ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (176)
  • Elsevier  (176)
  • American Meteorological Society
  • 2010-2014  (176)
  • 1995-1999
  • 1985-1989
  • 2011  (176)
  • 1
    Publication Date: 2018-03-08
    Description: Trace metals in the ocean act as both essential micro-nutrients and as toxins. There are relatively few multi-element studies of dissolved trace metals in the ocean, and none from the Gulf of Aqaba, Red Sea. This semi-enclosed basin surrounded by desert is a natural laboratory for studying the impact of atmospheric dry deposition of trace metals on the ocean surface. We have combined measurement of dissolved metals in seawater with measurements of the flux of metals associated with dry deposition. The total dissolved trace metal concentrations in Gulf of Aqaba water are generally higher (Fe, Cu, Zn, Co, Mn, Pb) or similar (Ni, Al, Cd, Mo) to those measured in the open North Atlantic Ocean. The concentrations of elements that are highly enriched in aerosols relative to Al (e.g. Cd, Pb, Zn and Cu) are not necessarily proportionally enriched in surface seawater when compared to Al, indicative of the high reactivity of these elements in seawater. Iron concentrations in the Gulf of Aqaba are high relative to Al, despite the fact that the aerosols are not more enriched in Fe relative to Al. There may be additional sources of dissolved iron to the Gulf of Aqaba, not associated with Al. Alternatively, intense photochemically-driven redox cycling may act to enhance Fe dissolution from aerosols, or may otherwise increase the lifetime of Fe in the water column, relative to Al. Copper concentrations in the Gulf of Aqaba are close to the value found to be a threshold for Cu toxicity in this region. A surface maximum in Cd:P is found in the Gulf of Aqaba, in contrast to the more typical surface minimum in this ratio observed in other locations. The surface maximum appears to be driven by atypically low uptake of Cd relative to P. A low Cd:P uptake ratio for this region is consistent with known environmental determinants of low Cd:P uptake, such as high concentrations of dissolved Zn and Fe, and a predominance of small phytoplankton including cyanobacteria. Highlights ► We measured dissolved trace metal concentrations in the Gulf of Aqaba four times. ► Iron concentrations are high relative to Al concentrations. ► Cu concentrations are close to the threshold for Cu toxicity in this region. ► A surface maximum in Cd:P is driven by unusually low uptake of Cd relative to PO4. ► This is consistent with the dominance of small phytoplankton and high Fe levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-13
    Description: The Yarlung Zangbo Suture Zone (YZSZ), southern Tibet, is a discontinuous belt that is more than 2000 km long, composed of the remnants of Neo-Tethyan Mesozoic ocean. One of these relicts is the Xiugugabu ophiolitic massif which is a mantle thrust sheet of more than 260 km2 overlying the Cretaceous tectonic mélange south of the YZSZ in SW Tibet. The massif is composed of harzburgites and clinopyroxene–harzburgites with porphyroclastic and porphyromylonitic textures. In the southern part of the massif, peridotites were intruded by amphibole-bearing microgabbro and microgabbronorite sills. A diabase unit which is overlaid by a sedimentary sequence crops out on the NE flank of the massif. Mineral chemistry in harzburgites and clinopyroxene–harzburgites indicates compositions similar to abyssal and forearc peridotites. Peridotites are slightly LREE depleted to enriched with [La/Yb]CN 0.06–2.8 and [La/Sm]CN 0.34–2.64. These ultramafic rocks are inferred to be the residues of 5–25% of partial melting of a depleted mantle that has been enriched by percolating metasomatic melts in a suprasubduction environment. Amphibole–microgabbro and amphibole–microgabbronorite sills are mostly composed of brown to green amphibole, calcic plagioclase, clinopyroxene, ilmenite and orthopyroxene in gabbronorite. Textures and compositions of the brown amphiboles indicate a near-solidus high temperature hydrothermal origin (〉 800 °C). These intrusive rocks are tholeiitic and show N-MORB type REE patterns ([La/Yb]NC 0.35–0.90), a LILE (mainly Th) enrichment and noticeable Nb, Ta and Ti negative anomalies. They have a suprasubduction affinity and were formed in a back-arc basin setting. The diabase unit outcropping to the NE of the massif is not directly related to the ultramafic and mafic ophiolitic rocks. The diabase shows LREE enriched patterns ([La/Yb]NC 8–8.9) and slight Nb, Ta and Ti negative anomalies. The diabase has an intraplate affinity and could have been derived from a mantle source enriched by subduction-related fluids. The absence of continental crustal assimilation indicates that these rocks were probably emplaced in the Jurassic, in an oceanic environment after the Triassic disaggregation of the Indian plate. The data are consistent with the recent geodynamic model proposed for the central part of the suture for the closure of the Neo-Tethys and suggest that the geodynamic evolution of the western part of the basin was comparable to the central part. Research Highlights ► Xiugugabu massif represents the mantle section of an ophiolite. ► Xiugugabu massif comprises harzburgite and cpx-harzburgite intruded by mafic sills. ► Peridotites were metasomatised by suprasubduction melts in an arc–forearc setting. ► Peridotites were brought up to the Moho depth in a back-arc extensional setting. ► Peridotites were intruded by mafic sills of back-arc affinities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-13
    Description: The Yarlung Zangbo Suture Zone (YZSZ) is believed to be composed of material largely derived from the destruction of the Neo-Tethys that occurred from early Mesozoic to early Cenozoic. We report here geochronological and petrological data obtained for newly discovered alkaline gabbro blocks embedded in a mélange zone of the western YZSZ. Single zircon U–Pb analyses from one representative gabbro sample by SIMS (Secondary Ion Mass Spectrometry) yielded a combined crystallization age of about 363.7 ± 1.7 Ma (1σ). In situ Hf isotopic analyses yielded εHf(t) values of + 2.6 to + 5.5, suggesting an enriched mantle source. All of the gabbro samples show typical Ocean Island Basalt (OIB) affinity with little or no continental crust contamination. They also display strong geochemical similarities with the Hawaii basalts and the Xigaze seamount basalts suggestive of their intra-oceanic setting. These observations, in combination with the Early Carboniferous layered gabbros reported at Luobusa, indicate that these rocks could represent remnants of the Paleo-Tethys. We propose that a branch ocean separating the Western Qiangtang terrane and the Lhasa terrane from the Gondwana continent might have been present during the Late Devonian and the Early Carboniferous, providing new constrains on the configuration of Paleo-Tethys in Tibetan Plateau during early Late Paleozoic. Research Highlights ► Late Devonian OIB alkaline gabbro occurs in the Yarlung Zangbo Suture Zone; the gabbro samples show typical Ocean Island Basalt affinity; a branch ocean separates the Qiangtang and the Lhasa from Gondwana during Devonian.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-20
    Description: The skeletal growth rate of the cold-water coral (CWC) Madrepora oculata Linnaeus, 1758 was measured during 3 months under controlled conditions (at 12 °C in the dark, fed five times a week), using the buoyant weight technique. In order to interpret CWC growth in a wider context, we also measured the skeletal growth rates of three tropical scleractinian species: Stylophora pistillata (Esper, 1797), Turbinaria reniformis (Bernard, 1896) and Galaxea fascicularis (Linnaeus, 1767), likewise maintained under controlled conditions (at 25 °C, 250 μmol photons m− 2 s− 1, either fed five times a week or unfed). The skeletal growth rate of M. oculata was equal to 0.20 ± 0.09% d− 1 (mean ± SD), similar to the growth of unfed and fed nubbins of G. fascicularis (0.14 ± 0.01% d− 1 and 0.36 ± 0.11% d− 1 respectively) despite the large differences in seawater temperatures. Skeletal growth rates of S. pistillata (1.20 ± 0.49% d− 1 to 2.68 ± 0.65% d− 1 unfed/fed) and T. reniformis (0.78 ± 0.34% d− 1 to 0.94 ± 0.14% d− 1 unfed/fed) were significantly higher. These results confirm that the CWC M. oculata can grow at rates that are comparable to those of some tropical corals, despite the lack of autotrophy (lacking zooxanthellae) and the low temperatures of its environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-07
    Description: As paleoceanographic archives, deep sea coral skeletons offer the potential for high temporal resolution and precise absolute dating, but have not been fully investigated for geochemical reconstructions of past ocean conditions. Here we assess the utility of skeletal P/Ca, Ba/Ca and U/Ca in the deep sea coral D. dianthus as proxies of dissolved phosphate (remineralized at shallow depths), dissolved barium (trace element with silicate-type distribution) and carbonate ion concentrations, respectively. Measurements of these proxies in globally distributed D. dianthus specimens show clear dependence on corresponding seawater properties. Linear regression fits of mean coral Element/Ca ratios against seawater properties yield the equations: P/Cacoral (μmol/mol) = (0.6 ± 0.1) P/Casw(μmol/mol) – (23 ± 18), R2 = 0.6, n = 16 and Ba/Cacoral(μmol/mol) = (1.4 ± 0.3) Ba/Casw(μmol/mol) + (0 ± 2), R2 = 0.6, n = 17; no significant relationship is observed between the residuals of each regression and seawater temperature, salinity, pressure, pH or carbonate ion concentrations, suggesting that these variables were not significant secondary dependencies of these proxies. Four D. dianthus specimens growing at locations with Ωarag ⩽ 0.6 displayed markedly depleted P/Ca compared to the regression based on the remaining samples, a behavior attributed to an undersaturation effect. These corals were excluded from the calibration. Coral U/Ca correlates with seawater carbonate ion: U/Cacoral(μmol/mol) = (−0.016 ± 0.003) (μmol/kg) + (3.2 ± 0.3), R2 = 0.6, n = 17. The residuals of the U/Ca calibration are not significantly related to temperature, salinity, or pressure. Scatter about the linear calibration lines is attributed to imperfect spatial-temporal matches between the selected globally distributed specimens and available water column chemical data, and potentially to unresolved additional effects. The uncertainties of these initial proxy calibration regressions predict that dissolved phosphate could be reconstructed to ±0.4 μmol/kg (for 1.3–1.9 μmol/kg phosphate), and dissolved Ba to ±19 nmol/kg (for 41–82 nmol/kg Basw). Carbonate ion concentration derived from U/Ca has an uncertainty of ±31μmol/kg (for ). The effect of microskeletal variability on P/Ca, Ba/Ca, and U/Ca was also assessed, with emphasis on centers of calcification, Fe–Mn phases, and external contaminants. Overall, the results show strong potential for reconstructing aspects of water mass mixing and biogeochemical processes in intermediate and deep waters using fossil deep-sea corals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Research, 75 (02). pp. 347-355.
    Publication Date: 2020-06-04
    Description: Polygonal patterned ground in polar regions of both Earth and Mars has received considerable attention. In comparison with the size, shape, and arrangement of the polygons, the diverse micro-relief and topography (termed here simply “relief”) of polygonal patterned ground have been understudied. And yet, the relief reflects important conditions and processes occurring directly below the ground surface, and it can be observed readily in the field and through remote sensing. Herein, we describe the relief characteristic of the simplest and relatively young form of patterned ground in the Dry Valleys of Antarctic. We also develop a numerical model to examine the generation of relief due to subsurface material being shouldered aside contraction cracks by incremental sand wedges growth, and to down-slope creep of loose granular material on the surface. We model the longterm subsurface deformation of ice-cemented permafrost as a non-linear viscous material. Our modeling is guided and validated using decades of field measurements of surface displacements of the permafrost and relief. This work has implications for assessing the activity of surfaces on Earth and Mars, and much larger scale potential manifestations of incremental wedging in icy material, namely the distinct paired ridges on Europa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-13
    Description: Extraction of groundwater or hydrocarbons causes pore pressure gradients and soil deformation due to poroelastic coupling. Recent studies show that high-resolution engineering tiltmeters installed at shallow depth between 2 and 10 m resolve this deformation. Models using poroelasticity can describe the relationship between fluid extraction, pore pressure gradients and induced tilt for homogeneous and layered sedimentary half spaces. Faults intersecting a stack of sedimentary layers, for example in the Lower-Rhine-Embayment, are of fundamental impact to the groundwater flow system of an area. However, the fault’s hydromechanical effect on pump induced tilt and the pore pressure regime is still poorly investigated. We chose a comparatively simple approach to quantify anomalous pump induced tilt and pore pressure observed near a fault and close to the surface in a sedimentary subsoil. A PC-based Finite Element software is used to model poroelastic deformation, i.e. modelling vertical tilt and excess pore pressure in response to fluid extraction through a singular well. We compare numerical solutions for models with and without faults and show that a fault can modify symmetry and amplitude of the deformation field by more than a magnitude. We conclude that tilt and pore pressure measurements also at shallow depth can thus be biased by large subsurface structures like faults. Vice versa, these measurements may provide means to quantify hydromechanical effects caused by subsurface structures. However, depending on the geological setting, i.e. if pathways are established by a fault, the anomaly caused by the fault can also be small and hard to detect. Therefore, faults and geological structures like material boundaries have to be considered in poroelastic models carefully. For tilt surveys with a limited number of instruments in geologically well constrained areas these models allow the preselection of potential positions for tiltmeters where prominent field anomalies are expected
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-08
    Description: The spatial distribution, biogeochemical cycle and external sources of dissolved cobalt (DCo) were investigated in the southeastern Atlantic and the Southern Ocean between 33°58′S and 57°33′S along the Greenwich Meridian during the austral summer 2008 in the framework of the International Polar Year. DCo concentrations were measured by flow-injection analysis and chemiluminescence detection in filtered (0.2 μm), acidified and UV-digested samples at 12 deep stations in order to resolve the several biogeochemical provinces of the Antarctic Circumpolar Current and to assess the vertical and frontal structures in the Atlantic sector of the Southern Ocean. We measured DCo ranging from 5.73 ± 1.15 pM to 72.9 ± 4.51 pM. The distribution of DCo was nutrient-like in surface waters of the subtropical domain with low concentrations in the euphotic layer due to biological uptake. The biological utilization of dissolved cobalt was proportional to that of phosphate in the subtropical domain with a DCo:HPO42− depletion ratio of ~ 44 μM M−1. In deeper waters the distribution indicated remineralization of DCo and inputs from the margins of South Africa with lateral advection of enriched intermediate and deep waters to the southeastern Atlantic Ocean. In contrast the vertical distribution of DCo changed southward, from a nutrient-like distribution in the subtropical domain to scavenged-type behavior in the domain of the Antarctic Circumpolar Current and conservative distribution in the Weddell Gyre. There the cycle of DCo featured low biological removal by Antarctic diatoms with input to surface waters by snow, removal in oxygenated surface waters, and dissolution and stabilization in the low-oxygenated Upper Circumpolar Deep Waters. DCo distributions and physical hydro-dynamics features also suggest inputs from the Drake Passage and the southwestern Atlantic to the 0° meridian along the eastward flow of the Antarctic Circumpolar Current. Bottom enrichment of DCo in the Antarctic Bottom Waters was also evident, together with increasing water-mass pathway and aging, possibly due to sediment resuspension and/or mixing with North Atlantic Deep waters in the Cape Basin. Overall atmospheric input of soluble Co by dry aerosols to the surface waters was low but higher in the ACC domain than in the northern part of the section. At the highest latitudes, it is possible that snowfall could be a source of DCo to surface waters. Tentative budgets for DCo in the mixed layer of the subtropical and the ACC domains have been constructed for each biogeochemical region encountered during the cruise. The estimated DCo uptake flux was found to be the dominant cobalt flux along the section. This flux decreases southward, which is consistent with the observations that DCo shows a southward transition from nutrient-like towards conservative distribution in the mixed layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-12
    Description: This study explores the effects of the Changjiang (also called the Yangtze River) river discharge (CRD) on the density stratifications and associated sea surface temperature (SST) changes using a global ocean general circulation model with regional focus on the Yellow and East China Seas (YECS). It is found that CRD increases the SST in summer through a barrier layer (BL) formation that tends to enhance stratification at the mixed layer base, and thus reduces both vertical mixing and entrainment. This process is effective, particularly in August, after the CRD reaches its maximum in July. The SST difference between the composites of flood and drought years confirms that the surface warming is related to surface freshening by the CRD. This result suggests that the BL induced by the CRD is an important contributor to the surface heat budget in the YECS.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: This study of Antarctic sympagic meiofauna in pack ice during late winter compares communities between the perennially ice-covered western Weddell Sea and the seasonally ice-covered southern Indian Ocean. Sympagic meiofauna (proto- and metazoans 〉20 μm) and eggs 〉20 μm were studied in terms of diversity, abundance and carbon biomass, and with respect to vertical distribution. Metazoan meiofauna had significantly higher abundance and biomass in the western Weddell Sea (medians: 31.1×103 m−2 and 6.53mg m−2, respectively) than in the southern Indian Ocean (medians: 1.0×10 103 m−2and 0.06 mg m−2, respectively). Metazoan diversity was also significantly higher in the western Weddell Sea. Furthermore, the two regions differed significantly in terms of meiofauna community composition, as revealed through multivariate analyses. The overall diversity of sympagic meiofauna was high, and integrated abundance and biomass of total meiofauna were also high in both regions (0.6–178.6×103 m−2 and 0.02–89.70mg m−2, respectively), mostly exceeding values reported earlier from the western Weddell Sea in winter. We attribute the differences in meiofauna communities between the two regions to the older first-year ice and multi-year ice that is present in the western Weddell Sea, but not in the southern Indian Ocean. Our study indicates the significance of perennially ice-covered regions for the establishment of diverse and abundant meiofauna communities. Furthermore, it highlights the potential importance of sympagic meiofauna for the organic matter pool and trophic interactions in sea ice.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-10-26
