ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular
  • American Association for the Advancement of Science (AAAS)  (42)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics (AIP)
  • 2000-2004  (42)
  • 1995-1999
  • 2002  (42)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (42)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics (AIP)
Years
  • 2000-2004  (42)
  • 1995-1999
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falke, Joseph J -- R01 GM040731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1480-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biophysics Program and the Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA. falke@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859184" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Binding Sites ; Catalysis ; Cyclophilin A/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nitrogen/chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-06-22
    Description: Positive-strand RNA viruses such as poliovirus replicate their genomes on intracellular membranes of their eukaryotic hosts. Electron microscopy has revealed that purified poliovirus RNA-dependent RNA polymerase forms planar and tubular oligomeric arrays. The structural integrity of these arrays correlates with cooperative RNA binding and RNA elongation and is sensitive to mutations that disrupt intermolecular contacts predicted by the polymerase structure. Membranous vesicles isolated from poliovirus-infected cells contain structures consistent with the presence of two-dimensional polymerase arrays on their surfaces during infection. Therefore, host cytoplasmic membranes may function as physical foundations for two-dimensional polymerase arrays, conferring the advantages of surface catalysis to viral RNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyle, John M -- Bullitt, Esther -- Bienz, Kurt -- Kirkegaard, Karla -- AI-42119/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2218-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077417" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Inclusion Bodies, Viral/metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Poliovirus/*enzymology/physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA Replicase/*chemistry/isolation & purification/*metabolism/ultrastructure ; RNA, Viral/biosynthesis/*metabolism ; Viral Core Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-02-02
    Description: In bacteria, promoter recognition depends on the RNA polymerase sigma subunit, which combines with the catalytically proficient RNA polymerase core to form the holoenzyme. The major class of bacterial promoters is defined by two conserved elements (the -10 and -35 elements, which are 10 and 35 nucleotides upstream of the initiation point, respectively) that are contacted by sigma in the holoenzyme. We show that recognition of promoters of this class depends on the "flexible flap" domain of the RNA polymerase beta subunit. The flap interacts with conserved region 4 of sigma and triggers a conformational change that moves region 4 into the correct position for interaction with the -35 element. Because the flexible flap is evolutionarily conserved, this domain may facilitate promoter recognition by specificity factors in eukaryotes as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuznedelov, Konstantin -- Minakhin, Leonid -- Niedziela-Majka, Anita -- Dove, Simon L -- Rogulja, Dragana -- Nickels, Bryce E -- Hochschild, Ann -- Heyduk, Tomasz -- Severinov, Konstantin -- GM44025/GM/NIGMS NIH HHS/ -- GM50514/GM/NIGMS NIH HHS/ -- R01 GM044025/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):855-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823642" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/*metabolism ; DNA, Bacterial/genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; Energy Transfer ; Escherichia coli/*enzymology/genetics ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Sigma Factor/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gewolb, Josh -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2205-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910091" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/genetics/metabolism ; Bacteria/enzymology/genetics ; Bacterial Proteins/biosynthesis ; Cyclosporine/metabolism ; Drug Design ; Fungi/enzymology/genetics ; Genetic Engineering ; Models, Molecular ; Penicillins/biosynthesis ; Peptide Synthases/chemistry/genetics/*metabolism ; *Protein Biosynthesis ; Protein Conformation ; Protein Engineering/*methods ; Protein Subunits ; Proteins/*chemistry ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Amy L -- New York, N.Y. -- Science. 2002 May 10;296(5570):1038-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. davidson@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004108" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Transport Systems, Basic/chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Carrier Proteins/chemistry/metabolism ; *DNA-Binding Proteins ; Dimerization ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fungal Proteins/chemistry/metabolism ; Hydrolysis ; Models, Molecular ; *Periplasmic Binding Proteins ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; *Saccharomyces cerevisiae Proteins ; Vitamin B 12/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-03-09
    Description: The structure of the membrane protein formate dehydrogenase-N (Fdn-N), a major component of Escherichia coli nitrate respiration, has been determined at 1.6 angstroms. The structure demonstrates 11 redox centers, including molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters, two heme b groups, and a menaquinone analog. These redox centers are aligned in a single chain, which extends almost 90 angstroms through the enzyme. The menaquinone reduction site associated with a possible proton pathway was also characterized. This structure provides critical insights into the proton motive force generation by redox loop, a common mechanism among a wide range of respiratory enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jormakka, Mika -- Tornroth, Susanna -- Byrne, Bernadette -- Iwata, So -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1863-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biomedical Sciences, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884747" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Catalytic Domain ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Electron Transport ; Escherichia coli/*enzymology ; Formate Dehydrogenases/*chemistry/metabolism ; Formates/metabolism ; Guanine Nucleotides/chemistry/metabolism ; Hydrogen Bonding ; Iron-Sulfur Proteins/chemistry/metabolism ; Membrane Potentials ; Models, Molecular ; Nitrate Reductases/chemistry/metabolism ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; *Proton-Motive Force ; Protons ; Pterins/chemistry/metabolism ; Vitamin K 2/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-01-19
