ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (731)
  • Wiley-Blackwell  (731)
  • Berlin : Konrad-Zuse-Zentrum für Informationstechnik
  • Berlin : Selbstverl. Fachbereich Geowissenschaften
  • 1995-1999  (731)
  • 1999
  • 1998  (273)
  • 1996  (458)
Collection
Publisher
  • Wiley-Blackwell  (731)
  • Berlin : Konrad-Zuse-Zentrum für Informationstechnik
  • Berlin : Selbstverl. Fachbereich Geowissenschaften
Years
  • 1995-1999  (731)
Year
  • 1999
  • 1998  (273)
  • 1996  (458)
  • 1997  (441)
  • 1995  (1,337)
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 4-11 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Genetic analysis of programmed cell death in Caenorhabditis elegans has led to the identification of 13 genes that constitute a developmental pathway of programmed cell death. Two of the three key genes in this pathway, ced-9, a cell death suppressor, and ced-3, a cell death inducer, were found to encode proteins that share structural and functional similarities with the mammalian proto-oncogene product Bcl-2 and interleukin-1β converting enzyme, respectively. These results suggest that the genetic pathway of programmed cell death may be evolutionarily conserved from worms to mammals. © 1996 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 12-17 
    ISSN: 0730-2312
    Keywords: bcl-2 gene ; localization ; apoptosis ; antioxidants ; oxidative stress ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The bcl-2 gene has a unique function among mammalian oncogenes as a negative regulator of apoptosis. Its expression pattern in embryonic and adult tissues is consistent with a role in maintaining in vivo survival of specific cell types.The biochemical function of bcl-2 is unknown, but its localization to mitochondrial and microsomal membranes suggests several possibilities, bcl-2 is protective against oxidative stress in mammalian cells and can be replaced by antioxidants in a factor-deprivation model of apoptosis. These results are consistent with a model of apoptotic death involving oxidative stress in a central pathway.The recent discovery of several bcl-2-related genes, some of which also inhibit apoptosis and others that unexpectedly promote apoptosis, has shed new light on several aspects of bcl-2 action. © 1996 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 33-38 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: BCL-2 gene ; Bcl-2 protein ; homologs ; homo- and heterotypic dimers ; cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The BCL-2 gene was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in lymphomas, which result in deregulation of BCL-2 gene expression and cause inappropriately high levels of Bcl-2 protein production. Expression of the BCL-2 gene can also become altered in human cancers through other mechanisms, including loss of the p53 tumor suppressor which normally functions as a repressor of BCL-2 gene expression in some tissues. Bcl-2 is a blocker of programmed cell death and apoptosis that contributes to neoplastic cell expansion by preventing cell turnover caused by physiological cell death mechanisms, as opposed to accelerating rates of cell division. Overproduction of the Bcl-2 protein also prevents cell death induced by nearly all cytotoxic anticancer drugs and radiation, thus contributing to treatment failures in patients with some types of cancer. Several homologs of Bcl-2 have recently been discovered, some of which function as inhibitors of cell death and others as promoters of apoptosis that oppose the actions of the Bcl-2 protein. Many of these Bcl-2 family proteins can interact through formation of homo- and heterotypic dimers. In addition, several nonhomologous proteins have been identified that bind to Bcl-2 and that can modulate apoptosis. These protein-protein interactions may eventual serve as targets for pharmacologically manipulating the physiological cell death pathway for treatment of cancer and several other diseases. © 1996 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 61-82 
    ISSN: 0730-2312
    Keywords: protein kinases ; cyclins ; nuclear import ; NLS ; acidic domains ; cell cycle ; phosphatases ; p34cdc2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Karyophilic and acidic clusters were found in most nonmembrane serine/threonine protein kinases whose primary structure was examined. These karyophilic clusters might mediate the anchoring of the kinase molecules to transporter proteins for their regulated nuclear import and might constitute the nuclear localization signals (NLS) of the kinase molecules. In contrast to protein transcription factors that are exclusively nuclear possessing strong karyophilic peptides composed of at least four arginines (R) and lysines (K) within an hexapeptide flanked by proline and glycine helix-breakers, protein kinases often contain one histidine and three K + R residues; this is proposed to specify a weak NLS structure resulting in the nuclear import of a fraction of the total cytoplasmic kinase molecules as well as in their weak retention in the different ionic strength nuclear environment. Putative NLS peptides in protein kinases may also contain hydrophobic or bulky aromatic amino acids proposed to further diminish their capacity to act as strong NLS. Most kinases lacking karyophilic clusters (c-Mos, v-Mos, sea star MAP, and yeast KIN28, SRA1, SRA3, TPK1, TPK2) also lack acidic clusters, which is in contrast to most kinases containing both acidic and karyophilic peptides; this and the presence of R/K clusters in the transporter proteins supports a role of acidic clusters on kinases in nuclear import. Cyclins B lack karyophilic signals and are proposed to be imported into nuclei via their association with Cdc2. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: protein kinase FA/GSK-3α ; PKC inhibition ; calphostin C ; down-regulation ; carcinoma dedifferentiation/progression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The signal transduction mechanism of protein kinase FA/GSK-3α by tyrosine phosphorylation in A431 cells was investigated using calphostin C as an inhibitor for protein kinase C (PKC). Kinase Fa/GSK-3α could be tyrosine-dephosphorylated and inactivated to ∼ 10% of control in a concentration-dependent manner by 0.1-10 μM calphostin C (IC50, ∼ 1 μM), as demonstrated by immunoprecipitation of kinase Fa/GSK-3α from cell extracts, followed by phosphoamino acid analysis and by immunodetection in an antikinase Fa/GSK-3α immunoprecipitate kinase assay. In sharp contrast, down-regulation of PKC by 0.05 μM calphostin C (IC50, ∼ 0.05 μM for inhibiting PKC in cells) or by tumor promoter phorbol ester TPA was found to have stimulatory effect on the cellular activity of kinase Fa/GSK-3α, when processed under identical conditions. Furthermore, TPA-mediated down-regulation of PKC was found to have no effect on calphostin C-mediated tyrosine dephosphorylation/inactivation of kinase Fa/GSK-3α. Taken together, the results provide initial evidence that the PKC inhibitor calphostin C may induce tyrosine dephosphorylation/inactivation of kinase Fa/GSK-3α in a pathway independent of TPA-mediated down-regulation of PKC, representing a new mode of signal transduction for the regulation of this multisubstrate/multifunctional protein kinase by calphostin C in cells. Since kinase Fa/GSK-3α is a possible carcinoma dedifferentiation/progression-promoting factor, the results further suggest calphostin C as a potential anticancer drug involved in blocking carcinoma dedifferentiation/progression, possibly via inactivation of protein kinase FA/GSK-3α in tumor cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 363-378 
    ISSN: 0730-2312
    Keywords: cyclin D1 function ; CDK activity ; pRB phosphorylation ; G1 phase ; cell cycle control ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The sequential transcriptional activation of cyclins, the regulatory subunits of cell cycle specific kinases, regulates progress through the cell cycle. In mitogen-stimulated cells cyclin D1 induction in early G1 is followed by induction of cyclin E, activation of the cyclin-dependent kinase Cdk2, and hyperphosphorylation of the retinoblastoma gene product (pRB) in mid-to-late G1 phase. T-47D breast cancer cells expressing cyclin D1 under the control of a metal-responsive metallothionein promoter were used to determine whether Cdk2 activation and pRB hyperphosphorylation are consequences of cyclin D1 induction. A 4-5-fold increase in cyclin D1 protein abundance was followed by approximately 2-fold increases in cyclin E protein abundance and Cdk2 activity and by hyperphosphorylation of pRB. These responses were apparent ∼ 3 h after the increase in cyclin D1 protein, and ∼ 3 h prior to the entry of cyclin D1-stimulated cells into S phase 12 h after zinc treatment. Cyclin D1 immunoprecipitates contained Cdk4 but no detectable Cdk2 and displayed pRb but not histone H1 kinase activity. Cdk2 activation was therefore likely to be due to increased abundance of cyclin E/Cdk2 complexes rather than formation of active cyclin D1/Cdk2 complexes. The sequence of events following zinc induction of cyclin D1 thus mimicked that following mitogen induction of cyclin D1. These data show that cyclin D1 induction is sufficient for Cdk2 activation and pRB hyperphosphorylation in T-47D human breast cancer cells, providing evidence that cyclin D1 induction is a critical event in G1 phase progression. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: heregulin ; transformation ; erb B-2 ; c-Ha-ras ; mammary cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heregulin β1 was found to stimulate the anchorage-dependent, serum-free growth of nontransformed human MCF-10A mammary epithelial cells. Unlike epidermal growth factor, transforming growth factor α, or amphiregulin, heregulin β1 was also able to induce the anchorage-independent growth of MCF-10A cells. In contrast, the anchorage-dependent, serum-free growth of c-Ha-ras or c-erb B-2 transformed MCF-10A cells was unaffected by heregulin β1, whereas heregulin β1 was able to stimulate the anchorage-independent growth of these cells. c-Ha-ras or c-erb B-2 (c-neu) transformed MCF-10A or mouse NOG-8 mammary epithelial cells express elevated levels of 2.5, 5.0, 6.5, 6.8, and 8.5 kb heregulin mRNA transcripts and/or synthesize cell-associated 25, 29, 50, and 115 kDa isoforms of heregulin. Since the MCF-10A cells and transformants also express c-erb B-3, these data suggest that endogenous heregulin might function as an autocrine growth factor for Ha-ras or erb B-2 transformed mammary epithelial cells. © 1996 Wiley-Liss, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: ecto-enzyme ; ALP inhibitor ; Ca incorporation ; glycosylphosphatidylinositol-anchored proteins ; PI-PLC ; bone differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Alkaline phosphatase (ALP) activity expressed on the external surface of cultured fetal rat calvaria cells and its relationship with mineral deposition were investigated under pH physiological conditions. After replacement of culture medium by assay buffer and addition of p-nitrophenyl phosphate (pNPP), the rate of substrate hydrolysis catalyzed by whole cells remained constant for up to seven successive incubations of 10 min and was optimal over the pH range 7.6-8.2. It was decreased by levamisole by a 90% inhibition at 1 mM which was reversible within 10 min, dexamisole having no effect. Values of apparent Km for pNPP were close to 0.1 mM, and inhibition of pNPP hydrolysis by levamisole was uncompetitive (Ki = 45 μM). Phosphatidylinositol-specific phospholipase C (PI-PLC) produced the release into the medium of a p-nitrophenyl phosphatase (pNPPase) sensitive to levamisole at pH 7.8. The released activity whose rate was constant up to 75 min represented after 15 min 60% of the value of ecto-pNPPase activity. After 75 min of PI-PLC treatment the ecto-pNPPase activity remained unchanged despite the 30% decrease in Nonidet P-40-extractable ALP activity. High levels of 45Ca incorporation into cell layers used as index of mineral deposition were decreased by levamisole in a stereospecific manner after 4 h, an effect which was reversed within 4 h after inhibitor removal, in accordance with ecto-pNPPase activity variations. These results evidenced the levamisole-sensitive activity of a glycosylphosphatidylinositol-anchored pNPPase consistent with ALP acting as an ecto-enzyme whose functioning under physiological conditions was correlated to 45Ca incorporation and permit the prediction of the physiological importance of the enzyme dynamic equilibrium at the cell surface in cultured fetal calvaria cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 521-528 
    ISSN: 0730-2312
    Keywords: myosin heavy chains ; smooth muscle ; alternative splicing ; contractility ; myosin light chains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The aim of our study was to determine the relation between alternatively spliced myosin heavy chain (MHC) isoforms and the contractility of smooth muscle. The relative amount of MHC with an alternatively spliced insert in the 5′ (amino terminal) domain was determined on the protein level using a peptide-directed antibody (a25K/50K) raised against the inserted sequence (QGPSFAY). Smooth muscle MHC isoforms of both bladder and myometrium but not nonmuscle MHC reacted with a25/50K. Using a quantitative Western-blot approach the amount of 5′-inserted MHC in rat bladder was detected to be about eightfold higher than in normal rat myometrium. The amount of heavy chain with insert was found to be decreased by about 50% in the myometrium of pregnant rats. Although bladder contained significantly more 5′-inserted MHC than myometrium, apparent maximal shortening velocities (Vmax) were comparable, being 0.138 ± 0.012 and 0.114 ± 0.023 muscle length per second of skinned bladder and normal myometrium fibers, respectively. Phosphorylation of myosin light chain 20 induced by maximal Ca2+/calmodulin activation was the same in bladder and myometrial fibers. These results suggest that the amount of 5′-inserted MHC is not necessarily associated with contractile properties of smooth muscle. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 9-17 
    ISSN: 0730-2312
    Keywords: antiestrogen ; human breast cancer ; programmed cell death ; tamoxifen ; TGF-β1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We report here that the antiestrogen tamoxifen (TAM) induces cell death in human breast cancer cell line MCF-7. We assessed the type of cell death induced by TAM in this breast cancer cell line on the basis of morphological and biochemical characteristics. Dying cells showed morphological characteristics of apoptosis, such as chromatin condensation and nuclear disintegration. DNA isolated from these cells revealed a pattern of distinctive DNA bands on agarose gel. The DNA fragmentation in MCF-7 cells induced by TAM could also be detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling. Northern blot hybridization revealed a substantial increase in the amounts of TRPM-2 and TGF-β1 mRNAs in MCF-7 cells after treatment with TAM. In contrast, the mRNA level of the estrogen-induced pS2 gene was strongly suppressed. The biological activity of TGF-β was increased at least fourfold in the media from MCF-7 cells treated with TAM. The results presented in this study suggest that TAM induces apoptosis of MCF-7 cells and it may be mediated by the secretion of active TGF-β. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 39-47 
    ISSN: 0730-2312
    Keywords: α2M ; PAF ; RBF ; PKC ; lyso-PAF acetyltransferase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The binding of receptor-recognized forms of α2-macroglobulin (α2M) to macrophage α2M signaling receptors increases inositol-1,4,5-triphosphate synthesis and induces Ca2+ mobilization. In this report, we demonstrate that ligation of the macrophage α2M signaling receptor is also associated with synthesis of platelet activating factor (PAF) by both the de novo and remodeling pathways. Both α2M-methylamine and a cloned and expressed 20-kDa receptor binding fragment (RBF) from rat α2M+, stimulated macrophage synthesis of PAF from [3H]acetate, [3H]methylcholine, and 1-O-[3H]alkyl lyso-PAF by two- to threefold. PAF levels reached a peak in 20 min after the cells were exposed to α2M-methylamine or RBF; they remained elevated for about 1 h after ligand addition to the cells. When [3H]methylcholine was the substrate, pertussis toxin did not block PAF synthesis, but the protein kinase C inhibitor staurosporin reduced synthesis by 65-70%. Cycloheximide completely abolished the increase in synthesis of PAF by macrophages exposed to α2M-methylamine. By contrast, when [3H]acetate was employed as a precursor, staurosporin or cycloheximide did not abolish the increase in PAF synthesis. These studies suggest that protein kinase C is necessary for the induction of the de novo pathway by α2M-methylamine. Both α2M-methylamine and RBF stimulated the activity of lyso-PAF acetyltransferase by about fourfold. Both ligands also stimulated the activity of PAF acetylhydrolase by about six- to sevenfold, indicating that ligation of the α2M signaling receptor also regulates the degradation of PAF. The ability of receptor-recognized forms of α2M to regulate levels of PAF suggests that α2M-proteinase complexes not only regulate macrophage function by activating intracellular signaling but also may indirectly regulate the function of other cells that cannot bind α2M-proteinase complexes. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 109-117 
    ISSN: 0730-2312
    Keywords: aggregin ; chemical modification ; ADP-induced platelet responses ; NBD-Cl ; cAMP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 72-80 
    ISSN: 0730-2312
    Keywords: hypoxia ; S-adenosylmethionine ; DNA methylation ; hypomethylation ; t-RNA methyltransferase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Young rats were maintained in a 10% oxygen atmosphere for 2, 6, and 10 days and administered normal rat chow and water ad libitum. Thereafter, their hepatic S-adenosyl-L-methionine (AdoMet) and activity and mRNA levels of AdoMet synthetase were assayed. AdoMet levels decreased by 45% after 10 days; hepatic AdoMet synthetase also declined by ∼40%. In rats with low hepatic AdoMet, the mRNA level of AdoMet synthetase also declined by up to 80%. No significant change in AdoMet or AdoMet synthetase was noted in pair-fed normoxic rats. DNA hypomethylation was determined in terms of incorporation of [3H]methyl of AdoMet incorporated at unmethylated sites in DNA in reactions mediated by methylases Hpall and Sssl. As compared to the normal hepatic DNA, [3H]methyl group incorporation in the 10-day hypoxic DNA was almost double in the Hpall-mediated reaction and ∼10-fold in the Sssl-mediated reaction. Hepatic tRNA methyltransferase activity doubled after 10 days of hypoxia. However, hypoxic rats showed no detectable mRNA transcripts for c-myc and c-fos oncogenes on Northern blot analysis. These observations show that because of subnormal activity of AdoMet synthetase, hypoxic liver is depleted of AdoMet, even when the animals are administered a complete diet. However, unlike rats on chronic lipotrope-deficient diets, hypoxic rats on a complete diet show no aberrant expression of oncogenes. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 31-38 
    ISSN: 0730-2312
