. These eddies appear to have typical swirl velocities of a few centimeters per second and have horizontal scales of perhaps 5–10 km. These eddies are weak compared to typical, wind-driven, alongshore flows but often seem to dominate middepth cross-shelf flows. The idea that motivates the present contribution is that the alongshore wind stress ultimately energizes these eddies by means of baroclinic instabilities, even in cases where obvious intense fronts do not exist. The proposed sequence is that alongshore winds over a stratified ocean cause upwelling or downwelling, and the resulting horizontal density gradients are strong enough to fuel baroclinic instabilities of the requisite energy levels. This idea is explored here by means of a sequence of idealized primitive equation numerical model studies, each driven by a modest, nearly steady, alongshore wind stress applied for about 5–10 days. Different runs vary wind forcing, stratification, bottom slope, bottom friction, and Coriolis parameter. All runs, both upwelling and downwelling, are found to be baroclinically unstable and to have scales compatible with the underlying hypothesis. The model results, combined with physically based scalings, show that eddy kinetic energy generally increases with bottom slope, stratification, wind impulse (time integral of the wind stress), and inverse Coriolis parameter. The dominant length scale of the eddies is found to increase with increasing eddy kinetic energy and to decrease with Coriolis parameter.
    Description: This work was supported by the Woods Hole Oceanographic Institution and by the National Science Foundation, Physical Oceanography section through Grant OCE-1433953.
    Description: 2016-06-09
    Keywords: Geographic location/entity ; Continental shelf/slope ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1309-1321, doi:10.1175/JPO-D-15-0068.1.
    Description: Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate ε estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on ε and the buoyancy frequency.
    Description: This work was supported by grants from the U.S. National Science Foundation.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Mixing ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Fronts ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 439-459, doi:10.1175/JPO-D-15-0086.1.
    Description: The summertime California Current System (CCS) is characterized by energetic mesoscale eddies, whose sea surface temperature (SST) and surface current can significantly modify the wind stress and Ekman pumping. Relative importance of the eddy–wind interactions via SST and surface current in the CCS is examined using a high-resolution (7 km) regional coupled model with a novel coupling approach to isolate the small-scale air–sea coupling by SST and surface current. Results show that when the eddy-induced surface current is allowed to modify the wind stress, the spatially averaged surface eddy kinetic energy (EKE) is reduced by 42%, and this is primarily due to enhanced surface eddy drag and reduced wind energy transfer. In contrast, the eddy-induced SST–wind coupling has no significant impact on the EKE. Furthermore, eddy-induced SST and surface current modify the Ekman pumping via their crosswind SST gradient and surface vorticity gradient, respectively. The resultant magnitudes of the Ekman pumping velocity are comparable, but the implied feedback effects on the eddy statistics are different. The surface current-induced Ekman pumping mainly attenuates the amplitude of cyclonic and anticyclonic eddies, acting to reduce the eddy activity, while the SST-induced Ekman pumping primarily affects the propagation. Time mean–rectified change in SST is determined by the altered offshore temperature advection by the mean and eddy currents, but the magnitude of the mean SST change is greater with the eddy-induced current effect. The demonstrated remarkably strong dynamical response in the CCS system to the eddy-induced current–wind coupling indicates that eddy-induced current should play an important role in the regional coupled ocean–atmosphere system.
    Description: We thank NSF for support under GrantsOCE-0960770,OCE-1419235, andOCE-1419306. HS is grateful for the WHOI internal support from the Andrew W. Mellon Foundation Awards for Innovative Research and the additional support from the ONR We thank NSF for support under GrantsOCE-0960770,OCE-1419235, andOCE-1419306. HS is grateful for the WHOI internal support from the Andrew W. Mellon Foundation Awards for Innovative Research and the additional support from the ONR
    Description: 2016-05-30
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Ekman pumping ; Models and modeling ; Ocean models ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1769-1783, doi:10.1175/JPO-D-15-0193.1.
