ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The tensile and stress-rupture behavior of SiC/SiC minicomposite containing a chemically vapor deposited (CVD) ZrO2 interphase was evaluated. Fractographic analyses showed that in situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 interphase. When the ZrO2 interphase structure possessed a weakly bonded interface within the dense ZrO2 interphase coating layer, the interphase sufficiently protected the fiber surface from processing degradation and promoted matrix crack deflection around the fibers. With this weakly bonded interphase, the stress-rupture properties of SiC/SiC minicomposite at 950° and 1200°C appeared to be controlled by fiber rupture properties, and compared favorably to those previously measured for state-of-the-art BN fiber coatings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Typically, the debonding and sliding interface enabling fiber pullout for SiC-fiber-reinforced SiC-matrix composites with BN-based interphases occurs between the fiber and the interphase. Recently, composites have been fabricated where interface debonding and sliding occur between the BN interphase and the matrix. This results in two major improvements in mechanical properties. First, significantly higher failure strains were attained due to the lower interfacial shear strength with no loss in ultimate strength properties of the composites. Second, significantly longer stress-rupture times at higher stresses were observed in air at 815°3C. In addition, no loss in mechanical properties was observed for composites that did not possess a thin carbon layer between the fiber and the interphase when subjected to burner-rig exposure. Two primary factors were hypothesized for the occurrence of debonding and sliding between the BN interphase and the SiC matrix: a weaker interface at the BN/matrix interface than the fiber/BN interface and a residual tensile/shear stress-state at the BN/matrix interface of melt-infiltrated composites. Also, the occurrence of outside debonding was believed to occur during composite fabrication, i.e., on cooldown after molten silicon infiltration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The phase contents and morphology of a ZrO2 fiber coating deposited at 1050°C on Hi-NicalonTM by chemical vapor deposition (CVD) were examined as a function of deposition time from 5–120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (i) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (ii) martensitic transformation of the tetragonal phase to a monoclinic phase on reaching a critical grain size; and (iii) development of significant compressive hoop stresses because of the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Several different types of SiC fiber tows were coated with BN and composited using chemically vapor-infiltrated SiC to form single-tow minicomposites. The types of SiC fiber included Nicalon™, Hi-Nicalon™, and the new Sylramic™ polycrystalline SiC fiber. The interfacial shear stresses were determined from unload–reload tensile hysteresis-loop tests. The ultimate stress and strain properties also were determined for the minicomposites. The ultimate strengths of the newer Hi-Nicalon and Sylramic fibers were superior to that of Nicalon minicomposites with similar fiber volume fractions. The Sylramic minicomposites had the lowest strain to failure and highest interfacial shear strength, respectively, because of the high modulus of the fiber and the rough surface of this fiber type. The apparent interfacial shear strength increased as the stress increased for the Sylramic minicomposites, which also was attributed to the surface roughness of this fiber.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The oxidation of BN composite interphases was examined with a series of model materials. Oxidation was examined in both low-water-vapor (∼20 ppm H2O/O2) environments at 900°C and high-water-vapor (1% and 10% H2O/O2) environments at 700° and 800°C. The low-water-vapor case was explored with layered BN/SiC materials. This case was dominated by borosilicate glass formation, and the 20 ppm water vapor gradually removed the boron from the glass, leaving a larger amount of SiO2 than would be expected from simple SiC oxidation. Layered SiC/BN/SiC materials were also used to study low-water-vapor oxidation effects within the composite. The high-water-vapor case was explored with SiC/BN/SiC minicomposites, and it was dominated by volatilization of BN as HBO2(g), H3BO3(g), and H3B3O6(g). A model for recession of the BN fiber coating was developed based on the gas-phase diffusion of these species out of the annular region around the SiC fiber and concurrent sealing of this annular region by oxidation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The stress-rupture properties of precracked minicomposites were determined in air at temperatures in the range of 700°-1200°C. The minicomposite systems consisted of a single tow of Nicalon or Hi-Nicalon fibers with carbon or boron nitride (BN) interphases and a chemical-vapor-infiltrated silicon carbide (CVI-SiC) matrix. The stress-rupture results were compared to single-fiber stress-rupture data and composite data in the literature. Severe embrittlement occurred for carbon interphase minicomposites. However, BN interphase minicomposites showed only mild degradation in the rupture properties. This was true even though the BN interphase reacted and vaporized because of water vapor in the atmosphere at intermediate temperatures (700°-950°C) and glass formation occurred at higher temperatures (950°-1200°C). The severe degradation in rupture properties that occurred for carbon interphase composites at intermediate temperatures was due to degradation of the Nicalon-fiber properties from the environment. The rupture properties of the BN-interphase minicomposites were controlled by the fiber rupture properties at temperatures of less than ˜900°C and greater than ~1100°C. In the range of ˜900°-1100°C, most fibers fused to the matrix because of a glass layer that formed between the fiber and matrix, resulting in fiber stress concentrations that led to the mild embrittlement of the BN-interphase minicomposites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Woven Hi-Nicalon™-reinforced melt-infiltrated SiC-matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared with the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high-stress regime where rupture occurs at a fast rate and a low-stress regime where rupture occurs at a slower rate. For the high-stress regime, the matrix damage state consisted of through-thickness cracks. The average fracture strength of fibers that were pulled out (the final fibers to break before ultimate failure) was controlled by the slow-crack-growth rupture criterion in the literature for individual Hi-Nicalon fibers. For the low-stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The occurrence of matrix cracks in melt-infiltrated SiC/SiC composites with a three-dimensional (3D) orthogonal architecture was determined at room temperature for specimens tested in tension parallel to the Y-direction (perpendicular to Z-bundle weave direction). The fiber types were Sylramic and Sylramic-iBN in the X- and Y-directions and lower modulus ZMI, T300, and rayon in the Z-direction. Acoustic emission (AE) was used to monitor the matrix-cracking activity. For Y-direction composites, the AE data were used to determine the location (±0.25 mm) where matrix cracks occurred in the 3D orthogonal architecture. This enabled the determination of the stress-dependent matrix crack distributions for small but repeatable matrix-rich “unidirectional” and the matrix-poor “cross-ply” regions within the architecture. Matrix cracking initiated at very low stresses (∼40 MPa) in the “unidirectional” regions for the largest Z-direction fiber tow composites. Decreasing the size of the Z-fiber bundle increased the stress for matrix cracking in the “unidirectional” regions. Matrix cracking was analyzed on the basis that the source for through-thickness matrix cracks (TTMC) originated in the 90° or Z-fiber tows. It was found that matrix cracking in the “cross-ply” regions was very similar to two-dimensional cross-woven composites. However, in the “unidirectional” regions, matrix cracking followed a Griffith-type relationship, where the stress-distribution for TTMC was inversely proportional to the square root of the height of the Z-fiber tows.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-01
    Print ISSN: 1359-6462
    Electronic ISSN: 1872-8456
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-08-01
    Print ISSN: 0955-2219
    Electronic ISSN: 1873-619X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...