    Description: We present 40Ar/39Ar age and geochemical (major and trace element and Sr–Nd–Hf–Pb isotope) data from submarine samples recovered from the basement of the Manihiki Plateau during the R/V Sonne research expedition SO193. The samples, predominately tholeiites, with minor occurrences of basaltic andesites and hawaiites, give a mean age of 124.6 ± 1.6 Ma from four different localities on the plateau. Based on TiO2 content, we define two groups of volcanic rocks that differ in trace element and isotopic compositions. Partial melting modeling suggests that the low-Ti group lavas were derived through large degrees of melting (c. 30%) of a peridotitic source at mantle potential melting temperatures of c. Tp = 1510 °C, more than 100 °C above the ambient mantle potential melting temperature. Since the primary water contents of both groups of lavas are low (0.1–0.3g wt.%) and the source is peridotitic, excess temperature is most likely the reason for the large degrees of melting producing the large volume of plateau basalts, consistent with the involvement of a mantle plume. The incompatible element contents of the low-Ti group lavas show a multistage history with enrichment in the most incompatible elements of a previously highly depleted source. They have isotopic compositions similar to enriched mid-ocean-ridge basalt (EMORB) and similar to the common focal zone (FOZO) component. The high-Ti group lavas have more enriched incompatible element compositions overall. Their isotopic compositions tend towards an enriched mantle (EMI)-type endmember, similar, although less extreme, than lavas from the Pitcairn Islands. The geochemistry of the Manihiki Plateau can best be explained by a plume containing three components: 1) a dominant peridotitic FOZO-type component, 2) delaminated EMI-type subcontinental lithospheric mantle (SCLM), and 3) a HIMU (recycled oceanic crustal)-type component possibly in the form of eclogite/pyroxenite. The similarity in age and geochemical composition of Manihiki, Hikurangi and Ontong Java basement lavas, including volcanism in some adjacent basins, suggests that the Greater Ontong Java Volcanic Event covered c. 1% of the Earth's surface with volcanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-08-08
    Description: The continental slope of the northern Gulf of Mexico seaward of the Mississippi Delta is characterized by very rapid Quaternary sedimentation. Thick sequences of underconsolidated muds and mudstones are present, which are severely overpressured. In the Ursa Basin, Site U1322 of the Integrated Ocean Drilling Program (IODP) provided an excellent coring record of interleaved fine-grained turbidites and hemipelagic sediments, in part severely affected by submarine slumping and sliding after deposition. Cores were continuously sampled and analyzed for anisotropy of magnetic susceptibility (AMS), to elucidate the effects of different transport mechanisms and degree of settling and consolidation on magnetic fabric properties. Generally AMS ellipticity increases with depth irrespective of transport mode, due to loss of porosity. Samples from slumped mass transport deposits (MTD), however, have higher AMS if compared to immediately overlying non-slumped material. MTD samples dominantly show triaxial magnetic fabrics whereas those found in non-slumped sediments are much more oblate. Long axes of the fabric ellipsoid reflect the direction of eastward to southward suspension transport in samples not overprinted by sliding or slumping. Short ellipsoid axes in non-slumped material are vertical, and thus parallel to the axis of maximum uniaxial shortening. In the MTD samples, many short ellipsoid axes are inclined, reflecting an overprint of the uniaxial shortening by bed-parallel shearing induced by the slumping. Shear and MTD transport direction deduced from the fabrics is top-to-SE, downslope along the morphological axis of Ursa Basin. Generally we show that magnetic fabrics of muds and mudstones are sensitive recorders of sedimentary and tectonic processes, and can be used to reconstruct essential parts of basin history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-07-26
    Description: Highly concentrated gas hydrate deposits are likely to be associated with geological features that promote increased fluid flux through the gas hydrate stability zone (GHSZ). We conduct conventional seismic processing techniques and full-waveform inversion methods on a multi-channel seismic line that was acquired over a 125 km transect of the southern Hikurangi Margin off the eastern coast of New Zealand’s North Island. Initial processing, employed with an emphasis on preservation of true amplitude information, was used to identify three sites where structures and stratal fabrics likely encourage focused fluid flow into and through the GHSZ. At two of the sites, Western Porangahau Trough and Eastern Porangahau Ridge, sub-vertical blanking zones occur in regions of intensely deformed sedimentary layering. It is interpreted that increased fluid flow occurs in these regions and that fluids may dissipate upwards and away from the deformed zone along layers that trend towards the seafloor. At Eastern Porangahau Ridge we also observe a coherent bottom simulating reflection (BSR) that increases markedly in intensity with proximity to the centre of the anticlinal ridge. 1D full-waveform inversions conducted at eight points along the BSR reveal much more pronounced low-velocity zones near the centre of the ridge, indicating a local increase in the flux of gas-charged fluids into the anticline. At another anticline, Western Porangahau Ridge, a dipping high-amplitude feature extends from the BSR upwards towards the seafloor within the regional GHSZ. 1D full-waveform inversions at this site reveal that the dipping feature is characterised by a high-velocity zone overlying a low-velocity zone, which we interpret as gas hydrates overlying free gas. These results support a previous interpretation that this high-amplitude feature represents a local “up-warping” of the base of hydrate stability in response to advective heat flow from upward migrating fluids. These three sites provide examples of geological frameworks that encourage prolific localised fluid flow into the hydrate system where it is likely that gas-charged fluids are converting to highly concentrated hydrate deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-07-13
    Description: A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced in mesocosms over a period of 23 days. The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growth model in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without any modulation term). In a first step, the model has been applied to the simulations of present pCO2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are maintained at a constant ratio. The second phase is triggered by the exhaustion of phosphate (PO43−). Uptake of carbon and nitrogen being uncoupled, the cellular C:N ratio of E. huxleyi increases. This stimulates the active release of DOC, acting as precursors for TEP. The third phase is characterised by an enhancement of the phytoplankton mortality due to viral lysis. A huge amount of DOC has been accumulated in the mesocosm. Research highlights ► Unbalanced growth model in carbon and nitrogen applied to E.Huxleyi dynamics. ► Gathering of formulations describing typical processes involved in export of carbon. ► Original representation of calcification as a function of primary production. ► Explicit representation of enhanced mortality linked to viral lysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 30 (13-14). pp. 1710-1725.
    Publication Date: 2019-09-23
    Description: Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ∼2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ∼1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ∼1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier. Highlights ► Reflection seismic data reveal two glacial fans at northwest Svalbard margin. ► The fans are result of ice stream activities during Pliocene–Pleistocene glaciations. ► Based on seismic and bathymetric data we find the flow directions of the ice streams. ► We find a switch in ice stream flow direction. ► The switch resulted as the ice sheet became thick and overcame a topographic barrier.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-05
    Description: On interannual to decadal times scales, model simulations suggest a strong relationship between anomalies in the deep water formation rate, the strength of the subpolar gyre, and the meridional overturning circulation in the North Atlantic. Whether this is valid, can only be confirmed by continuous, long observational time series. Several measurement components are already in place, but crucial arrays to obtain time series of the meridional volume and heat transport in the subpolar North Atlantic are still missing. Here we summarize the recent developments of the deep water formation rates and the subpolar gyre transports. We discuss how existing observational components in the subpolar North Atlantic could be supplemented to provide long-term monitoring of the meridional heat and volume transport. Through a combined analysis of observations and model results the temporal and spatial scales that had to be covered with instruments are discussed, together with the key regions with the highest variability in the velocity and temperature fields.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-10-26
    Description: During the 4th International Polar Year 2007–2009 (IPY), it has become increasingly obvious that we need to prepare for a new era in the Arctic. IPY occurred during the time of the largest retreat of Arctic sea ice since satellite observations started in 1979. This minimum in September sea ice coverage was accompanied by other signs of a changing Arctic, including the unexpectedly rapid transpolar drift of the Tara schooner, a general thinning of Arctic sea ice and a double-dip minimum of the Arctic Oscillation at the end of 2009. Thanks to the lucky timing of the IPY, those recent phenomena are well documented as they have been scrutinized by the international research community, taking advantage of the dedicated observing systems that were deployed during IPY. However, understanding changes in the Arctic System likely requires monitoring over decades, not years. Many IPY projects have contributed to the pilot phase of a future, sustained, observing system for the Arctic. We now know that many of the technical challenges can be overcome. The Norwegian projects iAOOS-Norway, POLEWARD and MEOP were significant ocean monitoring/research contributions during the IPY. A large variety of techniques were used in these programs, ranging from oceanographic cruises to animal-borne platforms, autonomous gliders, helicopter surveys, surface drifters and current meter arrays. Our research approach was interdisciplinary from the outset, merging ocean dynamics, hydrography, biology, sea ice studies, as well as forecasting. The datasets are tremendously rich, and they will surely yield numerous findings in the years to come. Here, we present a status report at the end of the official period for IPY. Highlights of the research include: a quantification of the Meridional Overturning Circulation in the Nordic Seas (“the loop”) in thermal space, based on a set of up to 15-year-long series of current measurements; a detailed map of the surface circulation as well as characterization of eddy dispersion based on drifter data; transport monitoring of Atlantic Water using gliders; a view of the water mass exchanges in the Norwegian Atlantic Current from both Eulerian and Lagrangian data; an integrated physical–biological view of the ice-influenced ecosystem in the East Greenland Current, showing for instance nutrient-limited primary production as a consequence of decreasing ice cover for larger regions of the Arctic Ocean. Our sea ice studies show that the albedo of snow on ice is lower when snow cover is thinner and suggest that reductions in sea ice thickness, without changes in sea ice extent, will have a significant impact on the arctic atmosphere. We present up-to-date freshwater transport numbers for the East Greenland Current in the Fram Strait, as well as the first map of the annual cycle of freshwater layer thickness in the East Greenland Current along the east coast of Greenland, from data obtained by CTDs mounted on seals that traveled back and forth across the Nordic Seas. We have taken advantage of the real-time transmission of some of these platforms and demonstrate the use of ice-tethered profilers in validating satellite products of sea ice motion, as well as the use of Seagliders in validating ocean forecasts, and we present a sea ice drift product – significantly improved both in space and time – for use in operational ice-forecasting applications. We consider real-time acquisition of data from the ocean interior to be a vital component of a sustained Arctic Ocean Observing System, and we conclude by presenting an outline for an observing system for the European sector of the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-05-26
    Description: Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-11-17
    Description: The Gas Hydrate Research and Development Organization (GHDO) of Korea successfully accomplished both coring (hydraulic piston and pressure coring) and logging (logging-while-drilling, LWD, and wireline logging) to investigate the presence of gas hydrate during the first deep drilling expedition in the Ulleung Basin, East Sea of Korea (referred to as UBGH1) in 2007. The LWD data from two sites (UBGH1-9, UBGH1-10) showed elevated electrical resistivity (〉80 Ω-m) and P-wave velocity (〉2000 m/s) values indicating the presence of gas hydrate. During the coring period, the richest gas hydrate accumulation was discovered at these intervals. Based on log data, the occurrence of gas hydrate is primarily controlled by the presence of fractures. The gas hydrate saturation calculated using Archie’s relation shows greater than 60% (as high as ∼90%) of the pore space, although Archie’s equation typically overestimates gas hydrate saturation in near-vertical fractures. The saturation of gas hydrate is also estimated using the modified Biot-Gassmann theory (BGTL) by Lee and Collett (2006). The saturation values estimated rom BGTL are much lower than those calculated from Archie’s equation. Based on log data, the hydrate-bearing sediment section is approximately 70 m (UBGH1-9) to 130 m (UBGH1-10) in thickness at these two sites. This was further directly confirmed by the recovery of gas hydrate samples and pore water freshening collected from deep drilling core during the expedition. LWD data also strongly support the interpretation of the seismic gas hydrate indicators (e.g., vent or chimney structures and bottom-simulating reflectors), which imply the probability of widespread gas hydrate presence in the Ulleung Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep-Sea Research Part I-Oceanographic Research Papers, 58 (4). pp. 468-485.
    Publication Date: 2017-10-24
    Description: We compare two methods for estimating mean velocities and diffusivities from surface drifter observations, using data from the Nordic Seas. The first is the conventional method of grouping data into geographical bins. The second relies on a "clustering" algorithm, and groups velocity observations according to nearest-neighbor distance. Capturing the spatial variability of the mean velocity requires using bins with a length scale of ˜50km. However, because many bins have few observations, the statistical significance varies substantially between bins. Clustering yields sets with approximately the same number of observations, so the significance is more uniform. At the densely sampled Svinøy section, clusters can be used to construct the mean flow field with 〈=10km resolution. Clustering also excels at the estimation of eddy diffusivities, allowing resolution at the 20 km scale in the densely sampled regions. Taking bathymetry into account in the clustering process further improves mean estimates where the data is sparse. Clustering the available surface drifter data, extended by recent deployments from the POLEWARD project, reveals new features in the surface circulation. These are a large anticyclonic vortex in the center of the Lofoten Basin and two anticyclonic recirculations at the Svinøy section. Clustering also yields maps of the eddy diffusivities at unprecedented resolution. Diffusivities are suppressed at the core of the Norwegian Atlantic Current, while they are elevated in the Lofoten Basin and along the Polar Front.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-11-17
    Description: During the India National Gas Hydrate Program (NGHP) Expedition 01 in 2006 significant sand and gas hydrate were recovered at Site NGHP-01-15 within the Krishna–Godavari Basin, East Coast off India. At the drill site NGHP-01-15, a 5–8 m thick interval was found that is characterized by higher sand content than anywhere else at the site and within the KG Basin. Gas hydrate concentrations were determined to be 20–40% of the pore volume using wire-line electrical resistivity data as well as core-derived pore-fluid freshening trends. The gas hydrate-bearing interval was linked to a prominent seismic reflection observed in the 3D seismic data. This reflection event, mapped for about 1 km2 south of the drill site, is bound by a fault at its northern limit that may act as migration conduit for free gas to enter the gas hydrate stability zone (GHSZ) and subsequently charge the sand-rich layer. On 3D and additional regional 2D seismic data a prominent channel system was imaged mainly by using the seismic instantaneous amplitude attribute. The channel can be clearly identified by changes in the seismic character of the channel fill (sand-rich) and pronounced levees (less sand content than in the fill, but higher than in surrounding mud-dominated sediments). The entire channel sequence (channel fill and levees) has been subsequently covered and back-filled with a more mud-prone sediment sequence. Where the levees intersect the base of the GHSZ, their reflection strengths are significantly increased to 5- to 6-times the surrounding reflection amplitudes. Using the 3D seismic data these high-amplitude reflection edges where linked to the gas hydrate-bearing layer at Site NGHP-01-15. Further south along the channel the same reflection elements representing the levees do not show similarly large reflection amplitudes. However, the channel system is still characterized by several high-amplitude reflection events (a few hundred meters wide and up to ~ 1 km in extent) interpreted as gas hydrate-bearing sand intervals along the length of the channel.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-01-27
    Description: In the Gulf of Cadiz key segment of the Africa-Iberia plate boundary (North-East Atlantic ocean), three main different modes of tectonic interference between a recently identified wrench system (SWIM) and the Gulf of Cadiz Accretionary Wedge (GCAW) were tested through analog sand-box modeling: a) An active accretionary wedge on top of a pre-existent inactive basement fault; b) An active strike-slip fault cutting a previously formed, inactive, accretionary wedge; and c) Simultaneous activity of both the accretionary wedge and the strike-slip fault. The results we obtained and the comparison with the natural deformation pattern favor a tectonic evolution comprising two main steps: i) the formation of the Gulf of Cadiz Accretionary Wedge on top of inactive, Tethyan-related, basement faults (Middle Miocene to similar to 1.8 Ma); ii) subsequent reactivation of these basement faults with dextral strike-slip motion (similar to 1.8 Ma to present) simultaneously with continued tectonic accretion in the GCAW. These results exclude the possibility of ongoing active SWIM wrench system cross-cutting an inactive GCAW structure. Our results also support a new interpretation of the SWIM wrench system as fundamentally resulting from strike-slip reactivation of an old (Tethyan-related) plate boundary
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-09-17
    Description: Cold-water corals are widely distributed along the Atlantic continental margin with varying growth patterns in relation to their specific environment. Here, we investigate the long-term development of cold-water corals that once thrived on a low-latitude (17°40′N) cold-water coral mound in the Banda Mound Province off Mauritania during the last glacial–interglacial cycle. U/Th dates obtained from 20 specimens of the cold-water coral Lophelia pertusa, revealed three distinct periods of coral growth during the last glacial at 65 to 57 kyr BP, 45 to 32 kyr BP and 14 kyr BP, thus comprising the cool periods of Marine Isotopic Stages (MIS) 2–4. These coral growth periods occur during periods of increased productivity in the region, emphasizing that productivity seems to be the major steering factor for coral growth off Mauritania, which is one of the major upwelling regions in the world. This pattern differs from the well studied coral mounds off Ireland, where the current regime predominantly influences the prosperity of the cold-water corals. Moreover, coral growth off Ireland takes place during rather warm interglacial and interstadial periods, whereas off Mauritania coral growth is restricted to glacial and stadial periods. However, the on-mound sedimentation patterns off Mauritania largely resemble the observations reported from the Irish mounds. The bulk of the preserved sediments derives from periods of coral growth, whereas during periods without corals hardly any net sedimentation or mound growth took place.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 28 (10). pp. 1768-1778.