    Description: High-resolution observations of velocity, salinity, and turbulence quantities were collected in a salt wedge estuary to quantify the efficiency of stratified mixing in a high-energy environment. During the ebb tide, a midwater column layer of strong shear and stratification developed, exhibiting near-critical gradient Richardson numbers and turbulent kinetic energy (TKE) dissipation rates greater than 10−4 m2 s−3, based on inertial subrange spectra. Collocated estimates of scalar variance dissipation from microconductivity sensors were used to estimate buoyancy flux and the flux Richardson number Rif. The majority of the samples were outside the boundary layer, based on the ratio of Ozmidov and boundary length scales, and had a mean Rif = 0.23 ± 0.01 (dissipation flux coefficient Γ = 0.30 ± 0.02) and a median gradient Richardson number Rig = 0.25. The boundary-influenced subset of the data had decreased efficiency, with Rif = 0.17 ± 0.02 (Γ = 0.20 ± 0.03) and median Rig = 0.16. The relationship between Rif and Rig was consistent with a turbulent Prandtl number of 1. Acoustic backscatter imagery revealed coherent braids in the mixing layer during the early ebb and a transition to more homogeneous turbulence in the midebb. A temporal trend in efficiency was also visible, with higher efficiency in the early ebb and lower efficiency in the late ebb when the bottom boundary layer had greater influence on the flow. These findings show that mixing efficiency of turbulence in a continuously forced, energetic, free shear layer can be significantly greater than the broadly cited upper bound from Osborn of 0.15–0.17.
    Description: Holleman was supported by the Devonshire Scholars program. The field study and the coauthors’ contributions were supported by NSF Grant OCE 0926427.
    Description: 2016-11-24
    Keywords: Circulation/ Dynamics ; Mixing ; Shear structure/flows ; Turbulence ; Observational techniques and algorithms ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 873-890, doi:10.1175/JTECH-D-15-0109.1.
    Description: Direct covariance flux (DCF) measurements taken from floating platforms are contaminated by wave-induced platform motions that need to be removed before computation of the turbulent fluxes. Several correction algorithms have been developed and successfully applied in earlier studies from research vessels and, most recently, by the use of moored buoys. The validation of those correction algorithms has so far been limited to short-duration comparisons against other floating platforms. Although these comparisons show in general a good agreement, there is still a lack of a rigorous validation of the method, required to understand the strengths and weaknesses of the existing motion-correction algorithms. This paper attempts to provide such a validation by a comparison of flux estimates from two DCF systems, one mounted on a moored buoy and one on the Air–Sea Interaction Tower (ASIT) at the Martha’s Vineyard Coastal Observatory, Massachusetts. The ASIT was specifically designed to minimize flow distortion over a wide range of wind directions from the open ocean for flux measurements. The flow measurements from the buoy system are corrected for wave-induced platform motions before computation of the turbulent heat and momentum fluxes. Flux estimates and cospectra of the corrected buoy data are found to be in very good agreement with those obtained from the ASIT. The comparison is also used to optimize the filter constants used in the motion-correction algorithm. The quantitative agreement between the buoy data and the ASIT demonstrates that the DCF method is applicable for turbulence measurements from small moving platforms, such as buoys.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamic Experiment (CLIMODE).
    Keywords: Circulation/ Dynamics ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Boundary layer ; Physical Meteorology and Climatology ; Air-sea interaction ; Observational techniques and algorithms ; Buoy observations ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-08-12
    Description: Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0 mg L^-1 with an estimated stock of 13.6 ± 3.0 g m^-3 along the YC. An annual DOC flux of 54.9 ± 0.9 Mg yr^-1 was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 417-437, doi:10.1175/JPO-D-15-0055.1.
    Description: In the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.
    Description: A.M. was supported by the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. K.L.P.’s salary support was provided by Woods Hole Oceanographic Institution bridge support funds. B.M.S. was supported by the Australian Climate Change Science Program.
    Description: 2016-06-07
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Internal waves ; Mixing ; Wave properties ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 569-582, doi:10.1175/JPO-D-15-0048.1.
    Description: Continental shelf baroclinic instability energized by fluctuating alongshore winds is treated using idealized primitive equation numerical model experiments. A spatially uniform alongshore wind, sinusoidal in time, alternately drives upwelling and downwelling and so creates highly variable, but slowly increasing, available potential energy. For all of the 30 model runs, conducted with a wide range of parameters (varying Coriolis parameter, initial stratification, bottom friction, forcing period, wind strength, and bottom slope), a baroclinic instability and subsequent eddy field develop. Model results and scalings show that the eddy kinetic energy increases with wind amplitude, forcing period, stratification, and bottom slope. The dominant alongshore length scale of the eddy field is essentially an internal Rossby radius of deformation. The resulting depth-averaged alongshore flow field is dominated by the large-scale, periodic wind forcing, while the cross-shelf flow field is dominated by the eddy variability. The result is that correlation length scales for alongshore flow are far greater than those for cross-shelf velocity. This scale discrepancy is qualitatively consistent with midshelf observations by Kundu and Allen, among others.
