ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (38)
  • Binding Sites  (38)
  • Nature Publishing Group (NPG)  (38)
  • American Chemical Society (ACS)
  • Frontiers Media
  • Oxford University Press
  • PeerJ
  • Springer Nature
  • Wiley
  • Wiley-Blackwell
  • 2015-2019  (38)
  • 1985-1989
  • 1980-1984
  • 1935-1939
  • 2015  (38)
  • Chemistry and Pharmacology  (38)
  • Biology  (38)
  • Education
  • Geography
  • Mathematics
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Journals
  • Articles  (38)
Publisher
Years
  • 2015-2019  (38)
  • 1985-1989
  • 1980-1984
  • 1935-1939
Year
Topic
  • 1
    Publication Date: 2015-11-13
    Description: Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells. Here we investigate the causal DNA variant at this locus and the mechanism by which it leads to neuroblastoma tumorigenesis. We first imputed all possible genotypes across the LMO1 locus and then mapped highly associated single nucleotide polymorphism (SNPs) to areas of chromatin accessibility, evolutionary conservation and transcription factor binding sites. We show that SNP rs2168101 G〉T is the most highly associated variant (combined P = 7.47 x 10(-29), odds ratio 0.65, 95% confidence interval 0.60-0.70), and resides in a super-enhancer defined by extensive acetylation of histone H3 lysine 27 within the first intron of LMO1. The ancestral G allele that is associated with tumour formation resides in a conserved GATA transcription factor binding motif. We show that the newly evolved protective TATA allele is associated with decreased total LMO1 expression (P = 0.028) in neuroblastoma primary tumours, and ablates GATA3 binding (P 〈 0.0001). We demonstrate allelic imbalance favouring the G-containing strand in tumours heterozygous for this SNP, as demonstrated both by RNA sequencing (P 〈 0.0001) and reporter assays (P = 0.002). These findings indicate that a recently evolved polymorphism within a super-enhancer element in the first intron of LMO1 influences neuroblastoma susceptibility through differential GATA transcription factor binding and direct modulation of LMO1 expression in cis, and this leads to an oncogenic dependency in tumour cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldridge, Derek A -- Wood, Andrew C -- Weichert-Leahey, Nina -- Crimmins, Ian -- Sussman, Robyn -- Winter, Cynthia -- McDaniel, Lee D -- Diamond, Maura -- Hart, Lori S -- Zhu, Shizhen -- Durbin, Adam D -- Abraham, Brian J -- Anders, Lars -- Tian, Lifeng -- Zhang, Shile -- Wei, Jun S -- Khan, Javed -- Bramlett, Kelli -- Rahman, Nazneen -- Capasso, Mario -- Iolascon, Achille -- Gerhard, Daniela S -- Guidry Auvil, Jaime M -- Young, Richard A -- Hakonarson, Hakon -- Diskin, Sharon J -- Look, A Thomas -- Maris, John M -- 100210/Wellcome Trust/United Kingdom -- 100210/Z/12/Z/Wellcome Trust/United Kingdom -- 1K99CA178189/CA/NCI NIH HHS/ -- R00-CA151869/CA/NCI NIH HHS/ -- R01 CA124709/CA/NCI NIH HHS/ -- R01 CA180692/CA/NCI NIH HHS/ -- R01-CA109901/CA/NCI NIH HHS/ -- R01-CA124709/CA/NCI NIH HHS/ -- R01-CA180692/CA/NCI NIH HHS/ -- RC1MD004418/MD/NIMHD NIH HHS/ -- T32 HG000046/HG/NHGRI NIH HHS/ -- T32-HG000046/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Dec 17;528(7582):418-21. doi: 10.1038/nature15540. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. ; Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, Auckland Region 1142, New Zealand. ; Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA. ; Whitehead Institute for Biomedical Research and MIT, Boston, Massachusetts 02142, USA. ; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. ; Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA. ; Thermo Fisher Scientific, Austin, Texas 78744, USA. ; The Institute of Cancer Research, London SM2 5NG, UK. ; University of Naples Federico II, 80131 Naples, Italy. ; CEINGE Biotecnologie Avanzate, 80131 Naples, Italy. ; Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland 20892, USA. ; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560027" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Alleles ; Allelic Imbalance ; Binding Sites ; DNA-Binding Proteins/*genetics ; Enhancer Elements, Genetic/*genetics ; Epigenomics ; GATA3 Transcription Factor/metabolism ; Gene Expression Regulation, Neoplastic/genetics ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Genotype ; Histones/chemistry/metabolism ; Humans ; Introns/genetics ; LIM Domain Proteins/*genetics ; Lysine/metabolism ; Neuroblastoma/*genetics ; Organ Specificity ; Polymorphism, Single Nucleotide/*genetics ; Reproducibility of Results ; Transcription Factors/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-06
