ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (588)
  • Meteorology and Climatology  (455)
  • Composite Materials  (133)
  • Statistical physics
  • 2015-2019
  • 2010-2014  (588)
  • 2012  (588)
Collection
Years
  • 2015-2019
  • 2010-2014  (588)
Year
  • 101
    Publication Date: 2019-07-13
    Description: Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.
    Keywords: Meteorology and Climatology
    Type: NF1676L-14677 , Journal of Climate (ISSN 0894-8755); 25; 7; 2329-2340
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-13
    Description: In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.
    Keywords: Composite Materials
    Type: GSFC.CP.6204.2012 , SAMPE 2012; May 21, 2012 - May 24, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-07-13
    Description: 2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http://ldas.gsfc.nasa.gov/nldas/) data set, with high spatial and temporal resolutions (0.125? x 0.125?, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.6215.2012 , American Geophysical Union (AGU) Chapman Conference on Remote Sensing of the Terrestrial Water Cycle; Feb 19, 2012 - Feb 22, 2012; Kona, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-13
    Description: Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.6214.2012 , American Meteorological Society 2012 Annual Meeting; Jan 23, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-07-13
    Description: Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.
    Keywords: Composite Materials
    Type: NF1676L-13288 , SAMPE 2012; May 21, 2012 - May 24, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-07-13
    Description: Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems that can be processed without the use of an autoclave for advanced aerospace applications. Due to their low melt viscosities and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature vacuum assisted resin transfer molding (HT-VARTM). VARTM has shown the potential to reduce the manufacturing cost of composite structures. In the current study, two PETI resins, LARC(Trademark) PETI-330 and LARC(Trademark) PETI-9, were infused into carbon fiber preforms at 260 C and cured at temperatures up to 371 C. Photomicrographs of polished cross sections were taken and void contents, determined by acid digestion, were below 4.5%. Mechanical properties including short block compression (SBC), compression after impact (CAI), and open hole compression (OHC) were determined at room temperature, 177 C, and 288 C. Both PETI-9 and PETI-330 composites demonstrated very good retention of mechanical properties at elevated temperatures. SBC and OHC properties after aging for 1000 hours at temperatures up to 288 C were also determined.
    Keywords: Composite Materials
    Type: NF1676L-13433 , SAMPE 2012; May 21, 2012 - May 24, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-07-13
    Description: Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.
    Keywords: Composite Materials
    Type: NF1676L-13114 , SAMPE 2012; May 21, 2012 - May 24, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-07-13
    Description: The development of benchmark examples for quasi-static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for Abaqus/Standard. The example is based on a finite element model of a Double-Cantilever Beam specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.
    Keywords: Composite Materials
    Type: NF1676L-13795 , 2012 SIMULIA Customer Conference; May 15, 2012 - May 17, 2012; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-13
    Description: The Interstage Element of the Ares V launch vehicle was sized using a commercially available structural sizing software tool. Two different concepts were considered, a metallic design and a composite design. Both concepts were sized using similar levels of analysis fidelity and included the influence of design details on each concept. Additionally, the impact of the different manufacturing techniques and failure mechanisms for composite and metallic construction were considered. Significant details were included in analysis models of each concept, including penetrations for human access, joint connections, as well as secondary loading effects. The designs and results of the analysis were used to determine lifecycle cost estimates for the two Interstage designs. Lifecycle cost estimates were based on industry provided cost data for similar launch vehicle components. The results indicated that significant mass as well as cost savings are attainable for the chosen composite concept as compared with a metallic option.
    Keywords: Composite Materials
    Type: AIAA Paper-2012-1770 , NF1676L-14516 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-07-13
    Description: This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.
    Keywords: Composite Materials
    Type: NF1676L-12745 , Journal of Aircraft; 49; 2; 503-520
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-07-13
    Description: A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.
    Keywords: Composite Materials
    Type: AIAA Paper 2012-1704 , NF1676L-13332 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-07-13
    Description: The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.
    Keywords: Composite Materials
    Type: AIAA Paper 2012-1619 , NF1676L-13178 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-13
    Description: The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is home of global precipitation product archives, in particular, the Tropical Rainfall Measuring Mission (TRMM) products. TRMM is a joint U.S.-Japan satellite mission to monitor tropical and subtropical (40 S - 40 N) precipitation and to estimate its associated latent heating. The TRMM satellite provides the first detailed and comprehensive dataset on the four dimensional distribution of rainfall and latent heating over vastly undersampled tropical and subtropical oceans and continents. The TRMM satellite was launched on November 27, 1997. TRMM data products are archived at and distributed by GES DISC. The newly released TRMM Version 7 consists of several changes including new parameters, new products, meta data, data structures, etc. For example, hydrometeor profiles in 2A12 now have 28 layers (14 in V6). New parameters have been added to several popular Level-3 products, such as, 3B42, 3B43. Version 2.2 of the Global Precipitation Climatology Project (GPCP) dataset has been added to the TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/), allowing online analysis and visualization without downloading data and software. The GPCP dataset extends back to 1979. Version 3 of the Global Precipitation Climatology Centre (GPCC) monitoring product has been updated in TOVAS as well. The product provides global gauge-based monthly rainfall along with number of gauges per grid. The dataset begins in January 1986. To facilitate data and information access and support precipitation research and applications, we have developed a Precipitation Data and Information Services Center (PDISC; URL: http://disc.gsfc.nasa.gov/precipitation). In addition to TRMM, PDISC provides current and past observational precipitation data. Users can access precipitation data archives consisting of both remote sensing and in-situ observations. Users can use these data products to conduct a wide variety of activities, including case studies, model evaluation, uncertainty investigation, etc. To support Earth science applications, PDISC provides users near-real-time precipitation products over the Internet. At PDISC, users can access tools and software. Documentation, FAQ and assistance are also available. Other capabilities include: 1) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador is designed to be fast and easy to learn; 2)TOVAS; 3) NetCDF data download for the GIS community; 4) Data via OPeNDAP (http://disc.sci.gsfc.nasa.gov/services/opendap/). The OPeNDAP provides remote access to individual variables within datasets in a form usable by many tools, such as IDV, McIDAS-V, Panoply, Ferret and GrADS; 5) The Open Geospatial Consortium (OGC) Web Map Service (WMS) (http://disc.sci.gsfc.nasa.gov/services/wxs_ogc.shtml). The WMS is an interface that allows the use of data and enables clients to build customized maps with data coming from a different network.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.5969.2012 , American Meteorological Society 2012 Annual Meeting; Jan 23, 2012 - Jan 26, 2012; New Orlean, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-07-13
    Description: Data services to support precipitation applications are important for maximizing the NASA TRMM (Tropical Rainfall Measuring Mission) and the future GPM (Global Precipitation Mission) mission's societal benefits. TRMM Application examples using data services at the NASA GES DISC, including samples from users around the world will be presented in this poster. Precipitation applications often require near-real-time support. The GES DISC provides such support through: 1) Providing near-real-time precipitation products through TOVAS; 2) Maps of current conditions for monitoring precipitation and its anomaly around the world; 3) A user friendly tool (TOVAS) to analyze and visualize near-real-time and historical precipitation products; and 4) The GES DISC Hurricane Portal that provides near-real-time monitoring services for the Atlantic basin. Since the launch of TRMM, the GES DISC has developed data services to support precipitation applications around the world. In addition to the near-real-time services, other services include: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC. Mirador is designed to be fast and easy to learn; 3) Data via OPeNDAP (http://disc.sci.gsfc.nasa.gov/services/opendap/). The OPeNDAP provides remote access to individual variables within datasets in a form usable by many tools, such as IDV, McIDAS-V, Panoply, Ferret and GrADS; and 4) The Open Geospatial Consortium (OGC) Web Map Service (WMS) (http://disc.sci.gsfc.nasa.gov/services/wxs_ogc.shtml). The WMS is an interface that allows the use of data and enables clients to build customized maps with data coming from a different network.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.5968.2012 , American Meteorological Society 2012 Annual Meeting; Jan 23, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-13
    Description: NASA Langley Research Center and The Boeing Company are developing an innovative composite structural concept, called PRSEUS, for the flat center section of a future environmentally friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for maintaining the panel s high strength and bending rigidity. No standard testing method exists for testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary tests using this method. This paper details an analytical study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying the initiation and growth of interfacial debonding during push-out testing. Based on the correlations of analysis results and Boeing s test data, the adequacy of the rod-wrap testing method is evaluated, and potential approaches for improvement of the test method are proposed.