    Description: This work was funded by the Woods Hole Oceanographic Institution and by the National Science Foundation, Physical Oceanography section through Grant OCE-1433953.
    Description: 2016-06-09
    Keywords: Geographic location/entity ; Continental shelf/slope ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1277-1284, doi:10.1175/JPO-D-16-0027.1.
    Description: The contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.
    Description: Support was provided by the National Science Foundation Division of Polar Programs Award 1350046 and Office of Naval Research Grant Number N00014-12-1-0110.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1717-1734, doi:10.1175/JPO-D-15-0124.1.
    Description: The contribution of warm-core anticyclones shed by the Irminger Current off West Greenland, known as Irminger rings, to the restratification of the upper layers of the Labrador Sea is investigated in the 1/12° Family of Linked Atlantic Models Experiment (FLAME) model. The model output, covering the 1990–2004 period, shows strong similarities to observations of the Irminger Current as well as ring observations at a mooring located offshore of the eddy formation region in 2007–09. An analysis of fluxes in the model shows that while the majority of heat exchange with the interior indeed occurs at the site of the Irminger Current instability, the contribution of the coherent Irminger rings is modest (18%). Heat is provided to the convective region mainly through noncoherent anomalies and enhanced local mixing by the rings facilitating further exchange between the boundary and interior. The time variability of the eddy kinetic energy and the boundary to interior heat flux in the model are strongly correlated to the density gradient between the dense convective region and the more buoyant boundary current. In FLAME, the density variations of the boundary current are larger than those of the convective region, thereby largely controlling changes in lateral fluxes. Synchronous long-term trends in temperature in the boundary and the interior over the 15-yr simulation suggest that the heat flux relative to the temperature of the interior is largely steady on these time scales.
    Description: The authors were supported in this work by the U.S. National Science Foundation.
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Anticyclones ; Boundary currents ; Convection ; Eddies ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 144 (2016): 877-896, doi:10.1175/MWR-D-15-0275.1.
    Description: This paper describes a new model (method) called Satellite-derived North Atlantic Profiles (SNAP) that seeks to provide a high-resolution, near-real-time ocean thermal field to aid tropical cyclone (TC) forecasting. Using about 139 000 observed temperature profiles, a spatially dependent regression model is developed for the North Atlantic Ocean during hurricane season. A new step introduced in this work is that the daily mixed layer depth is derived from the output of a one-dimensional Price–Weller–Pinkel ocean mixed layer model with time-dependent surface forcing. The accuracy of SNAP is assessed by comparison to 19 076 independent Argo profiles from the hurricane seasons of 2011 and 2013. The rms differences of the SNAP-estimated isotherm depths are found to be 10–25 m for upper thermocline isotherms (29°–19°C), 35–55 m for middle isotherms (18°–7°C), and 60–100 m for lower isotherms (6°–4°C). The primary error sources include uncertainty of sea surface height anomaly (SSHA), high-frequency fluctuations of isotherm depths, salinity effects, and the barotropic component of SSHA. These account for roughly 29%, 25%, 19%, and 10% of the estimation error, respectively. The rms differences of TC-related ocean parameters, upper-ocean heat content, and averaged temperature of the upper 100 m, are ~10 kJ cm−2 and ~0.8°C, respectively, over the North Atlantic basin. These errors are typical also of the open ocean underlying the majority of TC tracks. Errors are somewhat larger over regions of greatest mesoscale variability (i.e., the Gulf Stream and the Loop Current within the Gulf of Mexico).
    Description: IFP is supported by Grants NSC 101-2628-M-002-001-MY4 and MOST 103-2111-M-002 -002 -MY3. JFP and SRJ were supported by the U.S. Office of Naval Research under the project “Impact of Typhoons on the North Pacific, ITOP.”
    Description: 2016-06-08
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Oceanic mixed layer ; Tropical cyclones ; Observational techniques and algorithms ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 144 (2016): 861-875, doi:10.1175/MWR-D-14-00303.1.