    Description: Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Youl -- Peterson, Francis C -- Mosquna, Assaf -- Yao, Jin -- Volkman, Brian F -- Cutler, Sean R -- England -- Nature. 2015 Apr 23;520(7548):545-8. doi: 10.1038/nature14123. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA [2] Institute for Integrative Genome Biology, Riverside, California 92521, USA. ; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652827" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Acclimatization/drug effects ; Agrochemicals/*pharmacology ; Amides/*pharmacology ; Arabidopsis/drug effects/genetics/metabolism ; Arabidopsis Proteins/*genetics/*metabolism ; Binding Sites ; Carboxylic Acids/*pharmacology ; Crystallography, X-Ray ; Droughts ; Genetic Engineering ; Genotype ; Ligands ; Lycopersicon esculentum/drug effects/genetics/metabolism ; Membrane Transport Proteins/*genetics/*metabolism ; Models, Molecular ; Plant Transpiration/drug effects ; Plants/*drug effects/genetics/*metabolism ; Plants, Genetically Modified ; Stress, Physiological/drug effects ; Structure-Activity Relationship ; Water/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-23
    Description: Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 A, reaching 2.9 A resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khatter, Heena -- Myasnikov, Alexander G -- Natchiar, S Kundhavai -- Klaholz, Bruno P -- England -- Nature. 2015 Apr 30;520(7549):640-5. doi: 10.1038/nature14427. Epub 2015 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Sante et de la Recherche Medicale (INSERM) U964, 67404 Illkirch, France [4] Universite de Strasbourg, 67081 Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25901680" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Cryoelectron Microscopy ; Electrons ; Humans ; Models, Molecular ; RNA, Ribosomal/chemistry/metabolism/ultrastructure ; RNA, Transfer/chemistry/metabolism/ultrastructure ; Ribosomal Proteins/chemistry/metabolism/ultrastructure ; Ribosome Subunits/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-31
    Description: In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 A resolution, and with a non-nucleotide antagonist BPTU at 2.2 A resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Dandan -- Gao, Zhan-Guo -- Zhang, Kaihua -- Kiselev, Evgeny -- Crane, Steven -- Wang, Jiang -- Paoletta, Silvia -- Yi, Cuiying -- Ma, Limin -- Zhang, Wenru -- Han, Gye Won -- Liu, Hong -- Cherezov, Vadim -- Katritch, Vsevolod -- Jiang, Hualiang -- Stevens, Raymond C -- Jacobson, Kenneth A -- Zhao, Qiang -- Wu, Beili -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Z01 DK031116-21/Intramural NIH HHS/ -- Z01DK031116-26/DK/NIDDK NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):317-21. doi: 10.1038/nature14287. Epub 2015 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA. ; Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA [2] Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25822790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism/pharmacology ; Humans ; Ligands ; Models, Molecular ; Molecular Conformation ; Purinergic P2Y Receptor Antagonists/*chemistry/metabolism/pharmacology ; Receptors, Purinergic P2Y1/*chemistry/*metabolism ; Thionucleotides/chemistry/metabolism ; Uracil/*analogs & derivatives/chemistry/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-11
    Description: G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vafabakhsh, Reza -- Levitz, Joshua -- Isacoff, Ehud Y -- 2PN2EY018241/EY/NEI NIH HHS/ -- PN2 EY018241/EY/NEI NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):497-501. doi: 10.1038/nature14679. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Drug Partial Agonism ; *Fluorescence Resonance Energy Transfer ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Conformation ; Rats ; Receptors, Metabotropic Glutamate/*chemistry/*classification/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-10
    Description: The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to approximately 4 A resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paulsen, Candice E -- Armache, Jean-Paul -- Gao, Yuan -- Cheng, Yifan -- Julius, David -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01 NS055299/NS/NINDS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R01NS055299/NS/NINDS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):511-7. doi: 10.1038/nature14367. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, California 94158-2517, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA. ; 1] Department of Physiology, University of California, San Francisco, California 94158-2517, USA [2] Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855297" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Analgesics ; Ankyrin Repeat ; Anti-Inflammatory Agents ; Binding Sites ; Calcium Channels/*chemistry/metabolism/*ultrastructure ; *Cryoelectron Microscopy ; Cytosol/metabolism ; Humans ; Models, Molecular ; Nerve Tissue Proteins/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure ; Polyphosphates/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Transient Receptor Potential Channels/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-08