    Keywords: Composite Materials
    Type: AIAA Paper 2012-1861 , NF1676L-13292 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-07-13
    Description: This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.
    Keywords: Composite Materials
    Type: NF1676L-13139 , ASCE Earth and Space 2012 Conference; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-13
    Description: A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.
    Keywords: Meteorology and Climatology
    Type: Paper No. 8379-22 , NF1576L-13636 , SPIE Defense, Security and Sensing 2012; Apr 23, 2012 - Apr 27, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part one, the subject of the current paper, is focused on the experimental testing. Of interest are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of specimens, which were identical with the exception of the density of the honeycomb core, were tested. Static indentation and low velocity impact using a drop tower are used to study damage formation in these materials. A series of highly instrumented CAI tests was then completed. New techniques used to observe CAI response and failure include high speed video photography, as well as digital image correlation (DIC) for full-field deformation measurement. Two CAI failure modes, indentation propagation, and crack propagation, were observed. From the results, it can be concluded that the CAI failure mode of these panels depends solely on the honeycomb core density.
    Keywords: Composite Materials
    Type: AIAA-2012-1703 , NF1676L-13152 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-13
    Description: Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.
    Keywords: Composite Materials
    Type: E-18172 , SPIE Smart Structures and Materials Conference; Mar 11, 2012 - Mar 15, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.
    Keywords: Composite Materials
    Type: NF1676L-13527 , 2012 SPIE Thermosense; Apr 23, 2012 - Apr 27, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-13
    Description: Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs
    Keywords: Meteorology and Climatology
    Type: M11-1476 , 92nd Annual American Meteorological Society (AMS); Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States|16th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS); Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University
    Keywords: Composite Materials
    Type: JSC-CN-25499 , 2012 Hypervelocity Impact Symposium (HVIS 2012); Feb 16, 2012 - Feb 20, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-2363 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-13
    Description: Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.
    Keywords: Meteorology and Climatology
    Type: National Research Council (NRC) Committee on NASA''s Strategic Direction; Jun 22, 2012; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System, especially during summer. Traffic flow management algorithms require reliable forecasts of route blockage to schedule and route traffic. This paper demonstrates how raw convective weather forecasts, which provide deterministic predictions of the vertically integrated liquid (the precipitation content in a column of airspace) can be translated into probabilistic forecasts of whether or not a terminal area route will be blocked. Given a flight route through the terminal area, we apply techniques from machine learning to determine the likelihood that the route will be open in actual weather. The likelihood is then used to optimize terminalarea operations by dynamically moving arrival and departure routes to maximize the expected capacity of the terminal area. Experiments using real weather scenarios on stormy days show that our algorithms recommend that a terminal-area route be modified 30% of the time, opening up 13% more available routes that were forecast to be blocked during these scenarios. The error rate is low, with only 5% of cases corresponding to a modified route being blocked in reality, whereas the original route is in fact open. In addition, for routes predicted to be open with probability 0.95 or greater by our method, 96% of these routes (on average over time horizon) are indeed open in the weather that materializes
    Keywords: Meteorology and Climatology
    Type: Transportation Science (ISSN 0041-1655); 46; 1; 56 - 73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Composite Materials
    Type: JSC-CN-28149 , Composite Conference 2012; Aug 14, 2012 - Aug 17, 2012; Las Cruces, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-13
    Description: The North American Land Data Assimilation System (NLDAS) is a collaborative project between NASA GSFC, NOAA, Princeton University, and the University of Washington. NLDAS has created surface meteorological forcing data sets using the best-available observations and reanalyses. The forcing data sets are used to drive four separate land-surface models (LSMs), Mosaic, Noah, VIC, and SAC, to produce data sets of soil moisture, snow, runoff, and surface fluxes. NLDAS hourly data, accessible from the NASA GES DISC Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings, are widely used by various user communities in modeling, research, and applications, such as drought and flood monitoring, watershed and water quality management, and case studies of extreme events. More information is available at http://ldas.gsfc.nasa.gov/. To further facilitate analysis of water and energy budgets and trends, NLDAS monthly data sets have been recently released by NASA GES DISC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN6848 , American Geophysical Union (AGU) Fall Meeting; Dec 09, 2012 - Dec 13, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: International Ocean Vector Science Team Meeting (IOWVST); Jun 12, 2012 - Jun 14, 2012; Utrecht; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-13
    Description: SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.
    Keywords: Meteorology and Climatology
    Type: M12-2329 , American Geophysical Union (AGU) Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-13
    Description: As an integral part of the National Climate Assessment (NCA), technical assessment reports for 13 regions in the U.S. that describe the scientific rationale to support climate change impacts within the purview of these regions, and provide adaptation or mitigation measures in response to these impacts. These technical assessments focus on climate change impacts on sectors that are important environmental, biophysical, and social and economic aspects of sustainability within the U.S.: Climate change science, Ecosystems and biodiversity, Water resources, Human health, Energy supply and use, Water/energy/land use, Transportation, Urban/infrastructure/vulnerability, Agriculture, Impacts of climate change on tribal/indigenous and native lands and resources, Forestry, Land use/land cover change, Rural communities development, and Impacts on biogeochemical cycles, with implications for ecosystems and biodiversity. There is a critical and timely need for the development of mitigation and adaptation strategies in response to climate change by the policy and decision making communities, to insure resiliency and sustainability of the built environment in the future.
    Keywords: Meteorology and Climatology
    Type: M12-2325 , American Geophysical Union (AGU) 45th Annual Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-13
    Description: Objective: To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-to-ground [CG] ) and extent. Data and Methodology: a) NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TradeMark) (NLDN) observations following ordinary convective cells through their lifecycle. b) LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles (Koshak et al. 2012). c) LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler).
