ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (196)
  • American Association for the Advancement of Science (AAAS)  (196)
  • Nature Publishing Group
  • 2005-2009  (196)
  • 2007  (110)
  • 2005  (86)
Collection
Publisher
Years
  • 2005-2009  (196)
Year
  • 1
    Publication Date: 2007-09-29
    Description: The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-Chin -- Lam, Son N -- Acharya, Priyamvada -- Tang, Min -- Xiang, Shi-Hua -- Hussan, Syed Shahzad-Ul -- Stanfield, Robyn L -- Robinson, James -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Bewley, Carole A -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-03/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/*chemistry/immunology ; Crystallography, X-Ray ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/metabolism ; Humans ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments/chemistry/metabolism ; Receptors, CCR5/*chemistry/metabolism ; Sulfates/metabolism ; Tyrosine/metabolism ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-08-04
    Description: In flowering plants, signaling between the male pollen tube and the synergid cells of the female gametophyte is required for fertilization. In the Arabidopsis thaliana mutant feronia (fer), fertilization is impaired; the pollen tube fails to arrest and thus continues to grow inside the female gametophyte. FER encodes a synergid-expressed, plasma membrane-localized receptor-like kinase. We found that the FER protein accumulates asymmetrically in the synergid membrane at the filiform apparatus. Interspecific crosses using pollen from Arabidopsis lyrata and Cardamine flexuosa on A. thaliana stigmas resulted in a fer-like phenotype that correlates with sequence divergence in the extracellular domain of FER. Our findings show that the female control of pollen tube reception is based on a FER-dependent signaling pathway, which may play a role in reproductive isolation barriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Escobar-Restrepo, Juan-Miguel -- Huck, Norbert -- Kessler, Sharon -- Gagliardini, Valeria -- Gheyselinck, Jacqueline -- Yang, Wei-Cai -- Grossniklaus, Ueli -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):656-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673660" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Brassicaceae/genetics/physiology ; Cell Membrane/enzymology ; Crosses, Genetic ; Evolution, Molecular ; Flowers/cytology/enzymology/*physiology ; Gene Expression ; Genes, Plant ; Germination ; Ligands ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphotransferases/chemistry/*genetics/*metabolism ; Plant Epidermis/enzymology ; Pollen Tube/growth & development/*physiology ; Recombinant Fusion Proteins/metabolism ; Reproduction ; Seeds/growth & development ; Signal Transduction ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-04
    Description: BtuCD is an adenosine triphosphate-binding cassette (ABC) transporter that translocates vitamin B12 from the periplasmic binding protein BtuF into the cytoplasm of Escherichia coli. The 2.6 angstrom crystal structure of a complex BtuCD-F reveals substantial conformational changes as compared with the previously reported structures of BtuCD and BtuF. The lobes of BtuF are spread apart, and B12 is displaced from the binding pocket. The transmembrane BtuC subunits reveal two distinct conformations, and the translocation pathway is closed to both sides of the membrane. Electron paramagnetic resonance spectra of spin-labeled cysteine mutants reconstituted in proteoliposomes are consistent with the conformation of BtuCD-F that was observed in the crystal structure. A comparison with BtuCD and the homologous HI1470/71 protein suggests that the structure of BtuCD-F may reflect a posttranslocation intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hvorup, Rikki N -- Goetz, Birke A -- Niederer, Martina -- Hollenstein, Kaspar -- Perozo, Eduardo -- Locher, Kaspar P -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1387-90. Epub 2007 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, HPK D14.3, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673622" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry ; Amino Acid Sequence ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli ; Escherichia coli Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Periplasmic Binding Proteins/*chemistry ; Protein Binding ; Protein Conformation ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-24
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrangou, Rodolphe -- Fremaux, Christophe -- Deveau, Helene -- Richards, Melissa -- Boyaval, Patrick -- Moineau, Sylvain -- Romero, Dennis A -- Horvath, Philippe -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379808" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial/genetics ; DNA, Intergenic/*genetics ; Evolution, Molecular ; *Genes, Bacterial ; Genome, Viral ; Molecular Sequence Data ; Mutation ; Polymorphism, Single Nucleotide ; *Repetitive Sequences, Nucleic Acid ; Streptococcus Phages/genetics/*physiology ; Streptococcus thermophilus/*genetics/*virology ; Viral Plaque Assay ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-03-24