    Keywords: cell density ; DNA synthesis ; Mr receptor substrates ; IRS-1 protein ; tyrosine phosphorylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In order to examine alterations in the phosphorylation state of proteins involved in insulin action that might accompany the reduced growth state of density-arrested cells, we measured the insulin-stimulated phosphorylation of the receptor and high Mr cellular substrates of the receptor kinase in rat hepatoma cells at different cell densities. As cell density increased from 2 × 105 to 3.2 × 106 per 35-mm well, the rate of DNA synthesis fell to 22% of control, while insulin-stimulated tyrosine phosphorylation of high Mr receptor substrates (“pp185”) was enhanced to 198% of control, without a change in the abundance of insulin receptor substrate (IRS)-1 protein. In anti-IRS-1 immunoprecipitates, tyrosine phosphorylation was increased by only 30%, suggesting that increased tyrosine phosphorylation of additional high Mr proteins (e.g., IRS-2) accounted for much of the observed increase in tyrosine phosphorylation of the receptor substrates. In spite of increased tyrosine phosphorylation of IRS-1 and total pp185-related proteins, however, cells studied at high growth density exhibited a 25% decrease in IRS-1-associated phosphatidylinositol 3′-kinase activity and only a 39% increase in phosphatidylinositol 3′-kinase activity in antiphosphotyrosine immunoprecipitates. To explore the potential role of hepatic protein-tyrosine phosphatases (PTPases) in the hyperphosphorylation of pp185 proteins, we found by immunoblotting that at high cell density the intracellular PTPase PTP18 and the transmembrane PTPase LAR were reduced in abundance by 49% and 55%, respectively, while the abundance of the SH2-domain containing PTPase SH-PTP2 was increased by 48%. These data demonstrate that the attenuation of post-receptor signaling by insulin in hepatoma cells at increasing growth density involves changes in endogenous substrate phosphorylation which may result from alterations in specific PTPases implicated in the regulation of the insulin action pathway. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 48-60 
    ISSN: 0730-2312
    Keywords: nuclear pore structure ; digitonin permeabilization ; immunofluorescence ; coiled-coil proteins ; Tpr ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have identified a component of the human nuclear pore complex and have shown that it is the product of a gene involved in oncogenic activation. A monoclonal antibody raised against purified nuclear matrix proteins recognizes a single protein with an electrophoretic mobility of approximately 300 kDa and stains the nuclear envelope in a punctate pattern typical of nuclear pores. The antibody was used to screen λgt11 human cDNA libraries, and the resulting clones were sequenced and compared to sequences in the Genbank database. An exact match was found with the human tpr (for translocated promoter region) gene, a gene shown previously to be involved in the oncogenic activation of several protein kinases. Double-label immunofluorescent microscopy with the anti-Tpr antibody and an antibody to the previously characterized nuclear pore complex protein nup153 confirms that Tpr is localized to the nuclear pore complex. Tpr is located on the cytoplasmic face of the nucleus, as demonstrated by immunofluorescent staining of cells permeabilized with digitonin. Tpr is a 2,349-amino acid protein with extensive coiled-coil domains and an acidic globular C-terminus. The protein contains 10 leucine zipper motifs and numerous sites for phosphorylation by a variety of protein kinases. Immunoprecipitation of Tpr from 32P-orthophosphate-labeled cells shows that it is a phosphoprotein. Potential functions for Tpr and possible mechanisms for the transforming activity of Tpr fusion proteins are discussed. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 127-138 
    ISSN: 0730-2312
    Keywords: β1 integrin ; β7 integrin ; α/β integrin subunit association ; VLA-4/VCAM adhesion ; integrin surface expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 230-237 
    ISSN: 0730-2312
    Keywords: retinoic acid ; retinol ; binding ; transglutaminase ; hepatic ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: When rat liver epithelial cells were exposed to retinoic acid or retinol for 24 hr, the levels of transforming growth factor-β (TGF-β) receptors were reduced in a dose-dependent way. The decrease appeared after 12 hr of incubation with the retinoids and binding levels remained low until 24 hr after the removal of the molecules. Retinoid treatment induced a fourfold enhancement of transglutaminase (TGase) activity in the cell membranes, and cystamine, an inhibitor of TGase, prevented the decrease of the receptors. Neutralization of TGF-β by a monoclonal antibody did not suppress the decrease of the binding levels, indicating that decreased TGF-β binding capacity was not due merely to the internalization of ligand-bound receptors promoted by a stimulation of TGF-β synthesis. Thus, retinoid treatment resulted in an intense disappearance of the functional receptors from the membranes that seemed to be mediated by increased TGase activity. This phenomenon can represent a strong signal attenuation for TGF-β following retinoid exposure. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 0730-2312
    Keywords: human hepatoma ; dedifferentiation/progression ; PDPK ; overexpression ; kinase FA/GSK-3α ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Computer analysis of protein phosphorylation sites sequence revealed that transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of the proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3α (kinase FA/GSK-3α) (a member of PDPK family) has been optimized for human hepatoma and used to demonstrate for the first time significantly increased (P 〈 0.01) activity in poorly differentiated SK-Hep-1 hepatoma (24.2 ± 2.8 units/mg) and moderately differentiated Mahlavu hepatoma (14.5 ± 2.2 units/mg) when compared to well differentiated Hep 3B hepatoma (8.0 ± 2.4 units/mg). Immunoblotting analysis revealed that increased activity of kinase FA/GSK-3α is due to overexpression of the protein. Elevated kinase FA/GSK-3α expression in human hepatoma biopsies relative to normal liver tissue was found to be even more profound. This kinase appeared to be ∼fivefold overexpressed in well differentiated hepatoma and ∼13-fold overexpressed in poorly differentiated hepatoma when compared to normal liver tissue. Taken together, the results provide initial evidence that overexpression of kinase FA/GSK-3α is involved in human hepatoma dedifferentiation/progression. Since kinase FA/GSK-3α is a PDPK, the results further support a potential role of this kinase in human liver tumorigenesis, especially in its dedifferentiation/progression. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 246-254 
    ISSN: 0730-2312
    Keywords: marrow stromal cells ; cell morphogenesis ; attachment ; ECM ; mRNA expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Our aim was to study the role of various extracellular matrices (ECM) on growth and differentiation of marrow stromal cells in vitro. Morphology changes, gene expression, and enzymatic activities were monitored in stromal osteoblastic MBA-15 and adipocytic 14F1.1 cells. These stromal cells were plated on dishes precoated with different substrata, such as matrigel (basement membrane), collagen type I, and endothelial ECM, and compared with cells plated on protein-free dishes. Striking morphological differences were observed when the cells grew on these different substrata. Changes in cell shape and growth also led to differential mRNA expression and enzymatic activities. When MBA-15 cells were plated on collagen, there was a decrease in mRNA for alkaline phosphatase (ALK-P), osteopontin (OP), and osteonectin (ON), and an increase in mRNA for procollagen (I). A differential effect was noted on 14F1.1 cells, the mRNA for ALK-P increased, the expressions of OP and ON lowered, and no expression for procollagen (I) was monitored. MBA-15 cells cultured on matrigel had decreased mRNA for ALK-P and OP, while they had increased ON mRNA expression and remained unchanged for procollagen 1. No change in mRNA expression by 14F1.1 cells was monitored when cultured on matrigel. Functional enzymatic activities of ALK-P markedly decreased in MBA-15 cells cultured on various substrata, and increased or were unchanged in 14F1.1 cells. An additional enzyme, neutral endopeptidase (CD10/NEP), altered differentially in both cell types; this enzymatic activity increased or was unchanged when cells were cultured on these matrices. The results indicate a specific role for different ECM on various stromal cell types and their function. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 0730-2312
    Keywords: adhesion ; migration ; protease ; lymphocyte ; immunity ; connective tissue ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human T lymphoblastoma cells of the CD4+ 8+ Tsup-1 line, that express alpha4 and alpha5 but not alpha6 integrins of the beta1 family, and CD4+ human blood T cells bind vasoactive intestinal peptide (VIP) with high affinity, leading to increased adherence, secretion of matrix metalloproteinases (MMPs), and chemotaxis. VIP-enhanced adherence of T cells to fibronectin was inhibited significantly by neutralizing monoclonal antibodies to beta1 〉 alpha4 〉〉 alpha5, but not to alpha6. Antibodies to beta1 and alpha4 suppressed to a similarly significant extent VIP stimulation of both MMP-dependent T cell chemotaxis through fibronectin-enriched Matrigel and T cell degradation of 3H-type IV collagen in the Matrigel, without affecting VIP-evoked secretion of MMP by suspensions of T cells. The lesser inhibition of VIP-enhanced adherence of T cells to fibronectin by anti-alpha5 antibody, than antibodies to beta1 or alpha4 chains, was associated with lesser or no suppression of MMP-dependent T cell chemotaxis through Matrigel and T cell degradation of type IV collagen in the Matrigel in response to VIP. Specific beta1 integrins thus mediate interactions of stimulated T cells with basement membranes, including adherence, localized digestion by MMPs, and chemotactic passage, that promote entry of T cells into extravascular tissues. © 1996 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 459-466 
    ISSN: 0730-2312
    Keywords: adenylyl cyclase ; BAT3 ; cytoskeleton ; RAS ; signaling ; yeast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We previously identified human CAP, a homolog of the yeast adenylyl cyclase - associated protein. Previous studies suggest that the N-terminal and C-terminal domains of CAP have distinct functions. We have explored the interactions of human CAP with various proteins. First, by performing yeast two-hybrid screens, we have identified peptides from several proteins that interact with the C-terminal and/or the N-terminal domains of human CAP. These peptides include regions derived from CAP and BAT3, a protein with unknown function. We have further shown that MBP fusions with these peptides can associate in vitro with the N-terminal or C-terminal domains of CAP fused to GST. Our observations indicate that CAP contains regions in both the N-terminal and C-terminal domains that are capable of interacting with each other or with themselves. Furthermore, we found that myc-epitope-tagged CAP coimmunoprecipitates with HA-epitope-tagged CAP from either yeast or mammalian cell extracts. Similar results demonstrate that human CAP can also interact with human CAP2. We also show that human CAP interacts with actin, both by the yeast two-hybrid test and by coimmunoprecipitation of epitope-tagged CAP from yeast or mammalian cell extracts. This interaction requires the C-terminal domain of CAP, but not the N-terminal domain. Thus CAP appears to be capable of interacting in vivo with other CAP molecules, CAP2, and actin. We also show that actin co-immunoprecipitates with HA-CAP2 from mammalian cell extracts. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 0730-2312
    Keywords: basic helix-loop-helix ; interleukin-1 ; interleukin-3 ; granulocyte-macrophage colony-stimulating factor ; progenitor ; transcription factor ; c-kit ligand ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The basic helix-loop-helix (bHLH) transcription factors form heterodimers and control steps in cellular differentiation. We have studied four bHLH transcription factors, SCL, lyl-1, E12/E47, and Id-1, in individual lineage-defined progenitors and hematopoietic growth factor - dependent cell lines, evaluating mRNA expression and the effects of growth factors and cell cycle phase on this expression. Single lineage-defined progenitors selected from early murine colony starts and grown under permissive conditions were analyzed by RT-PCR. SCL and E12/E47 were expressed in the vast majority of tri-, bi-, and unilineage progenitors of erythroid, macrophage, megakaryocyte, and neutrophil lineages. Expression for E12/E47 was not seen in unilineage megakaryocyte and erythroid or bilineage neutrophil/mast cell progenitors. Lyl-1 showed a more restricted pattern of expression, although expression was seen in some bi- and unilineage progenitors. No expression was detected in erythroid, erythroid-megakaryocyte-macrophage, macrophage-neutrophil, macrophage, or megakaryocytic progenitors. Id-1, an inhibitory bHLH transcription factor, was also widely expressed in all bi- and unilineage progenitors; only the trilineage erythroid-megakaryocyte-macrophage progenitors failed to show expression. Expression of these factors within a progenitor class was generally heterogeneous, with some progenitors showing expression and some not. This was seen even when two sister cells from the same colony start were analyzed. Id-1, but not E12/E47, mRNA was increased in FDC-P1 and MO7E hematopoietic cell lines after exposure to IL-3 or GM-CSF, Id-1, E12, and lyl-1 showed marked variation at different points in cell cycle in isoleucine-synchronized FDC-P1 cells. These results suggest that SCL, lyl-1, E12/E47, and Id-1 are important in hematopoietic progenitor cell regulation, and that their expression in hematopoietic cells varies in response to cytokines and/or during transit through cell cycle. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 493-501 
    ISSN: 0730-2312
    Keywords: basement membrane ; cell binding ; epidermolysis bullosa ; extracellular matrix ; gene knock-out ; integrin ; laminin ; muscular dystrophy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Extracellular matrix molecules are often very large and made up of several independent domains, frequently with autonomous activities. Laminin is no exception. A number of globular and rod-like domains can be identified in laminin and its isoforms by sequence analysis as well as by electron microscopy. Here we present the structure-function relations in laminins by examination of their individual domains. This approach to viewing laminin is based on recent results from several laboratories. First, some mutations in laminin genes that cause disease have affected single laminin domains, and some laminin isoforms lack particular domains. These mutants and isoforms are informative with regard to the activities of the mutated and missing domains. Second, laminin-like domains have now been found in a number of other proteins, and data on these proteins may be informative in terms of structure-function relationships in laminin. Finally, a large body of data has accumulated on the structure and activities of proteolytic fragments, recombinant fragments, and synthetic peptides from laminin. The proposed activities of these domains can now be confirmed and extended by in vivo experiments. © 1996 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 0730-2312
    Keywords: bone resorption ; tyrphostins ; genistein ; herbimycin ; osteoporosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We compared the effects of the tyrosine kinase inhibitor genistein, a naturally occurring isoflavone, to those of tyrphostin A25, tyrphostin A47, and herbimycin on avian osteoclasts in vitro. Inactive analogs daidzein and tyrphostin A1 were used to control for nonspecific effects. None of the tyrosine kinase inhibitors inhibited bone attachment. However, bone resorption was inhibited by genistein and herbimycin with ID50s of 3 μM and 0.1 μM, respectively; tyrphostins and daidzein were inactive at concentrations below 30 μM, where nonspecific effects were noted. Genistein and herbimycin thus inhibit osteoclastic activity via a mechanism independent of cellular attachment, and at doses approximating those inhibiting tyrosine kinase autophosphorylation in vitro; the tyrphostins were inactive at meaningful doses. Because tyrosine kinase inhibitors vary widely in activity spectrum, effects of genistein on cellular metabolic processes were compared to herbimycin. Unlike previously reported osteoclast metabolic inhibitors which achieve a measure of selectivity by concentrating on bone, neither genistein nor herbimycin bound significantly to bone. Osteoclastic protein synthesis, measured as incorporation of 3H-leucine, was significantly inhibited at 10 μM genistein, a concentration greater than that inhibiting bone degradation, while herbimycin reduced protein synthesis at 10 nM. These data suggested that genistein may reduce osteoclastic activity at pharmacologically attainable levels, and that toxic potential was lower than that of herbimycin. To test this hypothesis in a mammalian system, bone mass was measured in 200 g ovariectomized rats treated with 44 μmol/day genistein, relative to untreated controls. During 30 d of treatment, weights of treated and control group animals were indistinguishable, indicating no toxicity, but femoral weight in the treated group was 12% greater than controls (P 〈 0.05). Our data indicate that the isoflavone inhibitor genistein suppresses osteoclastic activity in vitro and in vivo at concentrations consistent with its ID50s on tyrosine kinases, with a low potential for toxicity. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 0730-2312
    Keywords: CoA-independent transacylase ; phospholipase D ; subcellular localization ; neutrophils ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Subcellular localizations of CoA-independent transacylase and phospholipase D enzymes have been investigated in human neutrophils performing a two-step gradient system to separate plasma membranes from internal membranes and from the bulk of granules. The internal membranes were constituted by endoplasmic reticulum and by a subpopulation of specific and tertiary granules. The enzymes activities were assayed in vitro on gradient fractions using exogenous substrates. Following cell prelabelling with [3H]alkyllyso-GPC, we also analyzed the in situ localization of labelled products involving the action of both enzymes. The CoA-independent transacylase activity, together with the CoA-dependent transacylase and acyltransferase activities were only located in the internal membranes. Following 15 min cell labelling, part of the [3H]alkylacyl-GPC was recovered in plasma membranes indicating a rapid redistribution of the acylated compound. Very high contents in arachidonate containing [3H]alkylacyl-GPC were recovered both in plasma membranes and internal membranes. Phospholipase D activity being assayed in the presence of cytosol, GTPγS and gradient fractions, only the plasma membrane fractions from resting or stimulated cells allowed the enzyme to be active. The [3H]alkylacyl-GP and [3H]alkylacyl-GPethanol, phospholipase D breakdown products from [3H]alkylacyl-GPC, obtained after neutrophil prelabelling and activation by phorbol myristate acetate, were exclusively present in the plasma membranes. In contrast, the secondary generated [3H]alkylacylglycerols were equally distributed between plasma and internal membranes. No labelled product was recovered on azurophil granules. These data demonstrate that internal membranes are the site of action of the CoA-independent transacylase and plasma membranes are the site of action of the phospholipase D. This topographical separation between CoA-independent transacylase which generated substrate and phospholipase D which degraded it, suggested that subcellular localisation and traffic of substrates within the cell can be important to regulate the enzymes. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 0730-2312