    Keywords: Meteorology and Climatology
    Type: M12-2326 , American Geophysical Union (AGU) 45th Annual Fall Meeting 2012; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-13
    Description: SPoRT is using current capabilities of MODIS and VIIRS, combined with current GOES (i.e. Hybrid Imagery) to demonstrate mesoscale capabilities of future ABI instrument. SPoRT is transitioning RGBs from EUMETSAT standard "recipes" to demonstrate a method to more efficiently handle the increase channels/frequency of ABI. Challenges for RGB production exist. Internal vs. external production, Bit depth needed, Adding quantitative information, etc. SPoRT forming group to address these issues. SPoRT is leading efforts on the application of total lightning in operations and to educate users of this new capability. Training in many forms is used to support testbed activities and is a key part to the transition process.
    Keywords: Meteorology and Climatology
    Type: M12-2338 , 93rd American Geophysical Union (AGU) 45th Annual Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: International Ocean Vector Science Team Meeting (IOWVST); Jun 12, 2012 - Jun 14, 2012; Utrecht; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Composite Materials
    Type: 3rd Annual NEPP Electronic Technology Workshop (ETW); Jun 11, 2012 - Jun 13, 2012; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-13
    Description: NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.
    Keywords: Meteorology and Climatology
    Type: M12-2322 , American Geophysical Union (AGU) 45th Annual Fall Meeting 2012; Dec 03, 2012 - Dec 10, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-13
    Description: Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - 〉85 m/s RR 5 - 〉 100 mm/hr.
    Keywords: Meteorology and Climatology
    Type: M12-2324 , American Geophysical Union (AGU) Union 45th Annual Fall Meeting; Dec 03, 2012 - Dec 10, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-13
    Description: The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked to stratosphere-troposphere exchange (WMO, 1985).
    Keywords: Meteorology and Climatology
    Type: M12-2307 , American Geophysical Union (AGU) 45th Annual Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-2306 , Federal University of Santa Maria (UFSM) in conjunction with teh CHUVA-Sul Field Campaign; Nov 26, 2012; Maria; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-13
    Description: The need for comprehensive studies of the relationships between past and projected changes of regional climate and human activity in comple x urban environments has been well established. The HyspIRI preparato ry airborne activities in California, associated science and applicat ions research, and eventually HyspIRI itself provide an unprecedented opportunity for development and implementation of an integrated data and modeling analysis system focused on coastal urban environments. We will utilize HyspIRI preparatory data collections in developing ne w remote sensing-based tools for investigating the integrated urban e nvironment, emphasizing weather, climate, and energy demands in compl ex coastal cities.
    Keywords: Meteorology and Climatology
    Type: M12-2253 , 2012 Annual HyspIRI Science Workshop; Oct 16, 2012 - Oct 18, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-2331 , SEASONS Conference; Nov 14, 2012 - Nov 16, 2012; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-13
    Description: Key points that this analysis will begin to address are: 1)What physically is going on in the cloud when there is a jump in lightning? - Updraft variations, ice fluxes. 2)How do these processes fit in with severe storm conceptual models? 3)What would this information provide an end user (i.e., the forecaster)? - Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi-Doppler derived physical relationships 4) How do we best transistionthis algorithm into the warning decision process. The known relationship between lightning updraft strength/volume and precipitation ice mass production can be extended to the concept of the lightning jump. Examination of the first lightning jump times from 329 storms in Schultz et al. shows an increase in the mean reflectivity profile and mixed phase echo volume during the 10 minutes prior to the lightning jump. Limited dual-Doppler results show that the largest lightning jumps are well correlated in time with increases in updraft strength/volume and precipitation ice mass production; however, the smaller magnitude lightning jumps appear to have more subtle relationships to updraft and ice mass characteristics.
    Keywords: Meteorology and Climatology
    Type: M12-2255 , American Meteorological Society (AMS) Severe Local Storms Conference; Nov 05, 2012 - Nov 08, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-13
    Description: Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.
    Keywords: Meteorology and Climatology
    Type: KSC-2012-280 , 2012 ASA, CSSA, and SSSA International Annual Meetings; Oct 21, 2012 - Oct 24, 2012; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 20 12 (July - September 2012).
    Keywords: Meteorology and Climatology
    Type: DRL-003 DRD-004 , KSC-2012-291
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-13
    Description: Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.
    Keywords: Meteorology and Climatology
    Type: NF1676L-15626 , Journal of Applied Meteorology and Climatology; 51; 10; 1811-1822
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-13
    Description: Studies have found that convective storms with overshooting-top (OT) signatures in weather satellite imagery are often associated with hazardous weather, such as heavy rainfall, tornadoes, damaging winds, and large hail. An objective satellite-based OT detection product has been developed using 11-micrometer infrared window (IRW) channel brightness temperatures (BTs) for the upcoming R series of the Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager. In this study, this method is applied to GOES-12 IRW data and the OT detections are compared with radar data, severe storm reports, and severe weather warnings over the eastern United States. The goals of this study are to 1) improve forecaster understanding of satellite OT signatures relative to commonly available radar products, 2) assess OT detection product accuracy, and 3) evaluate the utility of an OT detection product for diagnosing hazardous convective storms. The coevolution of radar-derived products and satellite OT signatures indicates that an OT often corresponds with the highest radar echo top and reflectivity maximum aloft. Validation of OT detections relative to composite reflectivity indicates an algorithm false-alarm ratio of 16%, with OTs within the coldest IRW BT range (less than 200 K) being the most accurate. A significant IRW BT minimum typically present with an OT is more often associated with heavy precipitation than a region with a spatially uniform BT. Severe weather was often associated with OT detections during the warm season (April September) and over the southern United States. The severe weather to OT relationship increased by 15% when GOES operated in rapid-scan mode, showing the importance of high temporal resolution for observing and detecting rapidly evolving cloud-top features. Comparison of the earliest OT detection associated with a severe weather report showed that 75% of the cases occur before severe weather and that 42% of collocated severe weather reports had either an OT detected before a severe weather warning or no warning issued at all. The relationships between satellite OT signatures, severe weather, and heavy rainfall shown in this paper suggest that 1) when an OT is detected, the particular storm is likely producing heavy rainfall and/or possibly severe weather; 2) an objective OT detection product can be used to increase situational awareness and forecaster confidence that a given storm is severe; and 3) this product may be particularly useful in regions with insufficient radar coverage.
    Keywords: Meteorology and Climatology
    Type: NF1676L-15627 , Weather and Forecasting; 27; 3; 684?699
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-13
    Description: Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.
    Keywords: Meteorology and Climatology
    Type: NF1676L-15775 , 2012 AGU Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-13
    Description: At NASA Langley Research Center, a variety of cloud, clear-sky, and radiation products are being derived at different scales from regional to global using geostationary satellite (GEOSat) and lower Earth-orbiting (LEOSat) imager data. With growing availability, these products are becoming increasingly valuable for weather forecasting and nowcasting. These products include, but are not limited to, cloud-top and base heights, cloud water path and particle size, cloud temperature and phase, surface skin temperature and albedo, and top-of-atmosphere radiation budget. Some of these data products are currently assimilated operationally in a numerical weather prediction model. Others are used unofficially for nowcasting, while testing is underway for other applications. These applications include the use of cloud water path in an NWP model, cloud optical depth for detecting convective initiation in cirrus-filled skies, and aircraft icing condition diagnoses among others. This paper briefly describes a currently operating system that analyzes data from GEOSats around the globe (GOES, Meteosat, MTSAT, FY-2) and LEOSats (AVHRR and MODIS) and makes the products available in near-real time through a variety of media. Current potential future use of these products is discussed.
