ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society
  • Annual Reviews
  • Geological Society of America (GSA)
  • 2010-2014  (3,583)
  • 1965-1969
  • 1935-1939
  • 2014  (3,583)
Collection
Years
  • 2010-2014  (3,583)
  • 1965-1969
  • 1935-1939
Year
  • 1
    Publication Date: 2020-11-18
    Description: Heavy rainfall and flooding associated with tropical cyclones (TCs) are responsible for a large number of fatalities and economic damage worldwide. Despite their large socio-economic impacts, research into heavy rainfall and flooding associated with TCs has received limited attention to date, and still represents a major challenge. Our capability to adapt to future changesin heavy rainfall and flooding associated with TCs is inextricably linked to and informed by ourunderstanding of the sensitivity of TC rainfall to likely future forcing mechanisms. Here we use a set of idealized high-resolution atmospheric model experiments produced as part of the U.S. CLIVAR Hurricane Working Group activity to examine TC response to idealized global-scale perturbations: the doubling of CO2, uniform 2K increases in global sea surface temperature(SST), and their combined impact. As a preliminary but key step, daily rainfall patterns ofcomposite TCs within climate model outputs are first compared and contrasted to the observational records. To assess similarities and differences across different regions in response to the warming scenarios, analyses are performed at the global and hemispheric scales and in six global TC ocean basins. The results indicate a reduction in TC daily precipitation rates in the doubling CO2 scenario (on the order of 5% globally), and an increase in TC rainfall rates associated with a uniform increase of 2K in SST (both alone and in combination with CO2 doubling; on the order of 10-20% globally).
    Description: Published
    Description: 4622–4641
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: tropical cyclones ; precipitation ; rainfall ; extreme events ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. CLIVAR (CLImate VARiability and predictability of the ocean-atmosphere system). This work, combined with results from other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate the decrease in tropical cyclone numbers previously shown to be a common response of climate models in a warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.
    Description: Published
    Description: 997–1017
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; hurricanes ; climate change ; CLIVAR ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Physical Oceanography, American Meteorological Society, 44(8), pp. 2093-2106, ISSN: 0022-3670
    Publication Date: 2019-07-16
    Description: The recently proposed Internal Wave Dissipation, Energy and Mixing (IDEMIX) model, describing the propagation and dissipation of internal gravity waves in the ocean, is extended. Compartments describing the energy contained in the internal tides and the near-inertial waves at low, vertical wavenumber are added to a compartment of the wave continuum at higher wavenumbers. Conservation equations for each compartment are derived based on integrated versions of the radiative transfer equation of weakly interacting waves. The compartments interact with each other by the scattering of tidal energy to the wave continuum by triad wave– wave interactions, which are strongly enhanced equatorward of 288 due to parametric subharmonic instability of the tide and by scattering to the continuum of both tidal and near-inertial wave energy over rough topography and at continental margins. Global numerical simulations of the resulting model using observed stratification, forcing functions, and bottom topography yield good agreement with available observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 27(10), pp. 3784-3801, ISSN: 0894-8755
    Publication Date: 2014-05-15
    Description: Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice concentration over recent decades. However, observations of decadal trends in Antarctic ice thickness, and hence ice volume, do not currently exist. In this study a model of the Southern Ocean and its sea ice, forced by atmospheric reanalyses, is used to assess 1992–2010 trends in ice thickness and volume. The model successfully reproduces observations of mean ice concentration, thickness, and drift, and decadal trends in ice concentration and drift, imparting some confidence in the hindcasted trends in ice thickness. The model suggests that overall Antarctic sea ice volume has increased by approximately 30 km3 yr−1 (0.4% yr−1) as an equal result of areal expansion (20 × 103 km2 yr−1 or 0.2% yr−1) and thickening (1.5 mm yr−1 or 0.2% yr−1). This ice volume increase is an order of magnitude smaller than the Arctic decrease, and about half the size of the increased freshwater supply from the Antarctic Ice Sheet. Similarly to the observed ice concentration trends, the small overall increase in modeled ice volume is actually the residual of much larger opposing regional trends. Thickness changes near the ice edge follow observed concentration changes, with increasing concentration corresponding to increased thickness. Ice thickness increases are also found in the inner pack in the Amundsen and Weddell Seas, where the model suggests that observed ice-drift trends directed toward the coast have caused dynamical thickening in autumn and winter. Modeled changes are predominantly dynamic in origin in the Pacific sector and thermodynamic elsewhere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this work the authors investigate possible changes in the intensity of rainfall events associated 28with tropical cyclones (TCs) under idealized forcing scenarios, including a uniformly warmer climate, with a special focus on landfalling storms. A new set of experiments designed within the U.S. CLIVAR Hurricane Working Group allows disentangling the relative role of changes in atmospheric carbon dioxide from that played by sea surface temperature (SST) in changing theamount of precipitation associated with TCs in a warmer world. Compared to the present day simulation, we found an increase in TC precipitation under the scenarios involving SST increases. On the other hand, in a CO2 doubling-only scenario, the changes in TC rainfall are small and we found that, on average, TC rainfall tends to decrease compared to the present day climate. The results of this study highlight the contribution of landfalling TCs to the projected increase in theprecipitation changes affecting the tropical coastal regions.
    Description: Published
    Description: 4642–4654
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: tropical cyclones ; precipitation ; extreme events ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2017-04-04
    Description: We study the quasi-geostrophic merging dynamics of axisymmetric baroclinic vortices to understand how baroclinicity affects merging rates and the development of the nonlinear cascade of enstrophy. The initial vortices are taken to simulate closely the horizontal' and vertical structure of Gulf Stream rings. A quasigeostrophic model is set with a horizontal resolution of 9 km and 6 vertical levels to resolve the mean stratification of the Gulf Stream region. The results show that the baroclinic merging is slower than the purely barotropic process, The merging is shown to occur in two phases: the tirst, which produces clove-shaped vortices and diffusive mixing of vorticity contours; and the second, which consists of the sliding of the remaining vorticity cores with a second diffusive mixing of the intemal vorticity field. Comparison among Nof, Cushman-Roisin, Polvani et al, and Dewar and Killworth merging events indicates a substantial agreement in the kinematics of the DYOCRSS. Parameter sensitivity experiments show that the decrease of the baroclinicity parameter of the system, Γ^2, [defined as Γ^2 = (D^2 fo^2)/ (No^2 H^2)], increases the speed of merging while its increase slows down the merging. However, the halting elfect of baroclinicity (large Γ^2 or small Rossby radii of deformation) reaches a saturation level where the merging becomes insensitive to larger F2 values. Furthermore, we show that a regime of small Γ^2 exists at which the merged baroclinic vortex is unstable (metastable) and breaks again into two new vortices, Thus, in the baroelinic case the range of Γ^2 detemines the stability of the merged vortex. We analyze these results by local energy and vorticity balances, showing that the horizontal divergence of pressure work term [∇ *(pv)] and the relative-vorticity advection term (v * ∇ (∇ ^2 φ) trigger the merging during the first phase. Due to this horizontal redistribution process, a net kinetic to gravitational energy conversion occurs via buoyancy work in the region external to the cores of the vortices. The second phase of merging is dominated by a direct baroclinic conversion of available gravitational energy into kinetic energy, which in tum triggers a horizontal energy redistribution producing the final fusion of the vortex centers. This energy and vorticity analysis supports the hypothesis that merging is an internal mixing process triggered by a horizontal redistribution of kinetic energy.
    Description: The work has been financed by a grant from the Progetto Finalizzato "Calcolo Parallelo"
    Description: Published
    Description: 1618/1637
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Ocean modeling ; Vortex dynamics ; Baroclinicity ; Eddies ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Future tropical cyclone activity is a topic of great scientific and societal interest. In the absence of a climate theory of tropical cyclogenesis, general circulation models are the primary tool available for investigating the issue. However, the identification of tropical cyclones in model data at moderate resolution is complex, and numerous schemes have been developed for their detection. We here examine the influence of different tracking schemes on detected tropical cyclone activity and responses in the Hurricane Working Group experiments. These are idealized atmospheric general circulation model experiments aimed at determining and distinguishing the effects of increased sea-surface temperature and other increased CO2 effects on tropical cyclone activity. We apply two tracking schemes to these data and also analyze the tracks provided by each modelling group. Our results indicate moderate agreement between the different tracking methods, with some models and experiments showing better agreement across schemes than others. When comparing responses between experiments, we find that much of the disagreement between schemes is due to differences in duration, wind speed, and formation-latitude thresholds. After homogenisation in these thresholds, agreement between different tracking methods is improved. However, much disagreement remains, accountable for by more fundamental differences between the tracking schemes. Our results indicate that sensitivity testing and selection of objective thresholds are the key factors in obtaining meaningful, reproducible results when tracking tropical cyclones in climate model data at these resolutions, but that more fundamental differences between tracking methods can also have a significant impact on the responses in activity detected.
    Description: Published
    Description: 9197–9213
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; tracking schemes ; climate change ; hurricanes ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-17
    Description: Mesoscale transport of energy and matter between the surface and the atmosphere often occurs in form of non-propagating organized structures or thermally-induced circulations. Spatially resolving measurements are required to capture such fluxes and, thus far, airborne measurements are the only means to accomplish this. In contrast, tower-based eddy-covariance measurements are conducted at one point and therefore inherently cannot capture the total atmospheric exchange, which is recognized as a major contributor to energy balance closure problems. As long as there are mean vertical thermal and humidity gradients in the Atmospheric Boundary-Layer, with higher potential temperatures and specific humidities in the surface layer as compared with the outer-layer, such organized structures will lead to a systematic underestimation of turbulent energy fluxes from eddy-towers. Firstly, we address the question of how deep such meso-γ scale motions penetrate into the surface layer. We present indications from Doppler-LiDAR, airborne and tower-based measurements, which show that mesoscale motion can indeed be found quite close to the surface, but the mesoscale effect vanishes when measurements are actually conducted within the roughness sublayer and when shear stress is sufficiently large to break up mesoscale contributions into smaller eddies. This will be illustrated by observations from Germany and Israel. Secondly, we investigate whether the common practice of adjusting the measured eddy tower fluxes for energy balance closure by conserving the Bowen ratio is supported by experimental evidence. Mesoscale and small-scale turbulent fluxes from four different flight campaigns are presented, which were carried out on board of the Canadian Twin Otter (National Research Council of Canada) and the German Polar 5 (Alfred-Wegener Institute) research aircraft over different landscapes in Canada and Alaska.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Physical Oceanography, American Meteorological Society, 44(1), pp. 24-43, ISSN: 0022-3670
    Publication Date: 2017-05-30
    Description: Between ~750 to 635 million years ago, during the Neoproterozoic era, the Earth experienced at least two significant, possibly global, glaciations, termed “Snowball Earth”. While many studies have focused on the dynamics and the role of the atmosphere and ice flow over the ocean in these events, only a few have investigated the related associated ocean circulation, and no study has examined the ocean circulation under a thick (~1 km deep) sea-ice cover, driven by geothermal heat flux. Here, we use a thick sea-ice flow model coupled to an ocean general circulation model to study the ocean circulation under Snowball Earth conditions. We first investigate the ocean circulation under simplified zonal symmetry assumption and find (i) strong equatorial zonal jets, and (ii) a strong meridional overturning cell, limited to an area very close to the equator. We derive an analytic approximation for the latitude-depth ocean dynamics and find that the extent of the meridional overturning circulation cell only depends on the horizontal eddy viscosity and β (the change of the Coriolis parameter with latitude). The analytic approximation closely reproduces the numerical results. Three-dimensional ocean simulations, with reconstructed Neoproterozoic continents configuration, confirm the zonally symmetric dynamics, and show additional boundary currents and strong upwelling and downwelling near the continents.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2405–2416, doi:10.1175/JCLI-D-13-00359.1.
    Description: Several recent studies utilizing global climate models predict that the Pacific Equatorial Undercurrent (EUC) will strengthen over the twenty-first century. Here, historical changes in the tropical Pacific are investigated using the Simple Ocean Data Assimilation (SODA) reanalysis toward understanding the dynamics and mechanisms that may dictate such a change. Although SODA does not assimilate velocity observations, the seasonal-to-interannual variability of the EUC estimated by SODA corresponds well with moored observations over a ~20-yr common period. Long-term trends in SODA indicate that the EUC core velocity has increased by 16% century−1 and as much as 47% century−1 at fixed locations since the mid-1800s. Diagnosis of the zonal momentum budget in the equatorial Pacific reveals two distinct seasonal mechanisms that explain the EUC strengthening. The first is characterized by strengthening of the western Pacific trade winds and hence oceanic zonal pressure gradient during boreal spring. The second entails weakening of eastern Pacific trade winds during boreal summer, which weakens the surface current and reduces EUC deceleration through vertical friction. EUC strengthening has important ecological implications as upwelling affects the thermal and biogeochemical environment. Furthermore, given the potential large-scale influence of EUC strength and depth on the heat budget in the eastern Pacific, the seasonal strengthening of the EUC may help reconcile paradoxical observations of Walker circulation slowdown and zonal SST gradient strengthening. Such a process would represent a new dynamical “thermostat” on CO2-forced warming of the tropical Pacific Ocean, emphasizing the importance of ocean dynamics and seasonality in understanding climate change projections.
    Description: EJDis supported by NSFGrantsOCE-1031971 and OCE-1233282. KBK is supported by NSF Grant OCE-1233282.
    Description: 2014-09-15
    Keywords: Tropics ; Currents ; Ocean dynamics ; Atmosphere-ocean interaction ; Climate variability ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2014): 2015–2025, doi:10.1175/JTECH-D-13-00262.1.
    Description: The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.
    Description: The authors thank the NSF Physical Oceanography program (OCE-1233282) and the WHOI Academic Programs Office for funding.
    Description: 2015-03-01
    Keywords: Pacific Ocean ; Tropics ; Currents ; Ocean dynamics ; Buoy observations ; Sampling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2641–2660, doi:10.1175/JPO-D-12-0239.1.
    Description: To quantify dynamical aspects of internal-tide generation at the Mid-Atlantic Bight shelf break, this study employs an idealized ocean model initialized by climatological summertime stratification and forced by monochromatic barotropic tidal currents at the offshore boundary. The Froude number of the scenario is subunity, and the bathymetric slope offshore of the shelf break is supercritical. A barotropic-to-baroclinic energy conversion rate of 335 W m−1 is found, with 14% of the energy locally dissipated through turbulence and bottom friction and 18% radiated onto the shelf. Consistent with prior studies, nonlinear effects result in additional super- and subharmonic internal waves at the shelf break. The subharmonic waves are subinertial, evanescent, and mostly trapped within a narrow beam of internal waves at the forcing frequency. They likely result from nonresonant triad interaction associated with strong nonlinearity. Strong vertical shear associated with the subharmonic waves tends to enhance local energy dissipation and turbulent momentum exchange (TME). A simulation with reduced tidal forcing shows an expected diminished level of harmonic energy. A quasi-linear simulation verifies the role of momentum advection in controlling the relative phases of internal tides and the efficiency of barotropic-to-baroclinic energy conversion. The local TME is tightly coupled with the internal-wave dynamics: for the chosen configuration, neglecting TME causes the internal-wave energy to be overestimated by 12%, and increasing it to high levels damps the waves on the continental shelf. This work implies a necessity to carefully consider nonlinearity and turbulent processes in the calculation of internal tidal waves generated at the shelf break.