    Publication Date: 2015-11-17
    Description: During the Indian National Gas Hydrate Program (NGHP) Expedition 01, a series of well logs were acquired at several sites across the Krishna–Godavari (KG) Basin. Electrical resistivity logs were used for gas hydrate saturation estimates using Archie’s method. The measured in situ pore-water salinity, seafloor temperature and geothermal gradients were used to determine the baseline pore-water resistivity. In the absence of core data, Arp’s law was used to estimate in situ pore-water resistivity. Uncertainties in the Archie’s approach are related to the calibration of Archie coefficient (a), cementation factor (m) and saturation exponent (n) values. We also have estimated gas hydrate saturation from sonic P-wave velocity logs considering the gas hydrate in-frame effective medium rock-physics model. Uncertainties in the effective medium modeling stem from the choice of mineral assemblage used in the model. In both methods we assume that gas hydrate forms in sediment pore space. Combined observations from these analyses show that gas hydrate saturations are relatively low (〈5% of the pore space) at the sites of the KG Basin. However, several intervals of increased saturations were observed e.g. at Site NGHP-01-03 (Sh = 15–20%, in two zones between 168 and 198 mbsf), Site NGHP-01-05 (Sh = 35–38% in two discrete zone between 70 and 90 mbsf), and Site NGHP-01-07 shows the gas hydrate saturation more than 25% in two zones between 75 and 155 mbsf. A total of 10 drill sites and associated log data, regional occurrences of bottom-simulating reflectors from 2D and 3D seismic data, and thermal modeling of the gas hydrate stability zone, were used to estimate the total amount of gas hydrate within the KG Basin. Average gas hydrate saturations for the entire gas hydrate stability zone (seafloor to base of gas hydrate stability), sediment porosities, and statistically derived extreme values for these parameters were defined from the logs. The total area considered based on the BSR seismic data covers ∼720 km2. Using the statistical ranges in all parameters involved in the calculation, the total amount of gas from gas hydrate in the KG Basin study area varies from a minimum of ∼5.7 trillion-cubic feet (TCF) to ∼32.1 TCF.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-05-27
    Description: Subsurface sediments from a pockmark area in South-Western Barents Sea have been earlier found to contain elevated levels of petroleum-related polycyclic aromatic hydrocarbons. This work describes a comprehensive analysis of various biomarkers, including the highly source-specific hopanes, in a 4.5 m long gravity core from the same area, together with subsurface sediment samples from other areas in the region without pockmarks present (“background samples”). A clear difference between the pockmark gravity core and the background sediment cores was found, both with regard to genesis and the level of transformation of organic matter. A number of indicator parameters, such as methylphenanthrene index (MPI-1), point towards a significantly higher maturity of hydrocarbons in the pockmark core throughout its length as compared to the other sampled locations. Higher contents of microbial hopanoids (hopenes) may indicate the former presence of petroleum. These findings confirm the hypothesis of a natural hydrocarbon source in the deeper strata present in the studied location with pockmarks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-11-17
    Description: Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures. Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 301 (1-2). pp. 117-124.
    Publication Date: 2019-09-23
    Description: The transition from the early Pliocene “Warmhouse” towards the present “Icehouse” climate and the role of Gateway dynamics are intensively debated. Both, the constrictions of the Central American Seaway and the Indonesian Gateway affected ocean circulation and climate during the Pliocene epoch. Here, we use combined δ18O and Mg/Ca ratios of planktonic foraminifera (marine protozoa) from surface and subsurface levels to reconstruct the thermal structure and changes in salinities from the Southwest Pacific Deep Sea Drilling Project (DSDP) Site 590B from 6.5 to 2.5 Ma. Our data suggest a gradual cooling of ~ 2 °C and freshening of the sea surface during ~ 4.6–4 Ma with an increased meridional temperature gradient between the West Pacific Warm Pool and the Southwest Pacific when the closing of the Central American Seaway reached a critical threshold. After ~ 3.5 Ma, the restricted Indonesian Gateway might have amplified the East Australian Current, allowing enhanced heat transport towards the Southwest Pacific with reduced meridional temperature gradients when the global climate gradually cooled. At the same time our data suggest a cooling and freshening of Subantarctic Mode Water (SAMW) or/and an increased northward flow of SAMW towards Site 590B, possibly a first step towards the present Antarctic Frontal System.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-12-07
    Description: The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry. Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between −29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between −11.3 and −1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea. Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between −32.8 and −1.1‰ and between −0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between −26.7 and −2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro. Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-01-23
    Description: Eden and Olbers have discussed the relationship between bottom pressure torque and bolus velocity in the western boundary current using the vertically truncated BARBI model approach. Here we revisit this issue using the much simpler residual mean framework. The central role played by a density equation that is linearised about a state of rest is discussed, as well as mechanisms required to maintain the baroclinicity of the western boundary current. We conclude that in the framework being considered by Eden and Olbers, frictional processes must play an important role in the western boundary current dynamics, otherwise the baroclinicity of the current is completely removed by the cross-front mixing effect of the eddies. We also derive the form of the Stommel equation obtained by Eden and Olbers in a manner which clarifies the approximations made by these authors. We argue that for their analysis to be valid, the flow must be concentrated in a shallow layer compared to the ocean depth, there must be no density structure at the sea floor, and any overturning circulation, whether directly wind-driven or as a part of the global thermohaline circulation, must be much smaller than the western boundary current transport.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-01-23
    Description: Quantifying the role and contribution of the world's oceans in past, present, and future global change is an essential goal in climate, paleoclimate and environmental studies. Although the global oceans interact and influence climate greatly, the marine environment is substantially under-represented in key climate assessment reports, especially during the last millennium (IPCC, 2007; see Palaeoclimate chapter: 6.6—The last 2000 years). The under-representation of marine records in key climate documents likely results from the often imprecise chronologies associated with many marine-based archives, which greatly hinders singular climate comparisons (lag/lead phasing relationships) with well-dated, and/or annually-resolved archives. However, several marine archive records have excellent chronological constraint. In particular, many marine bivalve taxa and coralline algae have annual increments that form within their carbonate framework, that can be used to establish an absolutely-dated chronology, via cross-dating techniques, from the marine environment. Additionally, in some cases, where sedimentation rates are high, and alternative chronological dating methods exist (e.g., tephrochronology) other than radiocarbon measurements (often greater than ±40 years uncertainty), sediment archives can provide continuous, sub-decadal records of environmental change for centuries to millennia. This brief introductory article and accompanying special issue will focus on the utilization of bivalves, coralline algae, and high-resolution marine sediment cores in paleoclimate and environmental studies within the most recent millennium with a focus on the Northern Hemisphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-09-23
    Description: Along the Qinling–Dabie–Sulu orogenic belt in China crops out the world's largest terrane composed of ultrahigh-pressure (UHP) metamorphic rocks. Differences in the timing and mechanisms of oceanic and continental subductions are assumed to be responsible for different ages of high-pressure (HP) and UHP slices in different parts of the belt. The western part of the Dabie orogen (western Dabie terrane) holds a key to understanding of the transition from oceanic to continental subduction. This paper reports geochronological results to test a two-stage tectonic model for the exhumation of HP/UHP rocks in western Dabie. This model involves two different stages and types of extrusion for exhumation of the HP/UHP rocks in east-central China. Mica Ar/Ar ages, ranging from 241 to 231 Ma, indicate a general middle Triassic cooling probably driven by early upward extrusion during the collision between the North and South China Blocks. Late Triassic–Early Jurassic cooling was associated with later eastward extrusion, ranging from 200 to 184 Ma. The second event is recorded also in mica in the region that was not affected by later deformation and magmatism. The lateral movement along lithosphere-scale faults resulted in the eastward extrusion of the HP–UHP metamorphic terrane, which was followed, in the Late Triassic–Early Jurassic time, by a major compressive event. These two extrusion events are correlative with the two stages of Triassic exhumation of the western Dabie HP–UHP rocks, respectively. Wintin the framework of the Qinling–Dabie–Sulu orogenic belt, it is suggested for western Dabie that the subduction/exhumation of blueschist-facies unit is related to the Mianlue suture, whereas the subduction/exhumation of HP/UHP eclogite-facies units is related to the Shangdan suture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-09-23
    Description: Besides variable egg survival, previous studies suggested that the larval stage may be the most critical phase in determining Baltic cod recruitment variability, and that larvae need to conduct an ontogenetic vertical migration from hatching depths (〉50 m) to upper layers with increased food availability in order to initiate first feeding, improve their nutritional condition and growth, and avoid starvation. Recently, detailed information on the stage-resolved vertical distribution of main Baltic copepod species, including the preferred larval Baltic cod prey species Pseudocalanus acuspes, has become available. Therefore, the vertical distribution of Baltic cod larvae in August 2007 and their depth-dependent nutritional condition and growth were investigated. RNA–DNA based methods were used to estimate growth, including a novel approach to estimate growth performance by relating observed specific growth rates (SGR) of field caught larvae to temperature-dependent reference growth rates (Gref) for fast-growing laboratory reared fish from the literature. This standardization to Gref was found to have a great potential to improve investigations on the growth and ecology of larval fish. The need for early larvae to migrate to shallower layers was corroborated, while larger size classes were found at increasingly greater depths. This may reflect a continuation of the ontogenetic vertical migration in order to follow increasingly larger prey items at greater depths and to save energy in cooler waters below the thermocline. Larval growth generally declined with increasing depth, but the decline in growth became less pronounced in larger size classes. This indicates that larger larvae were better in coping with the ambient environment and the available prey field at greater depths. Generally, Baltic cod larvae grew poorly compared to larvae from other studies, which is discussed in relation to differences in predation and a possible food–temperature trade-off for larvae in the highly stratified Baltic Sea. Comparison with earlier results showed a higher frequency of starving larvae and lower frequencies of larger larvae after the first-feeding stage in 1994 and 1995. As this was a period of low Baltic cod recruitment despite favourable conditions for egg survival, it is concluded that larval starvation mortality has a high potential to contribute to recruitment variability in Baltic cod. Highlights ► We investigate the vertical distribution and depth-dependent growth of Baltic cod larvae. ► We apply a novel approach which relates observed growth rates to reference growth rates in order to obtain growth performance. ► Assessing growth performance was found to be a valuable tool in studies on the growth and ecology of larval fish. ► The need for an ontogenetic first-feeding migration was corroborated and growth generally declined with increasing depth. ► Baltic cod larvae were generally growing badly, suggesting starvation-induced recruitment regulation during the larval stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-06-08
    Description: The 27 February, 2010 Maule earthquake (Mw=8.8) ruptured ~400 km of the Nazca-South America plate boundary and caused hundreds of fatalities and billions of dollars in material losses. Here we present constraints on the fore-arc structure and subduction zone of the rupture area derived from seismic refraction and wide-angle data. The results show a wedge shaped body ~40 km wide with typical sedimentary velocities interpreted as a frontal accretionary prism (FAP). Landward of the imaged FAP, the velocity model shows an abrupt velocity-contrast, suggesting a lithological change which is interpreted as the contact between the FAP and the paleo accretionary prism (backstop). The backstop location is coincident with the seaward limit of the aftershocks, defining the updip limit of the co-seismic rupture and seismogenic zone. Furthermore, the seaward limit of the aftershocks coincides with the location of the shelf break in the entire earthquake rupture area (33°S–38.5°S), which is interpreted as the location of the backstop along the margin. Published seismic profiles at the northern and southern limit of the rupture area also show the presence of a strong horizontal velocity gradient seismic backstop at a distance of ~30 km from the deformation front. The seismic wide-angle reflections from the top of the subducting oceanic crust constrain the location of the plate boundary offshore, dipping at ~10°. The projection of the epicenter of the Maule earthquake onto our derived interplate boundary yielded a hypocenter around 20 km depth, this implies that this earthquake nucleated somewhere in the middle of the seismogenic zone, neither at its updip nor at its downdip limit.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-02-18
    Description: The Copenhagen Diagnosis is a summary of the global warming peer reviewed science since 2007. Produced by a team of 26 scientists led by the University of New South Wales Climate Research Centre, the Diagnosis convincingly proves that the effects of global warming have gotten worse in the last three years. It is a timely update to the UN’s Intercontinental Panel on Climate Change 2007 Fourth Assessment document (IPCC AR4). The report places the blame for the century long temperature increase on human factors and says the turning point ";must come soon";. If we are to limit warming to 2 degrees above pre-industrial values, global emissions must peak by 2020 at the latest and then decline rapidly. The scientists warned that waiting for higher levels of scientific certainty could mean that some tipping points will be crossed before they are recognized. By 2050 we will effectively need to be in a post-carbon economy if we are to avoid unlivable temperatures.
    Type: Book , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-09-23
    Description: The volcanic front in southern Central America is well known for its Galapagos OIB-like geochemical signature. A comprehensive set of geochemical, isotopic and geochronological data collected on volumetrically minor alkaline basalts and adakites were used to better constrain the mantle and subduction magma components and to test the different models that explain this OIB signature in an arc setting. We report a migration of back-arc alkaline volcanism towards the northwest, consistent with arc-parallel mantle flow models, and a migration towards the southeast in the adakites possibly tracking the eastward movement of the triple junction where the Panama Fracture Zone intersects the Middle America Trench. The adakites major and trace-element compositions are consistent with magmas produced by melting a mantle-wedge source metasomatized by slab-derived melts. The alkaline magmas are restricted to areas that have no seismic evidence of a subducting slab. The geochemical signature of the alkaline magmas is mostly controlled by upwelling asthenosphere with minor contributions from subduction components. Mantle potential temperatures calculated from the alkaline basalt primary magmas increased from close to ambient mantle (~ 1380-1410 °C) in the Pliocene to ~ 1450 °C in the younger units. The calculated initial melting pressures for these primary magmas are in the garnet stability field (3.0-2.7 GPa). The average final melting pressures range between 2.7-2.5 GPa, which is interpreted as the lithosphere-asthenosphere boundary at ~ 85-90 km. We provide a geotectonic model that integrates the diverse observations presented here. The slab detached after the collision of the Galapagos tracks with the arc (~ 10-8 Ma). The detachment allowed hotter asthenosphere to flow into the mantle wedge. This influx of hotter asthenosphere explains the increase in mantle potential temperatures, the northwest migration in the back-arc alkaline lavas that tracks the passage of the hotter asthenosphere, and the presence of a slab melting signature in the volcanic front caused by recycling of Galapagos Hotspot tracks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-03-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-07-11
    Description: Among the numerous anti-herbivore defences developed by macroalgae, chemical and morphological traits are best documented and understood. Plant defence theory suggests that these resistances, which can either be constitutive or inducible, are associated with metabolic costs. They should therefore be impaired under conditions of energy limitation, but evidence for this prediction is scarce. In two subsequent experiments, we tested whether a reduction of light availability is changing feeding rates of the two mesoherbivores Idotea ochotensis and Lacuna smithii on the red alga Chondrus yendoi. Algal individuals were kept in outdoor mesocosm facilities for 10days, during which we manipulated the amount of incoming sunlight at 6 levels (0%99% reduction, i.e. 200020 mols1m2). Orthogonal to this, we established the presence or absence of one of the herbivores to test whether C. yendoi can generate a defence. Algal palatability was investigated afterwards in no-choice feeding assays using na ve grazer individuals. The consumption of algal tissue in L. smithii increased with decreasing light, while this was not the case for I. ochotensis. However, we found a defence induced as a reaction to herbivory only by the highly mobile isopod but not when the slowly moving snail grazed on C. yendoi. Isopod total consumption rates in our experiments were 40 times higher than those of the gastropods. We therefore suggest that C. yendoi exhibits grazer-specific reactions to herbivory, depending on the mobility and voracity of the consumers. Interestingly, only for one of the grazers, i.e. the snail, short-term light reduction influenced the palatability of algal tissue. We discuss different but not mutually exclusive models that could explain this pattern. In conclusion, we view this three-species system as an illustrative example for specificity in grazeralgal interactions and their modification by environmental stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 310 (1-2). pp. 105-112.