    Description: Mycobacterium tuberculosis (Mtb) mounts a stubborn defense against oxidative and nitrosative components of the immune response. Dihydrolipoamide dehydrogenase (Lpd) and dihydrolipoamide succinyltransferase (SucB) are components of alpha-ketoacid dehydrogenase complexes that are central to intermediary metabolism. We find that Lpd and SucB support Mtb's antioxidant defense. The peroxiredoxin alkyl hydroperoxide reductase (AhpC) is linked to Lpd and SucB by an adaptor protein, AhpD. The 2.0 angstrom AhpD crystal structure reveals a thioredoxin-like active site that is responsive to lipoamide. We propose that Lpd, SucB (the only lipoyl protein detected in Mtb), AhpD, and AhpC together constitute a nicotinamide adenine dinucleotide (reduced)-dependent peroxidase and peroxynitrite reductase. AhpD thus represents a class of thioredoxin-like molecules that enables an antioxidant defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryk, R -- Lima, C D -- Erdjument-Bromage, H -- Tempst, P -- Nathan, C -- HL61241/HL/NHLBI NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1073-7. Epub 2002 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799204" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*metabolism ; Amino Acid Sequence ; Antioxidants ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Dihydrolipoamide Dehydrogenase/*metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/*enzymology/genetics/metabolism ; NAD/metabolism ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Peroxynitrous Acid/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Thioctic Acid/*analogs & derivatives/metabolism ; Thioredoxins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-23
    Description: Internal protein dynamics are intimately connected to enzymatic catalysis. However, enzyme motions linked to substrate turnover remain largely unknown. We have studied dynamics of an enzyme during catalysis at atomic resolution using nuclear magnetic resonance relaxation methods. During catalytic action of the enzyme cyclophilin A, we detect conformational fluctuations of the active site that occur on a time scale of hundreds of microseconds. The rates of conformational dynamics of the enzyme strongly correlate with the microscopic rates of substrate turnover. The present results, together with available structural data, allow a prediction of the reaction trajectory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eisenmesser, Elan Zohar -- Bosco, Daryl A -- Akke, Mikael -- Kern, Dorothee -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1520-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859194" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Cyclophilin A/*chemistry/*metabolism ; Hydrogen Bonding ; Isomerism ; Kinetics ; Mathematics ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-04-16
    Description: One of the most complex biosynthetic processes in metallobiochemistry is the assembly of nitrogenase, the key enzyme in biological nitrogen fixation. We describe here the crystal structure of an iron-molybdenum cofactor-deficient form of the nitrogenase MoFe protein, into which the cofactor is inserted in the final step of MoFe protein assembly. The MoFe protein folds as a heterotetramer containing two copies each of the homologous alpha and beta subunits. In this structure, one of the three alpha subunit domains exhibits a substantially changed conformation, whereas the rest of the protein remains essentially unchanged. A predominantly positively charged funnel is revealed; this funnel is of sufficient size to accommodate insertion of the negatively charged cofactor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmid, Benedikt -- Ribbe, Markus W -- Einsle, Oliver -- Yoshida, Mika -- Thomas, Leonard M -- Dean, Dennis R -- Rees, Douglas C -- Burgess, Barbara K -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):352-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Mail Code 147-75CH, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11951047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azotobacter vinelandii/*enzymology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molybdoferredoxin/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-09-21
    Description: To make messenger RNA transcripts, bacteriophage T7 RNA polymerase (T7 RNAP) undergoes a transition from an initiation phase, which only makes short RNA fragments, to a stable elongation phase. We have determined at 2.1 angstrom resolution the crystal structure of a T7 RNAP elongation complex with 30 base pairs of duplex DNA containing a "transcription bubble" interacting with a 17-nucleotide RNA transcript. The transition from an initiation to an elongation complex is accompanied by a major refolding of the amino-terminal 300 residues. This results in loss of the promoter binding site, facilitating promoter clearance, and creates a tunnel that surrounds the RNA transcript after it peels off a seven-base pair heteroduplex. Formation of the exit tunnel explains the enhanced processivity of the elongation complex. Downstream duplex DNA binds to the fingers domain, and its orientation relative to upstream DNA in the initiation complex implies an unwinding that could facilitate formation of the open promoter complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Y Whitney -- Steitz, Thomas A -- GM57510/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1387-95. Epub 2002 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12242451" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T7/enzymology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/genetics/*metabolism ; Models, Molecular ; Mutation ; N-Acetylmuramoyl-L-alanine Amidase/metabolism ; Nucleic Acid Heteroduplexes ; Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/chemistry ; RNA, Messenger/*chemistry/metabolism ; Taq Polymerase/chemistry ; Templates, Genetic ; Transcription Initiation Site ; *Transcription, Genetic ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2002-02-23
    Description: The chromodomain of the HP1 family of proteins recognizes histone tails with specifically methylated lysines. Here, we present structural, energetic, and mutational analyses of the complex between the Drosophila HP1 chromodomain and the histone H3 tail with a methyllysine at residue 9, a modification associated with epigenetic silencing. The histone tail inserts as a beta strand, completing the beta-sandwich architecture of the chromodomain. The methylammonium group is caged by three aromatic side chains, whereas adjacent residues form discerning contacts with one face of the chromodomain. Comparison of dimethyl- and trimethyllysine-containing complexes suggests a role for cation-pi and van der Waals interactions, with trimethylation slightly improving the binding affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobs, Steven A -- Khorasanizadeh, Sepideh -- GM63959-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2080-3. Epub 2002 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908-0733, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Chromosomal Proteins, Non-Histone/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Drosophila Proteins/chemistry/metabolism ; Histones/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Lysine/*analogs & derivatives/chemistry/*metabolism ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Peptides/chemistry/metabolism ; Point Mutation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2002-04-20
