ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (245)
  • Earth Resources and Remote Sensing  (154)
  • Astronomy  (91)
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • 2010-2014  (245)
  • 1995-1999
  • 1990-1994
  • 1950-1954
  • 2014  (245)
Collection
Years
  • 2010-2014  (245)
  • 1995-1999
  • 1990-1994
  • 1950-1954
Year
  • 1
    Publication Date: 2018-06-11
    Description: The Kalahari Basin in southern Africa - one of the largest basins in Africa, along with the Congo and Chad basins - has attracted attention since David Livingstone traveled through the area in the 1840s. It is a semiarid desert with a large freshwater swampland known as the Okavango Swamp (150 km radius). This prominent megafan (a fan with radii 〉100 km), with its fingers of dark green forests projecting into the dun colors of the dunes of the Kalahari semi-desert, has been well photographed by astronauts over the years. The study area in the northern Kalahari basin is centered on the Okavango megafan of northwest Botswana, whose swampland has become well known as an African wildlife preserve of importance to biology and tourism alike. The Okavango River is unusual because it has deposited not one but two megafans along its course: the Okavango megafan and the Cubango megafan. The Okavango megafan is one of only three well-known megafans in Africa. Megafans on Earth were once thought to be rare, but recent research has documented 68 in Africa alone. Eleven megafans, plus three more candidates, have been documented in the area immediately surrounding the Okavango feature. These 11 megafans occupy the flattest and smoothest terrains adjacent to the neighboring upland and stand out as the darkest areas in the roughness map of the area. Megafan terrains occupy at least 200,000 sq km of the study area. The roughness map shown is based on an algorithm used first on Mars to quantify topographic roughness. Research of Earth's flattest terrains is just beginning with the aid of such maps, and it appears that these terrains are analogous to the flattest regions of Mars. Implications: 1. The variability in depositional style in each subbasin may apply Africa-wide: rift megafan length is dominated by rift width, whereas Owambo subbasin megafans are probably controlled by upland basin size; Zambezi subbasin megafans appear more like foreland basin types, with the position of the trunk river controlling size. 2. These perspectives were successfully applied to identify the largest megafan in the group (Cubango), a fan that was sufficiently overprinted by dunes and dry lakelets not to be detectable remotely. Such undertsanding can probably be applied on Mars, where Earth experience suggests megafans ought to exist. 3. Sweep angles of rivers on megafans drastically change the hydrology in some subbasins: when the Cubango and Kunene rivers were oriented to the Etosha Pan, it was probably a permanent water body. Now that the rivers are oriented away from the basin, 93 percent of the discharge area from the pan's northerly (main) source area is gone. 4. Biotic contact between major river systems was probably controlled by megafans situated on divides: various fish species that originated in the Congo basin are now found in the Upper Zambezi R., and vice versa, apparently because of river switching behavior on the Cassai megafan that has mediated migrations both to the south and the north.
    Keywords: Earth Resources and Remote Sensing
    Type: ARES Biennial Report 2012 Final; 103-105; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-03
    Description: Recent warming has stimulated the productivity of boreal and Arctic vegetation by reducing temperature limitations. However, several studies have hypothesized that warming may have also increased moisture limitations because of intensified summer drought severity. Establishing the connections between warming and drought stress has been difficult because soil moisture observations are scarce. Here we use recently developed gridded datasets of moisture variability to investigate the links between warming and changes in available soil moisture and summer vegetation photosynthetic activity at northern latitudes (greater than 45N) based on the Normalized Difference Vegetation Index (NDVI) since 1982. Moisture and temperature exert a significant influence on the inter-annual variability of summer NDVI over about 29% (mean r(sup 2) = 0.29 +/ 0.16) and 43% (mean r(sup 2 = 0.25 +/- 0.12) of the northern vegetated land, respectively. Rapid summer warming since the late 1980s (approximately 0.7deg C) has increased evapotranspiration demand and consequently summer drought severity, but contrary to earlier suggestions it has not changed the dominant climate controls of NDVI over time. Furthermore, changes in snow dynamics (accumulation and melting) appear to be more important than increased evaporative demand in controlling changes in summer soil moisture availability and NDVI in moisture-sensitive regions of the boreal forest. In boreal North America, forest NDVI declines are more consistent with reduced snowpack rather than with temperature-induced increases in evaporative demand as suggested in earlier studies. Moreover, summer NDVI variability over about 28% of the northern vegetated land is not significantly associated with moisture or temperature variability, yet most of this land shows increasing NDVI trends. These results suggest that changes in snow accumulation and melt, together with other possibly non-climatic factors are likely to play a significant role in modulating regional ecosystem responses to the projected warming and increase in evapotranspiration demand during the coming decades.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22136 , Remote Sensing (ISSN 2072-4292); 6; 2; 1390-1431
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-06
    Description: Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one-third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that much of the increase in the reported trend occurred due to the previously undocumented effect of a change in the way the satellite sea ice observations are processed for the widely used Bootstrap algorithm data set, rather than a physical increase in the rate of ice advance. Specifically, we find that a change in the intercalibration across a 1991 sensor transition when the data set was reprocessed in 2007 caused a substantial change in the long-term trend. Although our analysis does not definitively identify whether this change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current data set or the version that was used prior to the mid- 2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the data set. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that much of this expansion may be a spurious artifact of an error in the processing of the satellite observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17109 , GSFC-E-DAA-TN21960 , Cryosphere (ISSN 1994-0416) (e-ISSN 1994-0424); 8; 4; 1289–1296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-06
    Description: Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4 percent per year. Cropland and prescribed/other fire types combined were responsible for 77 percent of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9 percent per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22544 , Journal of Geophysical Research: Biogeosciences (ISSN 2169-8953) (e-ISSN 2169-8961); 119 ; 4 ; 645-660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-06
    Description: Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7 percent and 89.5 percent of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement, and livelihood outcomes; (v) intensive commodity crops may fail to spare land when inducing displacement. We conclude that understanding pathways of commodity crop expansion is essential to improve land use governance.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22540 , Environmental Research Letters (ISSN 1748-9326); 9; 7; 074012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-27
    Description: The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.
    Keywords: Astronomy
    Type: JSC-CN-31078 , AMOS Surveillance Technologies Conference 2014; 10-13 Sept. 2014; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper's view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper's theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper's view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B. Meinel, H. L. Johnson, and F. J. Low, each with their own grad students and associates. Work began on IR spectroscopy and a rectified lunar atlas. Kuiper and Johnson started the search for future observatory sites in N. America and Hawaii.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18014 , Annual Meeting:Division for Planetary Science; Nov 09, 2014 - Nov 14, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.
    Keywords: Astronomy
    Type: M14-3644 , High Energy Astrophysics Division (HEAD) Divisional Meeting; Aug 17, 2014 - Aug 21, 2014; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/Xray binaries. I will describe our techniques and highlight results for selected pulsars.