    Description: This research was supported by Office of Naval Research Grant N00014-11-1-0701.
    Description: 2014-06-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9839–9859, doi:10.1175/JCLI-D-12-00647.1.
    Description: Spatial and temporal covariability between the atmospheric transient eddy heat fluxes (i.e., υ′T′ and υ′q′) in the Northern Hemisphere winter (January–March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension (OE) are examined based on an atmospheric reanalyses and ocean observations for 1979–2009. For the climatological winter mean, the northward heat fluxes by the synoptic (2–8 days) transient eddies exhibit canonical storm tracks with their maxima collocated with the GS and KE/OE. The intraseasonal (8 days–3 months) counterpart, while having overall similar amplitude, shows a spatial pattern with more localized maxima near the major orography and blocking regions. Lateral heat flux divergence by transient eddies as the sum of the two frequency bands exhibits very close coupling with the exact locations of the ocean fronts. Linear regression is used to examine the lead–lag relationship between interannual changes in the northward heat fluxes by the transient eddies and the meridional changes in the paths of the GS, KE, and OE, respectively. One to three years prior to the northward shifts of each ocean front, the atmospheric storm tracks shift northward and intensify, which is consistent with wind-driven changes of the ocean. Following the northward shifts of the ocean fronts, the synoptic storm tracks weaken in all three cases. The zonally integrated northward heat transport by the synoptic transient eddies increases by ~5% of its maximum mean value prior to the northward shift of each ocean front and decreases to a similar amplitude afterward.
    Description: Support from the National Aeronautics and Space Administration (NASA) Physical Oceanography Program (NNX09AF35G to TJ and Y-OK) and the Department of Energy (DOE) Climate and Environmental Sciences Division (DE-SC0007052 to Y-OK) is gratefully acknowledged.
    Description: 2014-06-15
    Keywords: Atmosphere-ocean interaction ; Eddies ; Energy transport ; Storm tracks ; Heat budgets/fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9774–9790, doi:10.1175/JCLI-D-12-00862.1.
    Description: The influence of the Atlantic meridional overturning circulation (AMOC) variability on the atmospheric circulation is investigated in a control simulation of the NCAR Community Climate System Model, version 3 (CCSM3), where the AMOC evolves from an oscillatory regime into a red noise regime. In the latter, an AMOC intensification is followed during winter by a positive North Atlantic Oscillation (NAO). The atmospheric response is robust and controlled by AMOC-driven SST anomalies, which shift the heat release to the atmosphere northward near the Gulf Stream/North Atlantic Current. This alters the low-level atmospheric baroclinicity and shifts the maximum eddy growth northward, affecting the storm track and favoring a positive NAO. The AMOC influence is detected in the relation between seasonal upper-ocean heat content or SST anomalies and winter sea level pressure. In the oscillatory regime, no direct AMOC influence is detected in winter. However, an upper-ocean heat content anomaly resembling the AMOC footprint precedes a negative NAO. This opposite NAO polarity seems due to the southward shift of the Gulf Stream during AMOC intensification, displacing the maximum baroclinicity southward near the jet exit. As the mode has somewhat different patterns when using SST, the wintertime impact of the AMOC lacks robustness in this regime. However, none of the signals compares well with the observed influence of North Atlantic SST anomalies on the NAO because SST is dominated in CCSM3 by the meridional shifts of the Gulf Stream/North Atlantic Current that covary with the AMOC. Hence, although there is some potential climate predictability in CCSM3, it is not realistic.
    Description: Support from the NOAA Climate Program Office (Grant Number NA10OAR4310202) and the European Community 7th Framework Programme (FP7 2007-2013) under Grant Agreements GA212643 (THOR) and n.308299 (NACLIM) is gratefully acknowledged.
    Description: 2014-06-15
    Keywords: Atmosphere-ocean interaction ; North Atlantic Oscillation ; Thermohaline circulation ; Decadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2752–2771, doi:10.1175/JPO-D-12-0153.1.
    Description: In situ observations of turbulent momentum flux, or Reynolds stresses, were estimated from a 10-yr acoustic Doppler current profiler (ADCP) record of inner-shelf velocities at the Martha’s Vineyard Coastal Observatory (MVCO) using recently developed analysis techniques that account for wave-induced biases. These observations were used to examine the vertical structure of stress and turbulent mixing in the coastal ocean during tidal-, wave-, and wind-driven circulation by conditionally averaging the dataset by the level of forcing or stratification present. Bottom-intensified stresses were found during tidally driven flow, having estimated eddy viscosities as high as 1 × 10−2 m−2 s−1 during slack water. An assessment of the mean, low-wave, low-wind stress results quantified the magnitude of an unmeasured body force responsible for the mean circulation present in the absence of wind and wave forcing. During weak stratification and isolated wind forcing, downwind stresses matched the observed wind stress near the surface and generally decreased with depth linearly for both along- and across-shelf wind forcing. While consistent with simple models of circulation during across-shelf wind forcing, the linear slope of the stress profile present during along-shelf wind forcing requires the existence of an along-shelf pressure gradient that scales with the wind forcing. At increased levels of stratification, the observed downwind stresses generally weakened and shifted to the across-wind direction during across-shelf and mixed-direction (i.e., onshore and along shelf) wind forcing consistent with Ekman spiral modification, but were more variable during along-shelf wind forcing. No measurable stresses were found due to wave-forced conditions, confirming previous theoretical results.
    Description: The analysis was funded by the National Science Foundation under Grant OCE#1129348.
    Description: 2014-06-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 8476–8494, doi:10.1175/JCLI-D-12-00860.1.
    Description: Characteristics of atmospheric blocking in the Southern Hemisphere (SH) are explored in atmospheric general circulation model (AGCM) simulations with the Community Atmosphere Model, version 3, with a particular focus on the Australia–New Zealand sector. Preferred locations of blocking in SH observations and the associated seasonal cycle are well represented in the AGCM simulations, but the observed magnitude of blocking is underestimated throughout the year, particularly in late winter and spring. This is related to overly zonal flow due to an enhanced meridional pressure gradient in the model, which results in a decreased amplitude of the longwave trough/ridge pattern. A range of AGCM sensitivity experiments explores the effect on SH blocking of tropical heating, midlatitude sea surface temperatures, and land–sea temperature gradients created over the Australian continent during austral winter. The combined effects of tropical heating and extratropical temperature gradients are further explored in a configuration that is favorable for blocking in the Australia–New Zealand sector with warm SST anomalies to the north of Australia, cold to the southwest of Australia, warm to the southeast, and cool Australian land temperatures. The blocking-favorable configuration indicates a significant strengthening of the subtropical jet and a reduction in midlatitude flow, which results from changes in the thermal wind. While these overall changes in mean climate, predominantly forced by the tropical heating, enhance blocking activity, the magnitude of atmospheric blocking compared to observations is still underestimated. The blocking-unfavorable configuration with surface forcing anomalies of opposite sign results in a weakening subtropical jet, enhanced midlatitude flow, and significantly reduced blocking.
    Description: C.C.U. received support from the Australian Research Council through funding awarded to the Centre of Excellence for Climate System Science and the Penzance Endowed Fund at WHOI. P.C.M., M.J.P., and J.S.R. were funded by the CSIRO Climate Adaptation Flagship and the Managing Climate Variability R&D Program.
    Description: 2014-05-01
    Keywords: Australia ; Southern Hemisphere ; Atmosphere-ocean interaction ; Atmospheric circulation ; Blocking ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 427–444, doi:10.1175/JPO-D-13-070.1.
    Description: Between 25 September 2007 and 28 September 2009, a heavily instrumented mooring was deployed in the Labrador Sea, offshore of the location where warm-core, anticyclonic Irminger rings are formed. The 2-year time series offers insight into the vertical and horizontal structure of newly formed Irminger rings and their heat and salt transport into the interior basin. In 2 years, 12 Irminger rings passed by the mooring. Of these, 11 had distinct properties, while 1 anticyclone likely passed the mooring twice. Eddy radii (11–35 km) were estimated using the dynamic height signal of the anticyclones (8–18 cm) together with the observed velocities. The anticyclones show a seasonal cycle in core properties when observed (1.9°C in temperature and 0.07 in salinity at middepth) that has not been described before. The temperature and salinity are highest in fall and lowest in spring. Cold, fresh caps, suggested to be an important source of freshwater, were seen in spring but were almost nonexistent in fall. The heat and freshwater contributions by the Irminger rings show a large spread (from 12 to 108 MJ m−2 and from −0.5 to −4.7 cm, respectively) for two reasons. First, the large range of radii leads to large differences in transported volume. Second, the seasonal cycle leads to changes in heat and salt content per unit volume. This implies that estimates of heat and freshwater transport by eddies should take the distribution of eddy properties into account in order to accurately assess their contribution to the restratification.
    Description: This work was supported by the U.S. National Science Foundation and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Anticyclones ; Boundary currents ; Observational techniques and algorithms ; In situ oceanic observations ; Variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 229–245, doi:10.1175/JPO-D-12-0218.1.
    Description: Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. It is found that water denser than 27.7 kg m−3—as dense as water previously attributed to the adjacent East Greenland Spill Jet—resides near the bottom of the shelf for most of the year with no discernible seasonality. The mean velocity in the central part of the water column is directed along the isobaths, while the deep flow is bottom intensified and veers offshore. Two mechanisms for driving dense spilling events are investigated, one due to offshore forcing and the other associated with wind forcing. Denmark Strait cyclones propagating southward along the continental slope are shown to drive off-shelf flow at their leading edges and are responsible for much of the triggering of individual spilling events. Northerly barrier winds also force spilling. Local winds generate an Ekman downwelling cell. Nonlocal winds also excite spilling, which is hypothesized to be the result of southward-propagating coastally trapped waves, although definitive confirmation is still required. The combined effect of the eddies and barrier winds results in the strongest spilling events, while in the absence of winds a train of eddies causes enhanced spilling.
    Description: The authors wish to thank Paula Fratantoni, Frank Bahr, and Dan Torres for processing the mooring data. The mooring array was capably deployed by the crew of the R/V Arni Fridriksson and recovered by the crew of the R/V Knorr. We thank Hedinn Valdimarsson for his assistance in the field work. Ken Brink provided valuable insights regarding the dynamics of shelf waves. Funding for the study was provided by National Science Foundation Grant OCE-0722694, the Arctic Research Initiative of the Woods Hole Oceanographic Institution. We also wish to thank the Natural Environment Research Council for Ph.D. studentship funding, and the University of East Anglia’s Roberts Fund and Royal Meteorological Society for supporting travel for collaboration.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Meridional overturning circulation ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Eddies ; Extreme events ; Physical Meteorology and Climatology ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8422–8443, doi:10.1175/JCLI-D-14-00141.1.
    Description: This study quantifies, from a systematic set of regional ocean–atmosphere coupled model simulations employing various coupling intervals, the effect of subdaily sea surface temperature (SST) variability on the onset and intensity of Madden–Julian oscillation (MJO) convection in the Indian Ocean. The primary effect of diurnal SST variation (dSST) is to raise time-mean SST and latent heat flux (LH) prior to deep convection. Diurnal SST variation also strengthens the diurnal moistening of the troposphere by collocating the diurnal peak in LH with those of SST. Both effects enhance the convection such that the total precipitation amount scales quasi-linearly with preconvection dSST and time-mean SST. A column-integrated moist static energy (MSE) budget analysis confirms the critical role of diurnal SST variability in the buildup of column MSE and the strength of MJO convection via stronger time-mean LH and diurnal moistening. Two complementary atmosphere-only simulations further elucidate the role of SST conditions in the predictive skill of MJO. The atmospheric model forced with the persistent initial SST, lacking enhanced preconvection warming and moistening, produces a weaker and delayed convection than the diurnally coupled run. The atmospheric model with prescribed daily-mean SST from the coupled run, while eliminating the delayed peak, continues to exhibit weaker convection due to the lack of strong moistening on a diurnal basis. The fact that time-evolving SST with a diurnal cycle strongly influences the onset and intensity of MJO convection is consistent with previous studies that identified an improved representation of diurnal SST as a potential source of MJO predictability.
    Description: The authors gratefully acknowledge support from the Office of Naval Research (N00014-13-1-0133 and N00014-13-1-0139) and National Science Foundation EaSM-3 (OCE-1419235). HS especially thanks the Penzance Endowed Fund for their support of Assistant Scientists at WHOI.
    Description: 2015-05-15
    Keywords: Deep convection ; Diurnal effects ; Madden-Julian oscillation ; Air-sea interaction ; Numerical weather prediction/forecasting ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8185–8204, doi:10.1175/JCLI-D-13-00500.1.
    Description: The East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) constitute two outstanding surface atmospheric circulation patterns affecting the winter sea surface temperature (SST) variability in the western North Pacific. The present analyses show the relationship between the EAWM and NPO and their impact on the SST are nonstationary and regime-dependent with a sudden change around 1988. These surface circulation patterns are tightly linked to the upper-level Ural and Kamchatka blockings, respectively. During the 1973–87 strong winter monsoon epoch, the EAWM and NPO were significantly correlated to each other, but their correlation practically vanishes during the 1988–2002 weak winter monsoon epoch. This nonstationary relationship is related to the pronounced decadal weakening of the Siberian high system over the Eurasian continent after the 1988 regime shift as well as the concomitant positive NPO-like dipole change and its eastward migration in tropospheric circulation over the North Pacific. There is a tight tropical–extratropical teleconnection in the western North Pacific in the strong monsoon epoch, which disappears in the weak monsoon epoch when there is a significant eastward shift of tropical influence and enhanced storm tracks into the eastern North Pacific. A tentative mechanism of the nonstationary relationship between the EAWM and NPO is proposed, stressing the pivotal role played in the above teleconnection by a decadal shift of the East Asian trough resulting from the abrupt decline of the EAWM since the late 1980s.
    Description: G. Pak has been supported from the Brain Korea 21 Project of SNU, for which we are very grateful to K.-R. Kim, and also from the Ministry of Oceans and Fisheries, South Korea (OCCAPA and EAST-I projects). Y.-O. Kwon is supported by the U.S. National Science Foundation Climate and Large-Scale Dynamics program (AGS-1035423) and Department of Energy (DOE) Climate and Environmental Science Division (DESC0007052).