    Publication Date: 2019-09-23
    Description: Sea floor methane vents and seeps direct methane generated by microbial and thermal decompositions of organic matter in sediment into the oceans and atmosphere. Methane vents contribute to ocean acidification, global warming, and providing a long-term (e.g. 500–4000 years; Powell et al., 1998) life-sustaining role for unique chemosynthetic biological communities. However, the role methane vents play in both climate change and chemosynthetic life remains controversial primarily because we do not understand long-term methane flux and the mechanisms that control it (Milkov et al., 2004; Shakhova et al., 2010; Van Dover, 2000). Vents are inherently dynamic and flux varies greatly in magnitude and even flow direction over short time periods (hours-to-days), often tidally-driven (Boles et al., 2001; Tryon et al., 1999). But, it remains unclear if flux changes at vents occur on the order of the life-cycle of various species within chemosynthetic communities (months, years, to decades Leifer et al., 2004; Torres et al., 2001) and thus impacts their sustainability. Here, using repeat high-resolution 3D seismic surveys acquired in 2000 and 2008, we demonstrate in 4D that Hydrate Ridge, a vent off the Oregon coast has undergone significant reduction of methane flow and complete interruption in just the past few years. In the subsurface, below a frozen methane hydrate layer, free gas appears to be migrating toward the vent, but currently there is accumulating gas that is unable to reach the seafloor through the gas hydrate layer. At the same time, abundant authigenic carbonates show that the system has been active for several thousands of years. Thus, it is likely that activity has been intermittent because gas hydrates clog the vertical flow pathways feeding the seafloor vent. Back pressure building in the subsurface will ultimately trigger hydrofracturing that will revive fluid-flow to the seafloor. The nature of this mechanism implies regular recurring flow interruptions and methane flux changes that threaten the viability of chemosynthetic life, but simultaneously and enigmatically sustains it.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-09-23
    Description: Oceanic island arcs are sites of high magma production and contribute to the formation of continental crust. Geophysical studies may provide information on the configuration and composition of island arc crust, however, to date only few seismic profiles exist across active island arcs, limiting our knowledge on the deep structure and processes related to the production of arc crust. We acquired active-source wide-angle seismic data crossing the central Lesser Antilles island arc north of Dominica where the oceanic Tiburon Ridge subducts obliquely beneath the forearc. A combined analysis of wide-angle seismics and pre-stack depth migrated reflection data images the complex structure of the backstop and its segmentation into two individual ridges, suggesting an intricate relation between subducted basement relief and forearc deformation. Tomographic imaging reveals three distinct layers composing the island arc crust. A three kilometer thick upper crust of volcanogenic sedimentary rocks and volcaniclastics is underlain by intermediate to felsic middle crust and plutonic lower crust. The island arc crust may comprise inherited elements of oceanic plateau material contributing to the observed crustal thickness. A high density ultramafic cumulates layer is not detected, which is an important observation for models of continental crust formation. The upper plate Moho is found at a depth of 24 km below the sea floor. Upper mantle velocities are close to the global average. Our study provides important information on the composition of the island arc crust and its deep structure, ranging from intermediate to felsic and mafic conditions. In this study we model the deep structure of the Lesser Antilles Island Arc. We use a hybrid analysis of refraction and reflection seismic data. We image the complex structure of two ridges forming the backstop. Island arc crust composition ranges from intermediate to felsic to mafic conditions. We discuss the formation of island arc and continental crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-09-23
    Description: The submarine Dakar Canyon incises the continental margin at the transition of the hyperarid Sahara to the semiarid Sahel Zone, and acts as an effective pathway for gravity-driven sediment transport. Four gravity cores recovered directly from the canyon axis were investigated in order to reconstruct the sedimentation processes in the Dakar Canyon during the Late Quaternary. In addition, a hemipelagic record from the northern levee of the canyon was analysed for monitoring background sediment supply, which is dominated by dust input in the area. Coarse terrigenous silt size data and high Ti/Ca ratios reflect overall increased higher dust supply during the last two peak glacials. During these times wide-extensive sand sea covered the exposed shelf almost completely. However, in interglacial periods wind stress diminished considerably and only minor amounts of dust were supplied to the outer shelf and continental slope. Two major periods of turbidite depositions are recorded in intervals from final glacial sea level lowstands to early deglacial sea level rise of the last two glacial/interglacial cycles (i.e. between 141 and 131 kyr BP and from 23.2 to 14.2 kyr BP). These turbidite deposits consist of sandy to silty sediments. Detailed grain size analyses were used to reconstruct the sedimentary characteristics and flow processes of these turbidity currents. A much higher frequency in turbidite activity occur around 135 kyr BP in contrast to the second interval around 18 kyr BP, suggesting a higher sediment budget in the source area. Based on the sedimentological investigation of the turbidites we provide a schematic model for the sedimentation processes in the Dakar Canyon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-09-23
    Description: Tommeliten is a prominent methane seep area in the Central North Sea. Previous surveys revealed shallow gas-bearing sediments and methane gas ebullition into the water column. In this study, the in situ methane flux at Tommeliten is re-assessed and the potential methane transport to the atmosphere is discussed, with regards to the hydrographic setting and gas bubble modeling. We have compiled previous data, acquired new video and acoustic evidence of gas bubble release, and have measured the methane concentration, and its C-isotopic composition in the water column. Parametric subbottom sonar data reveal the three-dimensional extent of shallow gas and morphologic features relevant for gas migration. Five methane ebullition areas are identified and the main seepage area appears to be 21 times larger than previously estimated. Our video, hydroacoustic, subbottom, and chemical data suggest that 1.5106 mol CH4/yr (26 tons CH4/yr) of methane gas is being released from the seepage area of Tommeliten. Methane concentration profiles in the vicinity of the gas seeps show values of up to 268 nM (100 times background) close to the seafloor. A decrease in d13C-CH4 values at 40 m water depth indicates an unknown additional biogenic methane source within the well oxygenated thermocline between 30 and 40 m water depth. Numerical modeling of the methane bubbles due to their migration and dissolution was performed to estimate the bubble-derived vertical methane transport, the fate of this methane in the water column, and finally the flux to the atmosphere. Modeling indicates that less than 4% of the gas initially released at the seafloor is transported via bubbles into the mixed layer and, ultimately, to the atmosphere. However, because of the strong seasonality of mixing in the North Sea, this flux is expected to increase as mixing increases, and almost all of the methane released at the seafloor could be transferred into the atmosphere in the stormy fall and winter time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-08-07
    Description: A multiproxy data set of an AMS radiocarbon dated 46 cm long sediment core from the continental margin off western Svalbard reveals multidecadal climatic variability during the past two millennia. Investigation of planktic and benthic stable isotopes, planktic foraminiferal fauna, and lithogenic parameters aims to unveil the Atlantic Water advection to the eastern Fram Strait by intensity, temperatures, and salinities. Atlantic Water has been continuously present at the site over the last 2,000 years. Superimposed on the increase in sea ice/icebergs, a strengthened intensity of Atlantic Water inflow and seasonal ice-free conditions were detected at ~ 1000 to 1200 AD, during the well-known Medieval Climate Anomaly (MCA). However, temperatures of the MCA never exceeded those of the 20th century. Since ~ 1400 AD significantly higher portions of ice rafted debris and high planktic foraminifer fluxes suggest that the site was located in the region of a seasonal highly fluctuating sea ice margin. A sharp reduction in planktic foraminifer fluxes around 800 AD and after 1730 AD indicates cool summer conditions with major influence of sea ice/icebergs. High amounts of the subpolar planktic foraminifer species Turborotalia quinqueloba in size fraction 150–250 μm indicate strengthened Atlantic Water inflow to the eastern Fram Strait already after ~ 1860 AD. Nevertheless surface conditions stayed cold well into the 20th century indicated by low planktic foraminiferal fluxes. Most likely at the beginning of the 20th century, cold conditions of the terminating Little Ice Age period persisted at the surface whereas warm and saline Atlantic Water already strengthened, hereby subsiding below the cold upper mixed layer. Surface sediments with high abundances of subpolar planktic foraminifers indicate a strong inflow of Atlantic Water providing seasonal ice-free conditions in the eastern Fram Strait during the last few decades.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-06-10
    Description: In 1948, Le Danois reported for the first time the occurrence of living cold-water coral reefs, the so-called “massifs coralliens”, along the European Atlantic continental margin. In 2008, a cruise with R/V Belgica was set out to re-investigate these cold-water corals in the Penmarc'h and Guilvinec Canyons along the Gascogne margin of the Bay of Biscay. During this cruise, an area of 560 km2 was studied using multibeam swath bathymetry, CTD casts, ROV observations and USBL-guided boxcoring. Based on the multibeam data and the ROV video imagery, two different cold-water coral reef settings were distinguished. In water depths ranging from 260 to 350 m, mini mounds up to 5 m high, covered by dead cold-water coral rubble, were observed. In between these mounds, soft sediment with a patchy distribution of gravel was recognised. The second setting (350–950 m) features hard substrates with cracks, spurs, cliffs and overhangs. In water depths of 700 to 950 m, both living and dead cold-water corals occur. Occasionally, they form dense coral patches with a diameter of about 10–60 m, characterised by mostly stacked dead coral rubble and a few living specimens. U/Th datings indicate a shift in cold-water coral growth after the Late Glacial Maximum (about 11.5 ka BP) from shallow to deep-water settings. The living cold-water corals from the deeper area occur in a water density (sigma–theta) of 27.35–27.55 kg m− 3, suggested to be a prerequisite for the growth and distribution of cold-water coral reefs along the northern Atlantic margin. In contrast, the dead cold-water coral fragments in the shallow area occur in a density range of 27.15–27.20 kg m− 3 which is slightly outside the density range where living cold-water corals normally occur. The presented data suggest that this prerequisite is also valid for coral growth in the deeper canyons (〉 350 m) in the Bay of Biscay.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-09-23
    Description: Surface seawater samples were taken in the framework of the GEOTRACES program on “POLARSTERN” expedition ANT XXIII/1 in the Eastern Atlantic in 2005 to study the distribution of the trace elements Hg (mercury), Pb (lead), Cd (cadmium), Cu (copper), Ni (nickel), Zn (zinc), Co (cobalt), Mn (manganese), Fe (iron), and Al (aluminium). With the exception of Hg, results were compared to earlier datasets from 1989 to 1990. The particulate fraction averaged over the transect was calculated to be 49% for Cd, 23% for Mn and 50% for Fe indicating a release of these TEI's (trace elements and their isotopes) from a leachable SPM fraction in the stored and acidified samples. Total Pb concentrations ranged between 5 and 20 pmol kg− 1 in 2005 with highest values in the ITCZ (intertropical convergence zone). In 1989 Pb concentrations were twice as high in the region of the ITCZ, while by a factor of 10–15 higher values were obtained in the North Atlantic. Total Cd and Co are dominated, by different seasonal upwelling regimes (Equatorial upwelling, Guinea Dome, Angola Dome). Total Cu, Ni, Fe, Mn and Al show nearly identical concentrations in 1990 and 2005. For total manganese and aluminium strong maxima (3–4 nmol kg− 1 and 55 nmol kg− 1 respectively) are observed between 23°N and 0°, while the Fe maximum (6–9 nmol kg− 1) is located at 7°N. Total Hg concentrations ranged between 0.5 and 4.5 pmol kg− 1.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-10-26
    Description: The Mid-Atlantic Ridge between the Ascension and Bode Verde Fracture Zones exhibits anomalous crustal thickness and geochemical compositions, which could reflect the presence of either small, enriched heterogeneities in the upper mantle or a weak, diffuse mantle plume. We report new trace element (106 samples) and Sr, Nd and Pb (double spike) isotope data from 72 ridge axis samples and 9 off-axis seamount samples between 5 and 11°S, aswell asU–Th–Ra disequilibria data for the seamounts. The U-series data constrain the age of one sample from Seamount D, furthest (120 km) east of the shallowest part of the ridge, to be b10,000 yrs old and the samples from the other three seamounts closer to the ridge to be younger than 240,000 yrs. As can be most clearly discerned on a diagram of 208Pb/206Pb vs. 143Nd/144Nd, at least four distinct components are required to explain the geochemical variations along the ridge: 1) a common depleted (D-MORBlike) component in samples near and north of the Ascension Fracture Zone (4.8–7.6°S), representing the most depleted compositions sampled thus far along the mid-Atlantic ridge, 2) an enriched component upwelling beneath Ascension Island and the northern A1 ridge segment (segment numbers increase from A1 to A4 going south from the Ascension Fracture Zone), 3) an enriched component upwelling beneath the A2 ridge segment, and 4) an enriched component upwelling beneath the line of seamounts east of the A3 segment and the A3 and A4 segments. The A1 and the A3+A4 segment lavas form well-defined mixing arrays, which extend from Ascension Island and the A3 seamounts respectively to the depleted D-MORB component, interpreted to reflect local ambient mantle. We propose that the enriched components represent different packages of subducted ocean crust and/or ocean island basalt (OIB) type volcanic islands and seamounts that have either been recycled through 1) the shallowmantle, upwelling passively beneath the ridge systemor 2) the deep mantle via an actively upwelling heterogeneous mantle plume that interacts with the ridge system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-09-23
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised. Highlights ► Societies increasingly depend on timely information on ecosystems and natural hazards. ► Data is needed to improve climate-related uncertainty and geo-hazard early warning. ► Observatory networks coordinate and integrate the collection of standardised data. ► Ocean observatories provide opportunity for ocean science to evolve.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2012-07-06
    Description: Sinking of aggregated phytoplankton cells is a crucial mechanism for transporting carbon to the seafloor and benthic ecosystem, with such aggregates often scavenging particulate material from the water column as they sink. In the vicinity of drilling rigs used by the oil and gas industry, the concentration of particulate matter in the water column may at times be enriched as a result of the discharge of ‘drill cuttings’ – drilling waste material. This investigation exposed laboratory produced phytoplankton aggregates to drill cuttings of various composition (those containing no hydrocarbons from reservoir rocks and those with a 〈1% hydrocarbon content) and assessed the change in aggregate size, settling rate and resuspension behavior of these using resuspension chambers and settling cylinders. Results indicate that both settling velocity and seabed stress required to resuspend the aggregates are greater in aggregates exposed to drill cuttings, with these increases most significant in aggregates exposed to hydrocarbon containing drill cuttings.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-08-08
    Description: Over a decade of research on recent cold-water coral mounds in various oceans has set the stage for comparative studies between recent and ancient carbonate mound systems, with the aim to unravel generic processes and reveal the “red thread” in a fundamental strategy of Life building Geology — a strategy nearly as ancient as Life itself. Natural laboratories have been identified in the present ocean, which provide new insights in oceanographic controls on species migration and settlement, in the interaction of currents and carbonate build-up, in the earliest diagenesis which overprints environmental signals and shapes the template of compartmentalization of carbonate build-ups, and in so many other processes and factors ultimately shaping carbonate bodies, comparable in size and properties to the large-scale carbonate hydrocarbon reservoirs in the geological record. Ocean drilling and coring is an essential component of this research. Ideally, this process is a two-way avenue between Shallow and Deep Time, where fundamental and industrial knowledge about fossil carbonate mounds can drive further investigations and even experimentation in the present seas, while the discoveries and process studies on “live” systems can yield new insights in the architecture and evolution of ancient reservoir systems. This bridging exercise is the quintessence of COCARDE (Cold-Water Carbonate Reservoir Systems in Deep Environments), an international network under the auspices of IOC-UNESCO (http://www.cocarde.eu). COCARDE has organised two workshops in 2009, with a significant support of European programmes (e.g. ESF Magellan workshop series) and partner projects (e.g. ESF EuroDIVERSITY project MiCROSYSTEMS). This special issue groups 12 papers, all addressing observations which by their nature have the potential to provide keys to generic processes, of relevance for past carbonate systems. As COCARDE proceeds, it is the objective to “reciprocate” in near future with an equivalent grouping of contributions from the study of fossil studies, to guide further research in the present ocean. It is the purpose of COCARDE to strengthen such a reflux from the studies of fossil systems by stimulating relevant continental drilling exercises, with comparable sampling protocols, resolution and analytical procedures – where relevant – to allow direct comparisons with records from ocean drilling. The papers in this special issue have been structured in four themes: (i) keys to palaeoenvironmental control, (ii) mound initiation, growth and demise, (iii) of microbes and mounds, and (iv) tracking organominerals — Recent and Ancient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-09-23
    Description: Forearc structures of the eastern Sunda Arc are studied by new multichannel reflection seismic profiling. We image a high along-strike variability of the subducting oceanic plate, the interface between subducting and overriding plate, the accretionary wedge, the outer arc high and forearc basins. We highlight ongoing tectonic activity of the entire outer arc high: active out-of-sequence thrust faults connecting the plate interface with the seafloor, slope basins showing tilted sedimentary sequences on the outer arc high, vertical displacement of young seafloor sediments, and tilted sedimentary sequences in the Lombok forearc basin. While frontal accretion plays a minor role, the growth of the outer arc high is mainly attributed to oceanic sediments and crustal fragments, which are attached to the base of the upper plate and recycled within the forearc. We image ongoing large-scale duplex formation of the oceanic crust. The incoming oceanic crust is dissected by normal faulting into 5–10 km wide blocks within a 50–70 km wide belt seaward of the deep sea trench. These blocks determine the geometry and evolution of duplexes attached to the base of the overriding plate landward of the trench. Long-lasting and ongoing subsidence of the Lombok Basin is documented by distinct seismic sequences. In the Lombok Basin we image mud diapirs, fed from deeply buried sediments which may have been mobilized by rising fluids. We propose a wrench fault system in the eastern Lombok forearc basin that decouples the subduction regime of the Sunda Arc from the continent–island arc collision regime of the western Banda Arc. The observed tectonic activity of the entire forearc system reflects a high earthquake and tsunami hazard, similar to the western part of the Sunda Arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-12-07