    Keywords: Astronomy
    Type: M14-3642 , Be X-Ray Binary Systems (BeXRB) 2014 Worksbop; Jul 07, 2014 - Jul 11, 2014; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The parent of the Geminids, 3200 Phaethon, is a unique body in that it is classified as an asteroid, however is responsible for one of the most prolific meteor showers of the year and has shown comet-like behavior in its past (Jewitt and Li 2010). The Geminid meteor shower is also anomalous as its rates have been increasing since it was first detected. Understanding the composition and properties of meteoroids that belong to this meteor shower is an important area of study and of interest to both theoreticians and experimentalists. Using the light curve and decelerations of ten double-station Geminids as seen in the Meteoroid Environment Office's widefield meteor cameras, densities were able to be approximated using a model of meteoroid ablation by Campbell-Brown et al (2013) which employs thermal disruption to model the release of grains during ablation. Bulk densities of Geminids give unique insight into the composition of Phaethon that would only be derived by going to the asteroid itself. The bulk densities of these ten Geminids were found to be between 2.6 and 3.0 g/cm(3), supporting results from Babadzhanov (2009) and Borovicka et al (2010) which prove Phaethon has a much lower porosity than most other meteor shower parents. NASA's Meteoroid Environment Office established these two wide-field meteor cameras to observe meteors in the milligram-mass-range. Each camera consists of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902U2 Ultimate CCD video camera, producing a 21.7x15.5 degree field-of-view. This configuration sees meteors down to a magnitude of +6. Data from these cameras are currently being used to calculate daily automated meteor fluxes. On the first night of operation, December 13-14, 2012, 18 double-station and 53 unique single-station Geminids were detected. The Geminid flux results from this system will be presented as well as ZHR's over the peak of the Geminids. The average flux density over the night was 0.058, 0.052, and 0.062 meteors/km(2)/hour down to a limiting magnitude of +6.5, for the double-station results and each single-station's results. This equates to ZHR's of 113, 102, and 122 respectively. Included in the flux algorithm is a process to find the collecting area per height and a method to find the limiting meteor magnitude per 10 minute time period.
    Keywords: Astronomy
    Type: M14-3403 , Asteroids Comets Meteors (ACM) 2014; Jun 30, 2014 - Jul 04, 2014; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: Seven x-ray mirror modules are being fabricated at the Marshall Space Flight Center (MSFC) for the Astronomical Roentgen Telescope (ART) instrument to be launched on board of the Spektrum Roentgen Gamma (SRG) Mission. As they are completed, the modules are tested and calibrated at the MSFC's 104-m Stray Flight Facility. The results of these calibration measurements and comparisons with theoretical models will be presented.
    Keywords: Astronomy
    Type: M13-3146 , SPIE Astronomical Telescopes + Instrumentation 2014; Jun 22, 2014 - Jun 27, 2014; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: A reasonable initial condition on Earth after the Moonforming impact is that it begins as a hot global magma ocean1,2. We therefore begin our study with the mantle as a liquid ocean with a surface temperature on the order of 3000- 4000 K at a time some 100-1000 years after the impact, by which point we can hope that early transients have settled down. A 2nd initial condition is a substantial atmosphere, 100-1000 bars of H2O and CO2, supplemented by smaller amounts of CO, H2, N2, various sulfur-containing gases, and a suite of geochemical volatiles evaporated from the magma. Third, we start the Moon with its current mass at the relevant Roche limit. The 4th initial condition is the angular momentum of the Earth-Moon system. Canonical models hold this constant, whilst some recent models begin with considerably more angular momentum than is present today. Here we present a ruthlessly simplified model of Earth's cooling magmasphere based on a full-featured atmosphere and including tidal heating by the newborn Moon. Thermal blanketing by H2O-CO2 atmospheres slows cooling of a magma ocean. Geochemical volatiles - chiefly S, Na, and Cl - raise the opacity of the magma ocean's atmosphere and slow cooling still more. We assume a uniform mantle with a single internal (potential) temperature and a global viscosity. The important "freezing point" is the sharp rheological transition between a fluid carrying suspended crystals and a solid matrix through which fluids percolate. Most tidal heating takes place at this "freezing point" in a gel that is both pliable and viscous. Parameterized convection links the cooling rate to the temperature and heat generation inside the Earth. Tidal heating is a major effect. Tidal dissipation in the magma ocean is described by viscosity. The Moon is entwined with Earth by the negative feedback between thermal blanketing and tidal heating that comes from the temperature-dependent viscosity of the magma ocean. Because of this feedback, the rate that the Moon's orbit evolves is limited by the modest radiative cooling rate of Earth's atmosphere, which in effect tethers the Moon to the Earth. Consequently the Moon's orbit evolves orders of magnitude more slowly than in conventional models. Slow orbital evolution promotes capture by orbital resonances that may have been important in the Earth-Moon system
    Keywords: Astronomy
    Type: ARC-E-DAA-TN14502 , NCTS#18576-14 Goldschmidt Conference; Jun 08, 2014 - Jun 13, 2014; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: Methane and ammonia both first appear at lower effective temperatures in brown dwarf atmospheres than equilibrium chemistry models would suggest. This has traditionally been understood as a consequence of vertical mixing timescales being shorter than chemical equilibration timescales in brown dwarf photospheres. Indeed the eddy diffusivity, a variable accounting for the vigor of vertical mixing, has become a standard part of the description of brown dwarf atmosphere models, along with Teff and log g. While some models have suggested that methane is less favored at lower gravity, the almost complete absence of methane in the atmospheres of directly imaged planets, such as those orbiting HR 8799, even at effective temperatures where methane is readily apparent in brown dwarf spectra, has been puzzling. To better understand the paucity of methane in low gravity atmospheres we have revisited the problem of methane chemistry and mixing. We employed a 1-D atmospheric chemistry code augmented with an updated and complete network of the chemical reactions that link CO to CH4. We find the methane abundance at altitudes at or above the effective photosphere is a strong function of surface gravity because higher g shifts the p-T structure to higher pressures (i.e., a given optical depth is proportional to p/g, a relation mitigated somewhat by pressure broadening). Thus quenching in more massive brown dwarfs occurs at a lower temperature and higher pressure, both favoring CH4. We predict that in the lowest mass young giant planets, methane will appear very late, at effective temperatures as low as 600 K rather than the 1200 K seen among field brown dwarfs. This methane deficiency has important implications for the interpretation of spectra as well as methane-based planetary companion searches, such as the NICI survey. The GPI and SPHERE surveys will test these ideas and probe atmospheric chemistry and composition in an entire new range of parameter space. A caveat is that these calculations presume that the C to O ratio is comfortably less than one; the behavior is quite different if C and O are equally abundant, and of course CH4 is always present if C exceeds O.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN13516 , Cool Stars 18; Jun 09, 2014 - Jun 13, 2014; Flagstaff, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by sample thickness ) approx. or greater than 50 nm). Three cluster IDPs (L2036AA5 cluster4, L2009L8 cluster 13 and W726A2) were used for the observations. ID W726A2 was collected without silicon oil, which is ordinary used to collect IDPs, so this sample has no possibility of contaminations caused by silicon oil or solvent to rinse it [6]. The samples were embedded in epoxy risin and sliced into ultrathin sections (50-300 nm) using an ultramicotome. The sections were observed by BF-TEM and HAADF-STEM (high angle annular dark field-scanning TEM) modes. Images were obtained by rotating the sample tilt angle over a range of +/- 65 deg in 1 deg steps. The obtained images were reconstructed to slice images. Mineral phases in the slice images were estimated by comparing with a 2D elemental map obtained by an EDS (energy dispersive X-ray spectroscopy) system equipped in the TEM/STEM. Careful examination of the slice images confirmed that iron grains are embedded in the amorphous silicate matrix of the GEMS grains, but sulfide grains were mainly present on the surface of the amorphous silicate. These results are consistent with the model that GEMS grains formed as condensates [3,5], although more data are needed to conclude the origin of GEMS grains. The present study is the first successful example adapting the electron tomography to the IDPs. This type of analysis will be important for planetary material sciences in the future.