    Description: Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of , a statistic that depends on observation-space quantities and that is related to the system dimension when the number of observations is large; for linear, Gaussian systems, the statistic can be computed from eigenvalues of an appropriately normalized covariance matrix. Tests with a low-dimensional system show that these asymptotic results remain useful when the system is nonlinear, with either the standard or optimal proposal implementation of the particle filter. This study explores approximations to the covariance matrices that facilitate computation in high-dimensional systems, as well as different methods to estimate the accumulated system noise covariance for the optimal proposal. Since may be approximated using an ensemble from a simpler data assimilation scheme, such as the ensemble Kalman filter, the asymptotic relations thus allow an estimate of the ensemble size required for a particle filter before its implementation. Finally, the improved performance of particle filters with the optimal proposal, relative to those using the standard proposal, in the same low-dimensional system is demonstrated.
    Description: Slivinski was supported by the NSF through Grants DMS-0907904 and DMS-1148284, by ONR through DOD (MURI) Grant N000141110087, and by NCAR’s Advanced Study Program during a collaborative visit to NCAR.
    Description: 2016-05-11
    Keywords: Mathematical and statistical techniques ; Statistical techniques ; Models and modeling ; Data assimilation ; Ensembles ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1823-1837, doi:10.1175/JPO-D-15-0165.1.
    Description: Measurements just beneath the ocean surface demonstrate that the primary mechanism by which energy from breaking waves is transmitted into the water column is through the work done by the covariance of turbulent pressure and velocity fluctuations. The convergence in the vertical transport of turbulent kinetic energy (TKE) balances the dissipation rate of TKE at first order and is nearly an order of magnitude greater than the sum of the integrated Eulerian and Stokes shear production. The measured TKE transport is consistent with a simple conceptual model that assumes roughly half of the surface flux of TKE by wave breaking is transmitted to depths greater than the significant wave height. During conditions when breaking waves are inferred, the direction of momentum flux is more aligned with the direction of wave propagation than with the wind direction. Both the energy and momentum fluxes occur at frequencies much lower than the wave band, consistent with the time scales associated with wave breaking. The largest instantaneous values of momentum flux are associated with strong downward vertical velocity perturbations, in contrast to the pressure work, which is associated with strong drops in pressure and upward vertical velocity perturbations.
    Description: Funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518
    Keywords: Circulation/ Dynamics ; Energy transport ; Mixing ; Momentum ; Turbulence ; Wave breaking ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 1377-1392, doi:10.1175/JTECH-D-15-0242.1.
    Description: The calibration and validation of a novel approach to remotely sense surface winds using land-based high-frequency (HF) radar systems are described. Potentially available on time scales of tens of minutes and spatial scales of 2–3 km for wide swaths of the coastal ocean, HF radar–based surface wind observations would greatly aid coastal ocean planners, researchers, and operational stakeholders by providing detailed real-time estimates and climatologies of coastal winds, as well as enabling higher-quality short-term forecasts of the spatially dependent wind field. Such observations are particularly critical for the developing offshore wind energy community. An autonomous surface vehicle was deployed within the Massachusetts Wind Energy Area, located south of Martha’s Vineyard, Massachusetts, for one month, collecting wind observations that were used to test models of wind-wave spreading and HF radar energy loss, thereby empirically relating radar-measured power to surface winds. HF radar–based extractions of the remote wind speed had accuracies of 1.4 m s−1 for winds less than 7 m s−1, within the optimal range of the radar frequency used. Accuracies degraded at higher winds due to low signal-to-noise ratios in the returned power and poor resolution of the model. Pairing radar systems with a range of transmit frequencies with adjustments of the extraction model for additional power and environmental factors would resolve many of the errors observed.
    Description: This analysis was supported by the Massachusetts Clean Energy Center. The HF radar data used were obtained during projects supported by the National Science Foundation, the NOAA Integrated Ocean Observing System (IOOS), and internal funds from the Woods Hole Oceanographic Institution.
    Description: 2016-12-24
    Keywords: Atm/Ocean Structure/ Phenomena ; Wind ; Observational techniques and algorithms ; Algorithms ; In situ oceanic observations ; Radars/Radar observations ; Remote sensing ; Surface observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2143-2156, doi:10.1175/JPO-D-15-0213.1.
    Description: Measurements of pressure near the surface in conditions of wind sea and swell are reported. Swell, or waves that overrun the wind, produces an upward flux of energy and momentum from waves to the wind and corresponding attenuation of the swell waves. The estimates of growth of wind sea are consistent with existing parameterizations. The attenuation of swell in the field is considerably smaller than existing measurements in the laboratory.