    Keywords: Meteorology and Climatology
    Type: Paper No. IN33C-1545 , NF1676L-15807 , 2012 AGU Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-13
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.
    Keywords: Meteorology and Climatology
    Type: M12-2183 , National Weather Association 2012 Annual Meeting; Oct 06, 2012 - Oct 11, 2012; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-13
    Description: Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).
    Keywords: Meteorology and Climatology
    Type: M12-2181 , National Weather Association 37th Annual meeting; Oct 06, 2012 - Oct 11, 2012; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-13
    Description: The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry system's robustness to a variety of environmental conditions could aid in reaching more varied landing sites."
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN4987 , International Planetary Probe Workshop (IPPW); Jun 18, 2012 - Jun 22, 2012; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-13
    Description: With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.
    Keywords: Meteorology and Climatology
    Type: Paper A11B-0040 , NF1676L-15810 , 2012 AGU Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-13
    Description: The disastrous tornado outbreak in Alabama on April 27, 2011 greatly impacted the economy of the state. On record, the tornado outbreak was the second deadliest tornado outbreak in U.S. When considering the agricultural and value-added activities such as food and timber processing, farm inputs, manufacturing, transportation, and retail sales, the dollar value of Alabama agribusiness annually exceeds $40 billion (NASS, 2011). This research aims to examine how the timber and agriculture damage affected the state economy of Alabama and will be used to aid in long-term economic recovery. ASTER imagery was used along with ground-truthed NASS (National Agriculture Statistics Service) crop location records to verify the economic impact tornadoes had on the agricultural economy of the state. This swath damage can be calculated by correlating tornado path with NASS statistics on crop yield, precisely showing the fields affected and dollars lost to this disaster. Not only can this be executed manually using ENVI and ArcGIS, but also through the use of Python, a programming language that has the ability to automate the process, creating a product for initial damage assessment.
    Keywords: Meteorology and Climatology
    Type: M12-2119 , 5th Wernher von Braun Memorial Symposium 2012; Oct 15, 2012 - Oct 18, 2012; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-07-13
    Description: The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.
    Keywords: Meteorology and Climatology
    Type: NF1676L-15750 , 2012 AGU Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-07-13
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS). In last year's NWA abstract on this topic, the suite of SPoRT products supported in the STRC EMS was presented, which includes a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This abstract and companion presentation describes recent upgrades made to the SST and GVF composites, as well as the real-time LIS runs. The Great Lakes sea-ice product is unchanged from 2011. The SPoRT SST composite product has been expanded geographically and as a result, the resolution has been coarsened from 1 km to 2 km to accommodate the larger domain. The expanded domain covers much of the northern hemisphere from eastern Asia to western Europe (0 N to 80 N latitude and 150 E to 10 E longitude). In addition, the NESDIS POES-GOES product was added to fill in gaps caused by the Moderate Resolution Imaging Spectroradiometer (MODIS) being unable to sense in cloudy regions, replacing the recently-lost Advanced Microwave Scanning Radiometer for EOS with negligible change to product fidelity. The SST product now runs twice per day for Terra and Aqua combined data collections from 0000 to 1200 UTC and from 1200 to 0000 UTC, with valid analysis times at 0600 and 1800 UTC. The twice-daily compositing technique reduces the overall latency of the previous version while still representing the diurnal cycle characteristics. The SST composites are available at approximately four hours after the end of each collection period (i.e. 1600 UTC for the nighttime analysis and 0400 UTC for the daytime analysis). The real-time MODIS GVF composite has only received minor updates in the past year. The domain was expanded slightly to extend further west, north, and east to improve coverage over parts of southern Canada. Minor adjustments were also made to the manner in which GVF is calculated from the distribution of maximum Normalized Difference Vegetation Index from MODIS. The presentation will highlight some examples of the substantial inter-annual change in GVF that occurred from 2010 to 2011 in the U.S. Southern Plains as a result of the summer 2011 drought, and the early vegetation green up across the eastern U.S. due to the very warm conditions in March 2012. Finally, the SPoRT LIS runs the operational Noah land surface model (LSM) in real time over much of the eastern half of the CONUS. The Noah LSM is continually cycled in real time, uncoupled to any model, and driven by operational atmospheric analyses over a long-term, multi-year integration. The LIS-Noah provides the STRC EMS with high-resolution (3 km) LSM initialization data that are in equilibrium with the operational analysis forcing. The Noah LSM within the SPoRT LIS has been upgraded from version 2.7.1 to version 3.2, which has improved look-up table attributes for several land surface quantities. The surface albedo field is now being adjusted based on the input real-time MODIS GVF, thereby improving the net radiation. Also, the LIS-Noah now uses the newer MODIS-based land use classification scheme (i.e. the International Biosphere-Geosphere Programme [IGBP]) that has a better depiction of urban corridors in areas where urban sprawl has occurred. STRC EMS users interested in initializing their LSM fields with high-resolution SPoRT LIS data should set up their model domain with the MODIS-IGBP 20-class land use database and select Noah as the LSM.
    Keywords: Meteorology and Climatology
    Type: M12-1903 , 37th National Weather Association Annual Meeting; Oct 06, 2012 - Oct 11, 2012; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019-07-13
    Description: In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.
    Keywords: Meteorology and Climatology
    Type: E-18520 , AIAA 4th Atmospheric Sciences; Jun 25, 2012 - Jun 29, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-13
    Description: In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.
    Keywords: Meteorology and Climatology
    Type: E-18520-1 , AIAA 4th Atmospheric Sciences; Jun 25, 2012 - Jun 29, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-13
    Description: The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.
    Keywords: Meteorology and Climatology
    Type: GSFC.OVPR.6776.2012 , 2012 Earth Science Information Partners (ESIP) Federation Meeting; Jul 17, 2012 - Jul 20, 2012; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-13
    Description: The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.
    Keywords: Composite Materials
    Type: NF1676-15308 , 39th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) Conference; Jul 15, 2012 - Jul 20, 2012; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-13
    Description: Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.
    Keywords: Composite Materials
    Type: NF1676L-15216 , 39th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) Conference; Jul 15, 2012 - Jul 20, 2012; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-07-13
    Description: Thermal protection materials and systems (TPS) are used to protect space vehicles from the heat experienced during entry into an atmosphere. The application for these materials is very specialized as are the materials. They must have specific properties to withstand conditions during specific entries. There is no one-size-fits-all TPS as the conditions experienced by a material are very dependent upon the atmosphere, the entry speed, the size and shape of the vehicle, and the location on the vehicle. However, all TPS must be reliable and efficient to ensure mission safety, that is to protect the vehicle while ensuring that payload is maximized. Types of TPS will be reviewed in relation to types of missions and applications. Both reusable and ablative materials will be discussed. Approaches to characterizing and evaluating these materials will be presented. The role of heritage versus new materials will be described.
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN5732 , HiTemp Conference 2012; Sep 11, 2012 - Sep 13, 2012; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-13
    Description: Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation
    Keywords: Composite Materials
    Type: NF1676L-15237 , 39th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) Conference; Jul 15, 2012 - Jul 20, 2012; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-13
    Description: Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.