    Keywords: Astronomy
    Type: JSC-CN-30643 , Japan Geoscience Union Meeting 2014; Apr 28, 2014 - May 02, 2014; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: The major problem addressed throughout the term was the need to update the group's current website, as it was outdated and required streamlining and modernization. The old Gateway to Astronaut Photography of the Earth website had multiple components, many of which involved searches through expansive databases. The amount of work required to update the website was large and due to a desired release date, assistance was needed to help build new pages and to transfer old information. Additionally, one of the tools listed on the website called Image Detective had been underutilized in the past. It was important to address why the public was not using the tool and how it could potentially become more of a resource for the team. In order to help with updating the website, it was necessary to first learn HTML. After assisting with small edits, I began creating new pages. I utilized the "view page source" and "developer" tools in the internet browser to observe how other websites created their features and to test changes without editing the code. I then edited the code to create an interactive feature on the new page. For the Image Detective Page I began an evaluation of the current page. I also asked my fellow interns and friends at my University to offer their input. I took all of the opinions into account and wrote up a document regarding my recommendations. The recommendations will be considered as I help to improve the Image Detective page for the updated website. In addition to the website, other projects included the need for additional, and updated image collections, along with various project requests. The image collections have been used by educators in the classroom and the impact crater collection was highly requested. The glaciers collection focused mostly on South American glaciers and needed to include more of the earth's many glaciers. The collections had not been updated or created due to the fact that related imagery had not been catalogued. The process of cataloging involves identifying the center point location of the image and feature identification. Other project needs included collecting night images of India in for publishing. Again, many of the images were not catalogued and the database was lacking in night time imagery for that region. The last project was to calculate the size of mega fans in South Africa. Calculating the fan sizes involved several steps. To expedite the study, calculations needed to be made after the base maps had been created. Using data files that included an outline of the mega fans on a topographic map, I opened the file in Photoshop, determined the number of pixels within the outlined area, created a one degree squared box, determined the pixels within the box, converted the pixels within the box to kilometers, and then calculated the fan size using this information. Overall, the internship has been a learning experience for me. I have learned how to use new programs and I developed new skills. These These skills can help me as I enter into the next phase of my career. Learning Photoshop and HTML in addition to coding in Dreamweaver are highly sought after skills that are used in a variety of fields. Additionally, the exposure to different aspects of the team and working with different people helped me to gain a broader set of skills and allowed me to work with people with different experiences. The various projects I have worked on this summer have directly benefitted the team whether it was completing projects they did not have the time to do, or by helping the team reach deadlines sooner. The new website will be the best place to see all of my work as it will include the newly designed pages and will feature my updates to collections.
    Keywords: Earth Resources and Remote Sensing
    Type: JSC-CN-31569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN13481
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable. But there is evidence that very early in its history it was warmer and wetter. Since Mariner 9 first detected fluvial features on its ancient terrains researchers have been trying to understand what climatic conditions could have permitted liquid water to flow on the surface. Though the evidence is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed 3.5-3.8 Gy the sun's luminosity was approximately 25% less than it is today. How can we explain the presence of liquid water on the surface of Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the "Faint Young Sun Paradox" rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, it is not a straightforward solution. Any greenhouse theory must (a) produce the warming and rainfall needed, (b) have a plausible source for the gases required, (c) be sustainable, and (d) explain how the atmosphere evolved to its present state. These are challenging requirements and judging from the literature they have yet to be met. In this talk I will review the large and growing body of work on the early Mars climate system. I will take a holistic approach that involves many disciplines since our goal is to present an integrated view that touches on each of the requirements listed in the preceding paragraph. I will begin with the observational evidence, which comes from the geology, mineralogy, and isotopic data. Each of the data sets presents a consistent picture of a warmer and wetter past with a thicker atmosphere. How much warmer and wetter and how much thicker is a matter of debate, but conditions then were certainly different than what they are today. I will then discuss the origin and evolution of the early atmosphere from accretion and core formation to the end of the late heavy bombardment, including estimates of the volatile inventory, outgassing history, and potential escape mechanisms. This sets the stage for a comprehensive look at the climate system of early Mars and the attempts to solve the faint young sun problem. I will review the basic physics involved and then step through the different ideas highlighting their strengths and weaknesses. I will then conclude with a summary and a discussion of potentially promising avenues of future research
    Keywords: Astronomy
    Type: ARC-E-DAA-TN13292 , Colloquium at York University, Dept. of Earth and Space Science and Engineering; May 14, 2014; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-19597 , SPIE Remote Sensing; Sep 21, 2014 - Sep 25, 2014; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG). Its 100-year global warming potential (GWP) is 25 times larger than that for carbon dioxide. The 100-yr integrated GWP of CH4 is sensitive to changes in OH levels. Methane's atmospheric growth rate was estimated to be more than 10 ppb yr(exp -1) in 1998 but less than zero in 2001, 2004 and 2005 (Kirschke et al., 2013). Since 2006, the CH4 is increasing again. This phenomena is yet not well understood. Oxidation of CH4 by OH is the main loss process, thus affecting the oxidizing capacity of the atmosphere and contributing to the global ozone background. Current models typically use an annual cycle of offline OH fields to simulate CH4. The implemented OH fields in these models are typically tuned so that simulated CH4 growth rates match that measured. For future and climate simulations, the OH tuning technique may not be suitable. In addition, running full chemistry, multi-decadal CH4 simulations is a serious challenge and currently, due to computational intensity, almost impossible.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19915 , AGU Fall Meeting 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: NASA's Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission is a decadal survey mission (2016 launch). The mission objectives are to measure land ice elevation, sea ice freeboard, and changes in these variables, as well as to collect measurements over vegetation to facilitate canopy height determination. Two innovative components will characterize the ICESat-2 lidar: 1) collection of elevation data by a multibeam system and 2) application of micropulse lidar (photon-counting) technology. A photon-counting altimeter yields clouds of discrete points, resulting from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of the returned points to reflectors of interest. The objective of this paper is to derive an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2 data, based on airborne observations with a Sigma Space micropulse lidar. The mathematical algorithm uses spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors, and geostatistical classification parameters and hyperparameters. Validation shows that ground and canopy elevation, and hence canopy height, can be expected to be observable with high accuracy by ICESat-2 for all expected beam energies considered for instrument design (93.01%-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp), and 72.85%-98.68% for 0.48 msp). The algorithm derived here is generally applicable for elevation determination from photoncounting lidar altimeter data collected over forested areas, land ice, sea ice, and land surfaces, as well as for cloud detection.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19594 , IEEE Transactions on Geoscience and Remote Sensing; 52; 4; 2109-2125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19728 , American Geophysical Union (AGU) Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19589 , Science Express; 344; 6182; 402-405