    Description: Parasound profiles across the Shaban Deep in the Red Sea indicate turbiditic transport of surface sediments from the topographic hight (basalt ridge) into the interior of the deep. This is supported by petrographical and (isotope-) geochemical evidence in the East Basin of the Shaban Deep where the presence of variable mixtures of authochtonous and allochthonous sediment compounds had been found. The uppermost 170 cm of both sediment cores 17008-1 and 17009-3 reveal “normal” stable oxygen isotope values for the planktonic foraminifera G. ruber near -1 ‰ which is indicative for carbonate formation in Red Sea surface water around 27°C. However, below 182 cm in core 17008-1 highly variable δ 18O values for G. ruber between 0.26 and -10.68 ‰ occur which are not the result of temperature-controlled oxygen isotope fractionation between foraminiferal carbonate and Red Sea surface water. The lowest δ18O values of -10.68 ‰ measured for highly-altered foraminifera shells suggests carbonate precipitation higher than 90°C. Organic petrographical observations show a great diversity of marine-derived macerals and terrigenous organic particles. Based on petrographical investigations sediment core 17008-1 can be subdivided in intervals predominantly of authochtonous character (i.e. 1, 3, 5 corresponding to core depths 0-170 cm, 370-415 cm, 69-136 cm), and allochthonous/thermally altered character (e.g. 2, 4 corresponding to core depths 189-353 cm, 515-671 cm). Allochthonous/thermally altered material displays a wide to an extremely wide range of maturities (0.38-1.42 % Rr) and also natural coke particles were found. Similarily, the organic geochemical and pyrolysis data indicate the predominance of well-preserved, immature algal and bacterial remains with a minor contribution of land plant material. Sediments below 170 cm (core 17008-1) contain contributions of re-sedimented pre-heated material most likely from the area of the basaltic ridge. This is documented by individual coke particles reduced hydrogen indices and elevated Tmax values up to 440°C. An “oil-type” contribution (evidenced by mature biomarkers, hopene/hopane ratios, elevated background fluorescence, n-alkane distribution) is also present in the sediments which most likely originated at greater depth and impregnated the surface sediments. The heat source responsible for recrystallisation of foraminiferal carbonate and maturation of organic particles in Shaban Deep sediments most likely is attributed to modern basalt extrusions which now separate the Shaban Deep subbasins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-01-23
    Description: Over the past decade coralline algae have increasingly been used as archives of paleoclimate information. Encrusting coralline algae, which deposit annual growth increments in a high Mg-calcite skeleton, are amongst the longest-lived shallow marine organisms. In fact, a live-collected plant has recently been shown to have lived for at least 850 years based on radiometric dating. While a number of investigations have successfully used geochemical information of coralline algal skeletons to reconstruct sea surface temperatures, less attention has been paid to employ growth increment widths as a temperature proxy. Here we explore the relationship between growth and environmental parameters in Clathromorphum compactum collected in the subarctic Northwestern Atlantic. Results indicate that growth-increment widths of individual plants are poorly correlated with instrumental sea surface temperatures (SST). However, an averaged record of multiple growth increment-width time series from a regional network of C. compactum specimens up to 800 km apart reveals strong correlations with annual instrumental SST since 1950. Hence, similar to methods applied in dendrochronology, averaging of multiple sclerochronological records of coralline algae provides accurate climate information. A 115-year growth-increment width master chronology created from modern-collected and museum specimens is highly correlated to multidecadal variability seen in North Atlantic sea surface temperatures. Positive changes in algal growth anomalies record the well-documented regime shift and warming in the northwestern Atlantic during the 1990s. Large positive changes in algal growth anomalies were also present in the 1920s and 1930s, indicating that the impact of a concurrent large-scale regime shift throughout the North Atlantic was more strongly felt in the subarctic Northwestern Atlantic than previously thought, and may have even exceeded the 1990s event with respect to the magnitude of the warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-01-23
    Description: We have investigated the trace elemental composition in the skeleta of two specimens of attached-living coralline algae of the species Clathromorphum compactum from the North Atlantic (Newfoundland) and Clathromorphum nereostratum from the North Pacific/Bering Sea region (Amchitka Island, Aleutians). Samples were analyzed using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) yielding for the first time continuous individual trace elemental records of up to 69 years in length. The resulting algal Mg/Ca, Sr/Ca, U/Ca, and Ba/Ca ratios are reproducible within individual sample specimens. Algal Mg/Ca ratios were additionally validated by electron microprobe analyses (Amchitka sample). Algal Sr/ Ca, U/Ca, and Ba/Ca ratios were compared to algal Mg/Ca ratios, which previously have been shown to reliably record sea surface temperature (SST). Ratios of Sr/Ca from both Clathromorphum species show a strong positive correlation to temperature-dependent Mg/Ca ratios, implying that seawater temperature plays an important role in the incorporation of Sr into algal calcite. Linear Sr/Ca-SST regressions have provided positive, but weaker relationships as compared to Mg/Ca-SST relationships. Both, algal Mg/Ca and Sr/Ca display clear seasonal cycles. Inverse correlations were found between algal Mg/Ca and U/Ca, Ba/Ca, and correlations to SST are weaker than between Mg/Ca, Sr/Ca and SST. This suggests that the incorporation of U and Ba is influenced by other factors aside from temperature
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth-Science Reviews, 104 . pp. 1-40. Date online first: 2010
    Publication Date: 2017-01-19
    Description: The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several ‘subductionrelated’ Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene–Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO2-undersaturated, although rare, SiO2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (b30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European plate (Sardinia, Corsica, Balearic Islands, Kabylies, Calabria, Peloritani Mountains). The bulk of igneous activity in the central-western Mediterranean is believed to have tapped mantle ‘wedge’ regions, metasomatized by pressure-related dehydration of the subducting slabs. The presence of subduction-related igneous rocks with a wide range of chemical composition has been related to the interplay of several factors among which the pre-metasomatic composition of the mantle wedges (i.e., fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO2 and H2O in the fluid phase released by the subducting plates are the most important. Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) entrifugal wave of both compressive and extensional tectonics starting from a ‘pivotal’ region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction ‘inversion’ events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subductionrelated magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related ‘exotic’ (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the hanging-wall of the Late Cretaceous–Eocene Adria–Europe subduction system in the Alps); i) voluminous production of subductionrelated magmas coeval with extensional tectonic régimes (e.g., during Oligo-Miocene Sardinian Trough formation). To summarize, these salient central-western Mediterranean features, characterizing a late-stage of the classic ‘Wilson Cycle’ offer a ‘template’ for interpreting magmatic compositions in analogous settings elsewhere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-09-23
    Description: Identification of the limiting nutrient(s) is a requirement for the rational management of eutrophication. Here, we present the first experimental analysis of nutrient limitation of phytoplankton growth and its seasonal variation in the Guadiana estuary (SE Portugal-SW Spain). Ten microcosm experiments were performed during 2005 and 2008, using water samples collected in the freshwater tidal zone of the Guadiana estuary. Nitrate, phosphate and silicate were added in a single pulse, alone and in combinations. Experimental treatments were incubated for 4 days under controlled laboratory conditions. Phytoplankton response to nutrient enrichment was evaluated through changes in biomass (Chla), and abundance of specific phytoplankton groups. Overall, phytoplankton growth seemed to be nitrogen-limited throughout the productive period, especially green algae in 2005 and diatoms in 2008. In the summer 2008, cyanobacteria and the harmful dinoflagellate Kryptoperidinium foliaceum responded to N enrichment in the absence of Si. Indeed, the presence of K. foliaceum was observed for the first time in the freshwater tidal reaches of the Guadiana estuary, where dinoflagellates were usually absent or rare. The significant increase on dinoflagellates and cyanobacteria growth in response to N enrichment in the absence of Si is alarming, because anthropogenic nutrient enrichments usually increase N and P, but not Si. Furthermore, relatively high N concentrations, up to 22 μM, were found to be limiting to phytoplankton growth. These results should therefore be used as a management tool when establishing nutrient criteria and nutrient loading budgets to estuarine waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-09-23
    Description: Light is usually the main driver of phytoplankton growth in turbid estuaries, but it has received far less attention than nutrients as a bottom-up factor. This study presents the first experimental analysis of light limitation of phytoplankton growth and production and its seasonal variability in the freshwater tidal reaches of the turbid Guadiana estuary, SE Portugal/SW Spain. Natural phytoplankton communities were exposed to different photosynthetically active radiation (PAR) intensities. Short-term incubations with addition of 14HCO3− were used to estimate photosynthetic parameters and long-term incubations allowed the evaluation of the effects of light on phytoplankton composition and growth. Light limitation of phytoplankton growth occurred throughout the year in the freshwater tidal reaches of the estuary and no photoinhibition was observed at least up to 615 μmol photons m−2 s−1. In the summer, co-limitation by nutrients prevented a positive response of phytoplankton to light enrichment. Diatoms were the most light-limited group, whilst cyanobacteria were the only group acclimated to low-light conditions. Green algae and dinoflagellates responded positively to higher PAR exposures. High saturating irradiances, high light-saturated rates of primary production and low photosynthetic efficiencies suggest that phytoplankton community was not acclimated to the low-light conditions that prevail in the Guadiana estuary.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 284 (1-4). pp. 74-85.
    Publication Date: 2021-05-11
    Description: The Malta Plateau is a shallow, asymmetric, north–south striking ridge located between Sicily and the Maltese Islands. New 2D seismic and side scan sonar data sets, sub-bottom profiles and seabed samples are investigated to characterize fluid flow systems on the Malta Plateau, determine their origin, and improve our general understanding of fluid flow focusing in terms of structural and stratigraphic controls. We demonstrate that fluid flow systems across the Malta Plateau are numerous, widespread and active. Two types of fluid flow systems are identified. The first type can be observed in the shallower parts of the western Malta Plateau. It consists of a shallow system where fluids ascend from gas-charged Plio-Pleistocene sediments and actively seep at the seafloor in the form of gas flares. The fluid migrating in this kind of system is likely autochthonous, biogenic gas (probably methane) forming at shallow depth. The second type comprises deep systems that can be observed in the central and eastern parts of the Malta Plateau. In these deep systems, fluids generated in Late Mesozoic sediments ascend through Late Cretaceous, Tertiary and Plio-Pleistocene units, and are expelled at the seafloor in the form of pockmarks. Late Mesozoic faults, Early Miocene to recent faults, and pipe structures constitute the preferred migration pathways. The migrating fluids are likely of thermogenic origin, possibly leaking from Mesozoic hydrocarbon reservoirs. Particularly in the north of Malta there is evidence that fluid migration is driven by overpressure at depth resulting from compressive events during the Late Cretaceous–Early Tertiary. Since the tectonic regime across the Malta Plateau is currently extensional, we propose that recent fluid migration and expulsion are at least partly driven by old overpressures and sustained by more recent normal faults. Our results show that fluid migration must be taken into account when assessing seabed stability on the Malta Plateau. Our results also indicate where chemosynthetic ecosystems may be located, and they improve our understanding of the petroleum geology of the Malta Plateau. Highlights ► Fluid flow systems across the Malta Plateau are numerous and active. ► Shallow and deep systems are identified in new 2D seismic and side scan sonar data. ► In the shallow system biogenic gas seeps from gas-charged Plio-Pleistocene sediments. ► In the deep system thermogenic fluids migrate along pipe structures and faults. ► Deep system is driven by overpressures inherited from a former collisional setting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-07-26
    Description: Analysis of multi-channel seismic data from the northern East China Sea Shelf Basin (ECSSB) reveals three sub-basins (Socotra, Domi, and Jeju basins), separated by structural highs (Hupijiao Rise) and faulted basement blocks. These sub-basins show a typical rift-basin development: faulted basement and syn-rift and post-rift sedimentation separated by unconformities. Four regional unconformities, including the top of acoustic basement, have been identified and mapped from multi-channel seismic data. Faults in the acoustic basement are generally trending NE, parallel to the regional structural trend of the area. The depths of the acoustic basement range from less than 1000 m in the northwestern part of the Domi Basin to more than 4500 m in the Socotra Basin and 5500 m in the Jeju Basin. The total sediment thicknesses range from less than 500 m to about 1500 m in the northwest where the acoustic basement is shallow and reach about more than 5500 m in the south. Interpretation of seismic reflection data and reconstruction of three depth-converted seismic profiles reveal that the northern ECSSB experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous was driven by the NW-SE crustal stretching of the Eurasian Plate, caused by the subduction of the Pacific Plate beneath the Eurasian Plate. Extension was the greatest during the early phase of basin formation; estimated rates of extension during the initial rifting are 2%, 6.5%, and 3.5% in the Domi, Jeju, and Socotra basins, respectively. A regional uplift terminated the rifting in the Late Eocene-Early Oligocene. Rifting and extension, although mild, resumed in the Early Oligocene; while fluvio-lacustrine deposition continued to prevail. The estimated rates of extension during the second phase of rifting are 0.7%, 0.8%, and 0.5% in the Domi, Jeju, and Socotra basins, respectively. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the post-rift phase of regional subsidence. Regional subsidence dominated the study area between the Early Miocene and the Late Miocene. An inversion in the Late Miocene interrupted the post-rift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Uplift and subsequent erosion were followed by regional subsidence. Highlights This paper presents 2D seismic mapping of the northern East China Sea Shelf Basin. - Structural and stratigraphic evolution of the basin have been investigated. - We have also reconstructed three depth-converted seismic reflection profiles. - Cross-section restoration provided quantitative information about extension rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-08-08
    Description: Palaeoceanography relies on the assumption that parameters measureable in sediment cores correlate reliably to hydrographic parameters. Areas of dynamic watermass mixing, which generally have steep hydrographic gradients, therefore provide both a tempting target (large spatial and temporal differences in temperature and salinity) and a significant challenge (high flow velocities and high “noise”) for palaeoceanographers. Here, we investigate the ability of parameters measured on core tops to be used as the basis for simulating regional hydrography within one globally important area of watermass mixing, the Gulf of Cadiz. Using grainsize, sediment composition, benthic foraminiferal assemblage and benthic foraminiferal stable isotope analysis it is possible to build an effective framework for qualitative constraint of the position of the modern Mediterranean Outflow Water (MW) Plume. We propose that the Gulf of Cadiz slope can be sub-divided into 8 hydrographic zones reflecting these parameters; Proximal MW, Core MW1 (steep slopes), Core MW1 (gentle slopes), Distal MW1, Distal MW2, Lower Limit of MW plume, North Atlantic Deep Water and Ambient Atlantic Water. We anticipate that compilation of time-slice data will reveal hydrographic sub-divisions of the slope for the past in a similar manner, improving our understanding of past changes in the size and position of the MW plume, but more work needs to be done before a secure protocol for quantitative reconstruction can be created. Stable isotope analysis alone is insufficient for the task, with δ13C behaving in a non-conservative manner and δ18Ocalcite acting in an ambiguous way due to the competing influences of δ18Owater and temperature. It is likely that if a single parameter that unambiguously determines the difference between Mediterranean Water and Atlantic Water can be identified, combination with δ18Ocalcite will allow extension of our qualitative analysis into a quantitative means of palaeohydrographic reconstruction for this region. Similar complexity to that found in this study would be expected in any mixing region, and in particular on the majority of sediment drifts. We recommend that core top surveys similar to this study are performed on these sediment drift systems before any form of quantitative palaeohydrology is attempted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-09-23
    Description: In their article, Geyer and Martí (2010) propose that the evolution and origin of the volcanic islands which constitute the Canarian archipelago are strongly controlled by regional tectonic “Atlantic” and “African” structures. In their Fig. 1a they sketch the geometry of the Iberian and Moroccan microplates and the respective boundary zones with respect to Africa (Nubia) and Eurasia (Mantovani et al., 2007). Dashed lines indicating presumed plate boundaries cross the Canarian archipelago, which will therefore be located along a lithospheric fracture, the boundary between the Moroccan and African (Nubia) microplates. This regional fracture extends from the Atlas to the Atlantis fracture zone, coinciding in parts with the propagating fracture postulated by Anguita and Hernán (1975). In Fig. 1b of Geyer and Martí (2010), dashed lines indicate the orientation of the most evident tectonic structures visible on the ocean floor. As we show in this comment, all of these mapped “faults” are artifacts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-09-27
    Description: Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment–seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34–180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7–301, 0.5–6 and 0–806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-09-23
    Description: The high levels of water-reuse in intensive recirculating aquaculture systems (RAS) require an effective water treatment in order to maintain good water quality. In order to reveal the potential and limitations of ozonation for water quality improvement in marine RAS, we tested ozone's ability to remove nitrite, ammonia, yellow substances and total bacterial biomass in seawater, considering aspects such as efficiency, pH-dependency as well as the formation of toxic ozone-produced oxidants (OPO). Our results demonstrate that ozone can be efficiently utilized to simultaneously remove nitrite and yellow substances from process water in RAS without risking the formation of toxic OPO concentrations. Contemporaneously, an effective reduction of bacterial biomass was achieved by ozonation in combination with foam fractionation. In contrast, ammonia is not oxidized by ozone so long as nitrite and yellow substances are present in the water, as the dominant reaction of the ozone-based ammonia-oxidation in seawater requires the previous formation of OPO as intermediates. The oxidation of ammonia in seawater by ozone is basically a bromide-catalyzed reaction with nitrogen gas as end product, enabling an almost complete removal of ammonia-nitrogen from the aquaculture system. Results further show that pH has no effect on the ozone-based ammonia oxidation in seawater. Unlike in freshwater, an effective removal of ammonia even at pH-values as low as 6.5 has been shown to be feasible in seawater. However, as the predominant reaction pathway involves an initial accumulation of OPO to toxic amounts, we consider the ozone-based removal of ammonia in marine RAS as risky for animal health and economically unviable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Elsevier
    In:  Palaeogeography, Palaeoclimatology, Palaeoecology, 309 (1-2). pp. 111-117.