    Keywords: Circulation/ Dynamics ; Pressure ; Wind stress ; Wind waves ; Physical Meteorology and Climatology ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 2079–2105, doi:10.1175/BAMS-D-13-00177.1.
    Description: The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated interdisciplinary and international program that will not only improve understanding of this critical component of global climate but will also provide opportunities to develop human resources with the skills required to tackle related problems in complex climate systems. We propose a research strategy with components that include 1) improved mapping of the upper- and middepth Arctic Ocean, 2) enhanced quantification of important process, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat-flux mechanisms and their interactions.
    Description: 2016-06-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.
    Description: Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.
    Description: OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.
    Description: 2016-08-19
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Fronts ; Mathematical and statistical techniques ; Inverse methods ; Kalman filters ; Variability ; Climate variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3143-3159, doi:10.1175/JCLI-D-15-0520.1.
    Description: Moisture originating from the subtropical North Atlantic feeds precipitation throughout the Western Hemisphere. This ocean-to-land moisture transport leaves its imprint on sea surface salinity (SSS), enabling SSS over the subtropical oceans to be used as an indicator of terrestrial precipitation. This study demonstrates that springtime SSS over the northwestern portion of the subtropical North Atlantic significantly correlates with summertime precipitation over the U.S. Midwest. The linkage between springtime SSS and the Midwest summer precipitation is established through ocean-to-land moisture transport followed by a soil moisture feedback over the southern United States. In the spring, high SSS over the northwestern subtropical Atlantic coincides with a local increase in moisture flux divergence. The moisture flux is then directed toward and converges over the southern United States, which experiences increased precipitation and soil moisture. The increased soil moisture influences the regional water cycle both thermodynamically and dynamically, leading to excessive summer precipitation in the Midwest. Thermodynamically, the increased soil moisture tends to moisten the lower troposphere and enhances the meridional humidity gradient north of 36°N. Thus, more moisture will be transported and converged into the Midwest by the climatological low-level wind. Dynamically, the increases in soil moisture over the southern United States enhance the west–east soil moisture gradient eastward of the Rocky Mountains, which can help to intensify the Great Plains low-level jet in the summer, converging more moisture into the Midwest. Owing to these robust physical linkages, the springtime SSS outweighs the leading SST modes in predicting the Midwest summer precipitation and significantly improves rainfall prediction in this region.
    Description: L. L. is supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Ocean and Climate Change Institute (OCCI). R. W. S. is supported by NASA Grant NNX12AF59G S03 and NSF Grant OCE-1129646. C. C. U. is supported by NSF Grant AGS-1355339. K. B. K. is supported by the Alfred P. Sloan Foundation and the James E. and Barbara V. Moltz Fellowship administered by the WHOI OCCI.
    Description: 2016-10-19
    Keywords: Circulation/ Dynamics ; Hydrologic cycle ; Physical Meteorology and Climatology ; Moisture/moisture budget ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 2123-2144, doi:10.1175/JCLI-D-15-0511.1.
    Description: The atmospheric response to the Kuroshio Extension (KE) variability during 1979–2012 is investigated using a KE index derived from sea surface height measurements and an eddy-resolving ocean general circulation model hindcast. When the index is positive, the KE is in the stable state, strengthened and shifted northward, with lower eddy kinetic energy, and the Kuroshio–Oyashio Extension (KOE) region is anomalously warm. The reverse holds when the index is negative. Regression analysis shows that there is a coherent atmospheric response to the decadal KE fluctuations between October and January. The KOE warming generates an upward surface heat flux that leads to local ascending motions and a northeastward shift of the zones of maximum baroclinicity, eddy heat and moisture fluxes, and the storm track. The atmospheric response consists of an equivalent barotropic large-scale signal, with a downstream high and a low over the Arctic. The heating and transient eddy anomalies excite stationary Rossby waves that propagate the signal poleward and eastward. There is a warming typically exceeding 0.6 K at 900 hPa over eastern Asia and western United States, which reduces the snow cover by 4%–6%. One month later, in November–February, a high appears over northwestern Europe, and the hemispheric teleconnection bears some similarity with the Arctic Oscillation. Composite analysis shows that the atmospheric response primarily occurs during the stable state of the KE, while no evidence of a significant large-scale atmospheric response is found in the unstable state. Arguments are given to explain this strong asymmetry.