    Description: The nucleoporins Nup58 and Nup45 are part of the central transport channel of the nuclear pore complex, which is thought to have a flexible diameter. In the crystal structure of an alpha-helical region of mammalian Nup58/45, we identified distinct tetramers, each consisting of two antiparallel hairpin dimers. The intradimeric interface is hydrophobic, whereas dimer-dimer association occurs through large hydrophilic residues. These residues are laterally displaced in various tetramer conformations, which suggests an intermolecular sliding by 11 angstroms. We propose that circumferential sliding plays a role in adjusting the diameter of the central transport channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melcak, Ivo -- Hoelz, Andre -- Blobel, Gunter -- R01 GM111461/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1729-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379812" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/chemistry ; Molecular Sequence Data ; Nuclear Pore Complex Proteins/*chemistry ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rats ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-05-26
    Description: The advent of biotechnology-derived, herbicide-resistant crops has revolutionized farming practices in many countries. Facile, highly effective, environmentally sound, and profitable weed control methods have been rapidly adopted by crop producers who value the benefits associated with biotechnology-derived weed management traits. But a rapid rise in the populations of several troublesome weeds that are tolerant or resistant to herbicides currently used in conjunction with herbicide-resistant crops may signify that the useful lifetime of these economically important weed management traits will be cut short. We describe the development of soybean and other broadleaf plant species resistant to dicamba, a widely used, inexpensive, and environmentally safe herbicide. The dicamba resistance technology will augment current herbicide resistance technologies and extend their effective lifetime. Attributes of both nuclear- and chloroplast-encoded dicamba resistance genes that affect the potency and expected durability of the herbicide resistance trait are examined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behrens, Mark R -- Mutlu, Nedim -- Chakraborty, Sarbani -- Dumitru, Razvan -- Jiang, Wen Zhi -- Lavallee, Bradley J -- Herman, Patricia L -- Clemente, Thomas E -- Weeks, Donald P -- New York, N.Y. -- Science. 2007 May 25;316(5828):1185-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525337" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Arabidopsis/drug effects/genetics ; Chloroplasts/genetics ; Dicamba/*pharmacology ; Drug Resistance/genetics ; Genetic Engineering ; Genetic Vectors ; Herbicides/*pharmacology ; Lycopersicon esculentum/drug effects/genetics ; Mixed Function Oxygenases/*genetics/metabolism ; Molecular Sequence Data ; Oxidoreductases, O-Demethylating/metabolism ; Plants, Genetically Modified/drug effects/genetics ; Pseudomonas/enzymology/genetics ; Soybeans/*drug effects/genetics ; Tobacco/drug effects/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-04-14
    Description: We report crystal structures of the 2.6-megadalton alpha6beta6 heterododecameric fatty acid synthase from Thermomyces lanuginosus at 3.1 angstrom resolution. The alpha and beta polypeptide chains form the six catalytic domains required for fatty acid synthesis and numerous expansion segments responsible for extensive intersubunit connections. Detailed views of all active sites provide insights into substrate specificities and catalytic mechanisms and reveal their unique characteristics, which are due to the integration into the multienzyme. The mode of acyl carrier protein attachment in the reaction chamber, together with the spatial distribution of active sites, suggests that iterative substrate shuttling is achieved by a relatively restricted circular motion of the carrier domain in the multifunctional enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Boehringer, Daniel -- Frick, Christian -- Mikolasek, Bohdan -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):254-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431175" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism ; Acetyltransferases/metabolism ; Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/metabolism ; Amino Acid Sequence ; Ascomycota/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism ; Fatty Acid Synthases/*chemistry/metabolism ; Fungal Proteins/*chemistry/metabolism ; Hydro-Lyases/metabolism ; Models, Molecular ; Molecular Sequence Data ; NADP/chemistry ; Protein Conformation ; Protein Subunits/chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...