    Publication Date: 2019-09-23
    Description: Tectonic changes of the Early to Mid-Pliocene largely modified the Indonesian Passages by constricting and uplifting the passages between today's New Guinea and Sulawesi. The associated changes in strength and water mass properties of the Indonesian throughflow (ITF) might have influenced the amount of heat transported from the Pacific to the Indian Ocean and thus contributed to Pliocene climate change of the Indo-Pacific. We study the climate response to changes in the geometry of the Indonesian Passages in an atmosphere–ocean general circulation model (AOGCM). We compare climate simulations with present-day topography and with a topography resembling the Early Pliocene situation in the Indo-Pacific, i.e. passages East of Sulawesi deepened and widened to the South. We find that transport through the Indonesian Archipelago is weakened in the constricted passage by 1.7 Sv and in the unchanged Makassar Strait West of Sulawesi by 3.5 Sv, while transport weighted temperature of the outflow into the Indian Ocean increases by 1 °C. Consistent with recent proxy evidence the reduction in ITF transport causes a decrease in subsurface temperatures in the Indian Ocean while surface waters of the equatorial Pacific exhibit an increase by up to 0.9 °C centred in the warm pool. As a local response to the sea surface temperature anomalies, we observe an anomalous precipitation dipole across the Indonesian passages with increased rainfall over the Pacific warm pool and decreased precipitation in the eastern Indian Ocean. The Australian continent experiences a pronounced aridification with mean annual precipitation rates dropping by 30% over most parts of the continent. Using an uncoupled vegetation model, we demonstrate that the simulated climate change might partly explain the observed Late Pliocene desertification of Australia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-06-15
    Description: The Central American forearc allows insight into the long-term evolution of the Middle American margin and possible shifts between accretionary and erosive periods of subduction. We present a revised tectonostratigraphic subdivision of the Azuero area based on new field observations and biochronologic data, and a synthesis of previous age, geochemical and stratigraphic data. The basement of the area is composed of an autochtonous oceanic plateau, the early Central American arc and accreted seamounts, which are unconformably overlain by forearc sediments. The nature and spatial arrangement of basement units combined with patterns of uplift and subsidence recorded in overlapping sediments allow reconstruction of the local evolution of subduction tectonics between the Upper Cretaceous and Miocene. Comparison of this evolution with that formerly proposed for the south Costa Rican margin based on a similar approach (Buchs et al., 2009, 2010) provides an insight into temporal and along-strike changes of subduction tectonics along a ~ 500 km-long segment of the Middle American margin. We find that subduction erosion (or non-accretion), punctuated by seamount accretion, was the dominant process along the margin between the late Campanian and Middle Eocene. In the Middle Eocene, uplift of the Central American forearc, initiation of a volcanic front retreat in Panama and a pulse of seamount accretion between south Costa Rica and west Panama are likely to relate to a reorganization of plate tectonics in the Pacific. A contrasted evolution occurred in south Costa Rica and Panama afterwards, with continued subduction erosion in the Azuero area and net accretion of olistostromal and hemipelagic sediments in south Costa Rica at least until the Middle Miocene. Our results show that tectononstratigraphic observations in the forearc may represent a valuable complement to offshore drilling and geophysical studies to understand modern subduction tectonics along the Middle American margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 406 (1-2). pp. 54-62.
    Publication Date: 2020-07-24
    Description: With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e. the manipulation of total alkalinity (TA) or total dissolved inorganic carbon (DIC), have been discussed. While Langer et al. (2009) demonstrate a high degree of intra-specific variability between strains of E. huxleyi, the question whether different CO2 manipulation methods influence the cellular responses has not been resolved yet. In this study, closed TA as well as open and closed DIC manipulation methods were compared with respect to E. huxleyi's CO2-dependence in growth rate, POC- and PIC-production. The differences in the carbonate chemistry between TA and DIG manipulations were shown not to cause any differences in response patterns, while the latter differed between open and closed DIC manipulation. The two strains investigated showed different sensitivities to acidification of seawater, RCC1256 being more negatively affected in growth rates and PIC production than NZEH
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 58 (1-2). pp. 5-17.
    Publication Date: 2020-08-05
    Description: The IPY sister-projects CAML and SCAR-MarBIN provided a timely opportunity, a strong collaborative framework and an appropriate momentum to attempt assessing the "Known, Unknown and Unknowable" of Antarctic marine biodiversity. To allow assessing the known biodiversity, SCAR-MarBIN "Register of Antarctic Marine Species (RAMS)" was compiled and published by a panel of 64 taxonomic experts. Thanks to this outstanding expertise mobilized for the first time, an accurate list of more than 8100 valid species was compiled and an up-to-date systematic classification comprising more than 16,800 taxon names was established. This taxonomic information is progressively and systematically completed by species occurrence data, provided by literature, taxonomic and biogeographic databases, new data from CAML and other cruises, and museum collections. RAMS primary role was to establish a benchmark of the present taxonomic knowledge of the Southern Ocean biodiversity, particularly important in the context of the growing realization of potential impacts of the global change on Antarctic ecosystems. This, in turn, allowed detecting gaps in knowledge, taxonomic treatment and coverage, and estimating the importance of the taxonomic impediment, as well as the needs for more complete and efficient taxonomic tools. A second, but not less important, role of RAMS was to contribute to the "taxonomic backbone" of the SCAR-MarBIN, OBIS and GBIF networks, to establish a dynamic information system on Antarctic marine biodiversity for the future. The unknown part of the Southern Ocean biodiversity was approached by pointing out what remains to be explored and described in terms of geographical locations and bathymetric zones, habitats, or size classes of organisms. The growing importance of cryptic species is stressed, as they are more and more often detected by molecular studies in several taxa. Relying on RAMS results and on some case studies of particular model groups, the question of the potential number of species that remains to be discovered in the Southern Ocean is discussed. In terms of taxonomic inputs to the census of Southern Ocean biodiversity, the current rate of progress in inventorying the Antarctic marine species as well as the state of taxonomic resources and capacity were assessed. Different ways of improving the taxonomic inputs are suggested.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-07-23
    Description: Cold-watercoralreefs occur in many regions of the world's oceans. Fundamental questions regarding their functioning remain unanswered. These include the biogeochemical influence of reefs on their environment (“reef effects”) and the influence of hydrodynamic processes on reef nutrition. In a succession of field campaigns in 2007 and 2008, these questions were addressed at the Tislercold-watercoralreef, which is centered on a sill peak in the Norwegian Skagerrak. A variety of methodological approaches were used. These consisted of the collection of CTD and chlorophyll profiles, current measurements, sampling of particulateorganicmatter (POM) in the benthic boundary layer (BBL) across the reef with subsequent chemical analyses, and the chemical analysis of freshly released Lophelia pertusa mucus. CTD and chlorophyll profiles indicated that downstream of the sill crest, downwelling delivered warmer, fresher and chlorophyll richer water masses down to the BBL. Both sides of the reef received downwelling nutrition delivery, as flow direction over the reef reversed periodically. Several chemical composition indicators revealed that suspended POM was significantly fresher on the downstream side of the reef than on the upstream side. L. pertusa mucus from the TislerReef was labile in composition, as indicated by a low C/N ratio and a high amino acid degradation index (DI) value. Particulateorganic carbon (POC) content in the BBL was significantly depleted across the reef. Lateral depositional fluxes were calculated to be 18–1485 mg POC m−2 d−1, with a mean of 459 mg POC m−2 d−1. We propose that the combination of fresh, downwelling POM with mucus released from the reef was the cause of the greater lability of the downstream POM. Our data on POC depletion across the reef suggest that cold-watercoralreefs could play an important role in carbon cycling along continental margins. Research Highlights: ► Downwelling is important for reef nutrition of cold-watercoralreefs located on sills. ► Lophelia pertusa mucus is a labile organic substrate. ► POM on the downstream side of a reef can be more labile than on the upstream side. ► POC content in the BBL was significantly depleted across TislerReef. ► Cold-watercoralreefs could play an important role in carbon cycling in the oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-06-26
    Description: Climate model results for the Baltic Sea region from an ensemble of eight simulations using the Rossby Centre Atmosphere model version 3 (RCA3) driven with lateral boundary data from global climate models (GCMs) are compared with results from a downscaled ERA40 simulation and gridded observations from 1980-2006. The results showed that data from RCA3 scenario simulations should not be used as forcing for Baltic Sea models in climate change impact studies because biases of the control climate significantly affect the simulated changes of future projections. For instance, biases of the sea ice cover in RCA3 in the present climate affect the sensitivity of the model's response to changing climate due to the ice-albedo feedback. From the large ensemble of available RCA3 scenario simulations two GCMs with good performance in downscaling experiments during the control period 1980-2006 were selected. In this study, only the quality of atmospheric surface fields over the Baltic Sea was chosen as a selection criterion. For the greenhouse gas emission scenario A1B two transient simulations for 1961-2100 driven by these two GCMs were performed using the regional, fully coupled atmosphere-ice-ocean model RCAO. It was shown that RCAO has the potential to improve the results in downscaling experiments driven by GCMs considerably, because sea surface temperatures and sea ice concentrations are calculated more realistically with RCAO than when RCA3 has been forced with surface boundary data from GCMs. For instance, the seasonal 2 m air temperature cycle is closer to observations in RCAO than in RCA3 downscaling simulations. However, the parameterizations of air-sea fluxes in RCAO need to be improved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 307 (3-4). pp. 279-288.
    Publication Date: 2019-09-23
    Description: The question whether large scale glaciations on Antarctica were possible in a late Mesozoic greenhouse climate such as the Late Cretaceous is an intriguing one. The most recent years have provided an increasing number of studies investigating the growth and decay of paleo-continental ice sheets on Antarctica possibly large enough to affect sea level. Since the outcome of these studies doesn't provide a basis for a conclusive decision we have performed a number of model runs using an Atmospheric General Circulation Model (AGCM) to test whether large volumes of snow might have accumulated even under Late Cretaceous greenhouse conditions. By varying orbital parameters as well as topography, and atmospheric CO2 concentrations our models indicate the possibility of an Antarctic ice shield build-up large enough to drive sea level fluctuations on the order of tens of meters within ~ 20,000 years. This is supported under the assumption of pCO2 levels 〈 800 ppm, low insolation, and elevated topography. The growth of a major Antarctic ice sheet would be possible on reasonable time scales. To accumulate about half the present day snow/ice volume which is required to explain the documented shifts in oxygen isotopes our model results suggest a time span between 20,000 and 80,000 years for these ice volumes to accumulate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-09-23
    Description: We investigate the effects of different vertical grid resolutions and algorithms for the calculation of particle sinking on the sedimentation and remineralization of particulate organic matter. Simulations carried out with an idealized 1D model of detritus sinking show that a coarse vertical resolution, such as used in many global biogeochemical models, tends to enhance the particle flux through numerical mixing within the vertical boxes, and thereby simulates deeper remineralization, compared to a model with a fine vertical resolution. This effect can be ameliorated by assuming a distribution of detritus within the individual grid boxes that corresponds to the prescribed sinking and remineralization parameters. Experiments of the different flux algorithms, carried out with 3D global biogeochemical models of different vertical grid resolution reveal impacts on simulated biogeochemical tracer distributions that are similar to those obtained by substantial variations in biogeochemical model parameters. Our results indicate that numerical schemes have to be considered when comparing biogeochemical parameter values of different models and also when porting biogeochemical models among different circulation models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-10-20
    Description: This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck - a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2-BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3-) and nitrite (NO2-) were simulated using a benthic model that accounted for transport andbiogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3- (-0.35 mmol m-2 d-1 of NO3-), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3- reduction to NO2- by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m-2d-1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2-fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen(DIN = NO3- + NO2- + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m-2 d-1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3- in the bottomwater (NO3-BW).Higher O2-BW decreases DNRA and denitrification but stimulates both anammox and the contribution ofanammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-09-23
    Description: Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11 °S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3–), nitrite (NO2–) and ammonium (NH4+) was used to constrain a 1–D reaction–transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80 – 260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (less-than-or-equals, slant 2.9 mmol N m–2 d–1) and accounted for greater-or-equal, slanted 65 % of NO3– + NO2– uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3– + NO2– + NH4+) since DNRA reduces NO3– and, potentially NO2–, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300 – 1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (less-than-or-equals, slant 2 mmol N m–2 d–1) and removed 55 – 73 % of NO3– and NO2– taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62 % to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3–, NO2–) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-07-11
    Description: It is widely believed that non-native species possess a high tolerance toward abiotic stress that allows them to survive transport and to colonize new habitats. However, to date empirical support for this concept is scarce. We therefore tested whether Didemnum vexillum, which recently invaded the Irish Sea, is more tolerant to fluctuations in salinity than the closely related Diplosoma listerianum, a cosmopolitan species of wide ranging distribution. The two fouling organisms exhibit similar habitat requirements and co-occur in many hard-bottom sites along the coasts of Ireland and Wales. We collected adult specimen of both taxa in Holyhead Marina, Wales, UK, and exposed them to different levels of reduced salinity ranging from 10 to 27 in short-term laboratory experiments. In separate trials, we mimicked chronic (2 weeks) as well as episodic (2 h) low-salinity stress to account for the natural temporal variability in osmotic fluctuations. We compared the ascidians' performances in the face of stress and found that the invasive D. vexillum showed higher growth and survival under low salinities than the cosmopolitan D. listerianum. This indicates that D. vexillum is generally better in adapting to fluctuating ion concentrations. This competitive advantage may facilitate the establishment and spread of D. vexillum, especially if osmotic conditions in coastal habitats will be altered by future climate-change induced shifts in local precipitation regimes. Highlights ► We tested for differential stress tolerances in two colonial ascidians. ► Ascidian growth and survival was measured under chronic and episodic osmotic stress. ► The cosmopolitan Diplosoma listerianum was susceptible to osmotic stress. ► The recent invader Didemnum vexillum exhibited a high tolerance to osmotic stress. ► Tolerance to salinity changes may add to the high invasiveness in D. vexillum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-07-19
    Description: Feeding habits and habitat preferences of five related species (Aspitrigla cuculus, Chelidonichthys lucerna, Chelidonichthys obscurus, Eutrigla gurnardus and Trigla lyra) (Scorpaeniformes: Triglidae) were studied in the southern Bay of Biscay. Specimens were collected during annual bottom trawl surveys carried out every autumn between 1990 and 2008 on soft bottoms of the Galician and Cantabrian Sea continental shelf between 30 and 800 m depth. All species were found to display a different depth distribution, despite co-occurring in many of the hauls (co-occurrence percentage ranged between 4.45 and 34.77%). Although depth was the main variable explaining the triglid distribution, latitude, temperature and sediment type were also important driving factors. Regarding feeding habits all triglids fed mainly on crustaceans, their main prey being Alpheus glaber, Polybius henslowii, Scyllarus arctus, Chlorotocus crassicornis and Pagurus prideaux. However, fish accounted for a considerable proportion of the diet with Gadiculus argenteus, Callionymus spp., and Cepola rubescens being the most common fish prey. Ontogenetic changes in diet were evident in all species but C. obscurus. Dietary overlap, determined by the Schoener Index greatly differed amongst species pairs ranging between 0.10 and 0.63. Considering all ontogenetic groups in the triglid assemblage, either diet or habitat segregation occurred between most of them. This fact suggests that any of these strategies on their own would suffice in order to avoid inter and intra specific competitions. Nevertheless, habitat partitioning occurred mainly at the inter-specific level and trophic segregation at the intra-specific level. A. cuculus and E. gurnardus showed the poorest resource partitioning in the assemblage, possibly as a consequence of the increasing abundance of the population of the first during the last decades. Research highlights ► Depth was the most important variable structuring the triglids' assemblage. ► Both habitat and trophic partitioning occurred simultaneously in the assemblage. ► Either diet or habitat segregation sufficed to avoid competition. ► Increasing predator abundance impoverished its resource partitioning. ► The NAO had an indirect effect on the triglids by shaping their prey's variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Elsevier
    In:  Ecological Modelling, 222 (8). pp. 1376-1386.