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: The MODIS Cloud Optical and Microphysical Product (MOD_PR060D) for Data Collection 6 has entered full scale production. Aqua reprocessing is almost completed and Terra reprocessing will begin shortly. Unlike previous collections, the CHIMAERA code base allows for simultaneous processing for multiple sensors and the operational CHIMAERA 6.0.76 stream is also available for VIIRS and SEVIRI sensors and for our E-MAS airborne platform.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN15528 , 2014 MODIS Science Team Meeting; Apr 29, 2014 - May 01, 2014; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN19861 , American Geophysical Union (AGU) Fall Meeting 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN19787 , American Geophysical Union (AGU) Fall Meeting 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN19385 , Suomi NPP Applications Workshop; Nov 18, 2014 - Nov 20, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN18805 , Earth Science Technology Forum 2014; Oct 28, 2014 - Oct 30, 2014; Leesburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Since the advent of NASA's Earth Observing System, knowledge of the practical benefits of Earth science data has grown considerably. The community using NASA Earth science observations in applications has grown significantly, with increasing sophistication to serve national interests. Data latency, or how quickly communities receive science observations after acquisition, can have a direct impact on the applications and usability of the information. This study was conducted to determine how users are incorporating NASA data into applications and operational processes to benefit society beyond scientific research, as well as to determine the need for data latency of less than 12 h. The results of the analysis clearly show the significant benefit to society of serving the needs of the agricultural, emergency response, environmental monitoring and weather communities who use rapidly delivered, accurate Earth science data. The study also showed the potential of expanding the communities who use low latency NASA science data products to provide new ways of transforming data into information. These benefits can be achieved with a clear and consistent NASA policy on product latency.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17648 , Space Policy; 30; 3; 135-137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN18906 , International Astronautical Congress; Sep 29, 2014 - Oct 03, 2014; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: The OMPS Limb Profiler (LP) was launched on board the NASA Suomi National Polar-orbiting Partnership (SNPP) satellite in October 2011. OMPS-LP is a limb-scattering hyperspectral sensor that provides ozone profiling capability at 1.5 km vertical resolution from cloud top to 60 km altitude. The use of three parallel slits allows global coverage in approximately four days. We have recently completed a full reprocessing of all LP data products, designated as Release 2, that improves the accuracy and quality of these products. Level 1 gridded radiance (L1G) changes include intra-orbit and seasonal correction of variations in wavelength registration, revised static and intra-orbit tangent height adjustments, and simplified pixel selection from multiple images. Ozone profile retrieval changes include removal of the explicit aerosol correction, exclusion of channels contaminated by stratospheric OH emission, a revised instrument noise characterization, improved synthetic solar spectrum, improved pressure and temperature ancillary data, and a revised ozone climatology. Release 2 data products also include aerosol extinction coefficient profiles derived with the prelaunch retrieval algorithm. Our evaluation of OMPS LP Release 2 data quality is good. Zonal average ozone profile comparisons with Aura MLS data typically show good agreement, within 5-10% over the altitude range 20-50 km between 60 deg S and 60 deg N. The aerosol profiles agree well with concurrent satellite measurements such as CALIPSO and OSIRIS, and clearly detect exceptional events such as volcanic eruptions and the Chelyabinsk bolide in February 2013.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17498 , SPIE (Society of Photo-optical Instrumentation Engineers) Remote Sensing 2014; Sep 22, 2014 - Sep 25, 2014; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: AERO-SAT is an international consortium of experts on aerosol remote sensing from ground and space. This initiative was established in 2013 (1) to accelerate the exchange of ideas and concepts and (2) to elevate the capabilities of satellite sensorsretrieval (aerosol) products, which are needed to constrain aerosol processing in and assist in evaluations of global modeling. The main goal of the meeting is to substantiate and invigorate the five AEROSAT working groups. On each of those five topics dedicated working groups are building up and will report on their initial activities followed by further related presentations and ample time for discussions. Organizers of the meeting held September 27-28, 2014 would like to post the presentations to a website.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19449 , 2014 AEROSAT Meeting; Sep 27, 2014 - Sep 28, 2014; Steamboat Springs, Colorado; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19448 , AEROCOM; Sep 29, 2014 - Oct 03, 2014; Steamboat Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN17892 , The Astrophysical Journal; 795; 1; 89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq msrmicrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq msrmicrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed the statistical assessment but indicate that the correction (particularly in band 11) is probably only valid for a subset of data. While the stray light effect is small enough in Band 10 to make the data useful across a wide array of applications, the effect in Band 11 is larger and the vicarious results suggest that Band 11 data should not be used where absolute calibration is required.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN16142 , Journal Remote Sensing; 6; 11; 11607-11626
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than I% in most of climate regions although it could be as large as 10%.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN14137 , International Journal of Biometerology; 58; 4; 547-564
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN15169 , International Geoscience and Remote Sensing Symposium (IGRRS); Jul 13, 2014 - Jul 18, 2014; Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: Few studies have evaluated the precision of IKONOS stereo data for measuring forest canopy height. The high cost of airborne light detection and ranging (LiDAR) data collection for large area studies and the present lack of a spaceborne instrument lead to the need to explore other low cost options. The US Government currently has access to a large archive of commercial high-resolution imagery, which could be quite valuable to forest structure studies. At 1 m resolution, we here compared canopy height models (CHMs) and height data derived from Goddard's airborne LiDAR Hyper-spectral and Thermal Imager (G-LiHT) with three types of IKONOS stereo derived digital surface models (DSMs) that estimate CHMs by subtracting National Elevation Data (NED) digital terrain models (DTMs). We found the following in three different forested regions of the US after excluding heterogeneous and disturbed forest samples: (1) G-LiHT DTMs were highly correlated with NED DTMs with R (sup 2) greater than 0.98 and root mean square errors (RMSEs) less than 2.96 m; (2) when using one visually identifiable ground control point (GCP) from NED, G-LiHT DSMs and IKONOS DSMs had R (sup 2) greater than 0.84 and RMSEs of 2.7 to 4.1 m; and (3) one GCP CHMs for two study sites had R (sup 2) greater than 0.7 and RMSEs of 2.6 to 3 m where data were collected less than four years apart. Our results suggest that IKONOS stereo data are a useful LiDAR alternative where high-quality DTMs are available.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN11840 , Remote Sensing; 6; 3; 1762-1782
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN17829 , Astroparticle Physics; 59; 18-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp 5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN16953 , The Astrophysical Journal; 788; 2; 130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: Aquarius is an L-band instrument designed to map the surface salinity field of the global oceans. It consists of three L-band (1.41 GHz) radiometers and an L-band (1.26 GHz) scatterometer. The radiometers are the primary instruments for measuring salinity and the scatterometer provides a correction for surface roughness. Aquarius was launched in June 2011 and has been mapping the surface salinity field since it was turned on in August. In addition, Aquarius is now producing maps of radio frequency interference (RFI), Faraday rotation and soil moisture.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17710 , General Assembly and Scientific Symposium of the International Union of Radio Science Union Radio Scientifique Internationale; Aug 16, 2014 - Aug 23, 2014; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: Satellite observations of formaldehyde (HCHO) columns provide top-down constraints on emissions of highly reactive volatile organic compounds (HRVOCs). This approach has been used previously to constrain emissions of isoprene from vegetation, but application to US anthropogenic emissions has been stymied by lack of a discernable HCHO signal. Here we show that oversampling of HCHO data from the Ozone Monitoring Instrument (OMI) for 2005 - 2008 enables quantitative detection of urban and industrial plumes in eastern Texas including Houston, Port Arthur, and Dallas-Fort Worth. By spatially integrating the individual urban-industrial HCHO plumes observed by OMI we can constrain the corresponding HCHO-weighted HRVOC emissions. Application to the Houston plume indicates a HCHO source of 260 plus or minus 110 kmol h-1 and implies a factor of 5.5 plus or minus 2.4 underestimate of anthropogenic HRVOC emissions in the US Environmental Protection Agency inventory. With this approach we are able to monitor the trend in HRVOC emissions over the US, in particular from the oil-gas industry, over the past decade.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN18604 , EOS Aura Science Team Meeting; Sep 15, 2014 - Sep 18, 2014; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends its potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at top-of-atmosphere (TOA) and whether the changes are resolvable at TOA (focal plane) relative to OLI's overall noise.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17807 , International Geoscience and Remote Sensing Symposium (IGARSS 2014); Jul 13, 2014 - Jul 18, 2014; Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN15076 , Global Space-Based Inter-Calibration System (GSICS) Executive Panel Meeting; May 16, 2014 - May 17, 2014; Guangzhou; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (approx. = 3 square meters) and fine angular resolution (approx. = 1 inch). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 square meters) of lightweight (approx. = 1 kilogram/square meter areal density) high-quality mirrors at an acceptable cost (approx. = 1 million dollars/square meter of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues-including active (in-space adjustable) alignment and figure correction.