    Description: This research has received funding from the European Union 7th Framework Program (FP7 2007–2013) under Grant Agreement 308299 (NACLIM), from NSF Grant AGS CLD 1035423, and from Agence Nationale de la Recherche under the reference ANR 2011 Blanc SIMI 5-6 014 01.
    Description: 2016-09-23
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 1225-1235, doi:10.1175/JTECH-D-15-0115.1.
    Description: Accurate estimation of the transport probabilities among regions in the ocean provides valuable information for understanding plankton transport, the spread of pollutants, and the movement of water masses. Individual-based particle-tracking models simulate a large ensemble of Lagrangian particles and are a common method to estimate these transport probabilities. Simulating a large ensemble of Lagrangian particles is computationally expensive, and appropriately allocating resources can reduce the cost of this method. Two universal questions in the design of studies that use Lagrangian particle tracking are how many particles to release and how to distribute particle releases. A method is presented for tailoring the number and the release location of particles to most effectively achieve the objectives of a study. The method detailed here is a sequential analysis procedure that seeks to minimize the number of particles that are required to satisfy a predefined metric of result quality. The study assesses the result quality as the precision of the estimates for the elements of a transport matrix and also describes how the method may be extended for use with other metrics. Applying this methodology to both a theoretical system and a particle transport model of the Gulf of Maine results in more precise estimates of the transport probabilities with fewer particles than from uniformly or randomly distributing particle releases. The application of this method can help reduce the cost of and increase the robustness of results from studies that use Lagrangian particles.
    Description: This research was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) program and the National Science Foundation through Grant OCE-1459133 and Grant OCE-1031256.
    Description: 2016-12-02
    Keywords: Circulation/ Dynamics ; Lagrangian circulation/transport ; Models and modeling ; Model evaluation/performance ; Ocean models ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-01-12
    Description: We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S, COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher-level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb-weavers, compatible with their non-monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius, Tasmabrochus and Teeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to include Calymmaria, Cryphoeca, Ethobuella and Willisius (transferred from Hahniidae), and Blabomma and Yorima (transferred from Dictynidae). Cycloctenidae are redefined to include Orepukia (transferred from Agelenidae) and Pakeha and Paravoca (transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, with Amphinecta, Mamoea, Maniho, Paramamoea and Rangitata (transferred from Amphinectidae); Ischaleinae, with Bakala and Manjala (transferred from Amaurobiidae) and Ischalea (transferred from Stiphidiidae); Metaltellinae, with Austmusia, Buyina, Calacadia, Cunnawarra, Jalkaraburra, Keera, Magua, Metaltella, Penaoola and Quemusia; Porteriinae (new rank), with Baiami, Cambridgea, Corasoides and Nanocambridgea (transferred from Stiphidiidae); and Desinae, with Desis, and provisionally Poaka (transferred from Amaurobiidae) and Barahna (transferred from Stiphidiidae). Argyroneta is transferred from Cybaeidae to Dictynidae. Cicurina is transferred from Dictynidae to Hahniidae. The genera Neoramia (from Agelenidae) and Aorangia, Marplesia and Neolana (from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, with Gasparia, Gohia, Hulua, Neomyro, Myro, Ommatauxesis and Otagoa (transferred from Desidae); and Toxopinae, with Midgee and Jamara, formerly Midgeeinae, new syn. (transferred from Amaurobiidae) and Hapona, Laestrygones, Lamina, Toxops and Toxopsoides (transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the \xe2\x80\x9cctenids\xe2\x80\x9d Ancylometes and Cupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae. Orthobula is transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae (new fam., including Xenoctenus, Paravulsor and Odo, transferred from Miturgidae, as well as Incasoctenus from Ctenidae). We confirm the inclusion of Zora (formerly Zoridae) within Miturgidae.