    Keywords: Composite Materials
    Type: NF1676L-15443 , SPIE Optics and Photonics 2012; Aug 12, 2012 - Aug 16, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-07-13
    Description: The Joint Polar Satellite System (JPSS) Program is a cooperative program between the National Aeronautics and Space Agency (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to design, develop, and fly the next suite of US civilian polar orbiting environmental sensing instruments. The JPSS Program is a product of the restructuring of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, which occurred in 2010. With the transition to NASA, the JPSS instruments have undergone significant review with numerous updates to the designs as well as made significant progress toward delivering a superior capability to the Nation. This paper will discuss the program transition as it relates to the instruments and the associated transition review efforts, key findings, important changes to the instruments for JPSS and their current development status. The VIIRS instrument will be presented separately.
    Keywords: Meteorology and Climatology
    Type: GSFC.CP.7180.2012 , Society of Photo-Optical Instrumentation Engineers (SPIE) conference; Sep 24, 2012 - Sep 27, 2012; Edinburgh; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: KSC-2012-233 , 2012 International Conference on Lightning Protection; Sep 02, 2012 - Sep 07, 2012; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-1767 , NOAA Science Week Workshop; Apr 30, 2012 - May 02, 2012; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: DRL-003 DRD-004 , KSC-2012-219
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-13
    Description: NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This study focuses on the intersection between the rod-stiffener and the foam-filled frame in a PRSEUS specimen. Compression loading is considered, which induces stress concentrations at the intersection point that can lead to failures. An experiment with accompanying analysis for a single-frame specimen is described, followed by a parametric study of simple reinforcements to reduce strains in the intersection region.
    Keywords: Composite Materials
    Type: NF1676L-14189 , 15th US-Japan Conference on Composite Materials; Oct 01, 2012 - Oct 03, 2012; Arlington, VA; United States|2012 American Society for Composites 27th Technical Conference; Oct 01, 2012 - Oct 03, 2012; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-13
    Description: Solid rocket motors (SRMs) typically use nozzle materials which are required to maintain their shape as well as insulate the underlying support structure during the motor operation. In addition, SRMs need internal insulation materials to protect the motor case from the harsh environment resulting from the combustion of solid propellant. In the nozzle, typical materials consist of high density graphite, carbon-carbon composites and carbon phenolic composites. Internal insulation of the motor cases is typically a composite material with carbon, asbestos, Kevlar, or silica fibers in an ablative matrix such as EPDM or NBR. For both nozzle and internal insulation materials, the charring process occurs when the hot combustion products heat the material intensely. The pyrolysis of the matrix material takes away a portion of the thermal energy near the wall surface and leaves behind a char layer. The fiber reinforcement retains the porous char layer which provides continued thermal protection from the hot combustion products. It is of great interest to characterize both the total erosion rates of the material and the char layer thickness. By better understanding of the erosion process for a particular ablative material in a specific flow environment, the required insulation material thickness can be properly selected. The recession rates of internal insulation and nozzle materials of SRMs are typically determined by testing in some sort of simulated environment; either arc-jet testing, flame torch testing, or subscale SRMs of different size. Material recession rates are deduced by comparison of pre- and post-test measurements and then averaging over the duration of the test. However, these averaging techniques cannot be used to determine the instantaneous recession rates of the material. Knowledge of the variation in recession rates in response to the instantaneous flow conditions during the motor operation is of great importance. For example, in many SRM configurations the recession of the solid propellant grain can drastically alter the flow-field and effect the recession of internal insulation and nozzle materials. Simultaneous measurement of the overall erosion rate, the development of the char layer, and the recession of the char-virgin interface during the motor operation can be rather difficult. While invasive techniques have been used with limited success, they have serious drawbacks. Break wires or make wire sensors can be installed into a sufficient number of locations in the charring material from which a time history of the charring surface can be deduced. These sensors fundamentally alter the local structure of the material in which they are imbedded. Also, the location of these sensors within the material is not known precisely without the use of an X-ray. To determine instantaneous recession rates, real-time X-ray radiography (X-ray RTR) has been utilized in several SRM experiments at PSU. The X-ray RTR system discussed in this paper consists of an X-ray source, X-ray image intensifier, and CCD camera connected to a capture computer. The system has been used to examine the ablation process of internal insulation as well as nozzle material erosion in a subscale SRM. The X-ray source is rated to 320 kV at 10 mA and has both a large (5.5 mm) and small (3.0 mm) focal spot. The lead-lined cesium iodide X-ray image intensifier produces an image which is captured by a CCD camera with a 1,000 x 1,000 pixel resolution. To produce accurate imagery of the object of interest, the alignment of the X-ray source to the X-ray image intensifier is crucial. The image sequences captured during the operation of an SRM are then processed to enhance the quality of the images. This procedure allows for computer software to extract data on the total erosion rate and the char layer thickness. Figure 1 Error! Reference source not found.shows a sequence of images captured during the operation the subscale SRM with the X-ray RTR system. The X-rayTR system, alignment procedure, uncertainty determination, and image analysis process will be discussed in detail in the full manuscript.
    Keywords: Composite Materials
    Type: M11-1287 , 9-ISICP Symposium; Jul 09, 2012 - Jul 13, 2012; Quebec City; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-13
    Description: Game ]changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric propulsion (NEP) systems. Carbon nanotubes (CNT) and carbon fiber materials have the potential to offer significant improvements in thermal conductivity and mass properties. A test apparatus was developed to test advanced radiator designs. This test apparatus uses a resistance heater inside a graphite tube. Metallic tubes can be slipped over the graphite tube to simulate a heat pipe. Several sub ]scale test articles were fabricated using CNT cloth and pitch ]based carbon fibers, which were bonded to a metallic tube using an active braze material. The test articles were heated up to 600 C and an infrared (IR) camera captured the results. The test apparatus and experimental results are presented here.