    Keywords: FGF ; receptors ; internalization ; photoactivable cross-linker ; heparan sulfate proteoglycans ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The internalization of basic fibroblast growth factor (FGF-2) was studied in Chinese hamster lung fibroblasts (CCL39). Recombinant FGF-2 was derivatized with a photoactivable agent, N-hydroxysuccinimidyl-4-azido-benzoate (HSAB), iodinated, and used to visualize intracellular FGF-2-affinity-labeled molecules after internalization at 37°C. Iodinated HSAB-FGF-2 maintained the properties of natural FGF-2 such as affinity for heparin, binding to Bek and Flg receptors, interaction with high- and low-affinity binding sites, and reinitiating of DNA synthesis in CCL39 cells. Affinity-labeling experiments at 4°C with 125I-HSAB-FGF-2 led to the detection of several FGF-cell surface complexes with apparent molecular mass of 80, 100, 125, 150, 170-180, 220, 260, and about 320 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), whereas two specific bands at 80 and 130-160 kDa were obtained using the homobifunctional cross-linking reagent, disuccinimidyl suberate. When the cells, preincubated with 125I-HSAB-FGF-2 at 4°C and then washed, were shifted to 37°C, irradiation of the internalized labeled FGF-2 led to detection of a similar but fainted profile with one major specific band at 80 kDa. Heparitinase II treatment of the cells reduced binding of 125I-HSAB-FGF-2 to its cell surface sites by 80% and internalization by 55%, indicating the involvement of heparan sulfate proteoglycans in these processes. Among the heparitinase-sensitive bands was the 80-kDa complex. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 275-289 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; HeLa S3 cells ; 2-D gel electrophoresis ; heterogeneous nuclear ribonucleoproteins ; B23 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear matrix is the structure that persists after removal of chromatin and loosely bound components from the nucleus. It consists of a peripheral lamina-pore complex and an intricate internal fibrogranular structure. Little is known about the molecular structure of this proteinaceous internal network. Our aim is to identify the major proteins of the internal nuclear matrix of HeLa S3 cells. To this end, a cell fraction containing the internal fibrogranular structure was compared with one from which this structure had been selectively dissociated. Protein compositions were quantitatively analyzed after high-resolution two-dimensional gel electrophoresis. We have identified the 21 most abundant polypeptides that are present exclusively in the internal nuclear matrix. Sixteen of these proteins are heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. B23 (numatrin) is another abundant protein of the internal nuclear matrix. Our results show that most of the quantitatively major polypeptides of the internal nuclear matrix are proteins involved in RNA metabolism, including packaging and transport of RNA. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 314-324 
    ISSN: 0730-2312
    Keywords: M1 cell ; heme oxygenase ; transcription ; H2O2 ; TPA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: It has long been known that heme oxygenase (HO) is a key enzyme in heme catabolism and recently it was also found to acts as an oxidative stress protein to produce carbon monoxide (CO), which has similar actions to those of nitrogen monoxide (NO). Therefore, we examined transcriptional control of the HO gene in mouse M1 (myeloleukemia) cells during their differentiation into macrophages. Since the promoter region of this gene is known to have a TPA-responsive element (TRE), its expression might be regulated by a C-kinase signal transduction pathway. Then we investigated the activation of the HO gene after treatment of M1 cells with TPA and inhibitors of C-kinase. When M1 cells were treated with TPA, they differentiated into macrophage-like cells. Upon treatment with TPA, H2O2 was produced first, the nuclear proto-oncogenes fos and jun were activated, and then the HO gene was activated. The extent of transcriptional activation of the fos, jun, and HO genes in M1 cells treated with TPA was reduced by a specific inhibitor of C-kinase and a scavenger of oxygen radicals. When M1 cells were treated with H2O2 essentially the same level of transcription of the HO gene was observed, but the extent of transcriptional activation of the fos and jun genes was about half of the treatment with TPA. Super-shift assays using the TRE of the HO gene revealed that the Fos and Jun proteins from nuclei of M1 cells treated with TPA bound to the TRE, and same assays using DNA with the NF-kB motif also revealed that the active NF-kB protein from M1 cells treated with H2O2 or TPA also bound to the corresponding motif. These results strongly suggest that the HO gene in M1 cells is activated by TPA through a production of H2O2, an oxidative activation pathway of NF-kB, and a signal-transduction pathway that involves C-kinase during the differentiation of macrophages that occurs upon treatment with TPA. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 172-180 
    ISSN: 0730-2312
    Keywords: chromatin structure ; nuclear matrix ; transcriptional activation ; replication ; recombination ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The tumor suppressor p53 is a multifunctional protein whose main duty is to preserve the integrety of the genome. This function of wild-type p53 as “guardian of the genome” is achieved at different levels, as a cell cycle checkpoint protein, halting the cell cycle upon DNA damage, and via a direct involvement in processes of DNA repair. Alternatively, p53 can induce apoptosis. Mutations in the p53 gene occur in about 50% of all human tumors and eliminate the tumor suppressor functions of p53. However, many mutant p53 proteins have not simply lost tumor suppressor functions but have gained oncogenic properties which contribute to the progression of tumor cells to a more malignant phenotype. The molecular basis for this gain of function of mutant p53 is still unknown. However, mutant (mut) p53 specifically binds to nuclear matrix attachment region (MAR) DNA elements. MAR elements constitute important higher order regulatory elements of chromatin structure and function. By binding to these elements, mut p53 could modulate important cellular processes, like gene expression, replication, and recombination, resulting in phenotypic alterations of the tumor cells. Mut p53 thus could be the first representative of a new class of oncogenes, which exert their functions via long-range alterations or perturbation of chromatin structure and function. © 1996 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 0730-2312
    Keywords: dexamethasone ; actin ; polymerization ; Ishikawa cells ; cAMP ; actinomycin D ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glucocorticoids, in addition to their well characterized effects on the genome, may affect cell function in a manner not involving genomic pathways. The mechanisms by which the latter is achieved are not yet clear. A possible means for this action may involve the actin cytoskeleton, since the dynamic equilibrium of actin polymerization changes rapidly following exposure to several stimuli, including hormones. The aim of the present work was to find out if glucocorticoids exert rapid, nongenomic effects on actin polymerization in Ishikawa human endometrial cells, which represent a well characterized in vitro cell model expressing functional glucocorticoid receptors. Short term exposure of the cells to the synthetic glucocorticoid dexamethasone resulted in an overall decrease of the G/total-actin ratio in a time- and dose-dependent manner. Specifically, in untreated Ishikawa cells the G/total-actin ratio was 0.48 ± 0.01 (n = 26). It became 0.35 ± 0.01 (n = 13, P 〈 0.01) following exposure to 10-7 M dexamethasone for 15 min. This was induced by a significant decrease of the cellular G-actin level, without affecting the total actin content, indicating a rapid actin polymerization. This conclusion was fully confirmed by direct fluorimetry measurements, that showed a significant increase of the F-actin content by 44% (n = 6, P 〈 0.001) in cells treated with dexamethasone (10-7 M, 15 min). The rapid dexamethasone-induced alterations of the state of actin polymerization were further supported by fluorescence microscopy. The latter studies showed that the microfilaments of cells pretreated with 10-7 M dexamethasone for 15 min were more resistant to various concentrations of the antimicrofilament drug cytochalasin B, compared to untreated cells, implying microfilament stabilization. The action of dexamethasone on actin polymerization seems to be mediated via specific glucocorticoid binding sites, since the addition of the glucocorticoid antagonist RU486 completely abolished its effect. Moreover, it appears to act via non-transcriptional pathways, since actinomycin D did not block the dexamethasone-induced actin polymerization. In addition, cell treatment with 10-7 M dexamethasone for 15 min fully reversed the forskolin-, but not the 8-bromo-cAMP-induced actin depolymerization. In line with these findings, the cAMP content of Ishikawa cells was decreased by 29.2% after a 15 min treatment with 10-7 M dexamethasone (n = 4, P 〈 0.01). In conclusion, our results showed that dexamethasone induces rapid, time-, and dose-dependent changes in actin polymerization dynamics in Ishikawa cells. This action seems to be mediated via cAMP, involving probably nongenomic pathways. The above findings offer new perspectives for the understanding of the early cellular responses to glucocorticoids. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 0730-2312
    Keywords: monocyte chemoattractant protein-1 ; gene expression ; pig artery ; balloon injury ; monocyte/macrophages ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are potent chemokines which attract circulating monocytes and neutrophils respectively to inflamed tissues. JE/MCP-1 gene expression has been previously studied in rabbit aortae after endothelial denudation and the rapid appearance of this transcript was thought to precede emigration of phagocytes. We now report MCP-1 gene expression following de-endothelialization of iliac arteries in the pig, a species which can develop spontaneous atherosclerosis. Using Northern blot analysis, we demonstrated that MCP-1 mRNA was rapidly induced in pig arteries at 2 h and continued to increase to reach a maximum at 8 h before returning to low levels at 16-24 h after injury. The increase seen for MCP-1 mRNA at 8 h was also observed for IL-8 mRNA but was not apparent for growth-related gene expressions, urokinase-type plasminogen activator (u-PA), and plasminogen activator inhibitor-1 (PAI-1). Since smooth muscle cells, endothelial cells, and phagocytes are all capable of expressing MCP-1, we examined pig arteries for immunostaining using a monoclonal antibody to human MCP-1 (5D3-F7). At 8 h after injury, the predominant cell type staining positive for MCP-1 was the monocyte/macrophage. Staining was also observed in occasional scattered neutrophils, but MCP-1 protein could not be detected in smooth muscle cells or on extracellular matrix within the sensitivity constraints posed by our methodology. Our results are consistent with invading monocyte/macrophages having a major input into the production of this chemokine in the arterial wall following injury. The fact that MCP-1 expression accompanied monocyte/macrophage presence in damaged artery, rather than preceding it, is suggestive that continued MCP-1 expression is required for functions other than chemoattraction. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 0730-2312
    Keywords: GLRP ; T-lymphocyte ; immune response ; central nervous system ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Coordination of the immune response to injury or disease in the brain is postulated to involve bi-directional discourse between the immune system and the central nervous system. This cross communication involves soluble mediators, including various growth factors, cytokines, and neuropeptides. In this report, we demonstrate that the supernatant from activated T-lymphocytes is able to induce the transcription of a potent cytokine, TGF-β2 in glial cells. The activating stimulus invokes signaling mechanisms distinct from known kinase or protease pathways. Activation of TGF-β2 transcription correlates with the loss of binding activity for an 80 kDa glial labile repressor protein, GLRP, to a responsive region within the TGF-β2 promoter. Although GLRP shares some characteristics with the inducible transcription factor AP-1, it appears to be distinct from known AP-1 family members. These data along with previous observations demonstrating the potent immunosuppressive activity of TGF-β2, support a model for a feedback mechanism between the activated T-lymphocytes and astrocytes via TGF-β2 to regulate the immune response. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 454-466 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; histone H5 ; transcription ; transcription factors ; erythroid development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear matrix has roles in organizing nuclear DNA and in controlling transcription. Transcription factors are associated with the nuclear matrix, with the spectra of transcription factors differing from one cell type to another. In this study we identified the transcription factors and enzymes functioning in the regulation of gene expression that were associated with nuclear matrix and nonmatrix nuclear fractions in erythrocytes isolated from chick embryos at different stages of development, anemic and normal adult birds. We found that the primitive erythroid nuclear matrix had the greatest histone deacetylase activity and highest levels of several transcription factors, including GATA-1, CACCC-binding proteins, and NF1. These transcription factors have key roles in erythroid-specific gene expression. The levels of these transcription factors were lower in the nonmatrix and matrix fractions isolated from definitive erythrocytes. For primitive and definitive erythrocytes, the level of CACCC-binding proteins in the nuclear matrix fraction was greater than that of Sp1. The relative levels of these transcription factors were reversed in the nonmatrix fraction. Casein kinase II was not found in erythroid nuclear matrices. The observed erythroid lineage specific alterations in erythroid nuclear matrix transcription factor composition and abundance may be involved in erythroid-specific gene expression. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 0730-2312
    Keywords: adhesion ; breast cancer cells ; thrombospondin ; receptors ; proteoglycans ; heparin-binding peptides ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Thrombospondin is an adhesive glycoprotein that promotes breast cancer cell adhesion to human vascular endothelial cells (Incardona et al., 1995). In this study, we have identified the molecular domains of thrombospondin that mediate its binding to specific receptors on the human breast adenocarcinoma cell line, MDA-MB-231. Two recombinant fragments from the amino-terminus (TSPN18 and TSPN28), and the fusion proteins of the type 1 and type 2 repeats of human thrombospondin, inhibited binding of radiolabeled thrombospondin to MDA-MB-231 cells in suspension by 40-60% at 50 μg/ml whereas the type 3 repeat, carboxy-terminus and unfused glutathione-S-transferase as well as the synthetic peptide Gly-Arg-Gly-Asp-Ser (500 μg/ml) had little or no effect. Herapin and various glycosaminoglycans as heparan sulfate, chondroitin sulfates A, B or C, and fucoidan inhibited thrombospondin binding to MDA-MB-231 cells by more than 60% whereas dextran sulfate had only little effect. Treatment of cells with heparitinase, chondroitinase ABC, and hyaluronidase, but not with neuraminidase, induced 30-50% inhibition of thrombospondin binding suggesting the participation of both heparan sulfate and chondroitin sulfate cell surface-associated molecules. Inhibition of proteoglycan sulfation by chlorate or inhibition of glycosaminoglycan chain formation by two β-D-xylosides also led to a substantial inhibition of thrombospondin binding. Our results indicate that several domains within the thrombospondin molecule, namely the amino-terminus, type 1 and type 2 repeats, participate in its binding to specific receptors bearing sulfated glycosaminoglycans on MDA-MB-231 cells. Biological assays have indicated that, in addition to these domains, the peptide Gly-Arg-Gly-Asp-Ser inhibited MDA-MB-231 cell attachment to thrombospondin suggesting that the last type 3 repeat of the molecule may also contribute to its cell adhesive activity. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 506-515 
    ISSN: 0730-2312
    Keywords: heat shock ; pre-rRNA processing ; S-100 extract ; U3 snoRNA ; 3′ processing ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of heat shock on pre-rRNA processing at the primary site within external transcribed spacer region 1 (ETS1) was studied in S-100 extract derived from mouse lymphosarcoma cells. In vivo labeling with [32P]orthophosphate showed that the synthesis of the rRNA precursor and its processing to 28S and 18S rRNAs were inhibited significantly due to heat shock. The processing activity was reduced by 50% at 1 h and was completely blocked following 2-h exposure of cells at 42°C. Mixing S-100 extracts from the control and heat-treated cells did not affect the processing activity in the control extract, which proves the absence of a nuclease or other inhibitor(s) of processing in the extract from the heat-shocked cells. Heat shock did not affect interaction between pre-rRNA and U3 snoRNA, a prerequisite for the processing at the primary site, but significantly altered RNA-protein interaction. Three polypeptides of 200, 110, 52 kDa that specifically cross-link to pre-rRNA spanning the primary processing site were inactivated after heat shock. Hyperthermia did not alter 3′ end processing of SV40L pre-mRNA. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 0730-2312
    Keywords: osteosarcoma ; chondrosarcoma ; GCT ; oncogene alterations ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the structure and the expression of various oncogenes in three of the most common human bone tumors - osteosarcoma (36 samples from 34 patients), giant cell tumor (10 patients), and chondrosarcoma (18 patients) - in an attempt to identify the genetic alterations associated with these malignancies. Alterations of RB and p53 were detected only in osteosarcomas. Alterations of c-myc, N-myc, and c-fos were detected in osteosarcomas and giant cell tumors. Ras alterations (H-ras, Ki-ras, N-ras) were rare. Chondrosarcomas did not contain any detectable genetic alterations. Our results suggest that alterations of c-myc, N-myc, and c-fos oncogenes occur in osteosarcomas, in addition to those previously described for the tumor suppressor genes RB and p53. Moreover, statistical analyses indicate that c-fos alterations occur more frequently in osteosarcoma patients with recurrent or metastatic disease. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 0730-2312