    Keywords: Astronomy
    Type: M14-4110 , SPIE Optics + Photonics; Aug 17, 2014 - Aug 21, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN15027 , 2014 Center for Satellite Applications and Research Joint Polar Satellite System Science Teams Annual Meeting; May 12, 2014 - May 16, 2014; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: We compare C5 and C6 validation to compare the C6 10 km aerosol product against the well validated and trusted aerosol product on global and regional scales. Only the 10 km aerosol product is evaluated in this study, validation of the new C6 3 km aerosol product still needs to be performed. Not all of the time series has processed yet for C5 or C6, and the years processed for the 2 products is not exactly the same (this work is preliminary!). To reduce the impact of outlier observations, MODIS is spatially averaged within 27.5 km of the AERONET site, and AERONET is temporatally averaged within 30 minutes of the MODIS overpass time. Only high quality (QA = 3 over land, QA greater than 0 over ocean) pixels are included in the mean.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN15408 , 2014 MODIS Science Team Meeting; Apr 29, 2014 - May 01, 2014; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN10341 , Journal of Geophysical Research: Atmospheres; 119; 7; 4017–4042
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3819 , Environmental Systems Research Institute, Inc. (ESRI) International Users Conference; Jul 14, 2014 - Jul 21, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3679 , 2014 HyspIRI Data Product Symposium; Jun 04, 2014 - Jun 06, 2014; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: M14-4000 , Cyberinfrastructure and Water Resources Workshop in the Lower Mekong Region; Aug 18, 2014 - Aug 22, 2014; Hanoi; Viet Nam
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: There are 2 basic precipitation retrieval methods using passive microwave measurements: (1) Emission-based: Based on the tendency of liquid precipitation to cause an increase in brightness temperature (BT) primarily at frequencies below 22 GHz over a radiometrically cold background, often an ocean background (e.g., Spencer et al. 1989; Adler et al. 1991; McGaughey et al. 1996); and (2) Scattering-based: Based on the tendency of precipitation-sized ice to scatter upwelling radiation, thereby reducing the measured BT over a relatively warmer (usually land) background at frequencies generally 37 GHz (e.g., Spencer et al. 1989; Smith et al. 1992; Ferraro and Marks 1995). Passive microwave measurements have also been used to detect intense convection (e.g., Spencer and Santek 1985) and for the detection of hail (e.g., Cecil 2009; Cecil and Blankenship 2012; Ferraro et al. 2014). The Global Precipitation Measurement (GPM) mission expands upon the successful Tropical Rainfall Measurement Mission program to provide global rainfall and snowfall observations every 3 hours (Hou et al. 2014). One of the instruments on board the GPM Core Observatory is the GPM Microwave Imager (GMI) which is a conically-scanning microwave radiometer with 13 channels ranging from 10-183 GHz. Goal of this study: Determine the signatures of various hydrometeor species in terms of BTs measured at frequencies used by GMI by using data collected on 3 case days (all having intense/severe convection) during the Mid-latitude Continental Convective Clouds Experiment conducted over Oklahoma in 2011.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3902 , NASA Precipitation Measurement Missions (PMM) Science Team Meeting 2014; Aug 04, 2014 - Aug 08, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN13269 , Atmospheric Measurement and Techniques (AMT); 7; 1777-1789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3593 , Global Agricultural Outlook Forum; May 19, 2014; Mexico City; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN13114 , Atmospheric Chemistry and Physics Discussions; 14; 2675-2716; 27 January 2014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70 percent of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or overgrazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to MODIS observed phenological curves to quantify seasonal and inter-annual changes in vegetation. Our results show a widespread decline (of about 12 percent on average) in MODIS observed NDVI across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40 percent below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80 percent of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30 percent of degradation across the country as a whole but up to 50 percent in areas with denser vegetation cover (p0.05). Temperature changes, while significant, played only a minor role (r20.10, p0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN10903 , Global Change Biology; 20; 2; 418-428
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 m. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9. In this paper, the algorithms of these approaches are described, their performance is demonstrated, and their impact on L1B products is discussed. In general, the shorter wavelength bands have experienced a larger on-orbit RVS change, which, in general, are mirror side and detector dependent. The on-orbit RVS change due to the degradation of band 8 can be as large as 35 percent for Terra MODIS and 20 percent for Aqua MODIS. Vital to maintaining the accuracy of the MODIS L1B products is an accurate characterization of the on-orbit RVS change. The derived time-independent RVS, implemented in C6, makes an important improvement to the quality of the MODIS L1B products.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN13693 , IEEE Transactions on Geoscience and Remote Sensing; 52; 6; 3159-3174
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/2.9) 10(exp 5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much 〈 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN9517 , The Astrophysical Journal; 749; 1; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN13877 , AIRS Atmospheric Infrared Sounder Atmospheric Infrared Sounder (AIRS) Spring 2014 Science Team Meeting; May 17, 2014 - May 19, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI 2220-0251 , US-IALE (International Association for Landscape Ecology) 2014 Annual Symposium; May 18, 2014 - May 22, 2014; Anchorage, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The NASA/Shortterm Prediction, Research, and Transition (SPoRT) Program has been providing unique RedGreenBlue (RGB) composite imagery to its operational partners since 2005. In the early years of activity these RGB products were related to a True Color RGB, showing what one's own eyes would see if looking down at earth from space, as well as a SnowCloud RGB (i.e. False Color), separating clouds from snow on the ground. More recently SPoRT has used the EUMETSAT Best Practices standards for RGB composites to transition a wide array of imagery for multiple uses. A "Dust" RGB product has had particular use at the Albuquerque, New Mexico WFO. Several cases have occurred where users were able to isolate dust plume locations for mesoscale and microscale events during day and night time conditions. In addition the "Dust" RGB can be used for more than just detection of dust as it is sensitive to the changes in density due to atmospheric moisture content. Hence lowlevel dry boundaries can often be discriminated. This type of imagery is a large change from the single channel imagery typically used by operational forecast staff and hence, can be a challenge to interpret. This presentation aims to discuss the integration of such new imagery into operational use as well as the benefits assessed by the Albuquerque WFO over several documented events.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3302 , American Meteorological Socie!y (AMS) Annual Meeting; Feb 02, 2014 - Feb 06, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: AGU Fall meeting 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: Space Simulation Conference; Nov 03, 2014 - Nov 06, 2014; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?
    Keywords: Earth Resources and Remote Sensing
    Type: Space Simulation Conference; Nov 03, 2014 - Nov 06, 2014; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.
    Keywords: Astronomy
    Type: International Conference on Space Operations (SpaceOps 2014); May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals that flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements, which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization.