    Description: 2015-05-01
    Keywords: Climate variability ; Interannual variability ; Interdecadal variability ; North Pacific Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8297–8301, doi:10.1175/JCLI-D-14-00399.1.
    Description: There is growing interest in assessing the role of climate change in observed extreme weather events. Recent work in this area has focused on estimating a measure called attributable risk. A statistical formulation of this problem is described and used to construct a confidence interval for attributable risk. The resulting confidence is shown to be surprisingly wide even in the case where the event of interest is unprecedented in the historical record.
    Description: GH acknowledges funding from the Federal Ministry for Education and Research. MA acknowledges partial support from the Giannini Foundation.
    Description: 2015-05-15
    Keywords: Climate change ; Statistics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2938–2950, doi:10.1175/JPO-D-13-0201.1.
    Description: Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a kilometer-thick layer above rough bottom topography collocated with the deep-reaching fronts of the Antarctic Circumpolar Current. Linear theory, corrected for finite-amplitude topography based on idealized, two-dimensional numerical simulations, has been recently used to estimate the global distribution of internal wave generation by oceanic currents and eddies. The global estimate shows that the topographic wave generation is a significant sink of energy for geostrophic flows and a source of energy for turbulent mixing in the deep ocean. However, comparison with recent observations from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean shows that the linear theory predictions and idealized two-dimensional simulations grossly overestimate the observed levels of turbulent energy dissipation. This study presents two- and three-dimensional, realistic topography simulations of internal lee-wave generation from a steady flow interacting with topography with parameters typical of Drake Passage. The results demonstrate that internal wave generation at three-dimensional, finite bottom topography is reduced compared to the two-dimensional case. The reduction is primarily associated with finite-amplitude bottom topography effects that suppress vertical motions and thus reduce the amplitude of the internal waves radiated from topography. The implication of these results for the global lee-wave generation is discussed.
    Description: This research was supported by the National Science Foundation under Award CMG-1024198.
    Description: 2015-05-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Mixing ; Mountain waves ; Topographic effects ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 413–426, doi:10.1175/JPO-D-13-0117.1.
    Description: Salinity and temperature profiles from drifting ice-tethered profilers in the Beaufort gyre region of the Canada Basin are used to characterize and quantify the regional near-inertial internal wave field over one year. Vertical displacements of potential density surfaces from the surface to 750-m depth are tracked from fall 2006 to fall 2007. Because of the time resolution and irregular sampling of the ice-tethered profilers, near-inertial frequency signals are marginally resolved. Complex demodulation is used to determine variations with a time scale of several days in the amplitude and phase of waves at a specified near-inertial frequency. Characteristics and variability of the wave field over the course of the year are investigated quantitatively and related to changes in surface wind forcing and sea ice cover.
    Description: The ITP program and J. Toole’s contributions were supported by the National Science Foundation Office of Polar Programs Arctic Observing Network. We acknowledge the support of the Office of Naval Research (Grant N00014-11-1-0454) for this study. Support for H. Dosser was also provided by the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Inertia-gravity waves ; Internal waves ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 1343–1363, doi:10.1175/JCLI-D-13-00148.1.
    Description: The climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Niña–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay. Seasonal regression of atmospheric fields on methanesulfonic acid (MSA) reveals a reduction in onshore wind velocities in summer at Pine Island Bay, consistent with enhanced katabatic flow, polynya opening, and coastal dimethyl sulfide production. Seasonal regression of atmospheric fields on chloride (Cl−) reveals an intensification in onshore wind velocities in winter, consistent with sea salt transport from offshore source regions. Both the source and transport of marine aerosols to West Antarctica are found to be modulated by similar atmospheric dynamics in response to remote forcing. Finally, the regional ice-core array suggests that there is both a temporally and a spatially varying response to remote tropical forcing.
    Description: This research was supported by an award from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) to ASC, a James E. and Barbara V. Moltz Research Fellowship to SBD, and grants from NSF-OPP (ANT- 0632031 and ANT-0631973), NSF-MRI (EAR- 1126217), and the NASA Cryosphere Program (NNX10AP09G), and a WHOI Andrew W. Mellon Foundation Award for Innovative Research.
    Description: 2014-08-01
    Keywords: Antarctica ; Sea ice ; Teleconnections ; Atmosphere-ocean interaction ; Climate records ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 2465–2477, doi:10.1175/JTECH-D-13-00032.1.
    Description: Seven current meters representing four models on a stiffly buoyed mooring were placed for an 11-month deployment to intercompare their velocity measurements: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) 11s, two Aanderaa SEAGUARDs, and a Nortek Aquadopp. The current meters were placed 6-m apart from each other at about 4000-m depth in an area of Drake Passage expected to have strong currents, nearly independent of depth near the bottom. Two high-current events occurred in bursts of semidiurnal pulses lasting several days, one with peak speeds up to 67 cm s−1 and the other above 35 cm s−1. The current-speed measurements all agreed within 7% of the median value when vector averaged over simultaneous time intervals. The VMCMs, chosen as the reference measurements, were found to measure the median of the mean-current magnitudes. The RCM11 and SEAGUARD current speeds agreed within 2% of the median at higher speeds (35–67 cm s−1), whereas in lower speed ranges (0–35 cm s−1) the vector-averaged speeds for the RCM11 and SEAGUARD were 4%–5% lower and 3%–5% higher than the median, respectively. The shorter-record Aquadopp current speeds were about 6% higher than the VMCMs over the range (0–40 cm s−1) encountered.
    Description: This work was supported by U.S. National Science Foundation Grants ANT-0635437 and ANT-0636493.
    Description: 2014-04-01
    Keywords: Currents ; Acoustic measurements/effects ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1354–1371, doi:10.1175/JPO-D-13-0202.1.
    Description: North Atlantic Subtropical Mode Water, also known as Eighteen Degree Water (EDW), has the potential to store heat anomalies through its seasonal cycle: the water mass is in contact with the atmosphere in winter, isolated from the surface for the rest of the year, and reexposed the following winter. Though there has been recent progress in understanding EDW formation processes, an understanding of the fate of EDW following formation remains nascent. Here, particles are launched within the EDW of an eddy-resolving model, and their fate is tracked as they move away from the formation region. Particles in EDW have an average residence time of ~10 months, they follow the large-scale circulation around the subtropical gyre, and stratification is the dominant criteria governing the exit of particles from EDW. After sinking into the layers beneath EDW, particles are eventually exported to the subpolar gyre. The spreading of particles is consistent with the large-scale potential vorticity field, and there are signs of a possible eddy-driven mean flow in the southern portion of the EDW domain. The authors also show that property anomalies along particle trajectories have an average integral time scale of ~3 months for particles that are in EDW and ~2 months for particles out of EDW. Finally, it is shown that the EDW turnover time for the model in an Eulerian frame (~3 yr) is consistent with the turnover time computed from the Lagrangian particles provided that the effects of exchange between EDW and the surrounding waters are included.
    Description: The authors are thankful for financial support from the U.S. National Science Foundation for S. F. G., M. S. L., Y.-O. K., and J. J. P.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Lagrangian circulation/transport ; Potential vorticity ; Atm/Ocean Structure/ Phenomena ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 945–966, doi:10.1175/JTECH-D-13-00146.1.
    Description: This study investigated the correspondence between the near-surface drifters from a mass drifter deployment near Martha’s Vineyard, Massachusetts, and the surface current observations from a network of three high-resolution, high-frequency radars to understand the effects of the radar temporal and spatial resolution on the resulting Eulerian current velocities and Lagrangian trajectories and their predictability. The radar-based surface currents were found to be unbiased in direction but biased in magnitude with respect to drifter velocities. The radar systematically underestimated velocities by approximately 2 cm s−1 due to the smoothing effects of spatial and temporal averaging. The radar accuracy, quantified by the domain-averaged rms difference between instantaneous radar and drifter velocities, was found to be about 3.8 cm s−1. A Lagrangian comparison between the real and simulated drifters resulted in the separation distances of roughly 1 km over the course of 10 h, or an equivalent separation speed of approximately 2.8 cm s−1. The effects of the temporal and spatial radar resolution were examined by degrading the radar fields to coarser resolutions, revealing the existence of critical scales (1.5–2 km and 3 h) beyond which the ability of the radar to reproduce drifter trajectories decreased more rapidly. Finally, the importance of the different flow components present during the experiment—mean, tidal, locally wind-driven currents, and the residual velocities—was analyzed, finding that, during the study period, a combination of tidal, locally wind-driven, and mean currents were insufficient to reliably reproduce, with minimal degradation, the trajectories of real drifters. Instead, a minimum combination of the tidal and residual currents was required.
    Description: I.R. was supported by the WHOI Coastal Ocean Institute Project 27040148 and by the WHOI Access to the Sea Program 27500036. I.R. and A.K. acknowledge support fromthe NSF project 83264600. A.K. acknowledges support from the Massachusetts Clean Energy Center (MassCEC) via the New England Marine Renewable Energy Center (MREC).
    Description: 2014-10-01
    Keywords: Coastal flows ; Currents ; Lagrangian circulation/transport ; Trajectories ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1854–1872, doi:10.1175/JPO-D-13-0104.1.
    Description: The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
    Description: This research was funded by the Climate Process Team (CPT) on internal wave–driven mixing throughNSF GrantOCE-0968721. GSC acknowledges support from NSF Grants OCE-0825266 (EXITS), OCE-1029483 (SPAM), and OCE-1029722 (MIXET). LDT and CBW acknowledge support from NSF Grant OCE-0927650. SWand ACNG acknowledge support from NERC Grant NE/G001510/1 (SOFine).
    Description: 2015-01-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2593–2616, doi:10.1175/JPO-D-13-0120.1.
    Description: The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
    Description: NSF support through Awards OCE-1233832, OCE-1232962, and OCE-1048926 is gratefully acknowledged.
    Description: 2015-04-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Eddies ; Ocean circulation ; Turbulence ; Physical Meteorology and Climatology ; Isopycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 977–99, doi:10.1175/JCLI-D-13-00067.1.
    Description: Ammassalik in southeast Greenland is known for strong wind events that can reach hurricane intensity and cause severe destruction in the local town. Yet, these winds and their impact on the nearby fjord and shelf region have not been studied in detail. Here, data from two meteorological stations and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) are used to identify and characterize these strong downslope wind events, which are especially pronounced at a major east Greenland fjord, Sermilik Fjord, within Ammassalik. Their local and regional characteristics, their dynamics and their impacts on the regional sea ice cover, and air–sea fluxes are described. Based on a composite of the events it is concluded that wind events last for approximately a day, and seven to eight events occur each winter. Downslope wind events are associated with a deep synoptic-scale cyclone between Iceland and Greenland. During the events, cold dry air is advected down the ice sheet. The downslope flow is accelerated by gravitational acceleration, flow convergence inside the Ammassalik valley, and near the coast by an additional thermal and synoptic-scale pressure gradient acceleration. Wind events are associated with a large buoyancy loss over the Irminger Sea, and it is estimated that they drive one-fifth of the net wintertime loss. Also, the extreme winds drive sea ice out of the fjord and away from the shelf.
    Description: This study was supported by grants of the National Science Foundation (OCE-0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Downslope winds ; Synoptic climatology ; Katabatic winds ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2842–2860, doi:10.1175/JCLI-D-13-00227.1.
    Description: Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.
    Description: This work was sponsored by the National Science Foundation (Grants OCE-0220161, OCE-0825152, and OCE-0827125).
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Mesoscale processes ; Mesoscale systems ; Ocean dynamics ; Eddies ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1563–1581, doi:10.1175/JPO-D-13-0188.1.
    Description: This study examines the dispersal of dense water formed in an idealized coastal polynya on a sloping shelf in the absence of ambient circulation and stratification. Both numerical and laboratory experiments reveal two separate bottom pathways for the dense water: an offshore plume moving downslope into deeper ambient water and a coastal current flowing in the direction of Kelvin wave propagation. Scaling analysis shows that the velocity of the offshore plume is proportional not only to the reduced gravity, bottom slope, and inverse of the Coriolis parameter, but also to the ratio of the dense water depth to total water depth. The dense water coastal current is generated by the along-shelf baroclinic pressure gradient. Its dynamics can be separated into two stages: (i) near the source region, where viscous terms are negligible, its speed is proportional to the reduced gravity wave speed and (ii) in the far field, where bottom drag becomes important and balances the pressure gradient, the velocity is proportional to Hc[g′/(LCd)]1/2 in which Hc is the water depth at the coast, g′ the reduced gravity, Cd the quadratic bottom drag coefficient, and L the along-shelf span of the baroclinic pressure gradient. The velocity scalings are verified using numerical and laboratory sensitivity experiments. The numerical simulations suggest that only 3%–23% of the dense water enters the coastal pathway, and the percentage depends highly on the ratio of the velocities of the offshore and coastal plumes. This makes the velocity ratio potentially useful for observational studies to assess the amount of dense water formed in coastal polynyas.
    Description: WGZ was sponsored by the WHOI Arctic Research Initiative program. CC received support from the National Science Foundation Project OCE-1130008.
    Description: 2014-12-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 3298–3317, doi:JCLI-D-12-00700.1.
    Description: The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar gyre became fresher while the gyre and meridional circulations intensified. This is opposite to the relationship of freshening causing a weakened circulation, most often reproduced by climate models. The authors hypothesize that both these configurations exist but dominate on different time scales: a fresher subpolar gyre when the circulation is more intense, at interannual frequencies (configuration A), and a saltier subpolar gyre when the circulation is more intense, at longer periods (configuration B). Rather than going into the detail of the mechanisms sustaining each configuration, the authors’ objective is to identify which configuration dominates and to test whether this depends on frequency, in preindustrial control runs of five climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). To this end, the authors have developed a novel intercomparison method that enables analysis of freshwater budget and circulation changes in a physical perspective that overcomes model specificities. Lag correlations and a cross-spectral analysis between freshwater content changes and circulation indices validate the authors’ hypothesis, as configuration A is only visible at interannual frequencies while configuration B is mostly visible at decadal and longer periods, suggesting that the driving role of salinity on the circulation depends on frequency. Overall, this analysis underscores the large differences among state-of-the-art climate models in their representations of the North Atlantic freshwater budget.
    Description: JD and RC were funded by NSF through Project 0751896. JD was also funded by IFREMER through project RICCO.
    Description: 2014-11-01
    Keywords: Atmosphere-ocean interaction ; Freshwater ; Climate models ; Model comparison ; Climate variability ; North Atlantic Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2475–2489, doi:10.1175/JPO-D-13-057.1.