    Description: Cadherins are transmembrane proteins that mediate adhesion between cells in the solid tissues of animals. Here we present the 3.1 angstrom resolution crystal structure of the whole, functional extracellular domain from C-cadherin, a representative "classical" cadherin. The structure suggests a molecular mechanism for adhesion between cells by classical cadherins, and it provides a new framework for understanding both cis (same cell) and trans (juxtaposed cell) cadherin interactions. The trans adhesive interface is a twofold symmetric interaction defined by a conserved tryptophan side chain at the membrane-distal end of a cadherin molecule from one cell, which inserts into a hydrophobic pocket at the membrane-distal end of a cadherin molecule from the opposing cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, Titus J -- Murray, John -- Chappuis-Flament, Sophie -- Wong, Ellen -- Gumbiner, Barry M -- Shapiro, Lawrence -- NCI-P30-CA-08784/CI/NCPDCID CDC HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- R01 GM52717/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1308-13. Epub 2002 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964443" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CHO Cells ; Cadherins/*chemistry/genetics/metabolism ; *Cell Adhesion ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levinger, Nancy E -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1722-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA. levinger@lamar.colostate.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459570" target="_blank"〉PubMed〈/a〉
    Keywords: Azides ; Computer Simulation ; Dioctyl Sulfosuccinic Acid/chemistry ; Fluorescent Dyes ; Hydrogen Bonding ; *Micelles ; Models, Chemical ; Models, Molecular ; Molecular Probes ; Spectrometry, Fluorescence ; Spectrophotometry, Infrared ; Spectrum Analysis ; Surface-Active Agents/chemistry ; Water/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2002-09-07
    Description: A high-resolution crystallographic analysis of the nitrogenase MoFe-protein reveals a previously unrecognized ligand coordinated to six iron atoms in the center of the catalytically essential FeMo-cofactor. The electron density for this ligand is masked in structures with resolutions lower than 1.55 angstroms, owing to Fourier series termination ripples from the surrounding iron and sulfur atoms in the cofactor. The central atom completes an approximate tetrahedral coordination for the six iron atoms, instead of the trigonal coordination proposed on the basis of lower resolution structures. The crystallographic refinement at 1.16 angstrom resolution is consistent with this newly detected component being a light element, most plausibly nitrogen. The presence of a nitrogen atom in the cofactor would have important implications for the mechanism of dinitrogen reduction by nitrogenase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Einsle, Oliver -- Tezcan, F Akif -- Andrade, Susana L A -- Schmid, Benedikt -- Yoshida, Mika -- Howard, James B -- Rees, Douglas C -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1696-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 147-75CH, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215645" target="_blank"〉PubMed〈/a〉
    Keywords: Azotobacter vinelandii/enzymology ; Coenzymes/*chemistry/metabolism ; Crystallography, X-Ray ; Ligands ; Models, Molecular ; Molybdoferredoxin/*chemistry/metabolism ; Nitrogen/chemistry ; Nitrogenase/*chemistry/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2002-05-11
    Description: The ABC transporters are ubiquitous membrane proteins that couple adenosine triphosphate (ATP) hydrolysis to the translocation of diverse substrates across cell membranes. Clinically relevant examples are associated with cystic fibrosis and with multidrug resistance of pathogenic bacteria and cancer cells. Here, we report the crystal structure at 3.2 angstrom resolution of the Escherichia coli BtuCD protein, an ABC transporter mediating vitamin B12 uptake. The two ATP-binding cassettes (BtuD) are in close contact with each other, as are the two membrane-spanning subunits (BtuC); this arrangement is distinct from that observed for the E. coli lipid flippase MsbA. The BtuC subunits provide 20 transmembrane helices grouped around a translocation pathway that is closed to the cytoplasm by a gate region whereas the dimer arrangement of the BtuD subunits resembles the ATP-bound form of the Rad50 DNA repair enzyme. A prominent cytoplasmic loop of BtuC forms the contact region with the ATP-binding cassette and appears to represent a conserved motif among the ABC transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locher, Kaspar P -- Lee, Allen T -- Rees, Douglas C -- New York, N.Y. -- Science. 2002 May 10;296(5570):1091-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA. locher@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004122" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Vitamin B 12/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2002-05-23
    Description: The crystal structure of the initiating form of Thermus aquaticus RNA polymerase, containing core RNA polymerase (alpha2betabeta'omega) and the promoter specificity sigma subunit, has been determined at 4 angstrom resolution. Important structural features of the RNA polymerase and their roles in positioning sigma within the initiation complex are delineated, as well as the role played by sigma in modulating the opening of the RNA polymerase active-site channel. The two carboxyl-terminal domains of sigma are separated by 45 angstroms on the surface of the RNA polymerase, but are linked by an extended loop. The loop winds near the RNA polymerase active site, where it may play a role in initiating nucleotide substrate binding, and out through the RNA exit channel. The advancing RNA transcript must displace the loop, leading to abortive initiation and ultimately to sigma release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Katsuhiko S -- Masuda, Shoko -- Darst, Seth A -- GM53759/GM/NIGMS NIH HHS/ -- GM61898/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1280-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Bacterial/metabolism ; DNA-Directed RNA Polymerases/*chemistry/*metabolism ; Eukaryotic Cells/metabolism ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; Sigma Factor/metabolism ; Thermus/*enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2002-05-23