    Keywords: Composite Materials
    Type: M12-1894 , National Space and Missile Materials Symposium (NSMMS); Jun 25, 2012 - Jun 28, 2012; Tampa, FL.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-07-13
    Description: The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. Since rainfall and snowfall vary greatly from place to place and over time, satellites can provide more uniform observations of rain and snow around the globe than ground instruments, especially in areas where surface measurements are difficult. Relative to current global rainfall products, GPM data products will be characterized by: (l) more accurate instantaneous precipitation measurements (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of domestic and international microwave radiometers including operational humidity sounders, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori cloud/hydrometeor database derived from GPM Core sensor measurements. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 non-Sun-synchronous orbit to serve as a physics observatory and a reference standard to unify precipitation measurements by a constellation of dedicated and operational passive microwave sensors. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multichannel (l0-183 GHz) GPM Microwave Radiometer (GMI). Since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. The GMI uses 13 different microwave channels to observe energy from the different types of precipitation through clouds for estimating everything from heavy to light rain and for detecting falling snow. As the satellite passes over Earth, the GMI constantly scans a region 885 kilometers across. The Ball Aerospace and Technology Corporation built the GMI under contract with NASA Goddard Space Flight Center. The DPR provides three-dimensional information about precipitation particles derived from reflected energy by these particles at different heights within the cloud system. The two frequencies of the DPR also allow the radar to infer the sizes of precipitation particles and offer insights into a storm's physical characteristics. The Ka-band frequen~y scans across a region of 125 kilometers and is nested within the wider scan of the Ku-band frequency of 245 kilometers. The Japan Aerospace and Exploration Agency (JAXA) and Japan's National Institute of Information and Communications Technology (NICT) built the DPR. The Core Observatory satellite will fly at an altitude of 253 miles (407 kilometers) in a non-Sun-synchronous orbit that covers the Earth from 65 S to 65 N - from about the Antarctic Circle to the Arctic Circle. The GPM Core Observatory is being developed and tested at NASA Goddard Space Flight Center. Once complete, a Japanese H-lIA rocket will carry thPM Core Observatory into orbit from Tanegashima Island, Japan in 2014. The GPM constellation is envisioned to comprise 8 or more microwave sensors provided by partners, including both conical imagers and cross-track sounders. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as humidity sounders or precipitation sensors on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), NOAA-NASA Joint Polar Satellite System (JPSS) satellites, European MetOp satellites, and DMSP follow-on sensors. In addition, data from Chinese and Russian microwave radiometers may be available through international cooperation under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas: (1) Improved knowledge of the Earth's water cycle and its link to climate change (2) New insights into precipitation microphysics, storm structures and large-scale atmospheric processes (3) Better understanding of climate sensitivity and feedback processes (4) Extended capabilities in monitoring and predicting hurricanes and other extreme weather events (5) Improved forecasting capabilities for natural hazards, including floods, droughts and landslides. (6) Enhanced numerical prediction skills for weather and climate (7) Better agricultural crop forecasting and monitoring of freshwater resources. An overview of the GPM mission concept and science activities in the United States, together with an update on international collaborations in radiometer intercalibration and ground validation, will be presented.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6998.2012 , 2012 IEEE Geoscience and Remote Sensing Symposium (IGARSS); Jul 22, 2012 - Jul 27, 2012; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-07-13
    Description: MODIS Snow/Cloud and True Color RGB imagery has been used by SPoRT partners since 2004 to examine changes in surface features such as snow cover, vegetation, ocean color, fires, smoke plumes, and oil spills.
    Keywords: Meteorology and Climatology
    Type: M12-1769 , NOAA Satellite Science Week Conference; Apr 30, 2012 - May 02, 2012; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-13
    Description: More than 100 optical specimens were flown on the MISSE7 platform. These included bare substrates in addition to coatings designed to exhibit clearly defined or enhanced sensitivity to the accumulation of contamination. Measurements were performed using spectrophotometers operating from the UV through the IR as well as ellipsometry. Results will be presented in addition to discussion of the best options for design of samples for future exposure experiments.
    Keywords: Composite Materials
    Type: M12-1853 , National Space and Missile Materials Symposium; Jun 25, 2012 - Jun 28, 2012; Tampa, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-13
    Description: The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.
    Keywords: Meteorology and Climatology
    Type: Paper No. 5062 , NF1676L-14650 , NF1676L-14284 , IGARSS 2012 - IEEE International Geoscience and Remote Sensing Symposium; Jul 22, 2012 - Jul 27, 2012; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Motivation: (1) NARloy-Z (Cu-3%Ag-0.5%Zr) is the state of the art, high thermal conductivity structural alloy used for making liquid rocket engine main combustion chamber liner. It has a Thermal conductivity approx 80% of pure copper. (2) Improving the thermal conductivity of NARloy-Z will help to improve the heat transfer efficiency of combustion chamber. (3)Will also help to reduce the propulsion system mass and increase performance. It will also increases thrust to weight ratio. (4) Improving heat transfer helps to design and build better thermal management systems for nuclear propulsion and other applications. Can Carbon nanotubes (CNT) help to improve the thermal conductivity (TC)of NARloy-Z? (1)CNT's have TC of approx 20X that of copper (2) 5vol% CNT could potentially double the TC of NARloy-Z if properly aligned (3) Improvement will be less if CNT s are randomly distributed, provided there is a good thermal bond between CNT and matrix. Prior research has shown poor results (1) No TC improvement in the copper-CNT composite reported (2)Reported values are typically lower (3) Attributed to high contact thermal resistance between CNT and Cu matrix (4)Results suggest that a bonding material between CNT and copper matrix is required to lower the contact thermal resistance It is hypothesized that Zr in NARloy-Z could act as a bonding agent to lower the contact thermal resistance between CNT and matrix.
    Keywords: Composite Materials
    Type: M12-1705 , NARloy-Z-Carbon Nanotube Composites; Apr 16, 2012; TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-1712 , 30th Conference on Hurricanes and Tropical Meteorology; Apr 15, 2012 - Apr 20, 2012; Ponte Vedra Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-13
    Description: Discusses: (1) Comparison of AIRS and CERES anomaly time series of OLR (2) Explanation of recent decreases in global and tropical mean values of OLR and (3) Data Sets Used
    Keywords: Meteorology and Climatology
    Type: GSFC.OVPR.01289.2012 , AIRS Science Team Meeting; Apr 24, 2012 - Apr 27, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-13
    Description: We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.
    Keywords: Meteorology and Climatology
    Type: NF1676L-14480 , 26th International Laser Radar Conference; Jun 25, 2012 - Jun 29, 2012; Poto Heli; Greece
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-13
    Description: AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6384.2012 , GSFC.CP.6848.2012 , Infrared Remote Sensing and Instrumentation Symposium; Aug 08, 2012 - Aug 19, 2012; San Diego, CA; United States|SPIE Optics and Photonics 2012; Aug 12, 2012 - Aug 16, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-13
    Description: This paper presents an overview of discussions during the Cloud s Role session at the Observing and Modelling Earth s Energy Flows Workshop. N. Loeb and B. Soden convened this session including 10 presentations by B. Stevens, B. Wielicki, G. Stephens, A. Clement, K. Sassen, D. Hartmann, T. Andrews, A. Del Genio, H. Barker, and M. Sugi addressing critical aspects of the role of clouds in modulating Earth energy flows. Presentation topics covered a diverse range of areas from cloud microphysics and dynamics, cloud radiative transfer, and the role of clouds in large-scale atmospheric circulations patterns in both observations and atmospheric models. The presentations and discussions, summarized below, are organized around several key questions raised during the session. (1) What is the best way to evaluate clouds in climate models? (2) How well do models need to represent clouds to be acceptable for making climate predictions? (3) What are the largest uncertainties in clouds? (4) How can these uncertainties be reduced? (5) What new observations are needed to address these problems? Answers to these critical questions are the topics of ongoing research and will guide the future direction of this area of research.
    Keywords: Meteorology and Climatology
    Type: NF1676L-14977 , Surveys in Geophysics (ISSN 0169-3298); 33; 4-Mar; 609-617
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-13
    Description: Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kilograms per square meters (3.1 pounds per cubic feet (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
    Keywords: Composite Materials
    Type: E-18276 , Society for the Advancement of Materials and Process Engineering (SAMPE) Conference; May 21, 2012 - May 24, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-13
    Description: The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
    Keywords: Composite Materials
    Type: E-18274 , Earth and Space 2012 Confeence; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-13
    Description: Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.