    Keywords: Src kinase ; mercuric chloride ; redox ; sulfhydryl group ; receptor polymerization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Little is known about the regulatory mechanism of c-Src kinase in cells except the suggested regulation through phosphorylation and dephosphorylation of its carboxyl terminal tyrosine residue (Y527). We here demonstrated that exposure of NIH3T3 cells to mercuric chloride (HgCl2) induces both aggregation and activation of Src kinase protein through a redox-linked mechanism. The aggregation of Src proteins was suggested to be induced by the sulfhydryl groups-to-Hg2+ reaction-mediated polymerization of cell membrane proteins to which the Src proteins associate noncovalently. The possibility was ruled out that the aggregation occurred secondarily to the promotion of protein tyrosine phosphorylation. Further study revealed that the Src kinase was activated by HgCl2 at least in part independent of the known Csk kinase-linked or Y527-phosphorylation/dephosphorylation-mediated control. Correspondingly, CNBr cleavage mapping of phosphopeptides for autophosphorylated c-Src protein demonstrated selective promotion of phosphorylation at Y416 in HgCl2-treated cells without obvious change in the phosphorylation level at Y527. These results suggest a unique protein sulfhydryl modification-based pathway of signal transduction for activating Src kinase in NIH3T3 cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 162-173 
    ISSN: 0730-2312
    Keywords: Topo IIα ; Topo IIβ ; interphase ; mitosis ; mitogenic stimulation ; nucleoplasm ; nucleolus ; lymphocytes ; HeLa ; immunofluorescence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have carried out immunofluorescence labelling of two human cell types, HeLa cells and peripheral blood lymphocytes, prepared by several different fixation/permeabilization protocols using a variety of antibodies against DNA Topoisomerase II (Topo II). We have found that the distribution of Topo IIα was overall similar during interphase and mitosis to that previously reported, regardless of antibody and of sample preparation. On the other hand, the interphase distribution of Topo IIβ was quite variable, depending both on the antibody and on the method used to prepare the sample. Our interpretation of the data is that, like Topo IIα, Topo IIβ is primarily a nucleoplasmic protein, but that unlike Topo IIα, small amounts are also associated with intranucleolar chromatin. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 185-198 
    ISSN: 0730-2312
    Keywords: extracellular matrix ; remodeling ; collagenase ; collagen ; dilated cardiomyopathy ; congestive heart disease ; end-stage heart failure ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; differential display mRNA analysis ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Extracellular matrix metalloproteinases (MMPs) are activated in dilated cardiomyopathic (DCM) hearts [Tyagi et al. (1996): Mol Cell Biochem 155:13-21]. To examine whether the MMP activation is occurring at the gene expression level, we performed differential display mRNA analysis on tissue from six dilated cardiomyopathy (DCM) explanted and five normal human hearts. Specifically, we identified three genes to be induced and several other genes to be repressed following DCM. Southern blot analysis of isolated cDNA using a collagenase cDNA probe indicated that one of the genes induced during DCM was interstitial collagenase (MMP-1). Northern blot analysis using MMP-1 cDNA probe indicated that MMP-1 was induced three- to fourfold in the DCM heart as compared to normal tissue. To analyze posttranslational expression of MMP and tissue inhibitor of matrix metalloproteinase (TIMP) we performed immunoblot, immunoassay, and substrate zymographic assays. TIMP-1 and MMP-1 levels were 37 ± 8 ng/mg and 9 ± 2 ng/mg in normal tissue specimens (P 〈 0.01) and 2 ± 1 ng/mg and 45 ± 11 ng/mg in DCM tissue (P 〈 0.01), respectively. Zymographic analysis demonstrated lytic bands at 66 kDa and 54 kDa in DCM tissue as compared to one band at 66 kDa in normal tissue. Incubation of zymographic gel with metal chelator (phenanthroline) abolished both bands suggesting activation of neutral MMP in DCM heart tissue. TIMP-1 was repressed approximately twentyfold in DCM hearts when compared with normal heart tissue. In situ immunolabeling of MMP-1 indicated phenotypic differences in the fibroblast cells isolated from the DCM heart as compared to normal heart. These results suggest disruption in the balance of myopathic-fibroblast cell ECM-proteinase and antiproteinase in ECM remodeling which is followed by dilated cardiomyopathy. © 1996 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 0730-2312
    Keywords: regulation of transcription ; control of proliferation ; vitamin D3 analogues ; vitamin D3 receptor ; limited protease digestion assay ; lymphocytes ; breast cancer cells ; promoter selectivity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The biological active form of vitamin D3, 1,25-dihydroxyvitamin D3 (VD), regulates cellular growth and differentiation. This provides the hormone with an interesting therapeutic potential. However, hypercalcemia is a side effect, which is caused by VD's classical action, the regulation of calcium homeostasis. This made the need for VD analogues with selectively increased cell regulatory properties. Studies with 20-epi analogues pointed out the importance of the carbon-20 position and led to the development of 20-methyl derivatives of VD. In this report the biological properties of the compounds ZK161422 and ZK157202, which are 20-methyl- and 20-methyl-23-eneanalogues, respectively, have been analyzed in comparison with VD. Both compounds show about 2-fold lower affinity to the VD receptor (VDR) than VD. However, compared to VD, their antiproliferative effect is up to 30-fold higher on human peripheral blood mononuclear cells and even up to 300-fold higher on human breast cancer MCF-7 cells. Whereas the hypercalcemic effect for ZK157202 is also increased 10-fold, ZK161422 has the same calcium-mobilizing potency as VD. Moreover, ZK161422, but not ZK157202, showed preference for gene activation from a promoter carrying a VD response element with a palindromic arrangement of two hexameric receptor binding sites spaced by 9 nucleotides (IP9) rather than for activation from a response element formed by a direct repeat spaced by 3 nucleotides (DR3). This observation supports a model, in which promoter selectivity reflects the selectively increased antiproliferative effect of VD analogues. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 239-251 
    ISSN: 0730-2312
    Keywords: lymphocyte activation ; Krebs cycle ; energy metabolism ; immunosuppressives ; cell cycle ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Rapamycin (RAPA) strongly inhibits lymphocyte activation and proliferation, but does not affect most of the activation-related gene expression at the mRNA level. In order to understand the mechanism of action of RAPA and to gain further insights in lymphocyte signalling which is impaired by RAPA, we screened for RAPA-sensitive genes using differential hybridization. The expression of human aldolase A gene was found to be inducible during T and B cell activation, and the induction was repressed by RAPA at both the mRNA and enzymatic levels. The other two important immunosuppressants, cyclosporin A and FK506, also inhibited the mitogen-induced upregulation. However, none of these three drugs inhibited the constitutive expression. There was no fluctuation of aldolase A expression during the cell cycle, and RAPA failed to block the first cell cycle after synchronization in Jurkat cells. However, the second cycle was hampered by RAPA, and this was correlated with the inhibition of aldolase A expression during this later stage. Since aldolase A is a key enzyme in glycolysis and lymphocytes mainly depend on glycolysis for energy supply, the data from this study suggest that aldolase A might be one of the downstream targets of RAPA. The inhibition of the enzyme upregulation might deprive the cells of additional supply of energy, and prevent the cells from entering an optimal status for proliferation. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 268-279 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; mitosis ; Drosophila embryo ; monoclonal antibody ; spindle formation ; nucleus ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Little is known about what determines the nuclear matrix or how its reorganization is regulated during mitosis. In this study we report on a monoclonal antibody, mAb2A, which identifies a novel nuclear structure in Drosophila embryos which forms a diffuse meshwork at interphase but which undergoes a striking reorganization into a spindle-like structure during pro- and metaphase. Double labelings with α-tubulin and mAb2A antibodies demonstrate that the microtubules of the mitotic apparatus co-localize with this mAb2A labeled structure during metaphase, suggesting it may serve a role in microtubule spindle assembly and/or function during nuclear division. That the mAb2A-labeled nuclear structure is essential for cell division and/or maintenance of nuclear integrity was directly demonstrated by microinjection of mAb2A into early syncytial embryos which resulted in a disintegration of nuclear morphology and perturbation of mitosis. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 311-319 
    ISSN: 0730-2312
    Keywords: protein phosphatase 2A ; endothelial cells ; cyclic strain ; proliferation ; okadaic acid ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic strain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 366-373 
    ISSN: 0730-2312
    Keywords: capsule ; lipid droplet ; Leydig cell ; monoclonal antibody ; immunocytochemistry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In this report, we provide direct evidence for the presence of a lipid droplet-associated capsule in hamster steroidogenic Leydig cells by using a monoclonal antibody A2. Leydig cells are characterized by containing many lipid droplets and having 3β-hydroxysteroid dehydrogenase activity. Immunofluorescence staining with this antibody demonstrated a rim or capsule surrounding the lipid droplets in Leydig cells, a pattern not seen with anti-vimentin antibody. Immunogold labelling confirmed ultrastructurally that antibody binding was distributed on the lipid droplet surface. In order to investigate the possible function of the capsule, we examined the morphological changes induced in the capsule following stimulation with LH or dibutyryl cAMP; the fluorescent intensity of the capsule was seen to gradually decrease, accompanied by a decrease in number and size of lipid droplets, and the response to both reagents was time- and concentration-dependent. We thus conclude that hormonal stimulation resulting in the detachment of certain capsular proteins from the surface of lipid droplets is mediated via the cAMP signaling pathway and may allow cholesterol ester hydrolytic enzyme direct access to its substrate in the lipid droplet. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 453-462 
    ISSN: 0730-2312
    Keywords: FBPase ; gluconeogenesis ; perinuclear association ; metabolic zonation ; immunolocalization ; subcellular fractionation ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The localization of fructose 1,6-bisphosphatase (D-Fru-1,6-P2-1-phosphohydrolase, EC 3.1.3.11) in rat kidney and liver was determined immunohistochemically using a polyclonal antibody raised against the enzyme purified from pig kidney. The immunohistochemical analysis revealed that the bisphosphatase was preferentially localized in hepatocytes of the periportal region of the liver and was absent from the perivenous region. Fructose-1,6-bisphosphatase was also preferentially localized in the cortex of the kidney proximal tubules and was absent in the glomeruli, loops of Henle, collecting and distal tubules, and in the renal medulla. As indicated by immunocytochemistry using light microscopy and confirmed with the use of reflection confocal microscopy, the enzyme was preferentially localized in a perinuclear position in the liver and the renal cells. Subcellular fractionation studies followed by enzyme activity assays revealed that a majority of the cellular fructose-1,6-bisphosphatase activity was associated to subcellular particulate structures. Overall, the data support the concept of metabolic zonation in liver as well as in kidney, and establish the concept that the Fructose-1,6-bisphosphatase is a particulate enzyme that can not be considered a soluble enzyme in the classical sense. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 0730-2312
    Keywords: transcription initiation ; CpG island ; transcription factor AP2 ; transcription factor Sp1 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor (TGF-β) binds several discrete membrane proteins. Of these, a type I receptor appears indispensable for signal transduction. Previous examination of TGF-β receptor expression has been limited to changes in cell surface protein, and more recently, mRNA abundance. In order to learn more about TGF-β function and receptor expression during osteogenesis, we have now cloned a 4 kilobase (kb) DNA fragment 5' proximal to the coding region of the rat TGF-β type I receptor gene. Sequence analysis revealed multiple elements compatible with transcription initiation, including a properly positioned and oriented CCAAT box, six Sp1 binding sites (three defining GC boxes), and two strong AP2 binding sites within a 0.7 kb span directly upstream of the coding region. The 3' terminal 0.3 kb span comprises a GC-enriched (77%) so-called CpG island that, like other similarly organized promoters, lacks a TATA box. Primer extension and RNase protection studies with cRNAs from this area show multiple initiation sites within 220 bp 5' proximal to the initial methionine codon. Transient transfections using nested, deleted, and inverted promoter sequences demonstrated maximal reporter expression by a 1 kb fragment encompassing all of these elements. Truncation of the 1 kb fragment from the 5' and 3' ends indicated the need for several elements for peak promoter activity. These results, and transfections in fetal rat bone and dermal cells, suggest that this promoter contains elements that specify basal and conditional expression of the TGF-β type I receptor in bone. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 0730-2312
    Keywords: protein kinase C ; Drosophila melanogaster ; embryonic neurons ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Embryonic neurons were cultured from transgenic Drosophila melanogaster expressing a highly specific pseudosubstrate inhibitor of protein kinase C (PKC). Flies homozygous for this transgene, which is under the control of the yeast UAS promoter, were crossed to flies homozygous for the yeast heat shock inducible transcription factor GAL 4. Following heat shock, the progeny express the pseudosubstrate inhibitor at high levels. This strategy, which has the advantage of avoiding the non-specific effects of drugs, was used to study the role of PKC in process growth of cultured, differentiating neuroblasts. An external gold particle labeling procedure using a cell surface antigen expressed by mature neurons and processes was used to visualize neuronal processes directly in the scanning electron microscope. We observed that cell cultures expressing a low concentration of the pseudosubstrate inhibitor showed a significant decrease in the number of type I and II processes as compared to control cultures, while the proportions of neuroblasts, ganglion mother cells (GMCs), and mature neurons in the clusters were little affected. © 1996 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 18-25 
    ISSN: 0730-2312
    Keywords: osteoblasts ; calvaria ; invasion ; prostate ; PC-3 cells ; differentiation ; metastasis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone metastasis is a common event and a major cause of morbidity in prostate cancer patients. After colonization of bone, prostate cells induce an osteoblastic reaction which is not associated with marrow fibrosis (i.e., osteoblast but not fibroblast proliferation). In the present study we test the hypothesis that the tumoral prostatic cell line (PC-3) secretes factors that block the osteoblast differentiation process, resulting in an increase of the relative size of the proliferative cell pool. Our results, using fetal rat calvaria cells in culture, show that conditioned medium from PC-3 cells (PC-3 CM) stimulates osteoblast proliferation and inhibits both alkaline phosphatase (AP) activity (an early differentiation marker) and the mineralization process, measured as calcium accumulation (late differentiation marker). The inhibition of the expression of AP and mineralization depends on the presence of PC-3 CM during the proliferative phase of culture and suggests that both processes occur in a nonsimultaneous fashion. The inhibitory effect of PC-3 CM was not reverted by dexamethasone, which would indicate that prostatic-derived factors and the glucocorticoid do not share a common site of action. Measurement of the proliferative capacity of subcultures from control and treated cells demonstrates that PC-3 CM treatment induces the maintenance of the proliferative potential that characterizes undifferentiated precursor cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 97-108 
    ISSN: 0730-2312
    Keywords: aggregin ; chemical modification ; ADP-induced platelet responses ; NBD-Cl ; cAMP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: ADP-induced platelet responses play an important role in the maintenance of hemostasis. There has been disagreement concerning the identity of an ADP receptor on the platelet surface. The chemical structure of 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) shows considerable resemblance to that of the adenine moiety of adenine-based nucleotides. The reagent has been previously used by other investigators as an affinity label for adenine nucleotide-requiring enzymes, such as mitochondrial ATPase and the catalytic subunit of cAMP-dependent protein kinase. Since ADP-induced platelet responses depend on the binding of ADP to its receptor, we investigated the effect on ADP-induced platelet responses and the nature of ADP-binding protein modified by NBD-Cl. NBD-Cl inhibited ADP-induced shape change and aggregation of platelets in platelet-rich plasma in a concentration- and time-dependent manner. NBD-Cl also inhibited ADP-induced shape change, aggregation, exposure of fibrinogen binding sites, secretion, and calcium mobilization in washed platelets. NBD-Cl did not act as an agonist for platelet shape change and aggregation. Covalent modification of platelets by NBD-Cl blocked the ability of ADP to antagonize the increase in intracellular levels of cAMP mediated by iloprost (a stable analogue of prostaglandin I2). NBD-Cl was quite specific in inhibiting platelet aggregation by those agonists, e.g., ADP, collagen, and U44619 (a thromboxane mimetic), that completely or partially depend on the binding of ADP to its receptor. Autoradiogram of the gel obtained by SDS-PAGE of solubilized platelets modified by [14C]-NBD-Cl showed the presence of a predominant radiolabeled protein band at 100 kDa corresponding to aggregin, a putative ADP receptor. The intensity of this band was considerably decreased when platelets were either preincubated with ADP and ATP or covalently modified by a sulfhydryl group modifying reagent before modification by [14C]-NBD-Cl. These results (1) indicate that covalent modification of aggregin by NBD-Cl contributed to loss of the ADP-induced platelet responses, and (2) suggest that there is a sulfhydryl group in the ADP-binding domain of aggregin. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 108-111 
    ISSN: 0730-2312