    Keywords: Astronomy
    Type: SPIE Astronomical Telescopes + Instrumentation 2014 Symposium; Jun 22, 2014 - Jun 27, 2014; Montreal, QC; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN32049 , Earth Observation Systems XIX; 9218; 92180K
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17596 , Aerosol-Cloud-Ecosystem (ACE) Science Working Group; Jun 09, 2014 - Jun 11, 2014; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17594 , Aerosol-Cloud-Ecosystem (ACE) Science Working Group; Jun 09, 2014 - Jun 11, 2014; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN21755 , Ocean Optics; Oct 26, 2014 - Oct 31, 2014; Portland, Maine; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22379 , Geophysical Research Letters; 41; 16; 5904-5911
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (2345N). Only minimal modifications are made in the higher-middle (4566N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snowmove poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, with mixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data. Differences between CMC and CLM4 are generally reduced in densely monitored regions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN26310 , Journal of Geophysical Research; 119; 12; 7091-7103
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The potential to measure vegetation fluorescence from space (1) and to derive from it direct information on the gross primary productivity (GPP) of terrestrial ecosystems is probably the most thrilling development in remote sensing and global ecology of recent years, as it moves Earth observation techniques from the detection of canopy biophysics (e.g., fraction of absorbed radiation) and biochemistry (chlorophyll and nitrogen content) to the realm of ecosystem function. The existence of a functional relationship between fluorescence and photosynthesis has been elucidated over the last decade by several laboratories, notably as part of the preliminary studies of the European Space Agency Fluorescence Explorer (FLEX) Earth Explorer Mission. The empirical observation presented by Guanter et al. (2) of a linear relationship between fluorescence radiance and GPP, however, provides the first experimental confirmation of the feasibility of the approach already thoroughly tested at leaf levelat the desired scale, despite the confounding effects associated with the satellite detection of such a faint signal. A word of clarification is needed here. The use of fluorescence as a probe of leaf photochemistry has been a staple of plant ecophysiology for decades, rooted in a sound understanding of photosynthetic energy dissipation. However, most past studies had to rely for the interpretation of results on active (pulse-saturated) techniques, making them unsuitable for remote-sensing applications. Over recent years, however, novel process based models have been developed for the interpretation of steady-state, solar-induced fluorescence at the leaf to canopy scale (3). We are therefore in a position to move beyond the mere empirical observation of an association between GPP and fluorescence radiance. In particular, Guanter et al. (2) base their analysis on the assumption of a constant ratio between photosynthetic and fluorescence light use efficiencies (equation 3 in ref. 2).We know, however, that the ratio is not constant, but changes widely in response to light, CO2, stomatal limitations, and extreme stress (4, 5). Whats more, we can make sense of such changes, thus extracting valuable information from the very scatter that is apparent in their data. However, this process will require the availability of more tailored instruments, such as the one planned for the FLEX mission. As already stressed by Guanter et al. (2), the spatial resolution of the Global Ozone Monitoring Experiment-2 sensor (40 80 km) makes it difficult to compare meaningfully the fluorescence signal with ground measurements, when only 6070% of the footprint consists of the desired land-cover type (table S1 in ref. 2), suggesting that this could be largely responsible for the low signals observed in European grasslands. Moreover, the overpass time of the MetOp-A satellite (9:30 AM) implies that fluorescence is generally measured under light-limiting conditions, when fluorescence is only marginally affected by stomatal closure even under stress conditions. This result could explain the seasonal mismatch with daily GPP observed in natural ecosystems in the absence of irrigation (figure 4 in ref. 2). We hope, therefore, that this welcome contribution to this fast-advancing field will help demonstrate the potential of the new technique, and pave the way for more refined studies under both a technological and scientific point of view.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22188 , Proceedings of the National Academy of Sciences; 111; 25; E2510
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-12
    Description: The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22561
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-12
    Description: To demonstrate and model a long range-co-operative attractive force between a pair of satellites in order to fly satellite formations for future interferometer and telescope applications
    Keywords: Astronomy
    Type: KSC-E-DAA-TN14644
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: Mangroves supply many essential environmental amenities, such as preventing soil erosion, filtering water pollution, and protecting shorelines from harmful waves, floods, storms and winds. The Mangroves in Myanmar not only provide citizens with a food source, but they also offer firewood, charcoal, and construction materials. The depletion of mangroves is threatening more than the biodiversity however; Myanmar's fiscal livelihood is also in harm's way. Mangroves are valued at $100,000 to $277,000 per square kilometer and if managed in a sustainable fashion, can infuse constant income to the emerging Myanmarese economy. This study analyzed three coastline regions, the Ayeyarwady Delta, Rakhine and Tanintharyi, and mapped the spatial extent of mangrove forest during the dry season in 2000 and 2013. The classifications were derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operation Land Imager (OLI) imagery, as well as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model information. This data was atmospherically corrected, mosaicked, masked and classified in ENVI, followed by ArcGIS to perform raster calculations and create final products. Forest degradation collected from 2000 to 2013 was later used to forecast the density and health of Mangroves in the year 2030. These results were subsequently presented to project partners Dr. Peter Leimgruber and Ellen Aiken at the Smithsonian Conservation Biology Institute in Front Royal, VA. After the presentation of the project to the partners, these organizations formally passed on to the Myanmar Ministry of Environment, Conservation and Forestry for policy makers and forest managers to utilize in order to protect the Myanmar mangrove ecosystem while sustaining a healthy economy.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/CR-2014-218274 , NF1676L-18958
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: This work details use of the North American Multi-Model Ensemble (NMME) experimental forecasts as drivers for Decision Support Systems (DSSs) in the NASA / USAID initiative, SERVIR (a Spanish acronym meaning "to serve"). SERVIR integrates satellite observations, ground-based data and forecast models to monitor and forecast environmental changes and to improve response to natural disasters. Through the use of DSSs whose "front ends" are physically based models, the SERVIR activity provides a natural testbed to determine the extent to which NMME monthly to seasonal projections enable scientists, educators, project managers and policy implementers in developing countries to better use probabilistic outlooks of seasonal hydrologic anomalies in assessing agricultural / food security impacts, water availability, and risk to societal infrastructure. The multi-model NMME framework provides a "best practices" approach to probabilistic forecasting. The NMME forecasts are generated at resolution more coarse than that required to support DSS models; downscaling in both space and time is necessary. The methodology adopted here applied model output statistics where we use NMME ensemble monthly projections of sea-surface temperature (SST) and precipitation from 30 years of hindcasts with observations of precipitation and temperature for target regions. Since raw model forecasts are well-known to have structural biases, a cross-validated multivariate regression methodology (CCA) is used to link the model projected states as predictors to the predictands of the target region. The target regions include a number of basins in East and South Africa as well as the Ganges / Baramaputra / Meghna basin complex. The MOS approach used address spatial downscaling. Temporal disaggregation of monthly seasonal forecasts is achieved through use of a tercile bootstrapping approach. We interpret the results of these studies, the levels of skill by several metrics, and key uncertainties.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3928 , 2014 AGU Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: The NASA Short term Prediction Research and Transition (SPoRT) Center in Huntsville, AL has been running a real-time configuration of the Noah land surface model within the NASA Land Information System (LIS) since June 2010. The SPoRT LIS version is run as a stand-alone land surface model over a Southeast Continental U.S. domain with 3-km grid spacing. The LIS contains output variables including soil moisture and temperature at various depths, skin temperature, surface heat fluxes, storm surface runoff, and green vegetation fraction (GVF). The GVF represents another real-time SPoRT product, which is derived from the Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua and Terra satellites. These data have demonstrated operational utility for drought monitoring and hydrologic applications at the National Weather Service (NWS) office in Huntsville, AL since early 2011. The most relevant data for these applications have proven to be the moisture availability (%) in the 0-10 cm and 0-200 cm layers, and the volumetric soil moisture (%) in the 0-10 cm layer. In an effort to better understand their applicability among locations with different terrain, soil and vegetation types, SPoRT is conducting the first formal assessment of these data at NWS offices in Houston, TX, Huntsville, AL and Raleigh, NC during summer 2014. The goal of this assessment is to evaluate the LIS output in the context of assessing flood risk and determining drought designations for the U.S. Drought Monitor. Forecasters will provide formal feedback via a survey question web portal, in addition to the NASA SPoRT blog. In this presentation, the SPoRT LIS and its applications at NWS offices will be presented, along with information about the summer assessment, including training module development and preliminary results.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3713 , National Weather Association Annual Meeting; Oct 18, 2014 - Oct 23, 2014; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.