    Publication Date: 2017-02-21
    Description: Pelagic, coupled ocean circulation-ecosystem models, are widely used in climate research. These tools aim to quantify fluxes of nutrients and carbon in the ocean and are, increasingly, the base of future projections. For this purpose it is crucial to quantify and identify the sources of uncertainties. In contrast to physical models, the underlying equations for ecosystem models are derived from empirical relationships rather than based on first principles. This resulted in the development of a multitude of different ecosystem models – different in respect to both, underlying principles and complexity. Clearly, the question arises, to what extent the sensitivities of these models are comparable. This study focuses on the intrinsic dynamics of some widely used, simple (containing 2–3 prognostic variables) ecosystem models in a 0-D framework (i.e., comprising only the well-mixed oceanic surface layer). A suite of differing model approaches is tuned such that their behavior is similar. The setup resembles the well-mixed oceanic surface layer in the Baltic proper. It is illustrated that strong differences between the model approaches appear due to exemplary, anticipated changes in the external nutrient and light conditions. Herewith, we demonstrate the well-known, but rarely demonstrated fact that, apparent consistency between modeled prognostic variables with today's data bases is not necessarily a good measure of forecast skill. The causes which lead to the different sensitivities are illustrated by considering the steady state solutions. It is pointed out, that apparently small changes in the model formulations can result in very different dynamical behavior and an enormous spread between the model approaches, despite the feasibility to tune a common behavior in a limited range of light and nutrient supply. In our examples, the sensitivity is mainly a function of the formulation of the loss rate of phytoplankton. It is thus, in particular, the formulation of highly unknown heteorotrophic processes that determines the model sensitivity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-07-30
    Description: Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at several stations at the shelf break of the northern Bay of Biscay. The cruise was carried out after the main spring diatom bloom that, based on the analysis of a time-series of remotely sensed chlorophyll-a (Chl-a), peaked in mid-April. Remotely sensed sea surface temperature (SST) indicated the occurrence of enhanced vertical mixing (due to internal tides) at the continental slope, while adjacent waters on the continental shelf were stratified, as confirmed by vertical profiles of temperature acquired during the cruise. The surface layer of the stratified water masses (on the continental shelf) was depleted of inorganic nutrients. Dissolved silicate (DSi) levels probably did not allow significant diatom development. We hypothesize that mixing at the continental slope allowed the injection of inorganic nutrients that triggered the blooming of mixed phytoplanktonic communities dominated by coccolithophores (Emiliania huxleyi) that were favoured with regards to diatoms due to the low DSi levels. Based on this conceptual frame, we used an indicator of vertical stratification to classify the different sampled stations, and to reconstruct the possible evolution of the bloom from the onset at the continental slope (triggered by vertical mixing) through its development as the water mass was advected on-shelf and stratified. We also established a carbon mass balance at each station by integrating in the photic layer PP, CAL and DCR. This allowed computation at each station of the contribution of PP, CAL and DCR to CO2 fluxes in the photic layer, and how they changed from one station to another along the sequence of bloom development (as traced by the stratification indicator). This also showed a shift from net autotrophy to net heterotrophy as the water mass aged (stratified), and suggested the importance of extracellular production of carbon to sustain the bacterial demand in the photic and aphotic layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-01-19
    Description: Recent developments in the quantitativemodeling of methane dynamics and anaerobic oxidation of methane (AOM) in marine sediments are critically reviewed. The first part of the review begins with a comparison of alternative kinetic models for AOM. The roles of bioenergetic limitations, intermediate compounds and biomass growth are highlighted. Next, the key transport mechanisms in multi-phase sedimentary environments affecting AOM and methane fluxes are briefly treated, while attention is also given to additional controls on methane and sulfate turnover, including organic matter mineralization, sulfur cycling and methane phase transitions. In the second part of the review, the structure, forcing functions and parameterization of published models of AOM in sediments are analyzed. The six-orders-of-magnitude range in rate constants reported for the widely used bimolecular rate law for AOM emphasizes the limited transferability of this simple kinetic model and, hence, the need for more comprehensive descriptions of the AOM reaction system. The derivation and implementation of more complete reaction models, however, are limited by the availability of observational data. In this context, we attempt to rank the relative benefits of potential experimental measurements that should help to better constrain AOM models. The last part of the review presents a compilation of reported depth-integrated AOM rates (ΣAOM). These rates reveal the extreme variability of ΣAOM in marine sediments. The model results are further used to derive quantitative relationships between ΣAOM and the magnitude of externally impressed fluid flow, as well as between ΣAOM and the depth of the sulfate–methane transition zone (SMTZ). This review contributes to an improved understanding of the global significance of the AOM process, and helps identify outstanding questions and future directions in the modeling of methane cycling and AOM in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-09-23
    Description: High-resolution records of ice-rafted debris (IRD) and oxygen isotope records spanning an E–W-trending transect across the Okhotsk Sea unravel the marine and terrestrial cryogenic history of NE-Siberia over the last 350 kyr. IRD, predominantly dispersed basin-wide by sea-ice, shows lowest fluxes during interglacial periods implying a reduced and seasonal sea-ice coverage. Highest IRD accumulation rates are observed during glacial and deglacial periods with a more extended, but highly dynamic ice cover. Although being rather synchronous, IRD fluxes are on average higher in the western Okhotsk Sea than in the eastern part, pointing to a persistent but mobile, particle-supplying sea-ice cover even during full glacial conditions, presumably less dense in the eastern parts. MIS 6 is exceptional in this respect: Asynchronous fluxes of IRD, which vary spatially, reflect rapid paleoclimatic and paleo-glaciomarine changes. IRD accumulation rates were by factor 2–3 higher during MIS 6 as compared to the last glacial maximum, and the IRD depositional center shifted from the western Okhotsk Sea (early MIS 6) toward Kamchatka (late MIS 6), synchronous to a distinct change in the IRD mineral composition. Both, the characteristic composition of late MIS 6 IRD originating from the Sredinny Mountain Range of Kamchatka and their significantly enhanced accumulation rates refer to intensified iceberg dispersal across the eastern part of the Okhotsk Sea at ~138 ka, ~135 ka, ~129 ka, and ~128 ka BP. This scenario affords the presence of extended mountain glaciers protruding down to sea level on the western side of Kamchatka. Anomalously light planktonic stable oxygen isotopes during MIS 6.3, Termination II and MIS 5.5–5.4 suggest significant freshwater supply related to the westward drainage of Kamchatka glaciers. The intensified Kamchatka glaciation observed during late MIS 6 was repeated during MIS 3. Iceberg discharges into the eastern Okhotsk Sea are observed at ~60 ka, ~51 ka, ~42 ka, ~38 ka, ~36 ka, and ~31 ka, and may partly correspond to N-Atlantic Heinrich Events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-12-12
    Description: Ozone is frequently used for water treatment and disinfection in recirculating aquaculture systems. However, due to the fragmentary data on chronic toxicity of ozone produced oxidants (OPO) and its safe concentrations, the daily application of ozone in aquaculture is challenging. To evaluate the chronic effects of sublethal OPO concentrations, juvenile turbot (Psetta maxima, L.) were exposed to OPO concentrations of 0.06, 0.10 and 0.15mg/l for 21 days. Gills were analysed for histopathological alterations and mRNA expression of heat shock protein 70 (hsp70), hsp90 as well as glutathione-S-transferase (gst) were determined in the gills and the liver after 1d, 7d and 21d. Histopathologic findings confirmed adverse effects at 0.10-0.15mg/l, but these (necrosis, lamellar clubbing, hypertrophy, hyperplasia) could only be observed after an extended exposure (mostly 21d), and were considered as irreversible tissue damage. Hsp70 expression in the gills was only significantly increased at the highest OPO concentration (0.15mg/l) on 1d and 7d, and returned to basic levels until day 21. Hsp90 mRNA was already increased at 0.10mg/l after 1 and 7 days of exposure, and again was comparable to the control group on day 21. In contrast, elevated gst mRNA expression was only observed on day 7 at 0.10mg and 0.15mg/l. Although similar trends were observed in the liver for all markers, differences were only significant in exceptional cases due to the high individual variation observed. Thus, mRNA expression in the gills rather than in the liver is recommended as a marker to characterize OPO-induced oxidative stress in turbot. It has to be noted that mRNA expression returned to basic levels on day 21 regardless the actual OPO concentration, suggesting a collapse of adaptive mechanisms as a possible explanation for the observed tissue damage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-09-23
    Description: Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by 〉+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-06-02
    Description: Female mate choice and female multiple mating are major focuses of studies on sexual selection. In a multiple mating context, the benefits of mate choice can change along successive matings, and female choice would be expected to change accordingly. We investigated sequential female mate choice in the moderately polyandrous common lizard (Zootoca vivipara, synonym Lacerta vivipara). Along successive mating opportunities, we found that females were relatively unselective for the first mate, but accepted males of higher heterozygosity for subsequent mating, consistent with the trade-up choice hypothesis. We discuss the evidence of trade-up mate choice in squamates and generally trade-up for mate heterozygosity in order to motivate new studies to fill gaps on these questions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-09-26
    Description: This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1). Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite–seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite–seawater = −0.9 ± 0.2. Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation. Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-09-26
    Description: Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18–31 °C), salinities (32–44 psu) and pH levels (7.9–8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ⩾29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-09-23
    Description: Distal volcanic tephras in soil sections and lake sediments in the Dvuh-yurtochnoe (Two-Yurts) lake area, central Kamchatka, were investigated in order to provide a chronological framework for the reconstruction of late Quaternary landscape development. Mineralogical and geochemical data point to sources from 5 volcanoes. Ten tephra layers were identified and correlated to known eruptive events. The ages were corroborated by radiocarbon dating of the soil sections around Two-Yurts lake. These findings allow the reconstruction of regional paleoenvironmental change, recorded in the soil sections around Two-Yurts lake. During the Last Glacial Maximum (LGM) time, the area was affected by glacial advances that produced the glacial moraines at the eastern outlet of the lake. A large landslide, ca. 15,000–18,000 14C BP, dammed the valley and led to formation of Two-Yurts lake. Several more landslide events can be recognized in the Holocene, and one affected Two-Yurts lake ca. 3000 14C BP. This event produced a “tsunami”, documented by poorly sorted deposits with rounded pebbles in the onshore sections around the lake. In contrast to the soil sections, tephras buried in the “soupy” lacustrine sediments of Two-Yurts lake are not well preserved and show inconsistent age-depth relationships compared to those suggested by radiocarbon dating, due to sinking through the lake sediments. Nevertheless, tephrochronological data revealed the strong impact of terrestrial landslides on lake sedimentation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-09-27
    Description: Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 μm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-27
    Description: Four seep sites located within an -20 km2 area offshore Georgia (Batumi seep area, Pechori Mound, Iberia Mound, and Colkheti Seep) show characteristic differences with respect to element concentrations, and oxygen, hydrogen, strontium, and chlorine isotope signatures in pore waters, as well as impregnation of sediments with petroleum and hydrocarbon potential. All seep sites have active gas seepage, near surface authigenic carbonates and gas hydrates. Cokheti Seep, Iberia Mound, and Pechori Mound are characterized by oil-stained sediments and gas seepage decoupled from deep fluid advection and bottom water intrusion induced by gas bubble release. Pechori Mound is further characterized by deep fluid advection of lower salinity pore fluids. The Pechori Mound pore fluids are altered by mineral/water reactions at elevated temperatures (between 60 and 110°C) indicated by heavier oxygen and lighter chlorine isotope values, distinct Li and B enrichment, and K depletion. Strontium isotope ratios indicate that fluids originate from late Oligocene strata. This finding is supported by the occurrence of hydrocarbon impregnations within the sediments. Furthermore, light hydrocarbons and high molecular weight impregnates indicate a predominant thermogenic origin for the gas and oil at Pechori Mound, Iberia Mound, and Colkheti Seep. C15+ hydrocarbons at the oil seeps are allochtonous, whereas those at the Batumi seep area are autochthonous. The presence of oleanane, an angiosperm biomarker, suggests that the hydrocarbon source rocks belong to the Maikopian Formation. In summary, all investigated seep sites show a high hydrocarbon potential and hydrocarbons of Iberia Mound, Colkheti Seep, and Pechori Mound are predominantly of thermogenic origin. However, only at the latter seep site advection of deep pore fluids is indicated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary International, 229 (1/2). pp. 84-88.
    Publication Date: 2016-09-19
    Description: On the basis of pollen and spore assemblages in sediment core from the eastern Laptev Sea shelf, climatic fluctuations and related changes in vegetation on the adjacent land can be recognized for the time from 11.3 cal. ka BP to 5.3 cal. ka BP. Around 11.3 cal. ka BP, climate was warmer than now and southern shrubby tundra was widely distributed on the coast. Until 10.3 cal. ka BP, shrub tundra dominated and climate was milder than today. The time interval 10.3e9.0 cal. ka BP was marked by increased abundance of arboreal plants; climate became more humid and warmer. In the interval of 9.3e8.0 cal. ka BP, climate was increasingly humid and warm, and forest-tundra vegetation occupied more favorable locations in the region. The increased abundance of arboreal pollen in the shelf zone can be interpreted as a response to the northward displacement of the treeline after 9.0 cal. ka BP. From approximately 7.6 to nearly 5.3 cal. ka BP, southern shrub tundra was renewed and climatic conditions were warmer than now.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-14
    Description: The Dhaka and Maya mud volcanoes (MVs), located in the Mud Diapir Province in the Western Alboran Basin along the Moroccan Coasts, were cored during the TTR-17, Leg 1 cruise. Cores were taken on the top of the volcanoes at a water depth of 370 m on the Dhaka MV (core TTR17-MS411G) and at 410 m water depth on the Maya MV (core TTR17-MS419G), respectively. On both mud volcanoes the extruded mud breccia provides the nucleation point for the colonization and development of cold-water corals and associated ecosystems. Two phases of cold-water coral growth are observed: (1) between slightly older than 4175±62 years BP and around 2230±59 years BP at Dhaka, and (2) between slightly older than 15583±185 years BP and around 7613± 38 years BP at Maya MV. On the top of the Maya MV only a small patch reef and/or isolated corals proliferated, whereas a more extended patch reef colonized the top of the Dhaka MV. At both sites the cold-water coral developmentwas triggered by the availability of a suitable substrate for initial coral settling, provided either as a firm ground or as single clasts. Subsequently coral growth was supported by enhanced nutrient flux possibly related to upwelling and/or strong currents. During the intervals of coral growth planktonic foraminiferal assemblages were dominated by Neogloboquadrina incompta. The decline of coral ecosystems on the mud volcanoes is accompanied at surface by a shift fromthe N. incompta dominated assemblage to a Globorotalia inflata dominated assemblage, possibly reflecting more oligotrophic conditions. This shift is coeval to the passage from wet to arid conditions at the end of the African Humid Period at MayaMV. It is interpreted as an effect of an early human impact on a fragile environment, which was already stressed by desiccation at the time of the development of complex human society along the Mediterranean coasts, at Dhaka MV.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-03-26
    Description: The Miocene to Pleistocene Limon Group of Costa Rica is a mixed carbonate–siliciclastic succession that formed in association with the emergence of the Central American Isthmus. Our study focuses on a lower Late Pliocene reef unit, the newly excavated Contact Cut, which is located at the contact between the siliciclastic sediments of the Rio Banano Formation and the mixed reefal and coral bearing deposits and siliciclastic sediments of the Quebrada Chocolate Formation. The siliciclastic sediments were deposited in a thick, deltaic setting sourced by erosion of the Cordillera de Talamanca. Deposits of the Limon Group preserve a sequence of progressively shallowing, near-shore sediments that were exposed by uplift during the early to middle Pleistocene. The Contact Cut outcrop shows the first reef sequence in the stratigraphic sequence and thus illustrates the reestablishment of Caribbean coral reef predominance in the Neogene. It shows extensive reef growth during a rise in sea level and a slight progradation during the succeeding sea-level highstand. Three stages of reef evolution are recognized based on faunal diversity. The Contact Cut reef complex is comparable to the time equivalent reef of the Las Islas roadcut, situated west of Limon, which shows a rapid burial of the corals by siliciclastics. Both reefs document a distinct facies diversification during the final stages of the closing of the Central American Seaway. The reefs developed in an environment stressed by siliciclastic input, which ultimately caused a decrease in coral diversity and abundance followed by a temporary demise of the reefs. The biotic composition of the patch reefs that occurred during the sea-level rise, Las Islas and Contact Cut, did not differ from the reefs that developed during the final highstand in sea level, the reefs of the overlying Moin formation (Limon Group). Differences in the position on the shelf relative to the source of the siliciclastics might have been the cause for the different response to the rise in sea level of the transgressive reefs, with a very fast give up scenario for Las Islas reef and a catch up followed by a give up phase for Contact Cut reef.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-09-23
    Description: This study provides new estimates for the global offshore methane hydrate inventory formed due to microbial CH4 production under Quaternary and Holocene boundary conditions. A multi-1D model for particular organic carbon (POC) degradation, gas hydrate formation and dissolution is presented. The novel reaction-transport model contains an open three-phase system of two solid compounds (organic carbon, gas hydrates), three dissolved species (methane, sulfates, inorganic carbon) and one gaseous phase (free methane). The model computes time-resolved concentration profiles for all compounds by accounting for chemical reactions as well as diffusive and advective transport processes. The reaction module builds upon a new kinetic model of POC degradation which considers a down-core decrease in reactivity of organic matter. Various chemical reactions such as organic carbon decay, anaerobic oxidation of methane, methanogenesis, and sulfate reduction are resolved using appropriate kinetic rate laws and constants. Gas hydrates and free gas form if the concentration of dissolved methane exceeds the pressure, temperature, and salinity-dependent solubility limits of hydrates and/or free gas, with a rate given by kinetic parameters. Global input grids have been compiled from a variety of oceanographic, geological and geophysical data sets including a new parameterization of sedimentation rates in terms of water depth. We find prominent gas hydrate provinces offshore Central America where sediments are rich in organic carbon and in the Arctic Ocean where low bottom water temperatures stabilize methane hydrates. The world’s total gas hydrate inventory is estimated at 0.82 x 10sup13 m3 - 2.10 x 10sup15 m3 CH4 (at STP conditions) or, equivalently, 4.18–995 Gt of methane carbon. The first value refers to present day conditions estimated using the relatively low Holocene sedimentation rates; the second value corresponds to a scenario of higher Quaternary sedimentation rates along continental margins. Our results clearly show that in-situ POC degradation is at present not an efficient hydrate forming process. Significant hydrate deposits in marine settings are more likely to have formed at times of higher sedimentation during the Quaternary or as a consequence of upward fluid transport at continental margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-08-22
    Description: It is well demonstrated that the major source of iron (Fe) to the Tropical Atlantic is through aeolian deposition of Saharan dust. However presently we know very little about the dissolution processes of these aerosols in the sunlit productive surface waters of this region. Candidate processes identified as being potentially critical to dust dissolution include thermal dissolution, direct photochemical reduction, ligand induced dissolution and reductive dissolution by superoxide (O(2)(-)), formed predominantly by photochemical reactions with dissolved organic matter in seawater. O(2)(-) is short lived (half life: 1-100 s) in seawater as it reacts rapidly with both the iron (Fe(II)/Fe(III)) and copper (Cu(I)/Cu(II)) redox couples and to a less extent with dissolved organic matter. In the euphotic zone where high fluxes of sunlight and potentially O(2)(-) exist there exists the possibility of a kinetic controlled reduction of Fe in colloids and particles to the more soluble and bioavailable Fe(II). However, presently no information is available from the open ocean on the rates that this process may be occurring. Here we present experimental data using a new methodological approach to assess trace metal speciation which involves the measurement of O(2)(-) decay kinetics. Our method allows an assessment of changes in both the organic reactivity with O(2)(-) simultaneously with apparent changes in the speciation of iron and/or copper. Our approach allows evaluation of the importance of each of the different reaction pathways for O(2)(-) and thus the factors which control metal redox speciation in seawater. In the present work we applied this technique using seawater collected in the vicinity of the island of Sao Vicente, Cape Verde, to dust incubation experiments to ascertain rapidly if dust dissolution had altered the in situ iron or copper speciation in seawater. Our results show the importance of Cu and CDOM to O(2)(-) reactivity in the Tropical Atlantic and highlight the natural variability in dust dissolution processes in the ocean that is still poorly understood. Our data also indicate that reactions with O(2)(-) in the surface Tropical Ocean are not a significant source of soluble iron. (C) 2011 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Elsevier
    In:  Ocean Modelling, 39 (1-2). pp. 114-124.