    Keywords: duct carcinoma in situ ; nuclear grade necrosis ; prognostic features ; local recurrence ; invasive transformation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In the last 6 years a number of non-randomized, predominantly single institutional trials of breast conservation therapy (BCT) with DCIS, have demonstrated that it constitutes a very heterogeneous group of diseases with markedly different risks of local recurrence and invasive transformation. There has been a consensus that DCIS, which exhibits a “comedo” morphology, generally defines a high risk group. Most studies, moreover, have identified the same two features, nuclear grade and necrosis, as contributing most significantly to prognosis [4-6]. Nuclear grade and necrosis have been identified as independent prognostic variables in several studies [5,6]. High nuclear grade DCIS which exhibits comedo necrosis defines the majority of all DCIS which will result in local recurrence and invasive transformation after BCT.Studies utilizing image cytometry, to determine ploidy and S-phase fraction and immunohistochemical studies of proliferation and oncogene distribution have shown a significant association with morphologically identified high nuclear grade and aneuploidy, high S-phase fraction or proliferation rate, presence of HER-2/neu and P53 oncogenes and absence of estrogen receptors. Generally the inverse of this association is seen with low nuclear grade DCIS. However, initial hopes that these adjunctive studies would identify subsets within the high nuclear grade group which might be more likely to recur have not been fulfilled. J. Cell. Biochem. 25S:108-111. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 123-130 
    ISSN: 0730-2312
    Keywords: carcinogenesis ; predisposing mutation ; malignancy ; DNA testing ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Identification of cohorts at genetic risk for cancer offers unique research opportunities to explore the steps in carcinogenesis, from the inheritance of a predisposing mutation to the development of preinvasive lesions or overt malignancy, and to evaluate interventions to modulate the carcinogenic process. However, cancer prevention strategies for most inherited cancer predisposition syndromes are of unproven benefit, and the potential for adverse psychosocial effects and employment or insurance discrimination associated with genetic testing is substantial. Thus testing for genetic cancer risk remains highly controversial, and the National Center for Human Genome Research and the American Society of Human Genetics advise DNA testing for presymptomatic identification of cancer risk only in the setting of a carefully monitored research environment.The commercial availability of predictive genetic testing, particularly for inherited susceptibility to cancer, has focused attention not only on the urgent need for research in cancer prevention for cohorts at genetic cancer risk but also on ethical considerations surrounding clinical prevention research in genetic risk groups. This paper addresses the interrelationship of ethical and scientific issues in conducting chemoprevention research in these cohorts, especially for those studies which require presymptomatic testing for specific gene mutations as a study entry criterion or as a criterion for stratification. Practical approaches to study design and implementation issues for chemoprevention research in genetic risk cohorts are discussed, emphasizing the interactions of ethical and scientific considerations at all levels of the research process. J. Cell. Biochem. 25S:123-130. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 0730-2312
    Keywords: acquired risk ; chemoprevention ; colon ; genetic risk ; neoplasia ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The progressively abnormal development of epithelial cells prior to tumor development leads to widely differing chemopreventive approaches. The diversity of these approaches has resulted in different assays to measure the activities of the agents. To apply these assays to preclinical studies, we have developed rodent models in which different stages of evolution of colonic neoplasia are expressed. In one model mice carrying a truncated Apc allele with a nonsense mutation in exon 15 have been generated by gene targeting and embryonic stem cell technology (Apc1638 mice). These mice develop multiple gastrointestinal lesions including adenomas and carcinomas, focal areas of high grade dysplasia (FAD) and polypoid hyperplasias with FADS.The incidence of inherited colonic neoplasms has now been modulated by a chemopreventive regimen. Colonic lesions significantly increased in Apc1638 mice on a Western-style diet, compared to Apc1638 mice on AIN-76A diet which has lower fat content and higher calcium and vitamin D. These studies have also been carried out in normal mice, and have demonstrated without any chemical carcinogen that a Western-style diet induced colonic tumorigenesis. Modulation of cell proliferation has also been induced by Western-style diets in other organs including mammary gland, pancreas and prostate. These findings are leading to the development of new preclinical models for evaluating the efficacy of many classes of chemopreventive agents. J. Cell. Biochem. 25S:136-141. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 156-164 
    ISSN: 0730-2312
    Keywords: carcinogenesis ; chemoprevention ; prostate cancer ; prostatic intraepithelial neoplasia ; prostatic neoplasms ; surrogate endpoint biomarkers ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The most efficient strategy for chemoprevention clinical trials are short-term studies which focus on surrogate endpoint biomarkers (SEBs) in high-risk target populations. High-grade prostatic intraepithelial neoplasia (PIN) is the most likely precursor of prostate cancer, and is found in a significant number of routine contemporary needle biopsies without cancer. The frequency and extent of PIN are decreased with androgen deprivation therapy, suggesting that it is a suitable endpoint biomarker for modulation. Potential SEBs for screening chemopreventive agents for prostate cancer in short-term Phase II trials include (1) histologic premalignant lesions, such as high-grade PIN; (2) biochemical markers, including prostate-specific antigen (PSA) serum concentration; and (3) morphometric markers, including nuclear texture, shape, and roundness; size and number of nucleoli; and number of apoptotic bodies; (4) proliferation markers, including MIB-1 and PCNA; (5) genetic markers, including nuclear DNA content (ploidy), oncogene c-erbB-2 (HER-2/neu) expression, fluorescence in situ hybridization for chromosome 8; and PSA-producing cells in the blood detected by reverse transcriptase polymerase chain reaction; and (6) differentiation markers, such as microvessel density as a determinant of angiogenesis. Each of these endpoint biomarkers is measured easily and accurately in serum or in tissue specimens such as formalin-fixed, paraffin-embedded needle biopsies, and may be modifiable by intervention. The clinical utility of these biomarkers as modulatable endpoints in prostate cancer chemoprevention needs to be demonstrated in future clinical trials. J. Cell. Biochem. 25S:156-164. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 102-112 
    ISSN: 0730-2312
    Keywords: NDF ; estrogen receptor ; breast cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Most human breast tumors start as estrogen-dependent, but during the course of the disease become refractory to hormone therapy. The transition of breast tumors from estrogen dependent to independent behavior may be regulated by autocrine and/or paracrine growth factor(s) that are independent of the estrogen receptor (ER). We have investigated the role(s) of NDF (neu-differentiation factor) in the biology of estrogen positive breast cancer cells by using MCF-7 cells as a model system. Treatment of MCF-7 cells with human recombinant NDF-β2 (NDF) inhibited the ER expression by 70% and this was associated with growth stimulation in an estrogen-independent manner. To explore the mechanism(s) of action of NDF in MCF-7 cells, we examined the expression of NDF-inducible gene products. We report here that NDF stimulated the levels of expression of a 46 kD protein (p46) (in addition to few minor proteins) in ER positive breast cancer cells including MCF-7, T-47-D, and ZR-75-R cells but not in ER negative breast cancer cells including MDA-231, SK-BP-3, and MDA-468 cells. This effect of NDF was due to induction in the rate of synthesis of new p46. The observed NDF-mediated induction of p46 expression was specific as there was no such effect by epidermal growth factor or 17-β-estradiol, and inclusion of actinomycin D partially inhibited the p46 induction elicited by NDF. NDF-inducible stimulation of p46 expression was an early event (2-6 h) which preceded the period of down-regulation of ER expression by NDF. These results support the existence of NDF-responsive specific cellular pathway(s) that may regulate ER, and these interactions could play a role(s) in hormone-independence of ER positive breast cancer cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 508-520 
    ISSN: 0730-2312
    Keywords: chondrocyte ; porcine ; countercurrent centrifugal elutriation ; cartilage ; alkaline phosphatase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Countercurrent centrifugal elutriation was used to separate growth plate chondrocytes from porcine basing on their differences in sizes and densities. Eighteen fractions of cells with different sizes and densities were obtained. The mean cellular volumes increased progressively in each of successive fractions, and that increase was associated with specific phenotypic changes, such as biochemical differences in DNA synthesis, proteoglycan synthesis, and activities of alkaline phosphatase. Three distinct chondrocyte subpopulations with their unique characteristics were identified among the elutriated fractions. The resting chondrocytes were found to be small in size and quiescent. The hypertrophic chondrocytes were found to be large in size and metabolically active both in alkaline phosphatase and in proteoglycan productions. The proliferative chondrocytes exhibited a high DNA synthesis rate, and their sizes were found to be between those of the resting and hypertrophic chondrocytes. © 1996 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 0730-2312
    Keywords: glycoprotein ; cell adhesion ; COLO 205 cell line ; affinity chromatography ; MUC1 mucin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A secreted MUC1 mucin from the spent medium of the colon carcinoma cell line COLO 205 carrying sialyl-Lewis a and x epitopes (H-CanAg) was purified by trichloroacetic acid precipitation and Superose 6 gel filtration. The purified H-CanAg inhibited adhesion of the leukocyte cell line HL-60 to E-selectin transfected COS-1 cells or interleukin-1β (IL-1β)-activated human umbilical vein endothelial cells. Sera from two patients with advanced colon carcinoma containing high concentrations of sialyl-Lewis a and x activity inhibited HL-60 cell adhesion to E-selectin-expressing COS-1 cells and IL-1β-activated endothelial cells. After affinity column absorption of the sialyl-Lewis a activity, the sera also lost most of their sialyl-Lewis x activity and at the same time their adhesion inhibitory effect. A large part of the sialyl-Lewis a/x activity in the two patients was found in fractions containing mucins having a MUC1 apoprotein, as shown by its size, and reactivity with the two anti-MUC1 apoprotein monoclonal antibodies, Ma552 and HMFG-2. The cell-adhesion inhibitory effect of the purified sialyl-Lewis a-carrying MUC1 mucin fraction from the sera of the two patients was stronger than that of smaller sized sialyl-Lewis a-carrying mucin-type glycoproteins also found in the patient sera. The MUC1 mucin fraction secreted by the COLO 205 cells and from the two sera were all shown to lack their C-terminal portion, in contrast to the MUC1 mucin from cells. It is hypothesized that sialyl-Lewis a- and/or x-containing mucins, especially MUC1, secreted by tumors can interact with E-selectin on endothelial cells and thus inhibit leukocyte adhesion. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 165-171 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; phosphorylation ; protein kinase CK2 ; chromatin ; nuclear translocation ; prostate ; cell growth ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix (NM) is not only the structural basis for nuclear shape but also is intimately involved in nuclear functional activities. Among the modulatory factors that may affect these diverse activities are the signals that may influence the state or composition of the NM proteins. One such mechanism for altering the functional activity of at least some NM proteins may be the extent of their phosphorylation. Protein kinase CK2 appears to associate with NM and to phosphorylate a number of NM-associated proteins. Chromatin- and NM-associated CK2 is rapidly modulated by mitogenic signals. We propose that NM serves as a physiological anchor for nuclear signalling of protein kinase CK2 which may influence functions of NM such as transcription of active genes and growth. © 1996 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 158-164 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; mitosis ; mitotic apparatus ; matrix-associated proteins ; genome ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The eukaryotic cell nucleus is a membrane-enclosed compartment containing the genome and associated molecules supported by a highly insoluble filamentous network known as the nucleoskeleton or nuclear matrix. The nuclear matrix is believed to play roles in maintaining nuclear architecture and organizing nuclear metabolism. Recently, advances in microscopic techniques and the availability of new molecular probes have made it possible to localize functional domains within the nuclear matrix and demonstrate dynamic interactions between both soluble and insoluble components involved in the control of multiple nuclear transactions. Like the cytoplasm and its skeleton, the nucleoplasm is highly structured and very crowded with an equally complex skeletal framework. In fact, there is growing evidence that the two skeletal systems are functionally contiguous, providing a dynamic cellular matrix connecting the cell surface with the genome. If we impose cell cycle dynamics upon this skeletal organization, it is obvious that the genome and associated nuclear matrix must undergo a major structural transition during mitosis, being disassembled and/or reorganized in late G2 and reassembled again in daughter nuclei. However, recent evidence from our laboratory and elsewhere suggests that much of the nuclear matrix is used to form the mitotic apparatus (MA). Indeed, both facultative and constitutive matrix-associated proteins such as NuMA, CENP-B, CENP-F, and the retinoblastoma protein (Rb) associate within and around the MA. During mitosis, the nuclear matrix proteins may either become inert “passengers” or assume critical functions in partitioning the genome into newly formed G1 nuclei. Therefore, we support the view that the nuclear matrix exists as a dynamic architectural continuum, embracing the genome and maintaining cellular regulation throughout the cell cycle. © 1996 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 181-190 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 61-71 
    ISSN: 0730-2312
    Keywords: α2M* ; cAMP synthesis ; IP3 synthesis ; α1I3 ; conformational changes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Binding of receptor-recognized forms of tetrameric human α2-macroglobulin (α2M*) to a macrophage signaling receptor induces cAMP synthesis, increases in inositol 1,4,5-triphosphate (IP3) synthesis, and a concomitant rise in cytosolic free calcium ([Ca2+]i). The α2M* signaling receptor is coupled to a pertussis-toxin insensitive G protein. Binding of α2M* also occurs to the low density lipoprotein receptor-related protein/α2M receptor (LRP/α2MR), but this binding does not induce signal transduction. Rat α1-inhibitor-3 (α1I3) is a monomeric member of the α-macroglobulin/complement superfamily. Like α2M, it can react with proteinases or methylamine which induces a conformational change causing activated α1I3 to bind to LRP/α2MR. We now report that α1I3-methylamine binds to the macrophage α2M* signaling receptor inducing a rapid rise in the synthesis of IP3 with a subsequent 1.5- to 3-fold rise in [Ca2+]i. α1I3-methylamine binding to macrophages also caused a statistically significant elevation in cAMP. Native α1I3, like α2M, was unable to induce signal transduction. α1I3 forms a complex with α1-microglobulin, which has a distinct conformation from α1I3 and is recognized by LRP/α2MR. This complex also induces an increase in [Ca2+]i comparable to the effect of α1I3-methylamine on macrophages. It is concluded that activation of α1I3 by methylamine or binding of α1-microglobulin causes similar conformational changes in the inhibitor, exposing the receptor recognition site for the α2M* signaling receptor, as well as for LRP/α2MR. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 0730-2312
    Keywords: mRNA sorting ; mRNA targeting ; urea cycle ; enzyme organization ; cell organization ; electron microscopy ; digoxigenin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Argininosuccinate synthetase and argininosuccinate lyase, two cytoplasmic enzymes of the urea cycle, are released into the soluble phase in the absence of detergent when cells are disrupted. Yet previous biochemical studies, as well as immunocytochemistry at the electron microscope level, have shown that these enzymes are localized around mitochondria in situ. Such intracellular localization of soluble enzymes requires mechanisms to deliver the proteins to the appropriate sites, where they may then be anchored by specific protein-protein interactions. A method was developed to examine the intracellular distribution of the mRNA of argininosuccinate synthetase and argininosuccinate lyase in intact rat liver at the ultrastructural level by in situ reverse transcription and the polymerase chain reaction, using primers targeting regions of the coding sequences of the rat enzymes, digoxigenin-dUTP as the label, and anti-digoxigenin/10 nm gold plus silver enhancement as the detection method. The tissue was fixed in 4% paraformaldehyde/0.1% glutaraldehyde and embedded in Lowicryl. Examination of the numbers and the location of the silver grains, coupled with morphometric analysis of the electron micrographs, permitted the calculation of the silver “enrichment ratio” for each type of cell structure. These ratios showed that the mRNAs for argininosuccinate synthetase and argininosuccinate lyase were located next to the cytoplasmic side of the mitochondrial membrane and in the nearby endoplasmic reticulum. Most of the silver grains that were observed in the endoplasmic reticulum were within 200 nm of the mitochondria; it was not possible, however, to determine if those grains were actually associated with the reticular membranes. These studies demonstrate that the mRNAs of these two soluble cytoplasmic proteins are localized to the same limited regions where the proteins are situated. Translation of the proteins, therefore, must occur at these specific sites. The targeting of argininosuccinate synthetase and argininosuccinate lyase mRNAs to the immediate vicinity of the mitochondria may be the first step of the mechanisms by which the spatial organization of these soluble proteins in situ is accomplished. The targeting of mRNAs for soluble cytoplasmic proteins of organized metabolic pathways has not been demonstrated previously. These studies also show that in situ reverse transcription and the polymerase chain reaction at the ultrastructural level, which has not been previously reported, can be used to detect specific mRNAs; it should be extremely valuable for the intracellular detection of low-abundance mRNAS. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 0730-2312