    Description: Data from three midlatitude, month-long surveys are examined for evidence of enhanced vertical mixing associated with the transition layer (TL), here defined as the strongly stratified layer that exists between the well mixed layer and the thermocline below. In each survey, microstructure estimates of turbulent dissipation were collected concurrently with fine-structure stratification and shear. Survey-wide averages are formed in a “TL coordinate” zTL, which is referenced around the depth of maximum stratification for each profile. Averaged profiles show characteristic TL structures such as peaks in stratification N2 and shear variance S2, which fall off steeply above zTL = 0 and more gradually below. Turbulent dissipation rates ɛ are 5–10 times larger than those found in the upper thermocline (TC). The gradient Richardson number Ri = N2/S2 becomes unstable (Ri 〈 0.25) within ~10 m of the TL upper boundary, suggesting that shear instability is active in the TL for zTL 〉 0. Ri is stable for zTL ≤ 0. Turbulent dissipation is found to scale exponentially with depth for zTL ≤ 0, but the decay scales are different for the TL and upper TC: ɛ scales well with either N2 or S2. Owing to the strong correlation between S2 and N2, existing TC scalings of the form ɛ ~ |S|p|N|q overpredict variations in ɛ. The scale dependence of shear variance is not found to significantly affect the scalings of ɛ versus N2 and S2 for zTL ≤ 0. However, the onset of unstable Ri at the top of the TL is sensitively dependent to the resolution of the shears.
    Description: This work was funded by NSF Grant OCE-0968787 as part of a Climate Process Team for internal wave-driven mixing.
    Keywords: Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Mixed layer ; Thermocline ; Physical Meteorology and Climatology ; Heat budgets/fluxes ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2569–2587, doi:10.1175/JPO-D-14-0026.1.
    Description: This paper describes the occurrence of diurnal restratification events found in the southeast trade wind regime off northern Chile. This is a region where persistent marine stratus clouds are found and where there is a less than complete understanding of the dynamics that govern the maintenance of the sea surface temperature. A surface mooring deployed in the region provides surface meteorological, air–sea flux, and upper-ocean temperature, salinity, and velocity data. In the presence of steady southeast trade winds and strong evaporation, a warm, salty surface mixed layer is found in the upper ocean. During the year, these trade winds, at times, drop dramatically and surface heating leads to the formation of shallow, warm diurnal mixed layers over one to several days. At the end of such a low wind period, mean sea surface temperature is warmer. Though magnitudes of the individual diurnal warming events are consistent with local forcing, as judged by running a one-dimensional model, the net warming at the end of a low wind event is more difficult to predict. This is found to stem from differences between the observed and predicted near-inertial shear and the depths over which the warmed water is distributed. As a result, the evolution of SST has a dependency on these diurnal restratification events and on near-surface processes that govern the depth over which the heat gained during such events is distributed.
    Description: RAW was supported by the NOAA Climate Program Office. SM and AT were supported by NASA Grant NNX12AD47G,ONR Grant N000140910196, and NSF-OCE 0928138 RAW.
    Description: 2015-03-01
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Boundary layer ; Diurnal effects ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 3596–3618, doi:10.1175/JCLI-D-13-00070.1.
    Description: Estimates of the recent mean and time varying water mass transformation rates associated with North Atlantic surface-forced overturning are presented. The estimates are derived from heat and freshwater surface fluxes and sea surface temperature fields from six atmospheric reanalyses—the Japanese 25-yr Reanalysis (JRA), the NCEP–NCAR reanalysis (NCEP1), the NCEP–U.S. Department of Energy (DOE) reanalysis (NCEP2), the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-I), the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Reanalysis for Research and Applications (MERRA)—together with sea surface salinity fields from two globally gridded datasets (World Ocean Atlas and Met Office EN3 datasets). The resulting 12 estimates of the 1979–2007 mean surface-forced streamfunction all depict a subpolar cell, with maxima north of 45°N, near σ = 27.5 kg m−3, and a subtropical cell between 20° and 40°N, near σ = 26.1 kg m−3. The mean magnitude of the subpolar cell varies between 12 and 18 Sv (1 Sv ≡ 106 m3 s−1), consistent with estimates of the overturning circulation from subsurface observations. Analysis of the thermal and haline components of the surface density fluxes indicates that large differences in the inferred low-latitude circulation are largely a result of the biases in reanalysis net heat flux fields, which range in the global mean from −13 to 19 W m−2. The different estimates of temporal variability in the subpolar cell are well correlated with each other. This suggests that the uncertainty associated with the choice of reanalysis product does not critically limit the ability of the method to infer the variability in the subpolar overturning. In contrast, the different estimates of subtropical variability are poorly correlated with each other, and only a subset of them captures a significant fraction of the variability in independently estimated North Atlantic Subtropical Mode Water volume.
    Description: JPG is funded by UK Natural Environment Research Council New Investigator Grant NE/I001654/1. Y-OK was supported by the U.S. National Science Foundation under Grant OCE-0424492. RJB is supported by a fellowship from the UK National Centre for Earth Observation.
    Description: 2014-11-15
    Keywords: Atmosphere-ocean interaction ; Meridional overturning circulation ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 95 (2014): 357–375, doi:10.1175/BAMS-D-11-00246.1.
    Description: The present paper describes the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS), an international research program focused on the improved understanding and modeling of the southeastern Pacific (SEP) climate system on diurnal to interannual time scales. In the framework of the SEP climate, VOCALS has two fundamental objectives: 1) improved simulations by coupled atmosphere–ocean general circulation models (CGCMs), with an emphasis on reducing systematic errors in the region; and 2) improved estimates of the indirect effects of aerosols on low clouds and climate, with an emphasis on the more precise quantification of those effects. VOCALS major scientific activities are outlined, and selected achievements are highlighted. Activities described include monitoring in the region, a large international field campaign (the VOCALS Regional Experiment), and two model assessments. The program has already produced significant advances in the understanding of major issues in the SEP: the coastal circulation and the diurnal cycle, the ocean heat budget, factors controlling precipitation and formation of pockets of open cells in stratocumulus decks, aerosol impacts on clouds, and estimation of the first aerosol indirect effect. The paper concludes with a brief presentation on VOCALS contributions to community capacity building before a summary of scientific findings and remaining questions.
    Description: 2014-09-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1595–1604, doi:10.1175/JPO-D-13-0140.1.
    Description: Autonomous underwater vehicle (AUV) surveys of temperature, salinity, and velocity in the upper 10 m of the ocean were carried out in low-wind conditions near the North Atlantic surface salinity maximum as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) project. Starting from a well-mixed state, the development, deepening, and decay of a warm salty diurnal surface layer was observed at 〈1-h resolution. The evaporation rate deduced from the freshwater anomaly of the layer corroborates measurements at a nearby flux mooring. Profiles within a few hundred meters of the stationary research vessel showed evidence of mixing, highlighting the effectiveness of AUVs for collecting uncontaminated time series of near-surface thermohaline structure. A two-dimensional horizontal subsurface survey within the diurnal warm layer revealed coherent warm and cool bands, which are interpreted as internal waves on the diurnal thermocline.
    Description: NASA supported this work under Grant NNX11AE82G.
    Description: 2014-12-01
    Keywords: Atm/Ocean Structure/ Phenomena ; Surface layer ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2861–2885, doi:10.1175/JCLI-D-13-00437.1.
    Description: The representation of the El Niño–Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most models realistically simulate the observed intensity and location of maximum sea surface temperature (SST) anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude between the warm and cold events (i.e., El Niños are stronger than La Niñas) and between the two types of El Niños: that is, cold tongue (CT) El Niños are stronger than warm pool (WP) El Niños. However, most models fail to reproduce the asymmetry between the two types of La Niñas, with CT stronger than WP events, which is opposite to observations. Most models capture the observed peak in ENSO amplitude around December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The CMIP5 models generally reproduce the duration of CT El Niños but have biases in the evolution of the other types of events. The evolution of WP El Niños suggests that the decay of this event occurs through heat content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to occur in observations. No consistent changes are seen across the models in the location and magnitude of maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Climate change ; Climate variability ; ENSO ; Climate models ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.
    Description: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Description: Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-11-01
    Keywords: Geographic location/entity ; Arctic ; Sea ice ; Circulation/ Dynamics ; Ekman pumping/transport ; Internal waves ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 149–163, doi:10.1175/JPO-D-13-0136.1.
    Description: Monthly mapped sea level anomalies (MSLAs) of the NW Atlantic in the region immediately downstream of the Gulf Stream (GS) separation point reveal a leading mode in which the path shifts approximately 100 km meridionally about a nominal latitude of 39°N, producing coherent sea level anomaly (SLA) variability from 72° to 50°W. This mode can be captured by use of a simple 16-point index based on SLA data taken along the maximum of the observed variability in the region 33°–46°N and 45°–75°W. The GS shifts between 2010 and 2012 are the largest of the last decade and equal to the largest of the entire record. The second group of EOF modes of variability describes GS meanders, which propagate mainly westward interrupted by brief periods of eastward or stationary meanders. These meanders have wavelengths of approximately 400 km and can be seen in standard EOFs by spatial phase shifting of a standing meander pattern in the SLA data. The spectral properties of these modes indicate strong variability at interannual and longer periods for the first mode and periods of a few to several months for the meanders. While the former is quite similar to a previous use of the altimeter for GS path, the simple index is a useful measure of the large-scale shifts in the GS path that is quickly estimated and updated without changes in previous estimates. The time-scale separation allows a low-pass filtered 16-point index to be reflective of large-scale, coherent shifts in the GS path.
    Description: Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) grant program of Apoyo al Personal Investigador en Formación and NSF Grant OCE-0726720
    Description: 2014-07-01
    Keywords: Atlantic Ocean ; Circulation/ Dynamics ; Boundary currents ; Indices ; Ocean dynamics ; Observational techniques and algorithms ; Altimetry ; Mathematical and statistical techniques ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 319–342, doi:10.1175/JPO-D-13-095.1.
    Description: The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.
    Description: This work was supported by grants to B. Hickey from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA17OP2789 and NA09NOS4780180) and the National Science Foundation (NSF) (OCE0234587 and OCE0942675) as part of the Ecology of Harmful Algal Blooms Pacific Northwest (ECOHAB PNW) and Pacific Northwest Toxin (PNWTOX) projects. I. Shulman was supported by the Naval Research Laboratory.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Models and modeling ; Model evaluation/performance ; Variability ; Intraseasonal variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 86–103, doi:10.1175/JPO-D-13-075.1.
    Description: This study investigates the effects of horizontal and vertical density gradients on the inner-shelf response to cross-shelf wind stress by using an idealized numerical model and observations from a moored array deployed south of Martha’s Vineyard, Massachusetts. In two-dimensional (no along-shelf variation) numerical model runs of an initially stratified shelf, a cross-shelf wind stress drives vertical mixing that results in a nearly well-mixed inner shelf with a cross-shelf density gradient because of the sloping bottom. The cross-shelf density gradient causes an asymmetric response to on- and offshore wind stresses. For density increasing offshore, an offshore wind stress drives a near-surface offshore flow and near-bottom onshore flow that slightly enhances the vertical stratification and the cross-shelf circulation. An onshore wind stress drives the reverse cross-shelf circulation reducing the vertical stratification and the cross-shelf circulation. A horizontal Richardson number is shown to be the nondimensional parameter that controls the dependence of the wind-driven nondimensional cross-shelf transport on the cross-shelf density gradient. Field observations show the same empirical relationship between the horizontal Richardson number and transport fraction as the model predicts. These results show that it is the cross-shelf rather than vertical density gradient that is critical to predicting the inner-shelf cross-shelf transport driven by a cross-shelf wind stress.
    Description: This work was funded by Ocean Sciences Division of the National Science Foundation Grant OCE-0548961 and by the Woods Hole Oceanographic Institution through the Academic Programs Office and the Coastal Ocean Institute. Data central to this study were provided by the Martha’s Vineyard Coastal Observatory, which is funded by WHOI and the Jewett/EDUC/Harrison Foundation.
    Description: 2014-07-01
    Keywords: Circulation/ Dynamics ; Coastal flows ; Circulation/ Dynamics ; Upwelling/downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2498–2523, doi:10.1175/JPO-D-13-0183.1.
    Description: This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.
    Description: This work was supported by the U.S. National Science Foundation.
    Description: 2015-03-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Rossby waves ; Mathematical and statistical techniques ; Inverse methods ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2352–2371, doi:10.1175/JPO-D-13-079.1.
    Description: An idealized eddy-resolving numerical model and an analytic three-layer model are used to develop ideas about what controls the circulation of Atlantic Water in the Arctic Ocean. The numerical model is forced with a surface heat flux, uniform winds, and a source of low-salinity water near the surface around the perimeter of an Arctic basin. Despite this idealized configuration, the model is able to reproduce many general aspects of the Arctic Ocean circulation and hydrography, including exchange through Fram Strait, circulation of Atlantic Water, a halocline, ice cover and transport, surface heat flux, and a Beaufort Gyre. The analytic model depends on a nondimensional number, and provides theoretical estimates of the halocline depth, stratification, freshwater content, and baroclinic shear in the boundary current. An empirical relationship between freshwater content and sea surface height allows for a prediction of the transport of Atlantic Water in the cyclonic boundary current. Parameters typical of the Arctic Ocean produce a cyclonic boundary current of Atlantic Water of O(1 − 2 Sv; where 1 Sv ≡ 106 m3 s−1) and a halocline depth of O(200 m), in reasonable agreement with observations. The theory compares well with a series of numerical model calculations in which mixing and environmental parameters are varied, thus lending credibility to the dynamics of the analytic model. In these models, lateral eddy fluxes from the boundary and vertical diffusion in the interior are important drivers of the halocline and the circulation of Atlantic Water in the Arctic Ocean.
    Description: This study was supported by the National Science Foundation under Grants OCE- 0850416, OCE-0959381, and OCE-1232389.
    Description: 2014-05-01
    Keywords: Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1116–1132, doi:10.1175/JPO-D-13-0194.1.
    Description: Internal solitary waves commonly observed in the coastal ocean are often modeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for internal waves does not support a steady solitary wave solution. Recent studies using a combination of asymptotic theory, numerical simulations, and laboratory experiments have shown that the long time effect of rotation is the destruction of the initial internal solitary wave by the radiation of small-amplitude inertia–gravity waves, and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. However, in the ocean, internal solitary waves are often propagating over variable topography, and this alone can cause quite dramatic deformation and transformation of an internal solitary wave. Hence, the combined effects of background rotation and variable topography are examined. Then the Ostrovsky equation is replaced by a variable coefficient Ostrovsky equation whose coefficients depend explicitly on the spatial coordinate. Some numerical simulations of this equation, together with analogous simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm), for a certain cross section of the South China Sea are presented. These demonstrate that the combined effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced radiation from the leading wave.