    Keywords: Meteorology and Climatology
    Type: SSTI-2220-0235 , MAPPS/ASPRS Specialty Concurrence; Oct 29, 2012 - Nov 01, 2012; Tampa, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-13
    Description: The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
    Keywords: Composite Materials
    Type: E-18258 , 53rd AIAA Conference on Structures, Structural Dynamics and Materials (SDM); Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-13
    Description: In order to design impact resistant aerospace components made of triaxially-braided polymer matrix composite materials, a need exists to have reliable impact simulation methods and a detailed understanding of the material behavior. Traditional test methods and specimen designs have yielded unrealistic material property data due to material mechanisms such as edge damage. To overcome these deficiencies, various alternative testing geometries such as notched flat coupons have been examined to alleviate difficulties observed with standard test methods. The results from the coupon level tests have been used to characterize and validate a macro level finite element-based model which can be used to simulate the mechanical and impact response of the braided composites. In the analytical model, the triaxial braid unit cell is approximated by using four parallel laminated composites, each with a different fiber layup, which roughly simulates the braid architecture. In the analysis, each of these laminated composites is modeled as a shell element. Currently, each shell element is considered to be a smeared homogeneous material. Simplified micromechanics techniques and lamination theory are used to determine the equivalent stiffness properties of each shell element, and results from the coupon level tests on the braided composite are used to back out the strength properties of each shell element. Recent improvements to the model include the incorporation of strain rate effects into the model. Simulations of ballistic impact tests have been carried out to investigate and verify the analysis approach.
    Keywords: Composite Materials
    Type: E-18247 , ASCE Earth and Space 2012 Conference; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-13
    Description: As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.
    Keywords: Composite Materials
    Type: GT 2012-68639 , E-18244 , ASME Turbo Expo 2012: Power for Land, Sea and Air (GT2012); Jun 11, 2012 - Jun 15, 2012; Copenhagen; Denmark
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-13
    Description: During the Mid-latitude Convective Cloud Experiment (MC3E), NASA's GPM GV Disdrometer and Radar Observations of Precipitation (DROP) Facility deployed an array of disdrometers and rain gauges in northern Oklahoma to sample, with high resolution, the drop size distribution (DSD) for use in development of precipitation retrieval algorithms for the GPM core satellite. The DROP Facility instruments deployed during MC3E consisted of 16 autonomous Parsivel units, 5 two-dimensional video disdrometers (2DVD), a vertical pointing K-band radar and 32 tipping bucket rain gauges. There were several rainfall events during MC3E in which rain drops exceeding 5 mm in diameter were recorded. During a convective rainfall event one of the 2DVDs measured a large rain drop of 8 mm in diameter falling from a convective cell under which several other disdrometers revealed a broad DSD spectrum across this cell and median drop diameter of 3.1 mm. The NPOL radar, which was scanning over the disdrometer array in high resolution RHI mode (every 40 sec), during a stratiform rainfall event revealed a 1 km thick bright band with locally thicker segments that produced rainfall rates of 6-10 mm/hr and indications of DSD modulations as enhanced concentrations of mid-sized rain drops (1.5-3.0 mm) descended below cloud base. These observations are key in characterizing the DSD variability within the 4 km footprint of the GPM Dual-wavelength Precipitation Radar that will provide a global map of precipitation as well as DSD.
    Keywords: Meteorology and Climatology
    Type: M12-1539 , 92nd American Meteorological Society (AMS) Annual Meeting; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-13
    Description: The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.
    Keywords: Composite Materials
    Type: NF1676L-12008 , 62nd International Astronautical Congress; Oct 03, 2011 - Oct 07, 2011; Cape Town; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-13
    Description: The NASA Kennedy Space Center (KSC) and the Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network (NLDN), and a volumetric mapping array, the lightning detection and ranging II (LDAR II) system: These systems are used to monitor and characterize lightning that is potentially hazardous to launch or ground operations and hardware. These systems are not perfect and both have documented missed lightning events when compared to the existing lightning surveillance system at Launch Complex 39B (LC39B). Because of this finding it is NASA's plan to install a lightning surveillance system around each of the active launch pads sharing site locations and triggering capabilities when possible. This paper shows how the existing lightning surveillance system at LC39B has performed in 2011 as well as the plan for the expansion around all active pads.
    Keywords: Meteorology and Climatology
    Type: KSC-2012-025R , KSC-2012-025 , 4th International Lightning Meteorology Conferemce (ILMC); Apr 02, 2012 - Apr 05, 2012; Broomfield, CO; United States|22nd International Lightning Detection Conference (ILDC); Apr 02, 2012 - Apr 05, 2012; Broomfield, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-1545 , 92nd Annual American Meteorological Society (AMS) Meeting; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-07-13
    Description: Future space-based missions will take measurements of the universe with unprecedented results. To do this, these missions will require materials and bonding techniques with ever-increasing stability in order to make their measurements. As an example, the Laser Interferometer Space Antenna (LISA) will detect and observe gravitational waves in the 0.1 mHz to 1 Hz frequency range with strain sensitivities on the order of 10(exp -21) at its most sensitive frequency. To make these measurements, critical components such as the optical bench or telescope support structure, will need to have path-length stabilities of better than 1 pm/(square root)Hz. The baseline construction method for the LISA optical bench is to affix fused silica optical components to a Zerodur baseplate using hydroxide-catalysis bonding (HCB). HCB is a recently developed technique that allows the bonding of glasses, some metals, and silicon carbide with significant strength and stability with a bond thickness of less than a few micrometers. In addition, a wide range of surface profiles can be bonded using only a small amount of hydroxide solution. These characteristics make HCB ideal for adhering optical components in complex optical systems. In addition to being used to construct the LISA optical bench, the HCB technique shows great promise for constructing other structures such as hollow retroreflectors to be used for lunar laser ranging, or a visible nulling coronograph to be used for exo-planet detection. Here we present construction techniques that could be used to make an optical bench, hollow retroreflector, nulling coronograph, or other quasi-monolithic structures using HCB. In addition, we present dimensional stability results of an optical bench that was made using HCB, as well as HCB strength measurements.
    Keywords: Composite Materials
    Type: GSFC.CP.5617.2011 , 2012 IEEE Aerospace Conference; Mar 03, 2012 - Mar 10, 2012; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-13
    Description: As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.
    Keywords: Composite Materials
    Type: NF1676L-13989 , 36th International Conferernce and Exhibition on Advanced Ceramics and Composites; Jan 22, 2012 - Jan 27, 2012; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-13
    Description: The MISR (Multi-angle Imaging SpectroRadiometer) instrument on the Terra satellite has been retrieving cloud motion vectors (CMVs) globally and almost continuously since early in 2000. In February 2012 the new MISR Level 2 Cloud product was publicly released, providing cloud motion vectors at 17.6 km resolution with improved accuracy and roughly threefold increased coverage relative to the 70.4 km resolution vectors of the current MISR Level 2 Stereo product (which remains available). MISR retrieves both horizontal cloud motion and height from the apparent displacement due to parallax and movement of cloud features across three visible channel (670nm) camera views over a span of 200 seconds. The retrieval has comparable accuracy to operational atmospheric motion vectors from other current sensors, but holds the additional advantage of global coverage and finer precision height retrieval that is insensitive to radiometric calibration. The MISR mission is expected to continue operation for many more years, possibly until 2019, and Level 2 Cloud has the possibility of being produced with a sensing-to-availability lag of 5 hours. This report compares MISR CMV with collocated motion vectors from arctic rawinsonde sites, and from the GOES and MODISTerra instruments. CMV at heights below 3 km exhibit the smallest differences, as small as 3.3 m/s for MISR and GOES. Clouds above 3 km exhibit larger differences, as large as 8.9 m/s for MISR and MODIS. Typical differences are on the order of 6 m/s.