    Description: The crystal structure of Thermus aquaticus RNA polymerase holoenzyme (alpha2betabeta'omegasigmaA) complexed with a fork-junction promoter DNA fragment has been determined by fitting high-resolution x-ray structures of individual components into a 6.5-angstrom resolution map. The DNA lies across one face of the holoenzyme, completely outside the RNA polymerase active site channel. All sequence-specific contacts with core promoter elements are mediated by the sigma subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble. Universally conserved basic residues of the sigma subunit provide critical contacts with the DNA phosphate backbone and play a role in directing the melted DNA template strand into the RNA polymerase active site. The structure explains how holoenzyme recognizes promoters containing variably spaced -10 and -35 elements and provides the basis for models of the closed and open promoter complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Katsuhiko S -- Masuda, Shoko -- Campbell, Elizabeth A -- Muzzin, Oriana -- Darst, Seth A -- GM20470/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- GM61898/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1285-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016307" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Bacterial/*chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Subunits ; Sigma Factor/*chemistry/metabolism ; Templates, Genetic ; Thermus/*enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2002-03-09
    Description: The structural basis for the divalent cation-dependent binding of heterodimeric alphabeta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alphaVbeta3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alphaV and beta3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. The tertiary rearrangements take place in betaA, the ligand-binding domain of beta3; in the complex, betaA acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alphaV relative to beta3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, Jian-Ping -- Stehle, Thilo -- Zhang, Rongguang -- Joachimiak, Andrzej -- Frech, Matthias -- Goodman, Simon L -- Arnaout, M Amin -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):151-5. Epub 2002 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Renal Unit, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884718" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Ligands ; Manganese/chemistry ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptides, Cyclic/chemistry/*metabolism ; *Protein Structure, Quaternary ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Receptors, Vitronectin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2002-08-17
    Description: Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of neurodegenerative diseases and stroke. However, the mechanism of MMP activation remains unclear. We report that MMP activation involves S-nitrosylation. During cerebral ischemia in vivo, MMP-9 colocalized with neuronal nitric oxide synthase. S-Nitrosylation activated MMP-9 in vitro and induced neuronal apoptosis. Mass spectrometry identified the active derivative of MMP-9, both in vitro and in vivo, as a stable sulfinic or sulfonic acid, whose formation was triggered by S-nitrosylation. These findings suggest a potential extracellular proteolysis pathway to neuronal cell death in which S-nitrosylation activates MMPs, and further oxidation results in a stable posttranslational modification with pathological activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Zezong -- Kaul, Marcus -- Yan, Boxu -- Kridel, Steven J -- Cui, Jiankun -- Strongin, Alex -- Smith, Jeffrey W -- Liddington, Robert C -- Lipton, Stuart A -- AR08505/AR/NIAMS NIH HHS/ -- P01 HD29587/HD/NICHD NIH HHS/ -- R01 AR42750/AR/NIAMS NIH HHS/ -- R01 CA 69306/CA/NCI NIH HHS/ -- R01 EY05477/EY/NEI NIH HHS/ -- R01 EY09024/EY/NEI NIH HHS/ -- R01 NS41207/NS/NINDS NIH HHS/ -- T32 AG00252/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1186-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience and Aging, Program in Cell Adhesion and Extracellular Matrix Biology, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain Ischemia/*enzymology/pathology ; Cell Line ; Cells, Cultured ; Cerebral Cortex/blood supply/*enzymology/pathology ; Cysteine/*analogs & derivatives/metabolism/pharmacology ; Enzyme Activation ; Enzyme Precursors/genetics/metabolism ; Humans ; Matrix Metalloproteinase 9/chemistry/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Molecular ; Neurons/*physiology ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/metabolism ; Nitric Oxide Synthase Type I ; Oxidation-Reduction ; Phenylmercuric Acetate/*analogs & derivatives/pharmacology ; Rats ; Recombinant Proteins/metabolism ; Reperfusion ; S-Nitrosothiols/*metabolism/pharmacology ; Signal Transduction ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-10-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, John W -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):552-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. john.peters@chemistry.montana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386322" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/metabolism ; Acetyl Coenzyme A/metabolism ; Aldehyde Oxidoreductases/*chemistry/*metabolism ; Anaerobiosis ; Binding Sites ; Biomass ; Carbon Dioxide/*metabolism ; Carbon Monoxide/metabolism ; Clostridium/enzymology ; Copper/*chemistry ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Iron/*chemistry ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Nickel/*chemistry ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2002-12-03
    Description: Cellular communication in the nervous system is mediated by chemical messengers that include amino acids, monoamines, peptide hormones, and lipids. An interesting question is how neurons regulate signals that are transmitted by membrane-embedded lipids. Here, we report the 2.8 angstrom crystal structure of the integral membrane protein fatty acid amide hydrolase (FAAH), an enzyme that degrades members of the endocannabinoid class of signaling lipids and terminates their activity. The structure of FAAH complexed with an arachidonyl inhibitor reveals how a set of discrete structural alterations allows this enzyme, in contrast to soluble hydrolases of the same family, to integrate into cell membranes and establish direct access to the bilayer from its active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bracey, Michael H -- Hanson, Michael A -- Masuda, Kim R -- Stevens, Raymond C -- Cravatt, Benjamin F -- R01 DA013173/DA/NIDA NIH HHS/ -- R01 DA013173-02/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459591" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/antagonists & inhibitors/*chemistry/metabolism ; Animals ; Arachidonic Acids/metabolism ; *Bacterial Proteins ; Binding Sites ; Cannabinoid Receptor Modulators ; Catalysis ; Catalytic Domain ; Cell Membrane/*enzymology ; Crystallography, X-Ray ; Dimerization ; Endocannabinoids ; Helix-Turn-Helix Motifs ; Lipid Bilayers ; Models, Molecular ; Organophosphonates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Recombinant Proteins/chemistry/metabolism ; Signal Transduction ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2002-05-25