    Description: During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at approximately 6 A resolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉des Georges, Amedee -- Dhote, Vidya -- Kuhn, Lauriane -- Hellen, Christopher U T -- Pestova, Tatyana V -- Frank, Joachim -- Hashem, Yaser -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM059660/GM/NIGMS NIH HHS/ -- R01 GM29169/GM/NIGMS NIH HHS/ -- R01 GM59660/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 24;525(7570):491-5. doi: 10.1038/nature14891. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA. ; CNRS, Proteomic Platform Strasbourg - Esplanade, Strasbourg 67084, France. ; Department of Biological Sciences, Columbia University, New York, New York 10032, USA. ; CNRS, Architecture et Reactivite de l'ARN, Universite de Strasbourg, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344199" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Codon, Initiator/genetics ; Cryoelectron Microscopy ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; Eukaryotic Initiation Factor-3/*chemistry/*metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; *Peptide Chain Initiation, Translational ; Peptide Initiation Factors/metabolism ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; RNA Helicases/chemistry/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Transfer, Met/metabolism ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism ; Ribosomes/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-25
    Description: V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1-RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1-RAG2 complex at 3.2 A resolution. The 230-kilodalton RAG1-RAG2 heterotetramer is 'Y-shaped', with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1-RAG2 heterodimer composes one arm of the 'Y', with the active site in the middle and RAG2 at its tip. The RAG1-RAG2 structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Min-Sung -- Lapkouski, Mikalai -- Yang, Wei -- Gellert, Martin -- Z01 DK036147-01/Intramural NIH HHS/ -- Z01 DK036147-02/Intramural NIH HHS/ -- Z01 DK036167-01/Intramural NIH HHS/ -- Z01 DK036167-02/Intramural NIH HHS/ -- ZIA DK036147-03/Intramural NIH HHS/ -- ZIA DK036147-04/Intramural NIH HHS/ -- ZIA DK036147-05/Intramural NIH HHS/ -- ZIA DK036147-06/Intramural NIH HHS/ -- ZIA DK036147-07/Intramural NIH HHS/ -- ZIA DK036147-08/Intramural NIH HHS/ -- ZIA DK036167-03/Intramural NIH HHS/ -- ZIA DK036167-04/Intramural NIH HHS/ -- ZIA DK036167-05/Intramural NIH HHS/ -- ZIA DK036167-06/Intramural NIH HHS/ -- ZIA DK036167-07/Intramural NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):507-11. doi: 10.1038/nature14174. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Homeodomain Proteins/*chemistry/genetics/metabolism ; Humans ; Mice ; Models, Molecular ; Mutation/genetics ; Protein Multimerization ; Protein Structure, Quaternary ; Severe Combined Immunodeficiency/genetics ; Transposases/chemistry ; VDJ Recombinases/*chemistry/metabolism ; X-Linked Combined Immunodeficiency Diseases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-19
    Description: Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seweryn, Paulina -- Van, Lan Bich -- Kjeldgaard, Morten -- Russo, Christopher J -- Passmore, Lori A -- Hove-Jensen, Bjarne -- Jochimsen, Bjarne -- Brodersen, Ditlev E -- MC_U105192715/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):68-72. doi: 10.1038/nature14683. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280334" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Biocatalysis ; Carbon/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Hydrolysis ; Iron/chemistry/metabolism ; Lyases/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Organophosphonates/metabolism ; Phosphorus/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sulfur/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-30
    Description: Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Appen, Alexander -- Kosinski, Jan -- Sparks, Lenore -- Ori, Alessandro -- DiGuilio, Amanda L -- Vollmer, Benjamin -- Mackmull, Marie-Therese -- Banterle, Niccolo -- Parca, Luca -- Kastritis, Panagiotis -- Buczak, Katarzyna -- Mosalaganti, Shyamal -- Hagen, Wim -- Andres-Pons, Amparo -- Lemke, Edward A -- Bork, Peer -- Antonin, Wolfram -- Glavy, Joseph S -- Bui, Khanh Huy -- Beck, Martin -- 1R21AG047433-01/AG/NIA NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):140-3. doi: 10.1038/nature15381. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany. ; Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 507 River St., Hoboken, New Jersey 07030, USA. ; Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tubingen, Germany. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416747" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Cryoelectron Microscopy ; HeLa Cells ; Humans ; Mass Spectrometry ; Models, Molecular ; Molecular Chaperones/chemistry/metabolism/ultrastructure ; Nuclear Envelope/metabolism ; Nuclear Pore/*chemistry/metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/*chemistry/metabolism/*ultrastructure ; Protein Conformation ; Protein Multimerization ; Protein Stability
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...