    Publication Date: 2017-02-06
    Description: Meridional diffusivities from Lagrangian particle dispersion and Eulerian diffusivities from a flux-gradient relationship are estimated in an idealized primitive equation channel model featuring eddy-driven zonal jets. The Eulerian estimate shows an increase with depth and clear minima of meridional diffusivities within the zonal jets, indicating mixing barriers. The Lagrangian estimates agree with the Eulerian method on the vertical variation and also show indications of meridional mimima, although meridional variations are poorly resolved. We found early maxima in the particle spreading rates which should not be related to diffusivities since they are caused by the meandering zonal jets. The meanders also produce rotational eddy fluxes, which can obscure the Eulerian diffusivity estimates. Zonal particle dispersion rates do not converge within the chosen lag interval, because of shear dispersion by the mean flow, i.e. it is not possible to estimate Lagrangian zonal diffusivities representative for regions of similar size of the zonal jet spacing. Removing the zonal mean flow, zonal and meridional dispersion rates converge and show much higher zonal than meridional diffusivities. Further, the pronounced vertical increase and indications of meridional minima in the Lagrangian meridional diffusivities disappear, pointing towards the importance of shear dispersion by the mean flow for the suppression of meridional mixing by zonal jets. (C) 2011 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 305 (3-4). pp. 445-455.
    Publication Date: 2019-09-23
    Description: Tharsis Tholus, a more than 3.9 Ga old composite shield volcano to the east of the major Tharsis Montes, has experienced a complex history of growth and destruction. On the basis of new high resolution images we analysed the morphology as well as the tectonic structures of the Tharsis Tholus volcano in detail. From morphological data, cross-cutting relations of the surface structures, and crater modelling ages we propose a chronostratigraphy for the volcano-tectonic history of Tharsis Tholus. The strongly faulted volcano reveals two large-scale landslide events followed by two subsequent shield re-growth phases between 3.8 and 1.7 Ga and two caldera collapses. Tharsis Tholus was also affected by regional extensional tectonics between 1.7 Ga and 0.4 Ga recorded by sub-parallel sets of NE trending graben structures. The steep and up to 5.4 km high landslide scarps on Tharsis Tholus suggest deep faulting of the edifice. In order to confirm this hypothesis we used analogue sand box models in which we demonstrated that gravitational flank movement on top of weak basal substrata may have produced the deformation structures as observed on Tharsis Tholus. (C) 2011 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-08
    Description: Cu is a major active component in anti-fouling paints, which may reach toxic levels in areas with intense boat traffic and therefore is a metal of environmental concern. The bioavailability of metals is influenced by factors such as salinity and organic matter measured as total organic carbon (TOC). The influence of these two factors was studied, with a focus on brackish water conditions, by exposing a marine and a brackish water clone of the red macroalga Ceramium tenuicorne to Cu in different combinations of artificial seawater (salinity 5-15 parts per thousand) and TOC (0-4 mg/L) in the form of fulvic acid (FA). In addition, the toxicity of Cu to both clones was compared in salinity 10 parts per thousand and 15 parts per thousand. The results show that by increasing TOC from 0 to 2 and 4 mg/L, Cu was in general less toxic to both algal clones at all salinities tested (p 〈 0.05). The effect of salinity on Cu toxicity was not as apparent, both a positive and negative effect was observed. The brackish water clone showed generally to be more sensitive to Cu in salinity 10 parts per thousand and 15 parts per thousand than the marine counterpart. In conclusion, FA reduced the Cu toxicity overall. The Cu tolerance of both strains at different salinities may reflect their origin and their adaptations to marine and brackish water. (C) 2010 Published by Elsevier Inc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-12-06
    Description: Atacamite and paratacamite are ubiquitous minerals associated with Cu-rich massive sulfides at the Logatchev hydrothermal field (Mid-Atlantic Ridge). In this work we provide new details on the mineralogy and geochemistry of these basic cupric chlorides. Our data support the notion that atacamite and paratacamite formation at submarine vent fields is an alteration process of hydrothermal Cu-sulfides. Secondary Cu-sulfides (bornite, covellite) are unstable at ambient seawater conditions and will dissolve. Dissolution is focused at the sulfide–seawater contact, leading to release of Fe2+ and Cu+ and formation of residual chalcocite through an intermediate Cu5S4 phase. Most of the released Fe2+ oxidizes immediately and precipitates as FeOOH directly on the chalcocite rims whereas Cu as chloride complexes (CuCl2−, CuCl32−) remains in solution at the same Eh. Cuprous–chloride complexes migrate from the reaction zone and upon increasing Eh precipitate as Cu2Cl(OH)3. As a consequence of this, the sulfide–seawater reaction interface is clearly marked by thin chalcocite–FeOOH bands and the entire assemblage is mantled by atacamite (or paratacamite). Our mineralogical, petrographic, geochemical and isotopic studies suggest that there are two types of atacamite (and/or paratacamite) depending on their mode of precipitation. Type 1 atacamite precipitated directly on the parent sulfides as evidenced by mantling of the sulfides, absence of detrital mineral grains, a preserved conspicuous positive Eu anomaly and a negligible negative Ce anomaly similar to those of the parent sulfide. In addition, Au concentrations are slightly lower than those of the parent sulfides, which suggest minimal transport of Au-ions after their release from the sulfides. Furthermore, the low content of the rare earth elements implies short contact time with the ambient seawater. The Sr–Nd–Pb-isotopic signatures of type 1 atacamite confirm the genetic association with the parent sulfides and indicate formation spatially very close to the latter. Type 2 atacamite precipitated at some distance from the parent sulfides, which means that the cuprous–chloride complexes have moved away from the sulfide alteration zone before precipitation. The evidence for this is absence of direct association of atacamite with sulfides. In addition, this atacamite contains a substantial proportion of detrital minerals, which implies precipitation in the sediments, distal to the parent sulfides. As a consequence of the detrital impurities the contents of elements like Cr, Cs, Hf, Nb, Rb, Th and Zr are higher than in type 1 atacamite (and/or paratacamite). Au contents are lower than those of type 1 atacamite (and/or paratacamite) which implies prolonged Au transport in solution before precipitation. Furthermore, the rare earth element distribution patterns have no positive Eu anomaly suggesting that the positive Eu anomaly of the parent sulfide has been erased after dissolution and prolonged contact of the fluid with ambient seawater (with negative Eu anomaly). Finally, the Sr–Nd-isotope signature differs from that of the parent sulfide and indicates a considerable terrigenous input.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-09-23
    Description: The North Sea Benthos Project 2000 was initiated as a follow-up to the 1986 ICES North Sea Benthos Survey with the major aim to identify changes in the macrofauna species distribution and community structure in the North Sea and their likely causes. The results showed that the large-scale spatial distribution of macrofauna communities in the North Sea hardly changed between 1986 and 2000, with the main divisions at the 50 m and 100 m depth contours. Water temperature and salinity as well as wave exposure, tidal stress and primary production were influential environmental factors on a large (North Sea-wide) spatial scale. The increase in abundance and regional changes in distribution of various species with a southern distribution in the North Sea in 2000 were largely associated with an increase in sea surface temperature, primary production and, thus, food supply. This can be most likely related to the North Sea hydro-climate change in the late 1980s influenced by the variability in the North Atlantic Oscillation (NAO). Only one cold-temperate species decreased in abundance in 2000 at most of the stations. Indications for newly established populations of offshore non-native species were not found.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-09-23
    Description: Pore water and solid phase data for redox-sensitive metals (Mn, Fe, V, Mo and U) were collected on a transect across the Peru upwelling area (11°S) at water depths between 78 and 2025 m and bottom water oxygen concentrations ranging from ~0 to 93 µM. By comparing authigenic mass accumulation rates and diffusive benthic fluxes, we evaluate the respective mechanisms of trace metal accumulation, retention and remobilization across the oxygen minimum zone (OMZ) and with respect to oxygen fluctuations in the water column related to the El Nino Southern Oscillation (ENSO). Sediments within the permanent OMZ are characterized by diffusive uptake and authigenic fixation of U, V and Mo as well as diffusive loss of Mn and Fe across the benthic boundary. Some of the dissolved Mn and Fe in the water column re-precipitate at the oxycline and shuttle particle-reactive trace metals to the sediment surface at the lower and upper boundary of the OMZ. At the lower boundary, pore waters are not sufficiently sulfidic as to enable an efficient authigenic V and Mo fixation. As a consequence, sediments below the OMZ are preferentially enriched in U which is delivered via both in situ pre-cipitation and lateral supply of U-rich phosphorites from further upslope. Trace metal cycling on the Peruvian shelf is strongly affected by ENSO-related oxygen fluctuations in bottom water. During periods of shelf oxygenation, surface sediments receive particulate V and Mo with metal (oxyhydr)oxides that derive from both terrigenous sources and precipitation at the retreating oxycline. After the recurrence of anoxic conditions, metal (oxyhydr)oxides are reductively dissolved and the hereby liberated V and Mo are authigenically removed. This alternation between supply of particle-reactive trace metals during oxic periods and fixation during anoxic periods leads to a preferential accumulation of V and Mo compared to U on the Peruvian shelf. The decoupling of V, Mo and U accumulation is further accentuated by the varying susceptibility to re-oxidation of the different authigenic metal phases. While authigenic U and V are readily re-oxidized and recycled during periods of shelf oxygenation, the sequestration of Mo by authigenic pyrite is favored by the transient occurrence of oxidizing conditions.Our findings reveal that redox-sensitive trace metals respond in specific manner to short-term oxygen fluctuations in the water column. The relative enrichment patterns identified might be useful for the reconstruction of past OMZ extension and large-scale redox oscillations in the geological record.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-09-12
    Description: To predict the risk associated with future introductions, ecologists seek to identify traits that determine the invasiveness of species. Among numerous designated characteristics, tolerance towards environmental stress is one of the most favored. However, there is little empirical support for the assumption that non-native species generally cope better with temporarily unfavorable conditions than native species. To test this concept, we ran five pairwise comparisons between native and non-native marine invertebrates at temperate, subtropical, and tropical sites. We included (natives named first) six bivalves: Brachidontes exustus and Perna viridis, P. perna and Isognomon bicolor, Saccostrea glomerata and Crassostrea gigas, two ascidians: Diplosoma listerianum and Didemnum vexillum as well as two crustaceans: Gammarus zaddachi and G. tigrinus. We simulated acute fluctuations in salinity, oxygen concentration, and temperature, while we measured respiration and survival rates. Under stressful conditions, non-native species consistently showed less pronounced deviations from their normal respiratory performance than their native counterparts. We suggest that this indicates that they have a wider tolerance range. Furthermore, they also revealed higher survival rates under stress. Thus, stress tolerance seems to be a property of successful invaders and could therefore be a useful criterion for screening profiles and risk assessment protocols. Highlights ► Non-native species showed higher survival rates in the face of stress than native. ► Respiratory performance under stress was closer to normal in non-native species. ► Strong evidence for stress tolerance as a general trait of non-native species. ► Robust results due to a global-scale, modular experimental approach.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-09-23
    Description: The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P=26) at dilution rates (D) of 0.3 d−1 and 0.1 d−1. CO2 and temperature conditions were 300, 550 and 900 μatm pCO2 at 14 °C and 900 μatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 μatm pCO2 compared to 300 and 550 μatm pCO2. At 900 μatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell−1) were similar at D=0.3 d−1 in all cultures. At D=0.1 d−1, a reduction of C-quotas by up to 15% was observed in the 900 μatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D=0.3 d−1, and from 0.11 to 0.17 at D=0.1 d−1, with variations primarily induced by the changes in POC. At D=0.1 d−1, cell volume was reduced by up to 22% in cultures grown at 900 μatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: A method is described to simultaneously determine the neutral, amino, and acidic sugar content of combined carbohydrates in high molecular weight (HMW, 〉 1 kDa) dissolved organic matter and in particles from seawater samples. Monomeric sugars are determined after acid hydrolysis and neutralization through acid evaporation using high performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD). The separation of sugars during chromatography is achieved in two steps, an isocratic elution (18 mM NaOH) followed by a gradient course of two mobile eluent phases (NaOH and CH3COONa). HPAEC-PAD has previously been applied to measure neutral and amino sugars in marine samples. Since salt anions interfere with the measurement, some of the earlier studies used ion exchange resins for seawater desalting. Thereby, variable losses of neutral and amino sugars, and the complete removal of acidic sugars have been reported. Here, we show that desalting by membrane dialysis (1 kDa) is an efficient alternative to ion exchange resins and yields recoveries of 〉 90% for HMW carbohydrates. We conducted several tests to determine the accuracy and reproducibility of the method. Sugar concentrations determined with our protocol were compared to results obtained with the colorimetric TPTZ-method, and with earlier HPAEC-PAD protocols using cation/ anion exchange resins. Applications of our protocol to field samples indicated that acidic sugars can comprise a substantial fraction (30-50%) of HMW dissolved carbohydrates in seawater. The simultaneous analysis of the three classes of sugars appears promising to detect a larger fraction of marine combined carbohydrates, and thus to improve our understanding of organic matter cycling in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-09-23
    Description: The genesis of oceanic crust at intermediate to fast spreading ridges occurs by the crystallization of mantle melts accumulated in at least one shallow melt lens situated below the ridge axis. Seismic reflection data suggest that the depth of this melt lens is inversely correlated with spreading rate and thereby magma supply. The heat released in it by crystallization and melt injection is removed by a combination of hydrothermal cooling and diffusion. Due to the different time scales of hydrothermal cooling and crustal accretion, numerical models have so far focused on only one of the two processes. Here we present the results from a coupled model that solves simultaneously for crustal accretion and hydrothermal cooling. Our approach resolves both processes within one 2D finite-element model that self-consistently solves for crustal, mantle, and hydrothermal flow. The formation of new oceanic crust is approximated as a gabbro glacier, in which the entire lower crust crystallizes in one shallow melt lens. We find that the depth of the melt lens and the shape of hot (potentially molten) lower crust are highly dependent on the ridge permeability structure. The predicted depth of the melt lens is primarily controlled by the permeability at the ridge axis, whereas the off-axis permeability determines the width of hot lower crust. A detailed comparison of the modeling results with observed locations of the melt lens at intermediate to fast spreading ridges shows that only a relatively narrow range of crustal permeabilities is consistent with observations. In addition, we find significant deviations between models that resolve or parameterize hydrothermal cooling: the predicted crustal thermal structures show major differences for models that predict the same melt lens location. This illustrates the importance of resolving hydrothermal flow in simulations of crustal accretion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...