    Keywords: Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-09-22
    Description: There is still considerable debate about which mechanisms drive the relationship between biodiversity and ecosystem function (BEF). Although most scientists agree on the existence of two underlying mechanisms, complementarity and selection, experimental studies keep producing contrasting results on the relative contributions of the two effects. We present a spatially explicit resource competition model and investigate how the strength of these effects is influenced by trait and environmental variability, resource distribution, and species pool size. Our results demonstrate that the increase of biomass production with increasing species numbers depends on the concurrence of environmental and trait variability: BEF relationships are stronger if functionally different species coexist in a landscape with heterogeneous resource supply. These large biodiversity effects arise from complementarity effects, whereas selection effects are maximized when broad trait ranges coincide with narrow ranges of resource supply ratios. Our results will therefore help to resolve the debate on complementarity and selection mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-04-01
    Description: The microphysical processes inside convective clouds play an important role in climate. They directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts. The detrained water substance in turn affects the anvil cloud formation, upper-tropospheric water vapor distribution, and thus the atmospheric radiation budget. In global climate models, convective parameterization schemes have not explicitly represented microphysics processes in updrafts until recently. In this paper, the authors provide a review of existing schemes for convective microphysics parameterization. These schemes are broadly divided into three groups: tuning-parameter-based schemes (simplest), single-moment schemes, and two-moment schemes (most comprehensive). Common weaknesses of the tuning-parameter-based and single-moment schemes are outlined. Examples are presented from one of the two-moment schemes to demonstrate the performance of the scheme in simulating the hydrometeor distribution in convection and its representation of the effect of aerosols on convection.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-04-01
    Description: The authors present an observationally based evaluation of the vertically resolved cloud ice water content (CIWC) and vertically integrated cloud ice water path (CIWP) as well as radiative shortwave flux downward at the surface (RSDS), reflected shortwave (RSUT), and radiative longwave flux upward at top of atmosphere (RLUT) of present-day global climate models (GCMs), notably twentieth-century simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), and compare these results to those of the third phase of the Coupled Model Intercomparison Project (CMIP3) and two recent reanalyses. Three different CloudSat and/or Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined ice water products and two methods are used to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate can be obtained for model evaluations. The results show that, for annual mean CIWC and CIWP, there are factors of 2–10 (either over- or underestimate) in the differences between observations and models for a majority of the GCMs and for a number of regions. Most of the GCMs in CMIP3 and CMIP5 significantly underestimate the total ice water mass because models only consider suspended cloud mass, ignoring falling and convective core cloud mass. For the annual means of RSDS, RLUT, and RSUT, a majority of the models have significant regional biases ranging from −30 to 30 W m−2. Based on these biases in the annual means, there is virtually no progress in the simulation fidelity of RSDS, RLUT, and RSUT fluxes from CMIP3 to CMIP5, even though there is about a 50% bias reduction improvement of global annual mean CIWP from CMIP3 to CMIP5. It is concluded that at least a part of these persistent biases stem from the common GCM practice of ignoring the effects of precipitating and/or convective core ice and liquid in their radiation calculations.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-04-01
    Description: Yanai and coauthors utilized the meteorological data collected from a sounding network to present a pioneering work in 1973 on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Latent heating (LH) is one of the most dominant terms in Q1. Yanai’s paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables in Tropical Rainfall Measuring Mission (TRMM) LH algorithms. A set of algorithms developed for retrieving LH profiles from TRMM-based rainfall profiles is described and evaluated, including details concerning their intrinsic space–time resolutions. Included in the paper are results from a variety of validation analyses that define the uncertainty of the LH profile estimates. Also, examples of how TRMM-retrieved LH profiles have been used to understand the life cycle of the MJO and improve the predictions of global weather and climate models as well as comparisons with large-scale analyses are provided. Areas for further improvement of the TRMM products are discussed.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-05-01
    Description: The authors survey a series of modeling studies that have examined the influences that cloud microphysical processes can have on tropical cyclone (TC) motion, the strength and breadth of the wind field, inner-core diabatic heating asymmetries, outer-core convective activity, and the characteristics of the TC anvil cloud. These characteristics are sensitive to the microphysical parameterization (MP) in large part owing to the cloud-radiative forcing (CRF), the interaction of hydrometeors with radiation. The most influential component of CRF is that due to absorption and emission of longwave radiation in the anvil, which via gentle lifting directly encourages the more extensive convective activity that then leads to a radial expansion of the TC wind field. On a curved Earth, the magnitude of the outer winds helps determine the speed and direction of TC motion via the beta drift. CRF also influences TC motion by determining how convective asymmetries develop in the TC inner core. Further improvements in TC forecasting may require improved understanding and representation of cloud-radiative processes in operational models, and more comprehensive comparisons with observations are clearly needed.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
  • 98
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-04-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...