    Keywords: Oxidative stress ; redox-state ; antioxidants ; extracellular matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; fibroblast ; polyoma virus transformation ; tumor ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Latent matrix metalloproteinases (MMPs) in normal myocardium are activated in end-stage heart failure. In vitro oxidized glutathione (GSSG) activates myocardial MMPs which contains a cysteine residue. In vivo GSSG induce the collagen lysis and cardiac dilatation. To assess whether thiol and non-thiol reducing agents have direct effect on the interstitial human heart fibroblast (HHF) proliferation and MMP expression, HHF and polyoma virus transformed fibroblast cells were cultured with or without the thiol-containing reduced (GSH) or oxidized (GSSG) glutathiones, pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC), and non-thiol ascorbic acid. After 100 μg/ml (∼0.3 mM) GSH or PDTC treatment the proliferative (synthetic) phenotype of transformed fibroblast cells was changed to quiescent (contractile) phenotype. Also, after GSH, PDTC, and ascorbic acid treatment the medium was then analyzed for MMP activity by zymography. The results indicate reduction in MMP expression in transformed fibroblast cells after GSH and PDTC treatments and no effect after ascorbic acid treatment. Based on reverse zymography, we observed the level of tissue inhibitor of metalloproteinase (TIMP) at a decreased level in transformed cells. The effect of the reducing agent at the gene transcription was measured by estimating mRNA (Northern blot analysis) of MMP and of TIMP in the cells that were cultured in medium in the presence and absence of GSH. These results indicate that GSH induces MMP-2 and MMP-1 expression in normal HHF and that GSH reduces MMP-2 and MMP-1 in transformed fibroblast cells. After the treatment, the TIMP-2 level was repressed in normal HHF and TIMP-2 level increased in transformed fibroblast cells. These events are dependent on the nuclear transcription factor activity on the collagenase promoter in normal HHF cells. On the other hand, in polyoma transform fibroblast cells these events are not dependent on this collagenase promoter. These results suggest that oxidative environment induces normal HHF cell proliferation, and the reducing agent decreases normal HHF cell proliferation by inducing MMP and repressing TIMP gene transcription. In transformed cells reducing agents inhibit MMP expression and increase TIMP levels, which suggests a role of antioxidants in preventing tumorigenesis. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 182-193 
    ISSN: 0730-2312
    Keywords: glucocorticoid ; alkaline phosphatase ; osteopontin ; osteocalcin ; bone sialoprotein ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glucocorticoids have been shown to induce the differentiation of bone marrow stromal osteoprogenitor cells into osteoblasts and the mineralization of the matrix. Since the expression of bone matrix proteins is closely related to the differentiation status of osteoblasts and because matrix proteins may play important roles in the mineralization process, we investigated the effects of dexamethasone (Dex) on the expression of bone matrix proteins in cultured normal human bone marrow stromal cells (HBMSC). Treatment of HBMSC with Dex for 23 days resulted in a significant increase in alkaline phosphatase activity with maximum values attained on day 20 at which time the cell matrix was mineralized. Northern blot analysis revealed an increase in the steady-state mRNA level of alkaline phosphatase over 4 weeks of Dex exposure period. The observed increase in the alkaline phosphatase mRNA was effective at a Dex concentration as low as 10-10 M with maximum values achieved at 10-8 M. In contrast, Dex decreased the steady-state mRNA levels of both bone sialoprotein (BSP) and osteopontin (OPN) over a 4 week observation period when compared to the corresponding control values. The relative BSP and OPN mRNA levels among the Dex treated cultures, however, showed a steady increase after more than 1 week exposure. The expression of osteocalcin mRNA which was decreased after 1 day Dex exposure was undetectable 4 days later. Neither control nor Dex-treated HBMSC secreted osteocalcin into the conditioned media in the absence of 1,25(OH)2D3 during a 25-day observation period. The accumulated data indicate that Dex has profound and varied effects on the expression of matrix proteins produced by human bone marrow stromal cells. With the induced increment in alkaline phosphatase correlating with the mineralization effects of Dex, the observed concomitant decrease in osteopontin and bone sialoprotein mRNA levels and the associated decline of osteocalcin are consistent with the hypothesis that the regulation of the expression of these highly negatively charged proteins is essential in order to maximize the Dex-induced mineralization process conditioned by normal human bone marrow stromal osteoprogenitor cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 0730-2312
    Keywords: platelets ; morphological change ; [Ca2+]i ; confocal laser scanning microscopy ; surface contact activation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The dynamic change of cytoplasmic Ca2+ concentration ([Ca2+]i) and morphological change were investigated simultaneously by confocal laser scanning microscopy using fluo-3 and by differential interference contrast optics in platelets activated by contact with the following types of surfaces: native glass and glass treated with poly-L-lysine (PLL), fibrinogen (Fg), or von Willebrand factor (vWF). The initial [Ca2+]i values just after the surface contact were comparable (approximately 100 nM) among platelets deposited on the four surface types. On the PLL-surface, no morphological change or [Ca2+]i elevation was observed. Glass-, Fg-, and vWF-surface adhered platelets showed pseudopod formation and spreading associated with the inhomogeneous [Ca2+]i rise. The platelets on the Fg-surface were the most active in terms of [Ca2+]i rise and morphological change. During pseudopod formation, the mean [Ca2+]i value was maximal and localized high [Ca2+]i zones were observed inside pseudopods, as well as in the center of the platelets. After spreading, high [Ca2+]i zones still remained in the center of the cell. This new technique enabled simultaneous observation of [Ca2+]i and cell shape and we clearly demonstrated a close relationship between [Ca2+]i and morphological alterations. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 531-542 
    ISSN: 0730-2312
    Keywords: cadherin superfamily ; signal transduction pathway ; adhesion proteins ; evolution ; biological role ; structure ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A large number of cadherins and cadherin-related proteins are expressed in different tissues of a variety of multicellular organisms. These proteins share one property: their extracellular domains consist of multiple repeats of a cadherin-specific motif. A recent structure study has shown that the cadherin repeats roughly corresponding to the folding unit of the extracellular domains. The members of the cadherin superfamily are roughly classified into two groups, classical type cadherins proteins and protocadherin type according to their structural properties. These proteins appear to be derived from a common ancestor that might have cadherin repeats similar to those of the current protocadherins, and to have common functional properties. Among various cadherins, E-cadherin was the first to be identified as a Ca2+-dependent homophilic adhesion protein. Recent knockout mice experiments have proven its biological role, but there are still several puzzling unsolved properties of the cell adhesion activity. Other members of cadherin superfamily show divergent properties and many lack some of the expected properties of cell adhesion protein. Since recent studies of various adhesion proteins reveal that they are involved in different signal transduction pathways, the idea that the new members of cadherin superfamily may participate in more general cell-cell interaction processes including signal transduction is an intriguing hypothesis. The cadherin superfamily is structurally divergent and possibly functionally divergent as well. © 1996 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 543-553 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Integrins are receptor molecules for extracellular matrix molecules (e.g., the β1 family), serum components (αv family) and immunoglobulin family adhesion molecules (β2 family). Integrin-dependent adhesion has also been shown to have metabolic consequences. Adhesion to a variety of extracellular matrix proteins, such as fibronectin, collagen, and laminin, is a potent regulator of cell growth, differentiation, and gene expression. Ligand binding or aggregation of integrin receptors initiates a number of metabolic changes including activation of serine/threonine and tyrosine kinases, increased Ca2+ influx, increased cytoplasmic alkalinization, and altered inositol lipid metabolism. In some instances activation of transcription factors and induction of gene expression have also been demonstrated. Components of key signaling pathways involving integrins are beginning to be identified. Some studies have shown that integrins form multi-component complexes with signal transduction molecules. Elucidating the interactions of the signal transduction molecules with each other and with the integrin cytoplasmic domains will be key to understanding the initial events of signal transduction through the integrins. © 1996 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 554-561 
    ISSN: 0730-2312
    Keywords: adhesion ; integrin ; LFA-1 ; ICAM-1 ; leukocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Leukocytes circulate freely in the bloodstream until receiving signals which activate adhesive mechanisms essential for immune responsiveness. Key mediators of these adhesion events are heterodimeric cell surface receptors called integrins. It is now apparent that several components may contribute to successful integrin-mediated adhesion: alterations in individual receptors lead to enhanced affinity for ligand; integrin clustering causes an increase in avidity; by spreading, the adhering cell is less susceptible to shear force. Model systems have allowed us to examine the contribution of each of these factors in generating adhesion. In more physiologically relevant situations, it can now be questioned whether integrin-mediated adhesion is regulated via alterations in receptor affinity or avidity, or whether both these mechanisms are involved. © 1996 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 585-591 
    ISSN: 0730-2312
    Keywords: selectins ; vascular system ; leukocytes ; sialomucins ; fucosylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The selectins are carbohydrate-binding cell adhesion molecules acting in the vascular system. They mediate the docking of leukocytes to the blood vessel wall and the rolling of these cells along the endothelial cell surface. These adhesion phenomena initiate the entry of leukocytes into sites of inflammation as well as the migration of recirculating lymphocytes into secondary lymphoid tissues. Blocking selectin function with antibodies or oligosaccharides has proven to be beneficial in various animal models of inflammation and models of ischemia/reperfusion damage. This has raised much interest in the identification of the physiological ligands of the selectins. Several glycoprotein ligands have been identified, some of which can even be selectively isolated from cellular detergent extracts using a selectin as an affinity probe. Four of these “high affinity” ligands have been cloned. The structural requirements of their interaction with the selectins is discussed. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 599-608 
    ISSN: 0730-2312
    Keywords: ras proteins ; growth factors ; phospholipase D ; PKC ; phorbol esters ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Growth factors activate phospholipases, causing the generation of diverse lipid metabolites with second messenger function. Among them, the phosphatidylcholine-preferring phospholipase D (PLD) has attracted great interest, since in addition to the transient activation by growth factors stimulation, it is constitutively activated in some of the src- and ras-transformed cells investigated. To establish further the functional relationship of ras oncogenes with PLD, we have investigated its mechanism of regulation. Growth factors such as PDGF or FGF activate the PC-PLD enzyme by a common, PKC-dependent mechanism. By contrast, ras oncogenes activate the PC-PLD enzyme by a PKC-independent mechanism. These results suggest the existence of at least two mechanisms for PLD activation, and ras oncogenes contribute to one of them. © 1996 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 578-584 
    ISSN: 0730-2312
    Keywords: heparan sulfate ; extracellular matrix ; cytoskeleton ; fibronectin ; proteoglycans ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the microfilament cytoskeleton, thereby mediating signaling events. The molecular details are unknown, but the conservation of regions of syndecan cytoplasmic domains, and a strong tendency for homotypic association, support the idea that the ligand-induced clustering may be a discrete source of specific transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors. © 1996 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 0730-2312
    Keywords: phospholipase C ; inositol-1,4,5-trisphosphate ; protein kinase C ; protein kinase A ; progesterone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the early effects (5-60 s) of progesterone (1 pM-0.1 μM) on cytosolic free calcium concentration ([Ca2+]i) and inositol 1,4,5-trisphosphate (InsP3) formation in nonluteinized and in vitro luteinized porcine granulosa cells (pGCs). Progesterone increased [Ca2+]i and InsP3 formation within 5 s in both cell types. Progesterone induced calcium mobilization from the endoplasmic reticulum via the activation of a phospholipase C linked to a pertussis-insensitive G-protein. This process was controlled by protein kinases C and A. In contrast, only nonluteinized pGCs showed a Ca2+ influx via dihydropyridine-insensitive calcium channel. In both cell types, the nuclear progesterone receptor antagonist RU-38486 did not inhibit the progesterone-induced increase in [Ca2+]i; progesterone immobilized on bovine serum albumin, which did not enter the cell, increased [Ca2+]i within 5 s and was a full agonist, but less potent than the free progesterone; pertussis toxin did not inhibit progesterone effect on InsP3. In conclusion, progesterone may interact with membrane unconventional receptors that belong to the class of membrane receptors coupled to a phospholipase C via a pertussis toxin-insensitive G-protein. The source of the Ca2+ for the progesterone-induced increase in [Ca2+]i also depends on the stage of cell luteinization. © 1996 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 0730-2312
    Keywords: osteocalcin ; osteonectin ; collagen ; TGF-β1 ; histone ; fibronectin ; alkaline phosphatase ; ribosomal protein S6 ; differentiation ; MC3T3-E1 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone formation involves several tightly regulated gene expression patterns of bone-related proteins. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, we used Northern blotting, enzymatic assay, and histochemistry. We found that the expression patterns of bone-related proteins were regulated in a temporal manner during the successive developmental stages including proliferation (days 4-10), bone matrix formation/maturation (days 10-16), and mineralization stages (days 16 -30). During the proliferation period (days 4-10), the expression of cell-cycle related genes such as histone H3 and H4, and ribosomal protein S6 was high. During the bone matrix formation/maturation period (days 10-16), type I collagen expression and biosynthesis, fibronectin, TGF-β1 and osteonectin expressions were high and maximal around day 16. During this maturation period, we found that the expression patterns of bone matrix proteins were two types: one is the expression pattern of type I collagen and TGF-β1, which was higher in the maturation period than that in both the proliferation and mineralization periods. The other is the expression pattern of fibronectin and osteonectin, which was higher in the maturation and mineralization periods than in the proliferation period. Alkaline phosphatase activity was high during the early matrix formation/maturation period (day 10) and was followed by a decrease to a level still significantly above the baseline level seen at day 4. During the mineralization period (days 16-30), the number of nodules and the expression of osteocalcin were high. Osteocalcin gene expression was increased up to 28 days. Our results show that the expression patterns of bone-related proteins are temporally regulated during the MC3T3-E1 cell differentiation and their regulations are unique compared with other systems. Thus, this cell line provides a useful in vitro system to study the developmental regulation of bone-related proteins in relation to the different stages during the osteoblast differentiation. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 0730-2312
    Keywords: opossum kidney cells ; cell proliferation ; opioids ; opioid receptors (delta, mu, kappa) ; somatostatin ; somatostatin receptors ; cell proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Opioids and somatostatin analogs have been implicated in the modulation of renal water handling, but whether their action is accomplished through central and/or peripheral mechanisms remains controversial. In different cell systems, on the other hand, opioids and somatostatin inhibit cell proliferation. In the present study, we have used an established cell line, derived from opossum kidney (OK) proximal tubules, in order to characterize opioid and somatostatin receptors and to investigate the action of opioids and somatostatin on tubular epithelial tissue. Our results show the presence of one class of opioid binding sites with kappa1 selectivity (KD 4.6 ± 0.9 nM, 57,250 sites/cell), whereas delta, mu, or other subtypes of the kappa site were absent. Somatostatin presents also a high affinity site on these cells (KD 24.5 nM, 330,000 sites/cell). No effect of either opioids or somatostatin on the activity of the Na+/Pi cotransporter was observed, indicating that these agents do not affect ion transport mechanisms. However, opioid agonists and somatostatin analogs decrease OK cell proliferation in a dose-dependent manner; in the same nanomolar concentration range, they displayed reversible specific binding for these agents. The addition of diprenorphine, a general opioid antagonist, reversed the effects of opioids, with the exception of morphine. Furthermore, morphine interacts with the somatostatin receptor in this cell line too, as was the case in the breast cancer T47D cell line. Our results indicate that in the proximal tubule opioids and somatostatin do not affect ion transport, but they might have a role in the modulation of renal cell proliferation either during ontogenesis or in kidney repair. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 432-441 
    ISSN: 0730-2312