    Description: KH was supported by Grants N00014-09-10227 and N00014-11-0701 from the Office of Naval Research.
    Description: 2014-10-01
    Keywords: Circulation/ Dynamics ; Internal waves ; Solitary waves ; Models and modeling ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 1410–1421, doi:10.1175/JTECH-D-13-00230.1.
    Description: Aerial images are used to quantify the concentration of fluorescent Rhodamine water tracing (WT) dye in turbid and optically deep water. Tracer releases near the shoreline of an ocean beach and near a tidal inlet were observed with a two-band multispectral camera and a pushbroom hyperspectral imager, respectively. The aerial observations are compared with near-surface in situ measurements. The ratio of upwelling radiance near the Rhodamine WT excitation and emission peaks varies linearly with the in situ dye concentrations for concentrations 〈20 ppb (r2 = 0.70 and r2 = 0.85–0.88 at the beach and inlet, respectively). The linear relationship allows for relative tracer concentration estimates without in situ calibration. The O(1 m) image pixels resolve complex flow structures on the inner shelf that transport and mix tracer.
    Description: We thank ONR and NSF for funding this work.
    Description: 2014-12-01
    Keywords: Coastal flows ; Mixing ; Transport ; Aircraft observations ; Remote sensing ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2590, doi:10.1175/JPO-D-14-0140.1.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-12-03
    Description: Constraining the pre-opening paleogeography of the Canadian and Alaskan margins of the Canada Basin is a first-order objective in resolving the plate tectonic evolution of the Amerasia Basin of the Arctic Ocean. The most widely accepted model for opening of the Canada Basin involves counterclockwise rotation of Arctic Alaska away from Arctic Canada about a pole of rotation in the Mackenzie Delta region, although numerous other kinematic models have been proposed. The rotation model is tested using detrital zircon U-Pb geochronology of 12 samples from Middle Mississippian to Early-Middle Jurassic strata (Ellesmerian and lower Beaufortian megasequences) obtained from wells and outcrop along Alaska’s North Slope. These northerly-derived strata were deposited in fluvial to nearshore marine environments along the south-facing (present-day) shelf margin of the Arctic Alaska Basin and contain 360–390 Ma, 415–470 Ma, 500–750 Ma, 0.9–2.1 Ga, and 2.4–3.2 Ga zircon populations. Detrital zircon age populations in Ellesmerian and lower Beaufortian strata are remarkably similar to detrital zircon populations from Devonian foreland clastic wedge strata in the Canadian Arctic Islands and northern Yukon Territory. A paleogeographic setting in which Arctic Alaska received sediments recycled from the Devonian foreland clastic wedge and underlying Franklinian Basin strata is most consistent with the model of Embry (1990) in which northern Alaska lay within the foreland fold and thrust belt of the Franklinian mobile belt prior to the opening of the Canada Basin. The sequences that are inferred to have been the long-lived source region for Ellesmerian and lower Beaufortian strata were uplifted by Paleozoic (predominantly Late Devonian) deformation that has been documented along the Canadian and Alaskan margins. Triassic and Jurassic strata deposited along the Arctic Canada, Arctic Alaska, and northern Yukon shelves have detrital zircon ages that are significantly older than the youngest detrital zircon ages (Mesozoic) in coeval strata that were deposited west of Hanna Trough and north of the Sverdrup Basin axis, supporting continuity of these bathymetric features prior to opening of the Canada Basin.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-12-03
    Description: Distributive submarine fans contain channel-lobe elements that compensationally stack to build a radially dispersive map pattern. The middle parts of some submarine fans contain juxtapositions of channel elements and lobe elements due to longitudinal and lateral shifts in their channel-lobe transition zones. This article uses an exceptionally well-exposed three-dimensional outcrop of the Ross Sandstone at Bridges of Ross (Ireland) to document the stratigraphic and plan-view manifestation of lateral juxtapositions of channel elements and lobe elements in submarine fans. Observations made herein compare favorably to those in seafloor studies of Navy Submarine Fan (offshore southern California, USA) by William Normark and others, indicating that these systems can be used as paired outcrop-seafloor analogs for distributive fans in which the channel-lobe transition zones are located in longitudinally variable positions. In addition, data from Bridges of Ross and Navy Submarine Fan are integrated to constrain a geometric model that predicts the fractional length of a fan that contains lateral juxtapositions of channel elements and lobe elements. Lateral juxtapositions of channel elements and lobe elements are important because they enhance vertical and lateral connectivity within subsurface reservoirs.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-12-03
    Description: The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ~0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-12-03
    Description: A recent focus of major international exploration in East Antarctica has been aimed at revealing its bedrock topography and imaging its tectonic architecture and evolution. Here we present the tectonic interpretation of regional-scale lineaments revealed by the Radarsat mosaic of Antarctica on the ice sheet surface in the Vostok–Dome C–Adventure Basin region. These lineaments appear in the radar backscatter textures as alignments of marked tonal variations with lengths of tens to hundreds of kilometers and were identified using an automated methodology. We explore the origin scenarios for the ice sheet surface lineaments by comparing their azimuthal trends and spatial distribution with the main morphotectonic features of the bedrock. Azimuthal analysis reveals that lineaments cluster around two preferential directions interpreted as structural or tectonic domains. These show strong correlations with azimuths of tectonic fabrics in the bedrock. The main lineament domain parallels the morphotectonic features of the study area, namely the Adventure Basin and the Concordia and Aurora Trenches. The second lineament set corresponds to the mean orientation of the Lake Vostok depression. The spatial analyses of the two lineament domains strengthen our findings and interpretations. Comparisons with wind and ice flow directions exclude their influence on the identified lineament pattern. Results reveal the tectonic origin of the lineament domains, and demonstrate the method’s usefulness as a tool for tectonic studies of regions characterized by thick covers. These regions include other areas of the East Antarctic craton such as the Gamburtsev Subglacial Mountains, as well as deserts or surfaces of other planets.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-12-03
    Description: Steep slopes mantled by pyroclastic deposits are favorable areas prone to generate hazardous volcaniclastic flows. In Italy, such a setting is well represented in the Campania Region, where pyroclastic deposits from the explosive activity of the Neapolitan volcanoes (Ischia, Campi Flegrei, and Somma-Vesuvius) cover the Apennine range bordering the Campanian Plain. In order to provide a useful contribution to the mitigation and prevention of these calamitous natural events, this work presents a multidisciplinary approach to improve the understanding of the volcaniclastic flow hazard zonation in an Apennine area of 340 km 2 surrounding the Somma-Vesuvius volcano. The disruption proneness index (DPI) was calculated in order to identify the drainage basins potentially prone to generate volcaniclastic flows. This index is obtained by combining satellite and morphometric data in a geographic information system (GIS) environment. It is calculated for 1100 drainage basins, considering the main parameters influencing the slope stability (slope angle, basin shape factor, curvature, relative relief, aspect, and land cover). The land cover mapping is obtained from Landsat data and airborne high-resolution images, while the morphometric parameters are derived from a digital elevation model (DEM) with a cell size of 10 m. The result is a zonation map that classifies the drainage basins according to different degrees of proneness to generate volcaniclastic flows (low, moderate, high, and very high). The drainage basins falling within high and very high classes are 66%, while 28% fall in the moderate class, and the remaining 6% fall in the low proneness class.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-12-03
    Description: The trachydacite complex of Mammoth Mountain and an array of contemporaneous mafic volcanoes in its periphery together form a discrete late Pleistocene magmatic system that is thermally and compositionally independent of the adjacent subalkaline Long Valley system (California, USA). The Mammoth system first erupted ca. 230 ka, last erupted ca. 8 ka, and remains restless and potentially active. Magmas of the Mammoth system extruded through Mesozoic plutonic rocks of the Sierra Nevada batholith and extensive remnants of its prebatholith wall rocks. All of the many mafic and silicic vents of the Mammoth system are west or southwest of the structural boundary of Long Valley caldera; none is inboard of the caldera’s buried ring-fault zone, and only one Mammoth-related vent is within the zone. Mammoth Mountain has sometimes been called part of the Inyo volcanic chain, an ascription we regard inappropriate and misleading. The scattered vent array of the Mammoth system, 10 x 20 km wide, is unrelated to the range-front fault zone, and its broad nonlinear footprint ignores both Long Valley caldera and the younger Mono-Inyo range-front vent alignment. Moreover, the Mammoth Mountain dome complex (63%–71% SiO 2 ; 8.0%–10.5% alkalies) ended its period of eruptive activity (100–50 ka) long before Holocene inception of Inyo volcanism. Here we describe 25 silicic eruptive units that built Mammoth Mountain and 37 peripheral units, which include 13 basalts, 15 mafic andesites, 6 andesites, and 3 dacites. Chemical data are appended for nearly 900 samples, as are paleomagnetic data for ~150 sites drilled. The 40 Ar/ 39 Ar dates (230–16 ka) are given for most units, and all exposed units are younger than ca. 190 ka. Nearly all are mildly alkaline, in contrast to the voluminous subalkaline rhyolites of the contiguous long-lived Long Valley magma system. Glaciated remnants of Neogene mafic and trachydacitic lavas (9.1–2.6 Ma) are scattered near Mammoth Mountain, but Quaternary equivalents older than ca. 230 ka are absent. The wide area of late Quaternary Mammoth magmatism remained amagmatic during the long interval (2.2–0.3 Ma) of nearby Long Valley rhyolitic eruptions.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-12-03
    Description: Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments within 50–100 cm of the ground surface may have destroyed evidence of other earthquakes. Cores in a small wetland adjacent to our trench site provided stratigraphic evidence (formation of a laterally extensive, prograding wedge of hillslope colluvium) of an earthquake ca. 2 ka, which we interpret to be the same earthquake documented in the trenches. A similar colluvial wedge lower in the wetland section provides possible evidence for a second earthquake dated to ca. 8 ka. Three-dimensional trenching techniques revealed evidence for 2.2 ± 1.1 m of right-lateral offset of a glacial outwash channel margin, and 45–70 cm of north-side-up vertical separation across the fault zone. These offsets indicate a net slip vector of 2.3 ± 1.1 m, plunging 14° west on a 286°-striking, 90°-dipping fault plane. The dominant right-lateral sense of slip is supported by the presence of numerous Riedel R shears preserved in two of our trenches, and probable right-lateral offset of a distinctive bedrock fault zone in a third trench. Holocene north-side-up, right-lateral oblique slip is opposite the south-side-up, left-lateral oblique sense of slip inferred from geologic mapping of Eocene and older rocks along the fault zone. The cause of this slip reversal is unknown but may be related to clockwise rotation of the Darrington–Devils Mountain fault zone into a position more favorable to right-lateral slip in the modern N-S compressional stress field.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-12-03
    Description: Central Oregon (northwestern USA), where northern Basin and Range extension diminishes in magnitude across the High Lava Plains, exhibits widespread extensional faulting and Quaternary volcanism, yet the relations between the processes are complex and chronology is poorly constrained. Here we use cosmogenic 3 He exposure dating of basalt lava flows to quantify the timing of normal faulting and emplacement of a lava field on the margins of pluvial Fort Rock Lake. The northwest-trending Christmas Valley fault system displaces High Lava Plains volcanic rocks, forming an ~3-km-wide graben that transects the eastern Fort Rock Basin. A portion of the western edge of the graben is marked by a normal fault displaying flexural shear folding with a prominent vertical hinge crack, called Crack in the Ground. Lava flows of the Four Craters Lava Field flowed into this crack. Exposure dating of the Four Craters Lava Field, on the eastern flank of the older Green Mountain shield volcano, indicates an emplacement age of 14 ± 1 ka. We dated Green Mountain basalt exposed in the walls of the crack (the fault wall), which also yielded exposure ages of 14 ± 1 ka. The similar ages suggest that substantial crack opening occurred at about the same time the Four Craters lava was emplaced. These data indicate a period of synchronous normal faulting and dike-fed cinder cone activity emanating from a fault-parallel fissure ~2 km northeast of the crack ca. 14 ka, with minimal displacement since.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-12-03
    Description: Cordilleran granitic batholiths (sensu lato) preserve information about time scales and processes of upper crustal magmatic arc construction during Mesozoic subduction and mountain building. The Bald Mountain batholith in northeastern Oregon (USA) is a classic example of a composite, incrementally constructed batholith that formed during terrane amalgamation outboard of the western U.S. Cordillera. Whole-rock geochemistry and zircon trace element, U-Pb, Lu-Hf, and O isotopic data reveal that batholith construction occurred over ~15 Ma, commencing with the syncollisional emplacement of small, low-Sr/Y (〈40) norite-granite plutons from 157 to 155 Ma. The next phase of magmatism was postcollisional and dominated by high-Sr/Y (〉40) tonalite-granodiorite magmatism that produced the main mass of the batholith, including the granodiorite of Anthony Lake (147 Ma) and the tonalite of Bald Mountain (145–141 Ma). Zircons from the norite-granite suite display a narrow range in initial Hf of 7.2–7.7 and elevated 18 O (Zrn) ranging from 8.2 to 10.0 (excluding one outlier). Zircons from the later granodiorite-tonalite suite show a similar range of initial Hf values (6.3–8.9) and 18 O (7.1–10.0), indicating a similar history of interaction with evolved crustal material. Modeling of whole-rock and zircon geochemistry indicates that both the low- and high-Sr/Y magmas composing the main phase of the batholith were generated by dehydration–partial melting of mafic arc crust (e.g., amphibolite), leaving behind a plagioclase-poor restite, which was garnet granulite in the case of the high-Sr/Y magmas. Final magma compositions in both suites were affected by assimilation of supracrustal material either at depth or during ascent. We suggest that high-Sr/Y magmas in the Bald Mountain batholith were generated by partial melting of thickened arc crust ~10 m.y. after arc-arc collision began at 159–154 Ma. Heat to drive lower crustal melting was conveyed by an increase in mantle power input as a result of renewed subduction-related magmatism. Mixing and homogenization in the lower crust involving mantle-derived basalts and crustally derived partial melts can account for the geochemical variation we observe in tonalites and granodiorites in the Bald Mountain batholith.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-12-03
    Description: Dissected caldera structures expose thick intracaldera tuff and, uncommonly, cogenetic shallow plutons, while remnants of correlative outflow tuffs deposited on the pre-eruption ground surface record elements of ancient landscapes. The Middle Fork caldera encompasses a 10 km x 20 km area of rhyolite welded tuff and granite porphyry in east-central Alaska, ~100 km west of the Yukon border. Intracaldera tuff is at least 850 m thick. The K-feldspar megacrystic granite porphyry is exposed over much of a 7 km x 12 km area having 650 m of relief within the western part of the caldera fill. Sensitive high-resolution ion microprobe with reverse geometry (SHRIMP-RG) analyses of zircon from intracaldera tuff, granite porphyry, and outflow tuff yield U-Pb ages of 70.0 ± 1.2, 69.7 ± 1.2, and 71.1 ± 0.5 Ma (95% confidence), respectively. An aeromagnetic survey indicates that the tuff is reversely magnetized, and, therefore, that the caldera-forming eruption occurred in the C31r geomagnetic polarity chron. The tuff and porphyry have arc geochemical signatures and a limited range in SiO 2 of 69 to 72 wt%. Although their phenocrysts differ in size and abundance, similar quartz + K-feldspar + plagioclase + biotite mineralogy, whole-rock geochemistry, and analytically indistinguishable ages indicate that the tuff and porphyry were comagmatic. Resorption of phenocrysts in tuff and porphyry suggests that these magmas formed by thermal rejuvenation of near-solidus or solidified crystal mush. A rare magmatic enclave (54% SiO 2 , arc geochemical signature) in the porphyry may be similar to parental magma and provides evidence of mafic magma and thermal input. The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ~50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from 〈1 km 2 to ~100 km 2 . Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2.7 Ma lowering of base level of the Yukon River associated with advance of the Cordilleran ice sheet.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-12-03