    Description: Genes encoding methanogenic methylamine methyltransferases all contain an in-frame amber (UAG) codon that is read through during translation. We have identified the UAG-encoded residue in a 1.55 angstrom resolution structure of the Methanosarcina barkeri monomethylamine methyltransferase (MtmB). This structure reveals a homohexamer comprised of individual subunits with a TIM barrel fold. The electron density for the UAG-encoded residue is distinct from any of the 21 natural amino acids. Instead it appears consistent with a lysine in amide-linkage to (4R,5R)-4-substituted-pyrroline-5-carboxylate. We suggest that this amino acid be named l-pyrrolysine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hao, Bing -- Gong, Weimin -- Ferguson, Tsuneo K -- James, Carey M -- Krzycki, Joseph A -- Chan, Michael K -- GM43268/GM/NIGMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 May 24;296(5572):1462-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029132" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; *Codon ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Genes, Archaeal ; Hydrogen Bonding ; Lysine/analogs & derivatives/chemistry/*genetics ; Methanosarcina barkeri/*enzymology/genetics ; Methylamines/metabolism ; Methyltransferases/*chemistry/*genetics/metabolism ; Models, Molecular ; Molecular Weight ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrometry, Mass, Electrospray Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2002-10-19
    Description: A metallocofactor containing iron, sulfur, copper, and nickel has been discovered in the enzyme carbon monoxide dehydrogenase/acetyl-CoA (coenzyme A) synthase from Moorella thermoacetica (f. Clostridium thermoaceticum). Our structure at 2.2 angstrom resolution reveals that the cofactor responsible for the assembly of acetyl-CoA contains a [Fe4S4] cubane bridged to a copper-nickel binuclear site. The presence of these three metals together in one cluster was unanticipated and suggests a newly discovered role for copper in biology. The different active sites of this bifunctional enzyme complex are connected via a channel, 138 angstroms long, that provides a conduit for carbon monoxide generated at the C-cluster on one subunit to be incorporated into acetyl-CoA at the A-cluster on the other subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doukov, Tzanko I -- Iverson, Tina M -- Seravalli, Javier -- Ragsdale, Stephen W -- Drennan, Catherine L -- R01-GM39451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):567-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386327" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/metabolism ; Acetyl Coenzyme A/metabolism ; Aldehyde Oxidoreductases/*chemistry/*metabolism ; Anaerobiosis ; Binding Sites ; Carbon Dioxide/metabolism ; Carbon Monoxide/metabolism ; Catalysis ; Clostridium/*enzymology ; Copper/*chemistry ; Crystallography, X-Ray ; Dimerization ; Electron Spin Resonance Spectroscopy ; Hydrophobic and Hydrophilic Interactions ; Iron/*chemistry ; Ligands ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Nickel/*chemistry ; Oxidation-Reduction ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2002-03-09
    Description: Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain--binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartl, F Ulrich -- Hayer-Hartl, Manajit -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1852-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max-Planck-Institut fur Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany. uhartl@biochem.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884745" target="_blank"〉PubMed〈/a〉
    Keywords: Chaperonins/chemistry/metabolism ; Cytosol/*chemistry ; Eukaryotic Cells/*chemistry/metabolism ; HSP70 Heat-Shock Proteins/chemistry/metabolism ; Macromolecular Substances ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Prokaryotic Cells/*chemistry/metabolism ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; *Protein Folding ; Proteins/*chemistry/metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2002-08-24
    Description: Signal recognition particle (SRP), together with its receptor (SR), mediates the targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Using protein cross-linking, we detected distinct modes in the binding of SRP to the ribosome. During signal peptide recognition, SRP54 is positioned at the exit site close to ribosomal proteins L23a and L35. When SRP54 contacts SR, SRP54 is rearranged such that it is no longer close to L23a. This repositioning may allow the translocon to dock with the ribosome, leading to insertion of the signal peptide into the translocation channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pool, Martin R -- Stumm, Joachim -- Fulga, Tudor A -- Sinning, Irmgard -- Dobberstein, Bernhard -- New York, N.Y. -- Science. 2002 Aug 23;297(5585):1345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), D-69120 Heidelberg, Germany. mrp@zmbh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12193787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centrifugation, Density Gradient ; Cross-Linking Reagents ; Dogs ; Guanosine Diphosphate/metabolism/pharmacology ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism/pharmacology ; Models, Molecular ; Plant Proteins/chemistry/metabolism ; Precipitin Tests ; Prolactin/genetics/metabolism ; Protein Binding ; Protein Precursors/genetics/metabolism ; Protein Sorting Signals ; Protein Transport ; Receptors, Cytoplasmic and Nuclear/chemistry/metabolism ; Receptors, Peptide/chemistry/metabolism ; Ribosomal Proteins/chemistry/*metabolism ; Ribosomes/*metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Recognition Particle/chemistry/*metabolism ; Succinimides
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2002-12-14
    Description: Theory predicts the existence of barrierless protein folding. Without barriers, folding should be noncooperative and the degree of native structure should be coupled to overall protein stability. We investigated the thermal unfolding of the peripheral subunit binding domain from Escherichia coli's 2-oxoglutarate dehydrogenase multienzyme complex (termed BBL) with a combination of spectroscopic techniques and calorimetry. Each technique probed a different feature of protein structure. BBL has a defined three-dimensional structure at low temperatures. However, each technique showed a distinct unfolding transition. Global analysis with a statistical mechanical model identified BBL as a downhill-folding protein. Because of BBL's biological function, we propose that downhill folders may be molecular rheostats, in which effects could be modulated by altering the distribution of an ensemble of structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Mira, Maria M -- Sadqi, Mourad -- Fischer, Niels -- Sanchez-Ruiz, Jose M -- Munoz, Victor -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2191-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481137" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*chemistry ; Calorimetry, Differential Scanning ; Circular Dichroism ; Escherichia coli/enzymology ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Hydrogen-Ion Concentration ; Ketoglutarate Dehydrogenase Complex/*chemistry ; Models, Chemical ; Models, Molecular ; Multienzyme Complexes/chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-11-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bezanilla, Francisco -- Perozo, Eduardo -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1562-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, Los Angeles, CA 90095, USA. fbezanil@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446894" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/physiology ; Cell Membrane/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Electric Conductivity ; Escherichia coli/*chemistry/physiology ; Escherichia coli Proteins/*chemistry/*physiology ; Ion Channel Gating ; Ion Channels/*chemistry/*physiology ; *Mechanotransduction, Cellular ; Membrane Potentials ; Models, Molecular ; Osmolar Concentration ; Potassium Channels/chemistry/physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2348-51.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923504" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; *Cell Division ; DNA/chemistry/metabolism ; DNA-Binding Proteins/chemistry/genetics/isolation & purification/physiology ; Humans ; Models, Molecular ; Neoplasms/etiology ; Protein Conformation ; Telomerase/chemistry/genetics/*metabolism ; Telomere/chemistry/*physiology ; Tetrahymena/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2002-04-20
    Description: Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops, this dictates opposite orientations of water molecules in the two halves of the channel, and thus prevents the formation of a "proton wire," while permitting rapid water diffusion. Both simulations and observations revealed a more regular distribution of channel water and an increased water permeability for the W48F/F200T mutant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tajkhorshid, Emad -- Nollert, Peter -- Jensen, Morten O -- Miercke, Larry J W -- O'Connell, Joseph -- Stroud, Robert M -- Schulten, Klaus -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):525-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biophysics Group, Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964478" target="_blank"〉PubMed〈/a〉
    Keywords: Aquaporins/*chemistry/genetics/metabolism ; Asparagine/chemistry ; Chemistry, Physical ; Computer Simulation ; Crystallography, X-Ray ; Diffusion ; Electrochemistry ; Escherichia coli ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Glycerol/metabolism ; Hydrogen Bonding ; Models, Molecular ; Mutation ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Static Electricity ; Water/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2002-09-21
    Description: The SecA adenosine triphosphatase (ATPase) mediates extrusion of the amino termini of secreted proteins from the eubacterial cytosol based on cycles of reversible binding to the SecYEG translocon. We have determined the crystal structure of SecA with and without magnesium-adenosine diphosphate bound to the high-affinity ATPase site at 3.0 and 2.7 angstrom resolution, respectively. Candidate sites for preprotein binding are located on a surface containing the SecA epitopes exposed to the periplasm upon binding to SecYEG and are thus positioned to deliver preprotein to SecYEG. Comparisons with structurally related ATPases, including superfamily I and II ATP-dependent helicases, suggest that the interaction geometry of the tandem motor domains in SecA is modulated by nucleotide binding, which is shown by fluorescence anisotropy experiments to reverse an endothermic domain-dissociation reaction hypothesized to gate binding to SecYEG.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunt, John F -- Weinkauf, Sevil -- Henry, Lisa -- Fak, John J -- McNicholas, Paul -- Oliver, Donald B -- Deisenhofer, Johann -- New York, N.Y. -- Science. 2002 Sep 20;297(5589):2018-26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA. hunt@sid.bio.columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12242434" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/*metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/chemistry/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacillus subtilis/*enzymology ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Helicases/chemistry ; DNA, Bacterial/chemistry/metabolism ; DNA, Single-Stranded/chemistry/metabolism ; Dimerization ; Escherichia coli ; Escherichia coli Proteins/*chemistry/*metabolism ; Eukaryotic Initiation Factor-4A ; Fluorescence Polarization ; Fourier Analysis ; Hydrogen Bonding ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptide Initiation Factors/chemistry ; Peptides/chemistry ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Precursors/metabolism ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murzin, Alexey G -- New York, N.Y. -- Science. 2002 Jul 5;297(5578):61-2. Epub 2002 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK. agm@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029066" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/enzymology ; Binding Sites ; Crystallography, X-Ray ; Deoxyuracil Nucleotides/metabolism ; Drug Design ; Enzyme Inhibitors ; Evolution, Molecular ; Flavin-Adenine Dinucleotide/metabolism ; Helicobacter pylori/*enzymology ; Humans ; Methyltransferases/chemistry/metabolism ; Models, Molecular ; Phylogeny ; Protein Conformation ; Protein Structure, Tertiary ; Protozoan Proteins/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Tetrahydrofolates/metabolism ; Thermotoga maritima/*enzymology ; Thymidine Monophosphate/*biosynthesis ; Thymidylate Synthase/antagonists & inhibitors/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2002-08-31
    Description: The Escherichia coli catabolite activator protein (CAP) activates transcription at P(lac), P(gal), and other promoters through interactions with the RNA polymerase alpha subunit carboxyl-terminal domain (alphaCTD). We determined the crystal structure of the CAP-alphaCTD-DNA complex at a resolution of 3.1 angstroms. CAP makes direct protein-protein interactions with alphaCTD, and alphaCTD makes direct protein-DNA interactions with the DNA segment adjacent to the DNA site for CAP. There are no large-scale conformational changes in CAP and alphaCTD, and the interface between CAP and alphaCTD is small. These findings are consistent with the proposal that activation involves a simple "recruitment" mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benoff, Brian -- Yang, Huanwang -- Lawson, Catherine L -- Parkinson, Gary -- Liu, Jinsong -- Blatter, Erich -- Ebright, Yon W -- Berman, Helen M -- Ebright, Richard H -- GM21589/GM/NIGMS NIH HHS/ -- GM41376/GM/NIGMS NIH HHS/ -- GM64375/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 30;297(5586):1562-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute and Department of Chemistry, Howard Hughes Medical Institute, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12202833" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Cyclic AMP Receptor Protein/*chemistry/metabolism/physiology ; DNA/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism/physiology ; Macromolecular Substances ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Structure-Activity Relationship ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2002-03-02