    Keywords: Meteorology and Climatology
    Type: 11th International Winds Workshop; Feb 20, 2012 - Feb 24, 2012; Auckland; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-13
    Description: Microcracking in composite laminates is a known precursor to the growth of inter-ply delaminations and larger scale damage. Microcracking can lead to the attenuation of ultrasonic waves due to the crack-induced scattering. 3D elastodynamic finite integration technique (EFIT) has been implemented to explore the scattering of ultrasonic waves due to microcracks in anisotropic composite laminates. X-ray microfocus computed tomography data was directly input into the EFIT simulation for these purposes. The validated anisotropic 3D EFIT code is shown to be a useful tool for exploring the complex multiple-scattering which arises from extensive microcracking.
    Keywords: Composite Materials
    Type: NF1676L-15212 , 39th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) Conference; Jul 15, 2012 - Jul 20, 2012; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-13
    Description: Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.
    Keywords: Meteorology and Climatology
    Type: GSFC.CP.6789.2012 , Conference on Intelligent Data Understanding; Oct 24, 2012 - Oct 26, 2012; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The presentation will consist of showing arc jet data mysterious to the modelers. It will show pictures from an arc jet test where a material (unidentified) exhibited a failure mode that nobody understands followed by thermocouple data from arc jet tests on another (unidentified) material of interest in which the T/Cs exhibit repeatable, consistent, fascinating yet frustrating response characteristics that have the modelers stumped. This all happens between RT and 200 F. Unless we figure out what the responsible phenomenology is and can model it, we can't size the TPS with any confidence.
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN4856 , 5th Ablation Workshop; Feb 28, 2012 - Mar 01, 2012; Lexington, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-07-13
    Description: Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.
    Keywords: Composite Materials
    Type: NF1676L-14243 , 15th US-Japan Conference on Composite Materials; Oct 01, 2012 - Oct 03, 2012; Arlington, VA; United States|27th Technical Conference; Oct 01, 2012 - Oct 03, 2012; Arlington, VA; United States|2012 American Society for Composites; Oct 01, 2012 - Oct 03, 2012; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-13
    Description: In order to practically utilize ceramic matrix composites in aircraft engine components, robust analysis tools are required that can simulate the material response in a computationally efficient manner. The MAC/GMC software developed at NASA Glenn Research Center, based on the Generalized Method of Cells micromechanics method, has the potential to meet this need. Utilizing MAC/GMC, the effective stiffness properties, proportional limit stress and ultimate strength can be predicted based on the properties and response of the individual constituents. In this paper, the effective stiffness and strength properties for a representative laminated ceramic matrix composite with a large diameter fiber are predicted for a variety of fiber orientation angles and laminate orientations. As part of the analytical study, methods to determine the in-situ stiffness and strength properties of the constituents required to appropriately simulate the effective composite response are developed. The stiffness properties of the representative composite have been adequately predicted for all of the fiber orientations and laminate configurations examined in this study. The proportional limit stresses and strains and ultimate stresses and strains were predicted with varying levels of accuracy, depending on the laminate orientation. However, for the cases where the predictions did not have the desired level of accuracy, the specific issues related to the micromechanics theory were identified which could lead to difficulties that were encountered that could be addressed in future work.
    Keywords: Composite Materials
    Type: NASA/TM-2012-217737 , E-18482 , 27th Technical Conference; Oct 01, 2012 - Oct 03, 2012; Arlington, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-13
    Description: The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.
    Keywords: Composite Materials
    Type: NF1676L-15094 , 2012 American Society for Composites; Oct 01, 2012 - Oct 03, 2012; Arlington, TX; United States|27th Technical Conference; Oct 01, 2012 - Oct 03, 2012; Arlington, TX; United States|15th US-Japan Conference on Composite Materials; Oct 01, 2012 - Oct 03, 2012; Arlington, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-13
    Description: As NASA communication networks upgrade to higher frequencies, such as Ka-Band, atmospherically induced attenuation can become significant. This attenuation is caused by rain, clouds and atmospheric gases (oxygen and water vapor), with rain having the most noticeable effects. One technique to circumvent the increase in attenuation is to operate two terminals separated by a distance that exceeds the average rain cell size. The fact that rain cells are of finite size can then be exploited by rerouting the signal to the terminal with the strongest link. This technique, known as site diversity, is best suited for climates that have compact (less than 2km) and intense rain cells such as in Guam. In order to study the potential diversity gain at the Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam a site test interferometer (STI) was installed in May of 2010. The STI is composed of two terminals with a 900m baseline that observe the same unmodulated beacon signal broadcast from a geostationary satellite (e.g., UFO 8). The potential site diversity gain is calculated by measuring the difference in signal attenuation seen at each terminal. Over the two years of data collection the cumulative distribution function (CDF) of the site diversity gain shows a better than 3 dB improvement for 90% of the time over standard operation. These results show that the use of site diversity in Guam can be very effective in combating rain fades.
    Keywords: Meteorology and Climatology
    Type: E-18496 , GRC-E-DAA-TN5821 , 18th Ka and Broadband Communication Conference; Sep 24, 2012 - Sep 27, 2012; Ottawa; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-13
    Description: A new test method is presented for the purpose of investigating migration of a delamination between neighboring ply interfaces in fiber-reinforced, polymer matrix tape laminates. The test is a single cantilever beam configuration consisting of a cross-ply laminate with a polytetrafluoroethylene (PTFE) insert implanted at the mid-plane and spanning part way along the length of the specimen. The insert is located between a 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The specimen is clamped at both ends onto a rigid baseplate and is loaded on its upper surface via a piano hinge. Tests were conducted with the load-application point located on the intact portion of the specimen in order to initiate delamination growth onset followed by migration of the delamination to a neighboring 90/0 ply interface by kinking through the 90- degree ply stack. Varying this position was found to affect the distance relative to the load-application point at which migration initiated. In each specimen, migration initiated by a gradual transition of the delamination at the 0/90 interface into the 90- degree ply stack. In contrast, transition of the kinked crack into the 90/0 interface was sudden. Fractography of the specimens indicated that delamination prior to migration was generally mixed mode-I/II. Inspection of the kink surface revealed mode-I fracture. In general, use of this test allows for the observation of the growth of a delamination followed by migration of the delamination to another ply interface, and should thus provide a means for validating analyses aimed at simulating migration.
    Keywords: Composite Materials
    Type: NF1676L-15085 , 2012 American Society for Composites 27th Technical Conference 15 US-Japan Conference on Composite Materials; Oct 01, 2012 - Oct 03, 2012; Arlington, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...