    Keywords: Astronomy
    Type: M14-3744 , Fermi Asian Network Workshop; Jul 28, 2014 - Aug 01, 2014; Yilan; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.
    Keywords: Astronomy
    Type: M14-3436 , American Astronomical Society (AAS) Meeting; Jun 01, 2014 - Jun 05, 2014; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: Fischer-Tropsch Type (FTT) synthesis of organic compounds has been hypothesized to occur in the early solar nebula that formed our Solar System. FTT is a collection of abiotic chemical reactions that convert a mixture of carbon monoxide and hydrogen over nano-catalysts into hydrocarbons and other more complex aromatic compounds. We hypothesized that FTT can generate similar organic compounds as those seen in chondritic meteorites; fragments of asteroids that are characteristic of the early solar system. Specific goals for this project included: 1) determining the effects of different FTT catalyst, reaction temperature, and cycles on organic compounds produced, 2) imaging of organic coatings found on the catalyst, and 3) comparison of organic compounds produced experimentally by FTT synthesis and those found in the ordinary chondrite LL5 Chelyabinsk meteorite. We used Pyrolysis Gas Chromatography Mass Spectrometry (PY-GCMS) to release organic compounds present in experimental FTT and meteorite samples, and Scanning Electron Microscopy (SEM) to take images of organic films on catalyst grains.
    Keywords: Astronomy
    Type: JSC-CN-31649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Subsequent to the detections AGILE and Fermi/LAT of the gammaray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the XRay emission from the Crab on a regular basis. XRay observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gammaray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the XRay and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder Xray variations and, if possible, determine the precise location within the Nebula of the origin of the gammaray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.
    Keywords: Astronomy
    Type: M15-4153 , 15 Years of Science with Chandra Symposium; Nov 18, 2014 - Nov 21, 2014; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a solid base for discussion. (c) We report progress using promising links we find between emissions-related "fire types" and promising features deducible from remote observations of plumes, e.g., single scatter albedo, Angstrom exponent of scattering, Angstrom exponent of absorption, (CO column density)/(aerosol optical depth).
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN18789 , AGU Fall Meeting 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-4005 , 2014 American Geophysical Union (AGU) Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: RGB (RedGreenBlue) imagery, created by integrating several spectral channels into one composite image, is currently used by the operational weather community to aid in quick, realtime analysis of atmospheric processes. However, the limb effect - a result of an increasing optical path length of the absorbing atmosphere between the satellite and the earth as scan angle increases - interferes with the qualitative interpretation of RGB composites at large scan angles. It also makes the comparison of similar products from multiple satellite sensors difficult. Recent work has indicated that correcting for the limb effect in the basic channel imagery using simple statistical relationships greatly improves the utility of the derived RGB imagery. However, it is hypothesized that the limb correction coefficients vary with respect to latitude, season, cloud cover, and surface albedo. This poster will highlight an improved approach to the limb correction of RGB imagery using varying coefficients. The Joint Center for Satellite and Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) was used to simulate top of atmosphere brightness temperatures at varying scan angles for infrared channels corresponding to the Aqua and Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS), and Meteosat10 Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensors. A subset of European Center for MediumRange Weather Forecasts (ECMWF) temperature, specific humidity, and ozone mixing ratio profiles from March 2013 through February 2014 were used as input to the CRTM. The simulated brightness temperatures were used to determine the best fit slope of the linear relationship between the natural log of the cosine of the scan angle and the difference of the simulated brightness temperature at nadir and on the limb. The correction coefficients were then analyzed for variability with respect to latitude, season, cloud cover, and surface type and used to produce improved limb corrected imagery. Applications of the results will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3769 , National Weather Association Annual Meeting; Oct 18, 2014 - Oct 23, 2014; Salt Lake City, Utah; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN12267
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched June 13, 2012. During the next two pears NuSTAR observed two Gamma Ray Bursts, GRBs 130427A and 130925A. I will describe here the NuSTAR GRB results and discuss their implications on the GRB field.
    Keywords: Astronomy
    Type: M14-3887 , COSPAR Scientific Assembly; Aug 04, 2014 - Aug 10, 2014; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: We present a historical (and personal) overview beginning with the pioneering contributions of Professor R. Novick and the team at the Columbia Astrophysics Laboratory. We will end with our (biased) outlook for the future.
    Keywords: Astronomy
    Type: M14-3607 , X-ray Polarisation in Astrophysics - A Window about to Open?; Aug 25, 2014 - Aug 28, 2014; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The launch of the Fermi mission has enabled critical improvements in the field of magnetars, in particular with the Gamma-ray Burst Monitor, which is a all sky high-energy transient detector (8 keV - 40 MeV). In the last six years, the instrument has detected emission from 8 sources, and co-discovered two in synergy with the Swift mission. I will present the 5-year GBM magnetar results, focusing on the burst emission properties (spectral and temporal) per source as well as comparisons across sources.
    Keywords: Astronomy
    Type: M14-3401 , Committee on Space Research (COSPAR) Scientific Assembly; Aug 02, 2014 - Aug 10, 2014; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: This presentation discusses MODIS NDVI change detection methods and products used in the ForWarn Early Warning System (EWS) for near real time (NRT) recognition and tracking of regionally evident forest disturbances throughout the conterminous US (CONUS). The latter has provided NRT forest change products to the forest health protection community since 2010, using temporally processed MODIS Aqua and Terra NDVI time series data to currently compute and post 6 different forest change products for CONUS every 8 days. Multiple change products are required to improve detectability and to more fully assess the nature of apparent disturbances. Each type of forest change product reports per pixel percent change in NDVI for a given 24 day interval, comparing current versus a given historical baseline NDVI. EMODIS 7 day expedited MODIS MOD13 data are used to obtain current and historical NDVIs, respectively. Historical NDVI data is processed with Time Series Product Tool (TSPT); and 2) the Phenological Parameters Estimation Tool (PPET) software. While each change products employ maximum value compositing (MVC) of NDVI, the design of specific products primarily differs in terms of the historical baseline. The three main change products use either 1, 3, or all previous years of MVC NDVI as a baseline. Another product uses an Adaptive Length Compositing (ALC) version of MVC to derive an alternative current NDVI that is the freshest quality NDVI as opposed to merely the MVC NDVI across a 24 day time frame. The ALC approach can improve detection speed by 8 to 16 days. ForWarn also includes 2 change products that improve detectability of forest disturbances in lieu of climatic fluctuations, especially in the spring and fall. One compares current MVC NDVI to the zonal maximum under the curve NDVI per pheno-region cluster class, considering all previous years in the MODIS record. The other compares current maximum NDVI to the mean of maximum NDVI for all previous MODIS years.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI 2220-0255 , American Geophysical Union (AGU) Fall 2014 Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-19
    Description: Supra-arcade downflows (SADs) observed above flaring active regions during long-duration events are theorized to be signatures of magnetic reconnection. Observations of SADs strongly indicate an association with shrinking reconnected flux tubes characterized by a specific magnetic topology. Plasmoids comprise another proposed group of observational reconnection signatures. While some plasmoids occur under nearly the same conditions as SADs, the magnetic configuration of the two phenomena are quite incongruous, yet they are often categorized together. We present distinguishing characteristics between SADs and plasmoids and indicate how their respective observations may yield insight into the conditions within the current sheet above eruptive active regions.