    Description: Siderophore-mediated acquisition systems facilitate iron uptake. We present the crystallographic structure of the integral outer membrane receptor FecA from Escherichia coli with and without ferric citrate at 2.5 and 2.0 angstrom resolution. FecA is composed of three distinct domains: the barrel, plug, and NH2-terminal extension. Binding of ferric citrate triggers a conformational change of the extracellular loops that close the external pocket of FecA. Ligand-induced allosteric transitions are propagated through the outer membrane by the plug domain, signaling the occupancy of the receptor in the periplasm. These data establish the structural basis of gating for receptors dependent on the cytoplasmic membrane protein TonB. By compiling available data for this family of receptors, we propose a mechanism for the energy-dependent transport of siderophores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson, Andrew D -- Chakraborty, Ranjan -- Smith, Barbara S -- Esser, Lothar -- van der Helm, Dick -- Deisenhofer, Johann -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1715-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872840" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Bacterial Outer Membrane Proteins/chemistry/metabolism ; Bacterial Proteins/metabolism ; Binding Sites ; Biological Transport, Active ; Carrier Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Escherichia coli Proteins/chemistry/metabolism ; Ferric Compounds/*metabolism ; Hydrogen Bonding ; *Ion Channel Gating ; Ligands ; Membrane Proteins/metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Receptors, Cell Surface ; Siderophores/*metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2002-06-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weston, Claire R -- Lambright, David G -- Davis, Roger J -- New York, N.Y. -- Science. 2002 Jun 28;296(5577):2345-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12089430" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/*metabolism ; MAP Kinase Kinase 3 ; *MAP Kinase Signaling System ; MEF2 Transcription Factors ; Mitogen-Activated Protein Kinase Kinases/chemistry/*metabolism ; Mitogen-Activated Protein Kinases/*chemistry/*metabolism ; Models, Molecular ; Myogenic Regulatory Factors ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2002-09-14
    Description: Eukaryotic genomes are organized into condensed, heterogeneous chromatin fibers throughout much of the cell cycle. Here we describe recent studies indicating that even transcriptionally active loci may be encompassed within 80- to 100-nanometer-thick chromonema fibers. These studies suggest that chromatin higher order folding may be a key feature of eukaryotic transcriptional control. We also discuss evidence suggesting that adenosine-5'-triphosphate-dependent chromatin-remodeling enzymes and histone-modifying enzymes may regulate transcription by controlling the extent and dynamics of chromatin higher order folding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horn, Peter J -- Peterson, Craig L -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1824-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228709" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cell Cycle ; Chromatin/*chemistry/*metabolism ; Chromosomal Proteins, Non-Histone/chemistry/metabolism ; DNA/chemistry/metabolism ; Histone Acetyltransferases ; Histones/*chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Nucleosomes/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; *Saccharomyces cerevisiae Proteins ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2002-12-03
    Description: The low-density lipoprotein receptor mediates cholesterol homeostasis through endocytosis of lipoproteins. It discharges its ligand in the endosome at pH 〈 6. In the crystal structure at pH = 5.3, the ligand-binding domain (modules R2 to R7) folds back as an arc over the epidermal growth factor precursor homology domain (the modules A, B, beta propeller, and C). The modules R4 and R5, which are critical for lipoprotein binding, associate with the beta propeller via their calcium-binding loop. We propose a mechanism for lipoprotein release in the endosome whereby the beta propeller functions as an alternate substrate for the ligand-binding domain, binding in a calcium-dependent way and promoting lipoprotein release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rudenko, Gabby -- Henry, Lisa -- Henderson, Keith -- Ichtchenko, Konstantin -- Brown, Michael S -- Goldstein, Joseph L -- Deisenhofer, Johann -- HL20948/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2353-8. Epub 2002 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Y4-206, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Endosomes/*metabolism ; Epidermal Growth Factor/chemistry ; Humans ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lipoproteins, LDL/*metabolism ; Models, Biological ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Precursors/chemistry ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Receptors, LDL/*chemistry/genetics/*metabolism ; Repetitive Sequences, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2002-10-12
    Description: The hairpin ribozyme catalyzes sequence-specific cleavage of RNA through transesterification of the scissile phosphate. Vanadate has previously been used as a transition state mimic of protein enzymes that catalyze the same reaction. Comparison of the 2.2 angstrom resolution structure of a vanadate-hairpin ribozyme complex with structures of precursor and product complexes reveals a rigid active site that makes more hydrogen bonds to the transition state than to the precursor or product. Because of the paucity of RNA functional groups capable of general acid-base or electrostatic catalysis, transition state stabilization is likely to be an important catalytic strategy for ribozymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rupert, Peter B -- Massey, Archna P -- Sigurdsson, Snorri Th -- Ferre-D'Amare, Adrian R -- GM56947/GM/NIGMS NIH HHS/ -- GM63576/GM/NIGMS NIH HHS/ -- RR15943/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1421-4. Epub 2002 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376595" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Nucleic Acid Conformation ; Oxygen/chemistry/metabolism ; RNA, Catalytic/*chemistry/*metabolism ; Vanadates/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2002-11-26