    Description: Detrital zircon provenance analysis is used to resolve the age of sandstone injectites together with source sandstones that form fault-bounded, tabular bodies within Mesoproterozoic crystalline rocks of the Colorado Front Range. Named Tava sandstone (informal), the unit is a product of liquefaction and remobilization of mature quartz sediment within source bodies having volumes ≥1 x 10 6 m 3 into dikes up to 6 m in width. To surmount the indeterminate age of emplacement, we obtained new U-Pb detrital zircon age data for two source sandstones, three dikes and one sill, for comparison to four Paleozoic arenites. Tava age distributions feature a dominant 1.33–0.97 Ga broad age group and narrow ca. 1.11, 1.44, and 1.70 Ga groups, with several smaller age groups 〉1.5 Ga. The Tava detrital zircon results are dissimilar to Paleozoic sandstones but closely resemble published detrital zircon reference data for Grenville orogen–derived siliciclastic units of the western United States. The similarity in age distributions is borne out by statistical comparisons among Tava sandstone, Paleozoic samples, and Neoproterozoic strata that reveal a high probability of correlation of Tava sandstone to ca. 800–680 Ma strata deposited during intracontinental extension. We conclude that Tava sandstone is Neoproterozoic in age and provides a new avenue to investigation of Rodinia’s terrestrial paleoenvironment.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-12-03
    Description: We present new multiscale structural, mineral chemical, and U-Pb isotope dilution–thermal ionization mass spectrometry (ID-TIMS) data in order to unravel part of the tectono-metamorphic evolution of the Shuswap complex in the southern Canadian Cordillera. We reconstructed the pressure-temperature-deformation-time ( P - T - d - t ) history of the Joss Mountain domain within the Shuswap complex. The west-dipping Greenbush shear zone separates the Joss Mountain domain from the structurally lower Thor-Odin culmination to the east, the southern culmination of the Monashee complex, and one of the structurally deepest parts of the Shuswap complex. At Joss Mountain, the protolith of an orthogneiss crystallized at ca. 360 Ma which is consistent with Late Devonian arc magmatism along the western paleomargin of North America. Joss Mountain metasedimentary rocks and orthogneiss were transposed at ~21–29 km depth over a period of at least 20 m.y., and possibly more than 38 m.y., during Late Cretaceous to Paleocene mature stages of Cordilleran continental collision. This mature collision took place while slow detachment of the subducted oceanic lithosphere occurred and thermal conditions were approaching those of a crust undergoing postorogenic thermal relaxation. Transposition at Joss Mountain ended earlier and exhumation started earlier than in the Monashee complex. Exhumation occurred under conditions of near-isothermal decompression and geothermal gradients consistent with lithospheric thinning. Earlier and slower exhumation of the Joss Mountain domain than of the adjacent northwestern Thor-Odin culmination may have resulted from normal movement along the Greenbush shear zone contributing to the exhumation of the Shuswap complex.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-12-03
    Description: Physical and numerical simulations of the development of mountain topography predict that asymmetric distributions of precipitation over a mountain range induce a migration of its drainage divide toward the driest flank in order to equilibrate erosion rates across the divide. Such migration is often inferred from existing asymmetries, but direct evidence for the migration is often lacking. New low-temperature apatite cooling ages from a transect across the northern North Cascades range (Washington, NW USA) and from two elevation profiles in the Skagit River valley record faster denudation on the western, wetter side of the range and lower denudation rates on the lee side of the range. This difference has already been documented further south along another transect across the range; however, in the south, the shift from young cooling ages to older ages occurs across the modern drainage divide. Here, further north, the shift occurs along a range-transverse valley within the Skagit Gorge. It has been proposed that the upper Skagit drainage was once a part of the leeward side of the range but started to drain toward the western side of the range across the Skagit Gorge in Quaternary time. Age-elevation profiles along the former drainage and in the Skagit Gorge restrict the onset of Skagit Gorge incision to the last 2 m.y., in agreement with 4 He/ 3 He data for the gorge floor. Breaching of the range drainage resulted in its displacement 40 km further east into the dry side of the range. In the 2000-m-deep, V-shaped Skagit Gorge, river stream power is still high, suggesting that incision of the gorge is still ongoing. Several other similar events have occurred along the range during the Pleistocene, supporting the proposed hypothesis that the repeated southward incursions of the Cordilleran ice sheet during this period triggered divide breaching and drainage reorganization by overflow of ice-dammed lakes at the front of the growing ice sheet. Since these events systematically rerouted streams toward the wet side of the range and resulted in leeward migration of the divide, we propose that in fact the Cordilleran ice sheet advance essentially catalyzed the adjustment of the mountain chain topography to the current orographic precipitation pattern.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-01-24
    Description: Calcite-filled extension veins and shear fractures are preserved in numerous travertine deposits along the western margin of the Albuquerque Basin of the Rio Grande rift. Calcite veins are banded and show geometries suggesting incremental cracking and calcite precipitation. U-series and 234 U model ages from calcite infillings indicate that vein formation was active in the Quaternary, from ca. 2 Ma to ca. 250 ka. Vein orientations are systematic within each deposit and record a dominant extension direction that was horizontal and varied from E-W to NW-SE, consistent with both the regional finite extensional strain in the rift and with the global positioning system (GPS)–constrained deformation field. Three sites contain three orthogonal vein sets that crosscut one another nonsystematically, suggesting alternating times of: (1) regional E-W horizontal extension (dominant), (2) alternating N-S and E-W vertical veins that suggest vertical s 1 and s 2 » s 3 , and (3) horizontal veins that are interpreted to reflect times of highest pore fluid pressures and subequal principal stresses. One site contains conjugate normal faults that also record the dominant E-W extensional tectonic stress. Quaternary extensional strain rates calculated from vein opening for three locations range from 3.2 ± 1.4 x 10 –16 s –1 to 3.2 x 10 -15 ± 2.7 x 10 –16 s –1 , which are up to ~40 times higher than the long-term (Oligocene–Holocene) finite strain rates calculated for different basins of the Rio Grande rift (8.5 x 10 –17 to 4.5 x 10 –16 s –1 ), and up to ~100 times higher than modern strain rates measured by GPS data (3.9 x 10 -17 ± 6.3 x 10 –18 to 4.4 x 10 -17 ± 6.3 x 10 –18 s –1 ). These high Quaternary rates are comparable to modern strain rates measured in the Basin and Range Province and East African Rift. Thus, this paper documents persistent E-W regional extension through the Quaternary in the Rio Grande rift that bridges geologic, paleoseismic, and GPS rates. Anomalously high strain rates in the Quaternary were facilitated by ascent of travertine-depositing CO 2 -rich waters along rift-bounding normal faults, leading to locally very high stain accumulations. These sites also provide examples of natural leakage of deeply sourced CO 2 interacting with regional tectonism, and they emphasize that rift maturation is a highly dynamic process, both spatially and temporally.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-01-24
    Description: Ten years of teleseismic earthquakes recorded by broadband seismic instruments from the Anza network–USArray stations around the San Jacinto fault were used to create P receiver function images of the lithospheric structure beneath this major strike-slip fault. Analyses of back-azimuthal variation and location of the conversion points near the fault suggest an ~8 km vertical offset of the Moho directly beneath the San Jacinto fault. This implies that the fault extends through the entire crust and into the mantle lithosphere, supporting the idea that the strain in the lower crust is localized within a narrow zone. The Moho offset and surface trace of the San Jacinto fault zone are coincident with a compositional boundary in the Peninsular Ranges batholith previously identified in potential field geophysical data and Sr isotope analyses. The position of the offset with respect to this relict geologic feature, which predates the pluton emplacement that formed the batholith, may be a controlling factor in strain location and plate-boundary fault initiation.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-01-24
    Description: The closure of ancient oceans created a dynamic setting suitable for craton formation via the thickening of continental material over a mantle downwelling. This process subjected the thickening lithosphere to extensive deformation, forming internal structure that can be preserved over the lifetime of the craton. Recent seismic imaging of cratonic lithosphere has led to observations of anomalous features colloquially known as midlithospheric discontinuities. These discontinuities are attributed to a range of sources, including the lithosphere-asthenosphere boundary, melt accumulation, and phase transitions. However, the internal structure imaged within these cratons might be reflective of their formation. In particular, the orientation and nature of the variable depths of the midlithospheric discontinuities suggest a more complicated origin such as that which could be introduced during the formation and thickening phase of cratonic lithosphere. Here, we present geodynamic models demonstrating the internal structures produced during the formation of cratonic lithosphere as well as new seismological observations of midlithospheric discontinuities in the West African craton, together with reassessment of midlithospheric discontinuities observed in the North American, South African, Fennoscandia, and Australian cratons. We suggest that the midlithospheric discontinuities observed in these cratons could be remnants of deformation structures produced during the formation of the cratons after ancient oceans closed.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-01-24
    Description: The timing of widespread continental emergence is generally considered to have had a dramatic effect on the hydrological cycle, atmospheric conditions, and climate. New secondary ion mass spectrometry (SIMS) oxygen and laser-ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) Lu-Hf isotopic results from dated zircon grains in the granitic Neoarchean Rum Jungle Complex provide a minimum time constraint on the emergence of continental crust above sea level for the North Australian craton. A 2535 ± 7 Ma monzogranite is characterized by magmatic zircon with slightly elevated 18 O (6.0–7.5 relative to Vienna standard mean ocean water [VSMOW]), consistent with some contribution to the magma from reworked supracrustal material. A supracrustal contribution to magma genesis is supported by the presence of metasedimentary rock enclaves, a large population of inherited zircon grains, and subchondritic zircon Hf ( Hf = –6.6 to –4.1). A separate, distinct crustal source to the same magma is indicated by inherited zircon grains that are dominated by low 18 O values (2.5–4.8, n = 9 of 15) across a range of ages (3536–2598 Ma; Hf = –18.2 to +0.4). The low 18 O grains may be the product of one of two processes: (1) grain-scale diffusion of oxygen in zircon by exchange with a low 18 O magma or (2) several episodes of magmatic reworking of a Mesoarchean or older low 18 O source. Both scenarios require shallow crustal magmatism in emergent crust, to allow interaction with rocks altered by hydrothermal meteoric water in order to generate the low 18 O zircon. In the first scenario, assimilation of these altered rocks during Neoarchean magmatism generated low 18 O magma with which residual detrital zircons were able to exchange oxygen, while preserving their U-Pb systematics. In the second scenario, wholesale melting of the altered rocks occurred in several distinct events through the Mesoarchean, generating low 18 O magma from which zircon crystallized. Ultimately, in either scenario, the low 18 O zircons were entrained as inherited grains in a Neoarchean granite. The data suggest operation of a modern hydrological cycle by the Neoarchean and add to evidence for the increased emergence of continents by this time.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-01-24
    Description: To illustrate the structural evolution of the Black Sea Basin in the context of Neotethyan subduction and subsequent continental collisions, we present the first lithosphere-scale, ~250-km-long, balanced and restored cross section across its southern continental margin, the Central Pontides. Cross-section construction and restoration are based on field, seismic-reflection, geophysical, and apatite fission-track data. The structure of the onshore Pontides belt is predominantly controlled by inverted normal faults, whereas the offshore areas are devoid of large structural inversion. The restored section indicates that Cretaceous crustal thinning occurred synchronously with (probably buoyancy-driven) exhumation of a forearc high-pressure blueschist wedge likely during Neotethyan slab retreat. Apatite fission-track data show that structural inversion of the forearc zone, which formed the Central Pontides fold-and-thrust belt, started at ca. 55 Ma. This Eocene structural inversion followed upon collision of the Kirsehir continental block and the arrest of Neotethyan oceanic subduction below the Central Pontides. Compared to the Central Pontides belt, which underwent significant shortening (~28 km, i.e., ~33%), the relatively colder and stronger Black Sea lithosphere prevented the northern offshore areas from undergoing inversion. We propose that the location of Cenozoic contractional deformation is related to the absence of lithospheric mantle below the southern Pontides (forearc) zone as a consequence of the Cretaceous high-pressure wedge exhumation.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    Publication Date: 2014-05-03
    Description: A new perspective on paleoenvironments of Ediacaran fossils of the upper Conception Group (Newfoundland) comes from geochemical and sedimentological study of volcanic tuffs and sedimentary rocks. Tuffs in the Conception Group have major- and trace-element compositions and U-Pb ages comparable with those of source volcanics on the nearby Burin and Bonavista Peninsulas and the islands of St. Pierre and Miquelon. Loss of silica and alkalies in some ashes indicates weathering on land, not marine diagenesis. Volcanic crystal and lapilli tuffs fail to show grading and have lapilli and highly vesicular scoria scattered in a fine-grained matrix, and so they were deposited on land, not in water. These as well as block-and-ash flows, volcanic spindle bombs, and degassing features are evidence of eruptions from nearby subaerial volcanic edifices. The fossiliferous Conception Group accumulated within a forearc basin, formed on continental crust, inboard of the Holyrood horst, and uplifted as part of an ancient subduction complex or accreted terrane. Like analogous forearc basins in Oregon-Washington, southern Chile, and Japan, the Conception Group includes not only marine bay turbidites, but also a variety of intertidal and terrestrial tsunamites, seismites, tempestites, and paleosols. Traditional marine turbidite models explain deposition of the Mall Bay, lower Drook, and lower Briscal Formations of the Conception Group, but the Gaskiers, upper Drook, upper Briscal, and Mistaken Point Formations were deposited in coastal plains and intertidal zones. Paleoenvironments of vendobiont fossils preserved in life position in Newfoundland were terrestrial to marginal marine, not deep sea.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-05-03