    Keywords: Astronomy
    Type: M14-3685 , American Astronomical Society (AAS) Meeting; Jun 01, 2014 - Jun 05, 2014; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0250 , US-IALE International Association for Landscape Ecology Annual Symposium; May 18, 2014 - May 22, 2014; Anchorage, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-20
    Description: Urban expansion and the associated changes in land cover have important climatic, hydrologic, biophysical and ecologic and socio-economic impacts on the environment. Yet, despite todays abundance of remote sensing data, an automated characterization of large-scale historical changes in urban spatial extent remains a challenge due to the inherent complexity and variability of the urban environment, the lack of a spectral signature unique to urban land cover, and the absence of an unambiguous definition of what is urban versus non-urban.Here we present a consistent, robust, scalable, physically- based methodology for characterization of urban expansion using Landsat observations. We use atmospherically corrected Landsat Global Land Survey time series, Web-enabled Landsat data time series, DMSP-OLS and NPP-VIIRS nighttime lights, for mapping the built-up and vegetated components of urban settlements at 30m resolution through multi- temporal standardized spectral mixture analysis. The methodology is tested and validated over the North American continent where it provides a first quantification of urban expansion and vegetation abundance changes from 1990 to 2010.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN17397 , AGU Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-24
    Description: As does Earth, Mars presents pronounced global atmospheric circulation patterns. Solar differential heating drives mean meridional overturning (Hadley) circulations which are deep and intense, are hemispherically asymmetric, and where a cross-equatorial single cell dominates. Within middle and high latitudes, thermally indirect eddy-driven (Ferrel) circulation cells have been indicated. Differently, however, large-amplitude orography on planetary and continental scales on Mars can force very non-Earth-like hemispheric circulation patterns. Recent observations from the Mars Reconnaissance Orbiter, "Mars Color Imager" (MARCI) instrument are utilized that emphasize water ice clouds in ultra-violet (UV) wavelengths, and these measurements have been binned into "daily global maps" (DGMs) of water-ice cloud optical depth. The presence of large-scale, extratropical quasi-stationary atmospheric wave disturbances in middle and late winter of the northern hemisphere have been found to be present in such DGMs. In combination with such observations, a full-physics Mars global climate model (NASA ARC marsgcm 2.1) is applied to place the observations into context. During late northern winter, it is found that strong, forced Rossby modes (i.e., planetary waves) exist, and with direct correlation to columnintegrated cloud opacity undulating spatial patterns. At this season, zonal wavenumber s = 2 dominates (in contrast to wavenumber s = 1), consistent with MGS/TES analyses at this particular season (Banfield et al., 2003). Large-scale, planetary waves dictate the "coherence" of the northern polar vortex. Fundamentally, such forced planetary waves influence the polar vortex's impermeability (wave-induced) to tracer transport (e.g., dust and water-ice aerosol) and temporal mean water vapor spatial variations. The large-scale dynamical features of such planetary waves will be highlighted and discussed.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18963 , American Geophysical Union Fall 2014 Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-24
    Description: Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable at the surface. But there is evidence that very early in its history, some 3.7-4.1 billion years ago, the climate system supported much warmer conditions including an active hydrological cycle with rainfall and runoff. Given the importance of liquid water to astrobiology and NASAs Mars Exploration Program, researchers have been trying to understand the ancient martian climate system since the early 1970s when the Mariner 9 spacecraft first detected fluvial features on its oldest terrains. Though the evidence for warm wet conditions is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed the suns luminosity was ~25% less than it is today. How can we explain the presence of liquid water on the surface of ancient Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the Faint Young Sun Paradox, as it is commonly known, rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, for Mars there is no solution in sight. Long-lived continuously warm and wet atmospheres are difficult to produce and sustain. And a new and emerging idea - that ancient Mars was fundamentally a cold planet with transient episodes of warm wet conditions brought about by external forcings such as impacts, volcanism, and/or orbital changes also has issues. In this seminar I will review this fascinating topic and discuss some of the recent ideas on how to solve it, the issues they raise, and what I believe are some promising avenues for future research.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18544 , Scientific Seminar at Oregon State University; Nov 04, 2014; Corvallis, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-20
    Description: Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets orbiting around a sub-giant star with periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities: the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 billion days. Ultimately, we measure the planets' masses with 4.2% precision and the planets' radii with 1.8% precision. Kepler-36 b is the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with an Earth-like composition, whereas an iron-enhanced Mercury-like composition is ruled out.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN17623 , Annual Meeting of the Division for Planetary Sciences; Nov 09, 2014 - Nov 14, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-20
    Description: Disk disperse in a few million years, before which they must form planets. Photoevaporation and viscosity are mainly responsible for disk dispersal. EUV, FUV and X-rays have all been suggested as photoevaporation agents, disk evolutionary scenarios and predicted mass loss rates in each case differ. Stellar mass and radiation field, disk properties, magnitude of viscosity, and dust evolution all play significant roles in determining the evolution of the disk and its lifetime. Observational diagnostics of photoevaperative flows include [Nell] and perhaps [OI]. These are at present inconclusive and better diagnostics are needed.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN17213 , The Disk in Relation to The Formation of Planets And Their Protoatmospheres; Aug 25, 2014 - Aug 29, 2014; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-26
    Description: The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive. Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassinis final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices so why are they reddish? The C Ring and Cassini Division are dirtier than the more massive B and A Rings, as shown by near- IR and, recently, microwave observations. Particle sizes, from stellar and radio occultation's, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous self-gravity wakes reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded propeller objects wander, systematically or randomly, through the A ring. Rubble pile ring moons just outside the rings may escaped from the rings, and the recently discovered Peggy may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of in falling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new observations: direct measurement of the still-unknown ring mass; direct in-situ sampling of ring particle composition (targeting the iron- or carbon based red non-icy component); and radar backscattering observations.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18917 , American Geophysical Union Fall 2014 Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-26
    Description: Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. But to date no process has been identified that can cause Xe, which is heavier than Kr, to escape while Kr does not. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the possible range permitted by solar Extreme Ultraviolet radiation (EUV, which here means radiation at wavelengths short enough to be absorbed efficiently by hydrogen) heating when Earth was on the order of 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts. What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to. If xenon was being fractionated by escape currently the only viable hypothesis it had to be in the less unfamiliar context of Earths Archean atmosphere and under rather modest levels of EUV forcing. This requires a new model. Here we address the circumstances in which Xe, but not Kr, could escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially photo-ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it), and that xenon alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible if not prevented by a planetary magnetic field. The best prospects for Earth are therefore escape along the polar field lines, although a very weak or absent magnetic field would likely work as well. As applied to the Archean Earth the discussion will be constrained by diffusion-limited hydrogen escape. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with suggestions that hydrogen escape from the anoxic Archean atmosphere was considerable, because biogenic methane is expected to have been rather abundant. Hydrogen escape plausibly played the key role in creating oxidizing condition at the surface of the Earth and setting the stage for the creation of an O2 atmosphere.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18793 , American Geophysical Union Fall 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-26
    Description: The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18863 , American Geophysical Union Fall 2014 Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-20
    Description: We tested the hypothesis that we can estimate the flowering developmentstage of sorghum from measurements of the polarization of the light scattered by asorghum canopy. Such information is critically important in agricultural productionforecasting. If such information were available for each sorghum field in a region, itcould be interleaved with timely weather data and used in crop production models toobtain improved estimates of sorghum grain production for the region.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN15421 , International Geoscience and Remote Sensing Symposium (IGARSS 2014); Jul 13, 2014 - Jul 18, 2014; Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...