    Description: The mechanosensitive channel of small conductance (MscS) responds both to stretching of the cell membrane and to membrane depolarization. The crystal structure at 3.9 angstroms resolution demonstrates that Escherichia coli MscS folds as a membrane-spanning heptamer with a large cytoplasmic region. Each subunit contains three transmembrane helices (TM1, -2, and -3), with the TM3 helices lining the pore, while TM1 and TM2, with membrane-embedded arginines, are likely candidates for the tension and voltage sensors. The transmembrane pore, apparently captured in an open state, connects to a large chamber, formed within the cytoplasmic region, that connects to the cytoplasm through openings that may function as molecular filters. Although MscS is likely to be structurally distinct from other ion channels, similarities in gating mechanisms suggest common structural elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bass, Randal B -- Strop, Pavel -- Barclay, Margaret -- Rees, Douglas C -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1582-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Biochemistry Option, Howard Hughes Medical Institute, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446901" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry ; Cell Membrane/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Electric Conductivity ; Escherichia coli/*chemistry/physiology ; Escherichia coli Proteins/*chemistry/*physiology ; Ion Channel Gating ; Ion Channels/*chemistry/*physiology ; *Mechanotransduction, Cellular ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2002-05-11
    Description: The ubiquitination of the hypoxia-inducible factor (HIF) by the von Hippel-Lindau tumor suppressor (pVHL) plays a central role in the cellular response to changes in oxygen availability. pVHL binds to HIF only when a conserved proline in HIF is hydroxylated, a modification that is oxygen-dependent. The 1.85 angstrom structure of a 20-residue HIF-1alpha peptide-pVHL-ElonginB-ElonginC complex shows that HIF-1alpha binds to pVHL in an extended beta strand-like conformation. The hydroxyproline inserts into a gap in the pVHL hydrophobic core, at a site that is a hotspot for tumorigenic mutations, with its 4-hydroxyl group recognized by buried serine and histidine residues. Although the beta sheet-like interactions contribute to the stability of the complex, the hydroxyproline contacts are central to the strict specificity characteristic of signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Min, Jung-Hyun -- Yang, Haifeng -- Ivan, Mircea -- Gertler, Frank -- Kaelin, William G Jr -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1886-9. Epub 2002 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydroxylation ; Hydroxyproline/*metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit ; Ligases/*chemistry/genetics/metabolism ; Macromolecular Substances ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2002-08-17
    Description: Transient interactions of platelet-receptor glycoprotein Ibalpha (GpIbalpha) and the plasma protein von Willebrand factor (VWF) reduce platelet velocity at sites of vascular damage and play a role in haemostasis and thrombosis. Here we present structures of the GpIbalpha amino-terminal domain and its complex with the VWF domain A1. In the complex, GpIbalpha wraps around one side of A1, providing two contact areas bridged by an area of solvated charge interaction. The structures explain the effects of gain-of-function mutations related to bleeding disorders and provide a model for shear-induced activation. These detailed insights into the initial interactions in platelet adhesion are relevant to the development of antithrombotic drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huizinga, Eric G -- Tsuji, Shizuko -- Romijn, Roland A P -- Schiphorst, Marion E -- de Groot, Philip G -- Sixma, Jan J -- Gros, Piet -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1176-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. e.g.huizinga@chem.uu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183630" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Bernard-Soulier Syndrome/genetics/metabolism ; Binding Sites ; Blood Platelets/metabolism/physiology ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Mutation ; Platelet Adhesiveness ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Repetitive Sequences, Amino Acid ; Static Electricity ; von Willebrand Diseases/genetics/metabolism ; von Willebrand Factor/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2002-04-06
    Description: The essential Cdc13 protein in the yeast Saccharomyces cerevisiae is a single-stranded telomeric DNA binding protein required for chromosome end protection and telomere replication. Here we report the solution structure of the Cdc13 DNA binding domain in complex with telomeric DNA. The structure reveals the use of a single OB (oligonucleotide/oligosaccharide binding) fold augmented by an unusually large loop for DNA recognition. This OB fold is structurally similar to OB folds found in the ciliated protozoan telomere end-binding protein, although no sequence similarity is apparent between them. The common usage of an OB fold for telomeric DNA interaction demonstrates conservation of end-protection mechanisms among eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitton-Fry, Rachel M -- Anderson, Emily M -- Hughes, Timothy R -- Lundblad, Victoria -- Wuttke, Deborah S -- GM55867/GM/NIGMS NIH HHS/ -- GM59414/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):145-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11935027" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA, Fungal/chemistry/*metabolism ; DNA, Single-Stranded/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Ligands ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Telomere/*metabolism ; *Telomere-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2002-08-10
    Description: Proton pumps in the plasma membrane of plants and yeasts maintain the intracellular pH and membrane potential. To gain insight into the molecular mechanisms of proton pumping, we built an atomic homology model of the proton pump based on the 2.6 angstrom x-ray structure of the related Ca2+ pump from rabbit sarcoplasmic reticulum. The model, when fitted to an 8 angstrom map of the Neurospora proton pump determined by electron microscopy, reveals the likely path of the proton through the membrane and shows that the nucleotide-binding domain rotates by approximately 70 degrees to deliver adenosine triphosphate (ATP) to the phosphorylation site. A synthetic peptide corresponding to the carboxyl-terminal regulatory domain stimulates ATPase activity, suggesting a mechanism for proton transport regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhlbrandt, Werner -- Zeelen, Johan -- Dietrich, Jens -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1692-6. Epub 2002 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry/enzymology ; Cryoelectron Microscopy ; Enzyme Activation ; Models, Molecular ; Molecular Sequence Data ; Neurospora/*enzymology ; Peptide Fragments/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Proton-Translocating ATPases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...