    Keywords: shear stress ; actin polymerization ; LFA-1 ; ICAM-3 ; homotypic aggregation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have previously reported that a physiological range of shear stress induces neutrophil homotypic aggregation mediated by lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-3 (ICAM-3) interactions. To further characterize the homotypic aggregation, actin polymerization was investigated in neutrophils stimulated by shear stress in comparison with formyl-methionyl-leucyl-phenylalanine (fMLP). In fMLP-stimulated neutrophils, actin polymerization was localized in the pseudopods, and this reaction was not mediated by a cytosolic level of Ca2+. In contrast to fMLP stimulation, the actin polymerization induced by shear stress in a cone-plate viscometer was localized in cell-cell contact regions, and this polymerization required the increase of intracellular Ca2+. This shear stress-induced actin polymerization was not observed when neutrophils were pretreated with anti-LFA-1 or anti-ICAM-3 antibody. In conclusion, LFA-1 and ICAM-3 interaction mediated by the increase of [Ca2+]i generated the intercellular signal in order to accumulate F-actin in the cell-cell contact regions. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 0730-2312
    Keywords: vitamin D3 ; differentiation ; intracellular calcium ; store-dependent calcium influx ; cell cycle blocks ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Numerous vitamin D3 analogs (VDAs) can inhibit the proliferation of cells from several types of human malignancies. The physiologically active form of vitamin D3, 1,25-dihydroxyvitamin D3(1,25D3), is formed by successive hydroxylations of cholecalciferol at the 25 and 1α positions. In this study we examined the effects of the absence of the 1α(OH) group, introduction of a double bond in position 16, and further modifications at the 23, 26, and 27 positions in the side chain on the potency of the VDAs. The parameters studied were the rapidity of the induction of monocytic differentiation, the cell cycle traverse, and the effects of VDAs on intracellular calcium homeostasis in HL60 cells. The results show that (1) 1,25D3 derivatives which lack the 1α(OH) group have little differentiation-inducing activity, (2) hexafluorination (6F) of the terminal methyl groups in the side chain partially restores the activity of 1α-desoxy compounds and potentiates the activity of 1α hydroxylated compounds, and (3) 25-(OH)-16,23E-diene-26,27-hexafluoro-vitamin D3 (Ro25-9887) alone among the twelve compounds tested induces differentiation with only minimal changes in the basal levels of intracellular calcium and store-dependent calcium influx in HL60 cells. Addition of 1α(OH) group to this compound increases its differentiation-inducing activity but also elevates basal calcium level. The results suggest that altered calcium homeostasis is not an obligatory component of HL60 leukemia cell differentiation, and that Ro25-9887 and related VDAs may be suitable for testing as components of anti-leukemic therapy. © 1996 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 31-49 
    ISSN: 0730-2312
    Keywords: Bax ; Bcl-2 ; Bcl-X ; bone ; programmed cell death ; p53 ; c-fos ; Msx-2 ; differentiation ; IRF-1 ; IRF-2 ; collagenase gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31-49, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 309-327 
    ISSN: 0730-2312
    Keywords: in vitro replication ; ors8 ; Oct-1 transcription factor ; POU domain ; mammalian autonomously replicating DNA sequence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A 186-base pair fragment of ors8, a mammalian autonomously replicating DNA sequence isolated by extrusion of nascent monkey DNA in early S phase, has previously been identified as the minimal sequence required for replication function in vitro and in vivo. This 186-base pair fragment contains, among other sequence characteristics, an imperfect consensus binding site for the ubiquitous transcription factor Oct-1. We have investigated the role of Oct-1 protein in the in vitro replication of this mammalian origin. Depletion of the endogenous Oct-1 protein, by inclusion of an oligonucleotide comprising the Oct-1 binding site, inhibited the in vitro replication of p186 to approximately 15-20% of the control, whereas a mutated Oct-1 and a nonspecific oligonucleotide had no effect. Furthermore, immunodepletion of the Oct-1 protein from the HeLa cell extracts by addition of an anti-POU antibody to the in vitro replication reactioninhibited p186 replication to 25% of control levels. This inhibition of replication could be partially reversed to 50-65% of control levels, a two- to threefold increase, upon the addition of exogenous Oct-1 POU domain protein.Site-directed mutagenesis of the octamer binding site in p186 resulted in a mutant clone, p186-MutOct, which abolished Oct-1 binding but was still able to replicate as efficiently as the wild-type p186. The results suggest that Oct-1 protein is an enhancing component in the in vitro replication of p186 but that its effect on replication is not caused through direct binding to the octamer motif. J. Cell. Biochem. 68:309-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 0730-2312
    Keywords: cell proliferation ; tumor progression ; EGF receptor ; ErbB ; HER1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 0730-2312
    Keywords: chondrocytes ; cyclooxygenase-2 ; c-Jun N-terminal kinase ; protein kinase A ; cAMP response element ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The involvement of serine/threonine protein phosphatases in signaling pathways that control the expression of the cyclooxygenase-2 (COX-2) gene in human chondrocytes was examined. Okadaic acid (OKA), an inhibitor of protein phosphatases 1 (PP-1) and 2A (PP-2A), induced a delayed, time-dependent increase in the rate of COX-2 gene transcription (runoff assay) resulting in increased steady-state mRNA levels and enzyme synthesis. The latter response was dose dependent over a narrow range of 1-30 nmol/L with declining expression and synthesis of COX-2 at higher concentrations due to cell toxicity. The delayed increase in COX-2 mRNA expression was accompanied by the induction of the proto-oncogenes c-jun, junB, junD, and c-fos (but not FosB or Fra-1). Increased phosphorylation of CREB-1/ATF-1 transcription factors was observed beginning at 4 h and reached a zenith at 8 h. Gel-shift analysis confirmed the up-regulation of AP-1 and CRE nuclear binding proteins, though there was little or no OKA-induced nuclear protein binding to SP-1, AP-2, NF-κB or NF-IL-6 regulatory elements. OKA-induced nuclear protein binding to 32P-CRE oligonucleotides was abrogated by a pharmacological inhibitor of protein kinase A (PKA), KT-5720; the latter compound also inhibited OKA-induced COX-2 enzyme synthesis. Calphostin C (CalC), an inhibitor of PKC isoenzymes, had little effect in this regard. Inhibition of 32P-CRE binding was also observed in the presence of an antibody to CREB-binding protein (265-kDa CBP), an integrator and coactivator of cAMP-responsive genes. The binding to 32P-CRE was unaffected in the presence of excess radioinert AP-1 and COX-2 NF-IL-6 oligonucleotides, although a COX-2 CRE-oligo competed very efficiently. 32P-AP-1 consensus sequence binding was unaffected by incubation of chondrocytes with KT-5720 or CalC, but was dramatically diminished by excess radioinert AP-1 and CRE-COX-2 oligos. Supershift analysis in the presence of antibodies to c-Jun, c-Fos, JunD, and JunB suggested that AP-1 complexes were composed of c-Fos, JunB, and possibly c-Jun. OKA has no effect on total cellular PKC activity but caused a delayed time-dependent increase in total PKA activity and synthesis. OKA suppressed the activity of the MAP kinases, ERK1/2 in a time-dependent fashion, suggesting that the Raf-1/MEKK1/MEK1/ERK1,2 cascade was compromised by OKA treatment. By contrast, OKA caused a dramatic increase in SAPK/JNK expression and activity, indicative of an activation of MEKK1/JNKK/SAPK/JNK pathway. OKA stimulated a dose-dependent activation of CAT activity using transfected promoter-CAT constructs harboring the regulatory elements AP-1 (c-jun promoter) and CRE (CRE-tkCAT). We conclude that in primary phenotypically stable human chondrocytes, COX-2 gene expression may be controlled by critical phosphatases that interact with phosphorylation dependent (e.g., MAP kinases:AP-1, PKA:CREB/ATF) signaling pathways. AP-1 and CREB/ATF families of transcription factors may be important substrates for PP-1/PP-2A in human chondrocytes. J. Cell. Biochem. 69:392-413, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 457-471 
    ISSN: 0730-2312
    Keywords: coated vesicles ; acetylcholine receptors ; AP180 ; myotube ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Monoclonal antibodies were generated to vesicular membranes of clathrin coated vesicles enriched for acetylcholinesterase (AChE). One of these, C172, recognizes vesicles which accumulate in muscle cells around nuclei associated with acetylcholine receptor AChR clusters. Immunoblots of muscle extracts and brain purified clathrin coated vesicles show that C172 recognizes a 100 kd band in muscle, but a 180 kd band in brain. Western blots of purified AP180 protein stained with the two antibodies AP180.1 and C172 displayed the same staining pattern. Tryptic digests probed with peptide antibodies (PS26 and PS27) generated to known sequences of AP180 were used to map the epitope for C172 within the brain AP180 sequence. On immunoblots of digested AP180, all AP180 antibodies and C172 recognized a 100 kd tryptic fragment, however only C172 recognized a smaller 60 kd. Our results suggest that the C172 epitope is located within amino acids 305-598 of the AP180 sequence. Confocal fluorescence microscopy of myoblasts and myotubes stained with the C172 antibody gives a punctate immunofluorescence pattern. Myoblasts stained with C172 revealed a polarized distribution of vesicles distinct from that observed when cells are stained with γ adaptin antibody which is known to localize to trans Golgi network. Myotubes stained with C172 antibody reveal a linear array of vesicular staining. Quantitative analysis of C172 reactive vesicles revealed a significant increase in number of vesicles present around the nuclei associated with the acetylcholine receptor clusters. These vesicles did not colocalize with the Golgi cisternae. These results indicate that a protein with homology to the neuron-specific coated vesicle protein AP180, is present in muscle cells associated with vesicles showing significant concentration around postsynaptic nuclei present in close proximity to AChR clusters. J. Cell. Biochem. 68:457-471, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 0730-2312
    Keywords: Rous sarcoma virus ; chondrocytes ; matrix calcification ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Endochondral bone formation involves the progression of epiphyseal growth plate chondrocytes through a sequence of developmental stages which include proliferation, differentiation, hypertrophy, and matrix calcification. To study this highly coordinated process, we infected growth plate chondrocytes with Rous sarcoma virus (RSV) and studied the effects of RSV transformation on cell proliferation, differentiation, matrix synthesis, and mineralization. The RSV-transformed chondrocytes exhibited a distinct bipolar, fibroblast-like morphology, while the mock-infected chondrocytes had a typical polygonal morphology. The RSV-transformed chondrocytes actively synthesized extracellular matrix proteins consisting mainly of type I collagen and fibronectin. RSV-transformed cells produced much less type X collagen than was produced by mock-transformed cells. There also was a significant reduction of proteoglycan levels secreted in both the cell-matrix layer and culture media from RSV-transformed chondrocytes. RSV-transformed chondrocytes expressed two- to- threefold more matrix metalloproteinase, while expressing only one-half to one-third of the alkaline phosphatase activity of mock infected cells. Finally, RSV-transformed chondrocytes failed to calcify the extracellular matrix, while mock-transformed cells deposited high levels of calcium and phosphate into their extracellular matrix. These results collectively indicate that RSV transformation disrupts the preprogrammed differentiation pattern of growth plate chondrocytes and inhibit chondrocyte terminal differentiation and mineralization. They also suggest that the expression of extracellular matrix proteins, type II and type X collagens, and the cartilage proteoglycans are important for chondrocyte terminal differentiation and matrix calcification. J. Cell. Biochem. 69:453-462, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 0730-2312
    Keywords: Cordyceps sinensis ; adrenal cells ; steroidogenesis ; signal pathway ; PKC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cordyceps sinensiscontains a factor that stimulates corticosteroid production in the animal model. However, it is not known whether this drug acts directly on the adrenal glands or indirectly via the hypothalamus-pituitary axis. In the present study, we used primary rat adrenal cell cultures to investigate the pharmacological function of a water-soluble extract of Cordyceps sinensis(CS) and thesignaling pathway involved. Radioimmunoassay of corticosterone indicated that the amount of corticosterone produced by adrenal cells is increased in a positively dose-dependent manner by CS, reaching a maximun at 25 μg/ml. This stimulating effect was seen 1 h after CS treatment and was maintained for up to 24 h. Concomitantly, the lipid droplets in these cells became small and fewer in number. Immunostaining with a monoclonal antibody, A2, a specific marker for the lipid droplet capsule, demonstrated that detachment of the capsule from the lipid droplet occurs in response to CS application and that the period required for decapsulation is inversely related to the concentration of CS applied. The mechanism of CS-induced steroidogenesis is apparently different from that for ACTH, since intracellular cAMP levels were not increased in CS-treated cells. However, combined application with calphostin C, a PKC inhibitor, completely blocked the effect of CS on steroidogenesis, suggesting that activation of PKC may be responsible for the CS-induced steroidogenesis. J. Cell. Biochem. 69:483-489, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 506-521 
    ISSN: 0730-2312
    Keywords: heart ; development ; CaMPK ; cAPK ; CDK ; cGPK ; Kkialre ; PKC ; Wee1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During early postnatal development, cardiomyocytes, which comprise about 80% of ventricular mass and volume, become phenotypically developed to facilitate their contractile functions and terminally differentiated to grow only in size but not in cell number. These changes are due to the expression of contractile proteins as well as the regulation of intracellular signal transduction proteins. In this study, the expression patterns of several protein kinases involved in various cardiac functions and cell-cycle control were analyzed by Western blotting of ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats. The expression level of cAMP-dependent protein kinase was slightly decreased (20%) over the first year, whereas no change was detected in cGMP-dependent protein kinase I. Calmodulin-dependent protein kinase II, which is involved in Ca2+ uptake into the sarcoplasmic reticulum, was increased as much as ten-fold. To the contrary, the expressions of protein kinase C-α and ι declined 77% with age. Cyclin-dependent protein kinases (CDKs) such as CDK1, CDK2, CDK4, and CDK5, which are required for cell-cycle progression, abruptly declined to almost undetectable levels after 10-20 days of age. In contrast, other CDK-related kinases, such as CDK8 or Kkialre, did not change significantly or increased up to 50% with age, respectively. Protein kinases implicated in CDK regulation such as CDK7 and Wee1 were either slightly increased in expression or did not change significantly. All of the proteins that were detected in ventricular extracts were also identified in isolated cardiac myocytes in equivalent amounts and analyzed for their relative expression in ten other adult rat tissues. J. Cell. Biochem. 69:506-521, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 8-21 
    ISSN: 0730-2312
    Keywords: activin A ; bone marrow stromal cells ; gene regulation ; promoter activity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Activin A, a member of the TGF-β superfamily, plays roles in differentiation and development, including hematopoiesis. Our previous studies indicated that the expression of activin A by human bone marrow cells and monocytes is highly regulated by inflammatory cytokines and glucocorticoids. The present study was undertaken to investigate the regulation of activin A gene expression in the human bone marrow stromal cell lines L87/4 and HS-5, as well as in primary stromal cells. Northern blots demonstrated that, like primary stromal cells, the cell lines expressed four activin A RNA transcripts (6.4, 4.0, 2.8, and 1.6 kb), although distribution of the RNA among the four sizes varied. The locations of the 5′ ends of the RNAs were investigated by Northern blots and RNase protection assays. The results identified a transcription start site at 212 nucleotides upstream of the translation start codon. In addition, luciferase expression assays of a series of deletion constructs were used to identify regulatory sequences upstream of the activin A gene. A 58 bp upstream sequence exhibits promoter activity. However, severalfold higher expression requires a positive element consisting of an additional 71 bp of the upstream region. Promoter activity was also identified between 2.5 and 3.6 kb upstream of the start codon. These findings suggest that expression of activin A at the transcriptional level follows complex patterns of regulation. J. Cell. Biochem. 70:8-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 29-37 
    ISSN: 0730-2312
    Keywords: small GTPase ; membrane traffic ; vesicles ; transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Eukaryotic cells achieve complexity by compartmentalizing a subset of cellular functions into membrane-bound organelles. Maintaining this high level of cellular organization requires precise regulation of traffic between membranes. This task is accomplished, in part, by rab proteins. How these small GTPases regulate membrane traffic between cellular compartments is not clear. Here we report the characterization of a novel rab GTPase from the soil amoebae Dictyostelium discoideum. The predicted coding sequence of the new rab gene, Dictyostelium rab11b, encodes a protein of 25 kD containing all the structural hallmarks of a rab GTPase. Comparison of the sequence with the GenBank database and cladistic analysis demonstrated Dictyostelium rab11b to be a divergent member of the rab11 branch of rab proteins. Southern analysis revealed the presence of related genes in Dictyostelium. RNAse protection assays showed the Dictyostelium rab11b gene to be expressed at uniform levels throughout growth and development. Gene deletion experiments revealed that Dictyostelium rab11b was not essential for growth or development. Conceivably, the function of rab11b may be redundant with that of related genes in this organism. J. Cell. Biochem. 70:29-37, 1998. © 1998 Wiley-Liss, inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 0730-2312