    Description: Detrital zircon laser ablation–inductively coupled plasma–mass spectrometry U-Pb age data from the Lower Ordovician Armorican Quartzite (deformed passive margin strata of Gondwanan affinity) of the Iberian Massif are presented herein. The S -shaped coupled Iberian oroclines defined within these zones palinspastically restore to a 2300 km linear Variscan orogen with a paleomagnetically constrained Late Carboniferous north-south trend. Detrital zircons are used to assess paleogeography and interpreted geometry of the Iberian portion of the Gondwana passive margin. A common signature is identified by (1) Neoproterozoic (ca. 500–850 Ma), (2) Stenian–Tonian (ca. 0.9–1.1 Ga), and lesser (3) Paleoproterozoic and (4) Archean populations (ca. 1.8–2.15 and 2.5–2.7 Ga, respectively). Minor site-to-site variation in relative proportion of widely ranging age groups suggests near-uniform distribution of a highly varied detrital input. Provenance analysis reveals strong correlations with Cambro-Ordovician clastic rocks from northeast African realms. Similarity with underlying sequences suggests a common paleogeography from the Ediacaran through early Paleozoic and persistence of a provenance distinction within the autochthonous Iberian Massif. Consistent northward paleoflow within widespread northeast African lower Paleozoic sedimentary cover suggests long-distance sedimentary transport across a North African peneplain from outlying basement terranes. We propose that the 2300-km-long Cantabrian–Central Iberian portion of the early Paleozoic Gondwana margin stretched east-west along the northern limits of the then low-lying Saharan Metacraton and Arabian-Nubian Shield. Accepting paleomagnetic constraints, a 90° counterclockwise rotation is required to reorient the Iberian portion to a pre-oroclinal (Late Carboniferous) north-south trend. The mechanisms for accommodating such a rotation are unclear.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-05-03
    Description: Terrestrial settings preceding the end-Permian crisis are reported to trend toward increasingly dry and arid conditions, resulting in landscape change and a shift in fluvial architectures and regimes. Much of the latest Permian (Changhsingian) stratigraphic record in the Karoo Basin, South Africa, consists of paleosols, which record the physical conditions across time and space. Preboundary sequences at Wapadsberg Pass, Eastern Cape Province, provide insight into the climate regime that influenced paleosol formation at that time. A high-resolution sedimentological and geochemical study of two, stacked aggradational paleosols, in conjunction with stable isotope geochemical characterization of paleosol carbonate-cemented concretions over a 90 m section at this locality, demonstrates that these landscapes were predominantly wetland terrains without a demonstrable trend in increasing drying up to the Permian-Triassic boundary, as defined by vertebrates in the area. Two paleosols examined 70 m below the Permian-Triassic boundary are identified as Protosols, and the former soil-air interface of each is marked by an autochthonous forest-floor litter in which canopy leaves of Glossopteris and groundcover plants of Trizygia are preserved. Molecular weathering ratios (e.g., base loss, clayeyness, chemical index of alteration minus potassium [CIA–K], etc.) determined from these horizons are indicative of immature soil development under water-saturated conditions. Assuming that paleosol-matrix concentrations of trace elements are indicative of Permian soil-solution chemistries, high concentrations of Ni, Cu, Ba, and Cr may have been growth-stress factors that may account for the small glossopterid leaf size in the megafloras, in contrast to current models that implicate stress in response to climate change. Stable isotope 18 O and 13 C values are presented for micritic and microspar (〈20 μm) calcite cements from carbonate nodules collected at 15 horizons through a 90 m stratigraphic interval up to, and including, the Permian-Triassic boundary. These isotopic ratios exhibit dissimilar trends. No clear trend exists in 18 O (Peedee belemnite [PDB] values range from –14.7 to –21.8). In contrast, a trend exists in 13 C values, where carbonate cements almost certainly precipitated under well-drained conditions in an interval that is 60 m below the Permian-Triassic boundary (–5.3), while 13 C values as low as –16.9, indicative of water-logged conditions, begin 90 m below and continue up to the Permian-Triassic boundary. Hence, no evidence is found for a preboundary trend toward increasing aridity at this locality. The first estimates of the latest Permian atmospheric pCO 2 from paleosols, based on coexisting calcite and organic matter 13 C values from paleosols that developed under well-drained conditions, provide a range of values from 900 to 1900, and 500 to 1300 ppmV, respectively, which are significantly lower than the latest Early Permian, when terrestrial biome replacement is documented to have occurred.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-05-03
    Description: Redox-sensitive detrital grains such as pyrite and uraninite in sedimentary successions provide one of the most conspicuous geological clues to a different composition of the Archean and early Paleoproterozoic atmosphere. Today, these minerals are rapidly chemically weathered within short transport distances. Prior to the rise of oxygen, low O 2 concentrations allowed their survival in siliciclastic deposits with grain erosion tied only to physical transport processes. After the rise of oxygen, redox-sensitive detrital grains effectively vanish from the sedimentary record. To get a better understanding of the timing of this transition, we examined sandstones recorded in a scientific drill core from the South African 2.415 Ga Koegas Subgroup, a mixed siliciclastic and iron formation–bearing unit deposited on the western deltaic margin of the Kaapvaal craton in early Paleoproterozoic time. We observed detrital pyrite and uraninite grains throughout all investigated sandstone beds in the section, indicating the rise of oxygen is younger than 2.415 Ga. To better understand how observations of detrital pyrite and uraninite in sedimentary rocks can quantitatively constrain Earth surface redox conditions, we constructed a model of grain erosion from chemical weathering and physical abrasion to place an upper limit on ancient environmental O 2 concentrations. Even conservative model calculations for deltaic depositional systems with sufficient transport distances (approximately hundreds of kilometers) show that redox-sensitive detrital grains are remarkably sensitive to environmental O 2 concentrations, and they constrain the Archean and early Paleoproterozoic atmosphere to have 〈3.2 x 10 –5 atm of molecular O 2 . These levels are lower than previously hypothesized for redox-sensitive detrital grains, but they are consistent with estimates made from other redox proxy data, including the anomalous fractionation of sulfur isotopes. The binary loss of detrital pyrite and uraninite from the sedimentary record coincident with the rise of oxygen indicates that atmospheric O 2 concentrations rose substantially at this time and were never again sufficiently low (〈0.01 atm) to enable survival and preservation of these grains in short transport systems.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-05-03
    Description: Dozens of mafic blueschist blocks are found in the Franciscan mélange, which is well exposed along 6+ km of nearly continuous sea cliffs and wave-cut benches near San Simeon, California. Thirty-four blocks were studied to discover all the varieties in this classic locality of mélange. The Na-amphibole and lawsonite ± epidote–rich schists were dynamically deformed, folded, and veined (including lawsonite and aragonite) before becoming incorporated into the shale-matrix mélange. Tectonically driven flowage of the matrix caused all lithologic components to pinch and swell, forming boudins that separated to become isolated ellipsoidal blocks. This megascopically ductile style of deformation was accommodated in mafic blocks by cataclasis concurrent with alteration to chlorite and pumpellyite. Shearing and alteration were most intense along block margins and within block faults. Petrographic analyses, aided by backscattered electron imaging, microprobe mineral analyses, bulk chemistry, and thermodynamic calculations, reveal these blueschists traveled along a counterclockwise pressure-temperature ( P - T ) path. Na-amphiboles have actinolitic cores that indicate an early greenschist-facies stage. Peak T and P conditions for the epidote-bearing blueschists were ~350 °C at pressures of 5–9 kbar. Many blocks have textural evidence of lawsonite replacing epidote and Na-amphibole with Fe 3+ -rich rims. This indicates epidote replacement occurred as the rocks cooled below ~250 °C at ~5 kbar. It is evident that the phase of dynamic epidote-blueschist-facies recrystallization that nearly obliterated evidence of an earlier greenschist-facies stage was followed by retrograde recrystallization under much less dynamic to nearly static, but still high- P , conditions. Cooling and much of the observed veining must have happened after these rocks were deeply underplated along the bottom of the ophiolitic leading edge of the North American plate. Pieces of the underplated blueschist terrane were probably detached from the hanging wall as slabs that boudinaged and reboudinaged while entrained in shale-matrix mélange upwelling from depths of at least 15 km.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-01-28
    Description: Abyssal peridotites and mid-oceanic ridge basalts (MORBs) represent complementary residue-liquid products of melting and melt migration in the oceanic mantle. Because MORBs are mixtures of melts from different mantle depths, their isotopic signature does not directly describe the isotopic composition of the mantle source, but instead describes the local average composition of different parts of the mantle. In contrast, abyssal peridotites, the residues of fractional melting and melt-rock reaction, should shed more light on the distribution of isotopic heterogeneities. We analyzed Pb isotopic compositions in sulfide grains from the Southwest Indian Ridge and the Gakkel Ridge (Arctic Ocean) using the high-resolution Cameca 1280 ion microprobe. Sulfide Pb isotope ratios show very large variations, with 16 grains from 1 sample covering ~25% of the entire range observed in the oceanic mantle. Pb isotopes in sulfides preserve a record of mantle compositions not seen in whole-rock MORBs from the same area. Sulfides from the Atlantis II Fracture Zone (Southwest Indian Ridge) confirm the presence of ancient refractory material scatter in the oceanic upper mantle. Gakkel Ridge sulfides define a high degree of isotopic variability, suggesting that oceanic mantle, not subcontinental lithospheric mantle, is the main source of such heterogeneity. Our results confirm that the source of MORBs, as represented by abyssal peridotites, is very heterogeneous and that other mantle end-member components are intimately mixed in. In-situ sulfide analysis is a powerful tool to detect the isotopic diversity of the MORB mantle source.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-01-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2014-01-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-02-27
    Description: The rivers of western Oregon have diverse forms and characteristics, with channel substrates ranging from continuous alluvial gravel to bare bedrock. Analysis of several measurable morphologic attributes of 24 valley reaches on 17 rivers provides a basis for comparing nonalluvial and alluvial channels. Key differences are that alluvial reaches have greater bar area, greater migration rates, and show systematic correlation among variables relating grain size to bed-material transport capacity. We relate these differences between channel types to bed-material transport rates as derived from a coupled regional analysis of empirical sediment yield measurements and physical experiments of clast attrition during transport. This sediment supply analysis shows that overall bed-material transport rates for western Oregon are chiefly controlled by (1) lithology and basin slope, which are the key factors for bed-material supply into the stream network, and (2) lithologic control of bed-material attrition from in-transport abrasion and disintegration. This bed-material comminution strongly affects bed-material transport in the study area, reducing transport rates by 50%–90% along the length of the larger rivers in the study area. A comparison of the bed-material transport estimates with the morphologic analyses shows that alluvial gravel-bed channels have systematic and bounding relations between bed-material transport rate and attributes such as bar area and local transport capacity. By contrast, few such relations are evident for nonalluvial rivers with bedrock or mixed-bed substrates, which are apparently more influenced by local controls on channel geometry and sediment supply. At the scale of western Oregon, the physiographic and lithologic controls on the balance between bed-material supply and transport capacity exert far-reaching influence on the distribution of alluvial and nonalluvial channels and their consequently distinctive morphologies and behaviors—differences germane for understanding river response to tectonics and environmental perturbations, as well as for implementing effective restoration and monitoring strategies.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-02-27
    Description: The Barberton Granite-Greenstone Belt (BGGB) of South Africa is an exceptionally well preserved Meso-Paleoarchean metamorphic supracrustal belt, one of only a few in the world. Studies of metamorphism in the BGGB have considerable potential to advance our understanding of tectonic processes in the Archean crust. Two current hypotheses persist to explain the origin of amphibolite-facies metamorphism in the southern BGGB. The first interprets these rocks to be the consequence of accretionary tectonics, while the second proposes a "dome-and-keel" vertical tectonic process driven by sinking of greenstone layers and the doming of the underlying granitoid crust. In this study, metamorphic pressure-temperature ( P-T ) analysis has been combined with garnet Lu-Hf and monazite U-Pb geochronology to directly date the amphibolite-facies metamorphism within the Stolzburg terrane of the BGGB. A garnet-biotite-chlorite–bearing sample yields a Lu-Hf garnet age of 3233 ± 17 Ma and a garnet-staurolite-kyanite–bearing sample produces a U-Pb monazite age of 3191 ± 9 Ma, whereas an andalusite-kyanite–bearing sample produces a U-Pb monazite age of 3436 ± 18 Ma. Phase diagrams and garnet compositional modeling produce a clockwise P-T evolution, with rocks reaching peak P-T conditions of 8.5 kbar and 640 °C for the ca. 3200 Ma event and minimum peak P-T conditions of ~4.5 kbar and 550 °C for the ca. 3435 Ma event. The duration of metamorphism for the ca. 3200 Ma event is estimated to be ~50–20 m.y. based on differences in age between U-Pb and Lu-Hf systems and durations needed to fit models of diffusionally modified garnet chemical zoning. Similarly shaped P-T paths over the Stolzburg terrane indicate that the metamorphism occurred in response to crustal thickening due to an accretionary tectonic process. Thus, the Stolzburg terrane constitutes an orogenic core, exhumed along the Komati fault.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-02-27
    Description: Banded iron formations (BIFs) are central to interpretations about the composition of the Precambrian ocean, atmosphere, and biosphere. Hematite is an important component of many BIFs, and its presence has been used as evidence for the former presence of hydrous ferric oxyhydroxides that formed from the oxidation of dissolved ferrous iron in seawater. However, textural evidence for the origin of hematite is equivocal. New petrographic results show that hematite in unmineralized BIF from the ca. 2.5 Ga Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia, including morphologies previously interpreted to represent ferric oxyhydroxide precipitates, formed via fluid-mediated replacement of iron-silicates and iron-carbonates along sedimentary layering. The lateral transition from stilpnomelane- and siderite-rich laminae to hematite-dominated laminae is interpreted to reflect progressive stages of in situ alteration of reduced mineral assemblages by oxygen-bearing fluids rather than changes in the chemistry of the water column during deposition. Although morphologies previously ascribed to "primary" hematite are present, they are related to mineral replacement reactions, raising doubts about the petrographic criteria used to identify original hematite. Hematite replacement in unmineralized BIF postdated deposition and possibly metamorphism, and predated modern weathering. From a regional perspective, it appears to be a distal signature of the processes that were responsible for iron-ore mineralization, which involved the deep infiltration of oxygen-bearing meteoric fluids. The mineral replacement reactions recorded in the Dales Gorge Member are unlikely to be unique and probably occurred in BIFs elsewhere at some point in their history. The observation that at least some of the hematite in unmineralized BIF did not form directly from ferric oxyhydroxides implies that hematite is not a reliable proxy for the composition of the precursor sediment or the redox chemistry of the ocean. The oxidation of ferrous-rich phases after deposition suggests that the precursor sediments of BIF originally had a more reduced bulk composition. This raises the possibility that, in an ocean with negligible molecular oxygen and elevated Si and Fe, the growth of iron-rich clay minerals was favored over hematite.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    Publication Date: 2014-02-27
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-02-27
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-02-28
    Description: An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-02-28
    Description: Current models for the assembly of Proterozoic Australia suggest that the North Australian craton (NAC), West Australian craton (WAC), and South Australian craton (SAC) had amalgamated by at least 1.6 Ga, with possible rafting and reattachment of the SAC by ca. 1.3 Ga. In this scenario, the younger (1.2–1.1 Ga) Grenvillian-aged Musgrave Province of central Australia, which separates all three cratons, has been considered postcollisional to intracratonic. However, new and recent U-Pb and Lu-Hf isotopic analyses of zircons from the Musgrave Province indicate continuous active-margin magmatic activity between 1.7 and 1.2 Ga. A distinctive inverted U-shaped pattern of the Hf array for this 500 m.y. period is evidence of part of a Proterozoic Wilson cycle, with subduction initiation at 1.7 Ga and eventual ocean closure by 1.2 Ga. We estimate that the cycle began at 2.2 Ga. Overlap of the Musgrave zircon age spectra and Hf isotopic array with the along-strike Albany-Fraser orogen (AFO) suggests derivation of the Musgrave Province from the WAC, not the NAC or SAC as previously thought. The Musgrave Province link to the WAC confirms that Australia did not assemble until at least early Grenvillian time (ca. 1.2 Ga). Moreover, because the SAC was part of the much larger Mawson continent, the 1.2 Ga collision was of transcontinental magnitude similar to that of the type-Grenville orogen in Laurentia. This favors an Australia-Mexico (AUSMEX) configuration at 1.2 Ga, rather than the southwestern United States and East Antarctica (SWEAT) or Proterozoic Australia–western United States (AUSWUS) models. The Musgrave-AFO marks a major, underestimated phase of Rodinian assembly.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-02-28
    Description: During periods of volcanic activity, hydrothermal fluid chemistry changes drastically, becoming unusually dilute due to enhanced degrees of phase separation. Despite decreases in nearly all other metals, these dilute fluids maintain surprisingly high dissolved Fe concentrations. This is demonstrated by a 17 yr time series from 9°50'N on the East Pacific Rise, where two eruption cycles are separated by a decade of steady-state chemical and physical conditions. We report experimental data confirming a sharp increase in Fe solubility in low-salinity and low-density vapors that constitutes a reversal in behavior exhibited in near-critical vapors characteristic of the steady-state condition. In accordance with field observations during the eruptions, a fundamental divergence between the otherwise similar behaviors of Fe and Mn also results. This helps explain how Fe fluxes are maintained during magmatic events, which may have important implications for the succession and temporal evolution of vent-related fauna. Calibrated geochemical proxies for subseafloor reaction conditions (pressure-temperature) now allow us to elucidate hydrothermal processes from steady state through eruptive and recovery stages at the 9°50'N system.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2014-02-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-02-28
    Description: The giant nitrate deposits of the hyperarid Atacama Desert (Chile) are one of the most extraordinary, yet enigmatic, mineral occurrences on Earth. These deposits are complex assemblages of highly soluble nitrates, chlorides, sulfates, perchlorates, iodates, and chromates, and their preservation is the result of prevalent hyperarid climate conditions in the Atacama Desert since the late Miocene, with average rainfall rates of 〈10 mm/yr in the past ~3 m.y. Although several hypotheses have been proposed since the mid-1800s, the formation of these extensive deposits still remains highly controversial despite the fact that recent studies have argued toward an atmospheric source for the nitrate, sulfate, and perchlorate components. In this report, we focus on the often overlooked and poorly studied iodine and chromium components of Atacama’s nitrates. We present the first cosmogenic iodine ( 129 I) and stable chromium ( 53/52 Cr) isotope data of nitrates showing that groundwater has played an unforeseen role in the formation of these massive deposits. The isotopic signature of I in the nitrates ( 129 I/I ~150–600 x 10 –15 ) share similarities with deep sedimentary (marine) pore waters and shales, deviating significantly from atmospheric iodine ( 129 I/I ~1500 x 10 –15 ), while the positive and highly fractionated 53/52 Cr SRM979 values (+0.7 to +3) are indicative of intense Cr redox cycling due to groundwater transport. Our evidence points toward a multi-source genetic model for the Atacama Desert nitrate deposits, where these extensive accumulations were the result of long-lived, near-surface mineral precipitation driven by groundwater (i.e., chromates, iodates) coupled with dry atmospheric deposition (i.e., nitrates, perchlorates) and sea spray inputs (i.e., sulfates, chlorides), triggered by increasing aridity and tectonic uplift.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2014-02-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-02-28
    Description: Sediment transport in mountain channels controls the evolution of mountainous terrain in response to climate and tectonics and presents major hazards to life and infrastructure worldwide. Despite its importance, we lack data on when sediment moves in steep channels and whether movement occurs by rivers or debris flows. We address this knowledge gap using laboratory experiments on initial sediment motion that cross the river to debris-flow sediment-transport transition. Results show that initial sediment motion by river processes requires heightened dimensionless bed shear stress (or critical Shields stress) with increasing channel-bed slope by as much as fivefold the conventional criterion established for lowland rivers. Beyond a threshold slope of ~22°, the channel bed fails, initiating a debris flow prior to any fluvial transport, and the critical Shields stress within the debris-flow regime decreases with increasing channel-bed slope. Combining theories for both fluvial and debris-flow incipient transport results in a new phase space for sediment stability, with implications for predicting fluvial sediment transport rates, mitigating debris-flow hazards, and modeling channel form and landscape evolution.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-02-28
    Description: Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2014-02-28
    Description: Transient and episodic slow slip accommodates a great deal of tectonic strain and may be mechanically linked with locked regions of seismically hazardous faults. Best documented in subduction zones and associated with nonvolcanic tremor, most proposed mechanisms for slow slip revolve around the transition between stable and unstable frictional sliding. The dilemma is that slow slip is generated at a wide range of crustal depths, including at pressure-temperature conditions where frictional deformation mechanisms give way to predominantly viscous ones. We present a model for how fracture and viscous flow within mid-crustal shear zones can produce episodic creep transients. Our model for such transients stems from geological examples of shear zones that formed at temperatures and pressures of 〉500 °C and 〉0.6 GPa during early orogenesis, following Late Cretaceous subduction of a backarc ocean basin. Within these shear zones, relatively strong lenses of metabasalt localized fluid-filled fractures that were subsequently deformed by viscous flow in surrounding quartzofeldspathic gneiss. The spatial and temporal characteristics of the modeled creep events are similar to those of slow-slip events observed in modern subduction zones. We therefore suggest that some episodic tremor and slip can originate through combined fracture and viscous flow across shear zones comprising mixtures of strong and weak materials.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-02-28
    Description: During the first stage of the Late Miocene Messinian salinity crisis (5.97–5.60 Ma), deposition of sulfates (the Primary Lower Gypsum) occurred in shallow silled peripheral subbasins of the Mediterranean undergoing restricted water exchange with the Atlantic Ocean. Fluid inclusions in Messinian selenite crystals from the Piedmont Basin (northwest Italy) have surprisingly low salinities (average of 1.6 wt% NaCl equivalent), suggesting that parent waters were depleted in Na + and Cl – compared to modern seawater. Modern gypsum from a Mediterranean salt work, in contrast, contains fluid inclusions with elevated salinities that match the normal evaporation trend expected for seawater. The salinity data indicate that the Messinian sulfate deposits from the Piedmont Basin formed from hybrid parent waters: seawater mixed with Ca 2+ and SO 4 2– enriched freshwaters that dissolved coeval marginal marine gypsum. Such mixed parent waters and complex recycling processes should be taken into account when explaining the genesis of other Messinian gypsum deposits across the Mediterranean Basin.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-02-28
    Description: We show that a belt of clockwise vertical-axis block rotation associated with dextral-oblique rifting in the Basin and Range province in Mexico hosted the localization of plate-boundary strain that led to formation of the Gulf of California ocean basin. Paleomagnetism of Miocene ignimbrites distributed widely across the rift reveals the magnitude, distribution, and timing of rotation. Using new high-precision paleomagnetic vectors (α 95 1°) from tectonically stable exposures of these ignimbrites in Baja California, we determine clockwise rotations up to 76° for intrarift sites. Low reference-site error permits isolation of intrarift block rotation during proto-Gulf time, prior to rift localization ca. 6 Ma. We estimate that 48% (locally 0%–75%) of the net rotation occurred between 12.5 Ma and 6.4 Ma. Sites of large (〉20°) block rotation define an ~100-km-wide belt, associated with strike-slip faulting, herein named the Gulf of California shear zone, which was embedded within the wide rift Basin and Range province and kinematically linked to the San Andreas fault. After a protracted history of diffuse extension and transtension, rift localization was accomplished by focusing of Pacific–North America dextral shear into the Gulf of California, which increased strain rates and connected nascent pull-apart basins along the western margin of the province. Oblique rifting thus helped to localize and increase the rate of continental break up and strongly controlled the three-dimensional architecture of the resultant passive margins.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-02-28
    Description: It is widely proposed that the oceanic mantle is hydrated by outer rise normal faults, and carries large amounts of water to the deep mantle. However, the extent of oceanic mantle hydration is poorly constrained by existing observations, and is a major source of uncertainty in determining the total water delivered to the mantle. Full waveform modeling of dispersed P-wave arrivals from events deep within the Wadati-Benioff zone of northern Japan shows that hydrated fault zone structures are present at intermediate depths. Analysis of the P-wave coda associated with events 5–35 km below the top of the slab gives an overall indication of the bulk hydration of the subducting oceanic mantle, and can be explained by a 40-km-thick layer that is 17%–31% serpentinized. This suggests that the top of the oceanic mantle is 2.0–3.5 wt% hydrated, subducting 170–318 Tg/m.y. of water per meter of arc beneath northern Japan. This order-of-magnitude increase in the estimated H 2 O flux in this arc implies that over the age of the Earth, the equivalent of as many as 3.5 present-day oceans of water could be subducted along the Kuril and Izu-Bonin arcs alone. These results offer the first direct measure of the lower lithosphere hydration at intermediate depths, and suggest that regassing of the mantle is more vigorous than has previously been proposed.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2014-02-28
    Description: Rifting between large continental plates results in either continental breakup and the formation of conjugate passive margins, or rift abandonment and a set of aborted rift basins. The nonlinear interaction between key parameters such as plate boundary configuration, lithospheric architecture, and extension geometry determines the dynamics of rift evolution and ultimately selects between successful or failed rifts. In an attempt to evaluate and quantify the contribution of the rift geometry, we analyze the Early Cretaceous extension between Africa and South America that was preceded by ~20–30 m.y. of extensive intracontinental rifting prior to the final separation between the two plates. While the South Atlantic and Equatorial Atlantic conjugate passive margins continued into seafloor-spreading mode, forming the South Atlantic Ocean basin, Cretaceous African intraplate rifts eventually failed soon after South America broke away from Africa. We investigate the spatiotemporal dynamics of rifting in these domains through a joint plate kinematic and three-dimensional forward numerical modeling approach, addressing (1) the dynamic competition of Atlantic and African extensional systems, (2) two-stage kinematics of the South Atlantic Rift System, and (3) the acceleration of the South America plate prior to final breakup. Oblique rifts are mechanically favored because they require both less strain and less force in order to reach the plastic yield limit. This implies that rift obliquity can act as selector between successful ocean basin formation and failed rifts, explaining the success of the highly oblique Equatorial Atlantic rift and ultimately inhibiting the formation of a Saharan Atlantic Ocean. We suggest that thinning of the last continental connection between Africa and South America produced a severe strength-velocity feedback responsible for the observed increase in South America plate velocity.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-02-28
    Description: Continental rifts are commonly flanked by zones of high elevation, but the cause of uplift remains controversial. Proposed uplift mechanisms include active and induced asthenospheric upwelling, and isostatically driven lithospheric flexure. Discrimination between these hypotheses requires close constraint of the timing of rift flank uplift and crustal extension. Here, we focus on the well-preserved Neogene Gulf of California rift. The western rift margin is characterized by a prominent east-facing kilometer-scale escarpment, which bounds a west-tilted, topographically asymmetric rift flank. We exploit west-draining canyons incised into the rift flank to constrain the timing of uplift to between ca. 5.6 and 3.2 Ma using 40 Ar/ 39 Ar dating of lavas, which show cut-and-fill relationships to the canyons. Rift flank uplift closely followed the onset of slip on the principal fault of the Loreto rift segment at ca. 8–6 Ma, the age of which we obtain from apatite (U-Th)/He and fission-track thermochronologic analysis of rift escarpment exhumation. Uplift was therefore coeval with lithospheric rupture and the onset of oceanic spreading between ca. 6 and 3 Ma, but post-dates a proposed asthenospheric upwelling event by ~8–10 Ma. The timing of uplift is inconsistent with either active or induced upwelling as uplift mechanisms, and we conclude that rift flank uplift was driven by the flexural response to lithospheric unloading.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-02-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-02-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-02-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-02-27
    Description: The geomorphology, geometry, and sedimentary infill of buried gorges and V-shaped valleys observed at the base of major river valleys in the formerly glaciated southeastern Canadian Shield region have been revealed from excavation and drilling data acquired during the construction of hydro-electric dams and seismic data collected on lakes and offshore. Compilation of these previously published and unpublished data provided an exceptional opportunity to examine the morphology and spatial distribution of buried bedrock gorges and the mechanical processes responsible for their erosion. In some valleys, detailed observations of deep gorges have been allowed by their exhumation over large areas. Archive photographs show deep and large potholes, natural pillars, furrows, flutes, and scallops on the well-polished bedrock walls of the gorges. They also reveal that gorges and valleys have a sharp-ending V shape and very narrow base and are superimposed by a U-shaped valley, forming a buried valley-within-valley topography. The narrow and deep cross-profile of these gorges, their well-polished slopes, and the type of bedforms observed within them are typical features of fluvial bedrock channels. Drilling operations at many sites have also provided data on bedrock topography of these gorges within valleys and on the nature of their sedimentary infill. The different lines of evidence presented in this paper indicate that gorges and V-shaped valleys of the region were not eroded by the Laurentide Ice Sheet during Quaternary glaciations but are relics of a preserved preglacial fluvial system eroded during a lower base level. This paleofluvial system is interpreted to be linked to fluvially cut channels observed on the seafloor of the Estuary and Gulf of St. Lawrence.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...