    Keywords: coronary artery ; NO/EDRF ; adenosine ; prostacyclin ; phospholamban ; myosin light chain ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The intracellular mechanisms underlying the action of the endogenous vasodilators such as NO/EDRF, adenosine, and prostacyclin acting through cGMP and cAMP, respectively, are not well understood. One important action of cyclic nucleotides in smooth muscle relaxation is to lower the cytosolic Ca2+ concentration by enhanced sequestration into the sarcoplasmic reticulum. The present study was undertaken to elucidate the potential role of phosphorylation of phospholamban, the regulator of sarcoplasmic reticulum Ca2+ pump, for the control of coronary vascular tone by NO/EDRF, adenosine, and prostacyclin. Phospholamban was identified in pig coronary artery preparations by immunofluorescence microscopy, Western blotting and in vitro phosphorylation. Segments of pig coronary artery, with either intact or denuded endothelium, were precontracted with prostaglandin F2α (PGF2α). In endothelium-denuded preparations 3-morpholinosydnonimine (SIN-1), 5′-N-ethylcarboxiamidoadenosine (NECA), and iloprost (ILO) caused both relaxation and phospholamban phosphorylation with the potency: SIN-1 〉 NECA 〉 ILO. The regulatory myosin light chain was significantly dephosphorylated only by SIN-1. In endothelium-intact pig coronary artery, L-NAME caused additional vasoconstriction and a decrease in phospholamban phosphorylation, while phosphorylation of myosin light chain remained unchanged. An inverse relationship between phospholamban phosphorylation and vessel tone was obtained. Our findings demonstrate significant phospholamban phosphorylation during coronary artery relaxation evoked by NO, prostacyclin, and adenosine receptor activation. Because of the close correlation between phosphorylation of phospholamban and vessel relaxation, we propose that phospholamban phosphorylation is an important mechanism by which endogenous vasodilators, especially endothelial NO/EDRF, control coronary vascular smooth muscle tone. J. Cell. Biochem. 70:49-59, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 70-83 
    ISSN: 0730-2312
    Keywords: TGF-β1 ; apoptosis ; growth inhibition ; retina ; endothelial cells ; pericytes ; angiogenesis ; p21waf1/cip1 ; p53 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β1 (TGF-β1) regulates a variety of cellular functions. In several types of cells, for example, it acts as a growth inhibitor and an inducer of apoptotic cell death. Although one of the important modulators in retinal vascular development and retinal neovascularization, the effects of TGF-β1 on retinal microvascular cells are not fully defined. We have found that proliferation of both bovine retinal endothelial cells (EC) and pericytes was inhibited by TGF-β1 in a concentration-dependent manner. However, only retinal EC lost viability after exposure to increasing concentrations of TGF-β1 (up to 10 μg/ml) in the presence of 2% fetal bovine serum. Dying EC exhibited the morphological and biochemical characteristics of apoptosis. Fragmented nuclei and chromatin condensation were apparent after staining with the fluorochrome Hoechst 33258 and the reagent ApopTag; moreover, gel electrophoresis of DNA from TGF-β1-treated EC demonstrated degradation of chromatin into the discrete fragments typically associated with apoptosis. The addition of anti-TGF-β1 neutralizing antibody abolished the apoptotic cell death induced by TGF-β1. Because not all the EC in a given culture died after exposure to TGF-β1, we separated the apoptosis-sensitive cells from those resistant to TGF-β1-mediated apoptosis and determined the expression of several proteins associated with this apoptotic pathway. Apoptosis of EC mediated by TGF-β1 was associated with a decreased level of the cyclin-dependent kinase inhibitor p21waf1/cip1, compared with that observed in the apoptosis-resistant cells. In contrast, the translation product of the tumor-suppressor gene p53 was increased in the TGF-β1-treated apoptotic cells. Thus, we propose that p21waf1/cip1 and p53 function in distinct pathways that are protective or permissive, respectively, for the apoptotic signals mediated by TGF-β1. J. Cell. Biochem. 70:70-83, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 0730-2312
    Keywords: steroid hormone receptor ; 1,25-dihydroxyvitamin D3 ; nuclear retention ; DNA-binding ; transcriptional activation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The human vitamin D receptor (hVDR) possesses a unique array of five basic amino acids positioned between the two DNA-binding zinc fingers that is similar to well-characterized nuclear localization sequences in other proteins. When residues within this region are mutated to nonbasic amino acids, or when this domain is deleted, the receptor is still well expressed, but it no longer associates with the vitamin D-responsive element in DNA, in vitro, and hVDR-mediated transcriptional activation is abolished in transfected cells. Concomitantly, the mutated hVDRs exhibit a significant shift in hVDR cellular distribution favoring cytoplasmic over nuclear retention as assessed by subcellular fractionation and immunoblotting. Independent immunocytochemical studies employing a VDR-specific monoclonal antibody demonstrate that mutation or deletion of this basic domain dramatically attenuates hVDR nuclear localization in transfected COS-7 cells. Although wild-type hVDR is partitioned predominantly to the nucleus in the absence of the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) hormone, treatment with ligand further enhances nuclear translocation, as it does to some degree in receptors with the basic region altered. The role of 1,25(OH)2D3may be to facilitate hVDR heterodimerization with retinoid X receptors, stimulating subsequent DNA binding and ultimately enhancing nuclear retention. Taken together, these data reveal that the region of hVDR between Arg-49 and Lys-55 contains a novel constitutive nuclear localization signal, RRSMKRK. J. Cell. Biochem. 70:94-109, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 0730-2312
    Keywords: giant cell tumor of bone ; MCP-1 ; TGF-β ; CD68+ ; chemotaxis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Giant cell tumor of bone (GCT) is one of a few neoplasms in which the macrophage/osteoclast precursor cells and osteoclast-like giant cells infiltrate the tumor mass. Monocyte chemoattractant protein 1 (MCP-1) is a potent chemotactic factor specific for monocytes. In search of relevant cytokines that may enhance the recruitment of these reactive cells, we evaluated the localization and regulation of MCP-1 mRNA and protein in GCT by using Northern blot analysis, in situ hybridization and immunohistochemistry. We also determined whether conditioned medium obtained from GCT cultures can recruit human peripheral blood monocytes (CD68+) in an in vitro chemotactic assay. Using Northern blot analysis, we detected the specific gene transcript for MCP-1 in all GCT samples tested. In situ hybridization and immunohistochemistry revealed that both MCP-1 gene transcript and protein were consistently present in the cytoplasm of stromal-like tumor cells of GCT. Treatment of mononuclear cells from GCT at third passage with TGF-β1 for 24 h increased the level of MCP-1 mRNA in a dose-dependent manner, with the maximum effect at 1 ng/ml. Conditioned media from GCT cultures promoted the chemotactic migration of CD68+ peripheral monocytes, an activity which was abolished by the addition of MCP-1 antibody to the conditioned medium. Thus, the results of this study suggest that recruitment of CD68+ macrophage-like cells may be due to the production MCP-1 by stromal-like tumor cells. These CD68+ cells may originate from peripheral blood and could have the capability of further differentiating into osteoclasts in the tumor. J. Cell. Biochem. 70:121-129, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 0730-2312
    Keywords: signal transduction ; chromatin structure ; cytology ; histones ; metastasis ; Ras ; MAPKK ; NIH3T3 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An altered nuclear morphology has been previously noted in association with Ras activation, but little is known about the structural basis, functional significance, signaling pathway, or reproducibility of any such change. We first tested the reproducibility of Ras-associated nuclear change in a series of rodent fibroblast cell lines. After independently developing criteria for recognizing Ras-associated nuclear change in a Papanicolaou stained test cell line with an inducible H(T24)-Ras oncogene, two cytopathologists blindly and independently assessed 17 other cell lines. If the cell lines showed Ras-associated nuclear change, a rank order of increasing nuclear change was independently scored. Ras-associated nuclear changes were identified in v-Fes, v-Src, v-Mos, v-Raf, and five of five H(T24)-Ras transfectants consisting of a change from a flattened, occasionally undulating nuclear shape to a more rigid spherical shape and a change from a finely textured to a coarse heterochromatic appearance. Absent or minimal changes were scored in six control cell lines. The two cytopathologists' independent morphologic rank orders were similar (P〈 .0002). The mitogen signaling pathway per se does not appear to transduce the change since no morphologic alterations were identified in cell lines with activations of downstream components of this pathway - MAPKK or c-Myc - and the rank orders did not correlate with markers of mitotic rate (P 〉 .11). The rank order correlated closely with metastatic potential (P 〈 .0014 and P 〈 .0003) but not with histone H1 composition or global nuclease sensitivity. Based on published studies of five of the cell lines, there may be a correlation between increases in certain nuclear matrix proteins and the Ras-associated nuclear change. J. Cell. Biochem. 70:130-140, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 159-171 
    ISSN: 0730-2312
    Keywords: nucleus ; nuclear domain ; genome ; nucleolus ; coiled body ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: It is becoming clear that the cell nucleus is not only organized in domains but that these domains are also organized relative to each other and to the genome. Specific nuclear domains, enriched in different proteins and RNAs, are often found next to each other and next to specific gene loci. Several lines of investigation suggest that nuclear domains are involved in facilitating or regulating gene expression. The emerging view is that the spatial relationship between different domains and genes on different chromosomes, as found in the nucleolus, is a common organizational principle in the nucleus, to allow an efficient and controlled synthesis and processing of a range of gene transcripts. J. Cell. Biochem. 70:159-171. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 181-192 
    ISSN: 0730-2312
    Keywords: coiled bodies (CBs) ; gems ; p80 coilin ; RNPs ; RNA processing ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Coiled bodies (CBs) are nuclear organelles whose morphology and composition have been conserved from plants to animals. They are highly enriched in components of three different RNA processing pathways. Small nuclear RNAs (snRNAs) involved in pre-mRNA splicing, rRNA processing, and histone mRNA 3′ end maturation all take up residence in CBs. However, CB function(s) remain obscure. This review will focus on recent developments in several aspects of CB structure and function, including exciting new results on their twin organelles, called gems. In particular, the reader will be introduced to a novel hypothesis called the “salmon theory of snRNP biogenesis.” Questions arising from and experiments necessary to test this hypothesis will be discussed. J. Cell. Biochem. 70:181-192, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 0730-2312
    Keywords: monomeric laminin receptor ; receptor maturation ; acylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule. J. Cell. Biochem. 69:244-251, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 260-270 
    ISSN: 0730-2312
    Keywords: oncogenic function of mutant p53 ; MAR-DNA elements ; MAR-DNA binding by mutant p53 ; MethA p53 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We recently reported that murine MethA mutant but not wild-type p53 specifically binds to MAR-DNA elements (MARs) with high affinity. Here we show that this DNA binding activity is exerted not only by MethA mutant p53 but also by other murine mutant p53 proteins isolated from the transformed murine BALB/c cell lines 3T3tx and T3T3 and differing in their conformational status. High affinity MAR-DNA binding was not restricted to the XbaI-IgE-MAR-DNA fragment from the murine immunoglobulin heavy chain gene enhancer locus [Cockerill et al. (1987): J Biol Chem 262:5394-5397] used in previous studies, as MethA p53 also specifically interacted with other A/T-rich bona fide MARs. Not only murine but also human mutant p53 proteins carrying the mutational hot spot amino acid exchanges 175Arg→His, 273Arg→Pro, or 273Arg→His bound to the XbaI-IgE-MAR-DNA fragment. We therefore conclude that high affinity MAR-DNA binding is a property common to a variety of mutant p53 proteins. J. Cell. Biochem. 69:260-270, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 291-303 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; TGF-β1 ; bone ; osteoblast differentiation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4-6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β-treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β-treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β-dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 0730-2312
    Keywords: VAT-1 ; Pacific electric ray Torpedo californica ; ATPase ; Mus musculus ; gene structure ; Ehrlich ascites tumor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recently, interest has focused on the human gene encoding the putative protein homologous to VAT-1, the major protein of the synaptic vesicles of the electric organ of the Pacific electric ray Torpedo californica, after it has been localized on chromosome locus 17q21 in a region encompassing the breast cancer gene BRCA1. Chromosomal instability in this region is implicated in inherited predisposition for breast and ovarian cancer. Here we describe isolation and biochemical characterization of a mammalian 48 kDa protein homologous to the VAT-1 protein of Torpedo californica. This VAT-1 homolog was isolated from a murine breast cancer cell line (Ehrlich ascites tumor) and identified by sequencing of cleavage peptides. The isolated VAT-1 homolog protein displays an ATPase activity and exists in two isoforms with isoelectric points of 5.7 and 5.8. cDNA was prepared from Ehrlich ascites tumor cells, and the murine VAT-1 homolog sequence was amplified by polymerase chain reaction and partially sequenced. The known part of the murine and the human translated sequences share 97% identity. By Northern blots, the size of the VAT-1 homolog mRNA in both murine and human (T47D) breast cancer cells was determined to be 2.8 kb. Based on the presented data, a modified gene structure of the human VAT-1 homolog with an extended exon 1 is proposed. VAT-1 and the mammalian VAT-1 homolog form a subgroup within the protein superfamily of medium-chain dehydrogenases/reductases. J. Cell. Biochem. 69:304-315, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 0730-2312
    Keywords: architectural transcription factor ; nuclear matrix ; osteoblast ; parathyroid hormone ; type I collagen ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In connective tissue, cell structure contributes to type I collagen expression. Differences in osteoblast microarchitecture may account for the two distinct cis elements regulating basal expression, in vivo and in vitro, of the rat type I collagen α1(I) polypeptide chain (COL1A1). The COL1A1 promoter conformation may be the penultimate culmination of osteoblast structure. Architectural transcription factors bind to the minor groove of AT-rich DNA and bend it, altering interactions between other trans-acting proteins. Similarly, nuclear matrix (NM) proteins bind to the minor groove of AT-rich matrix-attachment regions, regulating transcription by altering DNA structure. We propose that osteoblast NM architectural transcription factors link cell structure to promoter geometry and COL1A1 transcription. Our objective was to identify potential osteoblast NM architectural transcription factors near the in vitro and in vivo regulatory regions of the rat COL1A1 promoter. Nuclear protein-promoter interactions were analyzed by gel shift analysis and related techniques. NM extracts were derived from rat osteosarcoma cells and from rat bone. The NM protein, NMP4, and a soluble nuclear protein, NP, both bound to two homologous poly(dT) elements within the COL1A1 in vitro regulatory region and proximal to the in vivo regulatory element. These proteins bound within the minor groove and bent the DNA. Parathyroid hormone increased NP/NMP4 binding to both poly(dT) elements and decreased COL1A1 mRNA in the osteosarcoma cells. NP/NMP4-COL1A1 promoter interactions may represent a molecular pathway by which osteoblast structure is coupled to COL1A1 expression. J. Cell. Biochem. 69:336-352. © 1998 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 0730-2312
    Keywords: human islets ; insulin release ; sulfonylurea receptors ; oral antidiabetic compounds ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Current information on pancreatic islet sulfonylurea receptors has been obtained with laboratory animal pancreatic β cells or stable β-cell lines. In the present study, we evaluated the properties of sulfonylurea receptors of human islets of Langherans, prepared by collagenase digestion and density-gradient purification. The binding characterisitics of labeled glibenclamide to pancreatic islet membrane preparations were analyzed, displacement studies with several oral hypoglycemic agents were performed, and these latter compounds were tested as for their insulinotropic action on intact human islets. [3H]glibenclamide saturable binding was shown to be linear at ≤0.25 mg/ml protein; it was both temperature and time dependent. Scatchard analysis of the equilibrium binding data at 25°C indicated the presence of a single class of saturable, high-affinity binding sites with a Kd value of 1.0 ± 0.07 nM and a Bmax value of 657 ± 48 fmol/mg of proteins. The displacement experiments showed the following rank order of potency of the oral hypoglycemic agents we tested: glibenclamide = glimepiride 〉 tolbutamide 〉 chlorpropamide ≫ metformin. This binding potency order was parallel with the insulinotropic potency of the evaluated compounds. J. Cell. Biochem. 71:182-188, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 168-176 
    ISSN: 0730-2312
    Keywords: cadherin ; catenin ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cadherins form a family of cell-cell adhesion proteins that are critical to normal embryonic development. Expression of the various family members is regulated in a complex pattern during embryogenesis. Both reduced and inappropriate expression of cadherins have been associated with abnormal tissue formation in embryos and tumorigenesis in mature organisms. Evidence is accumulating that signals unique to individual members of the cadherin family, as well as signals common to multiple cadherins, contribute to the differentiated phenotype of various cell types. While a complete understanding of the regulation of cadherin expression of the molecular nature of intracellular signaling downstream of cadherin adhesion is essential to an understanding of embryogenesis and tumorigenesis, our knowledge in both areas is inadequate. Clearly, elucidating the factors and conditions that regulate cadherin expression and defining the signaling pathways activated by cadherins are frontiers for future research. J. Cell. Biochem. Suppls. 30/31:168-176, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...