ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 21 (1982), S. 2400-2405 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 51 (1992), S. 370-375 
    ISSN: 1432-0827
    Keywords: Bone cells ; PTH ; Ornithine decarboxylase ; Antizymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Parathyroid hormone (PTH) has been shown to induce osteoblastic activity via a complex signal transduction process which is mediated either by cAMP or cytosolic calcium ([Ca2+]i), or a combination thereof. One of the PTH functions in osteoblasts is the induction of ornithine decarboxylase (ODC) activity. We have analyzed the second messengers involved in this process. 8-Bromo cAMP, a cAMP derivative, enhanced ODC activity in UMR106-01 osteoblastic cell system. The calcium ionophore A23187 and the protein kinase stimulator phorbol-12-myristate 13-acetate did not alter ODC activity. ODC activity was increased by bPTH-(1-34), PGE1, and PGE2 which stimulated both cAMP and [Ca2+]i. In contrast, PTH-(2-34), propionyl bPTH-(2-34), bPTH-(3-34), bPTH-(7-34), and PGF2α, which only enhanced [Ca2+]i but not cAMP, had no effect on ODC activity. Thus, the stimulation of ODC in UMR106 cells by PTH appeared to be mediated primarily via the cAMP signal transduction pathway, and the mere increase in intracellular calcium could not account for the stimulation of ODC activity. ODC mRNA level was found to be increased by PTH treatment. Therefore, translation of ODC may be stimulated by PTH. Moreover, PTH also stimulated ODC antizyme activity, suggesting that the ODC degradation rate was increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 383 (1982), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 286 (1977), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4919
    Keywords: human bone marrow stromal cells ; osteoblasts ; Egr-1 ; immediate-early gene ; interleukin-1 β tumor necrosis factor-α
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The early growth response-1 (Egr-1) gene has been identified as a nuclear transcriptional factor and implicated in the regulation of growth and differentiation of osteoblastic cells. In the present study, we investigated whether Egr-1 mRNA is expressed and induced by interleukin-1 β (IL-β) and tumor necrosis factor-α (TNF-α) in normal human bond marrow stromal (HBMS) and osteoblastic (HOB) cells. Results demonstrate a very low basal expression of Egr-1 mRNA which is induced by IL-1 β and TNF-α in a time- and dose-dependent manner. Egr-1 mRNA induction was detectable within 15 min, reached maximal by 60 min and thereafter declined to basal levels by 120 min. Induction of Egr-1 mRNA by IL-1β and TNF-α was completely inhibited by H-7 suggesting the mediation of protein kinase C. The induction by IL-1 β and TNF-α of Egr-1 mRNA was independent of de novo protein synthesis since this induction was also observed in the presence of protein synthesis inhibitor cycloheximide. Fetal bovine serum and cycloheximide also independently induced the Egr-1 mRNA. Actinomycin D experiments demonstrated that Egr-1 mRNA is degraded very rapidly with a half-life of 30 min. Our results demonstrate the expression of Egr-1 gene and its induction by IL-1β, and TNF-α in normal human bone marrow stromal (osteoprogenitor) and osteoblastic cells in primary cultures. Data also reveal that the expression of Egr-1 gene is inhibited by protein kinase C inhibitor H-7 suggesting that the activation of protein kinase C or other protein kinases resulting in the phosphorylation of specific transcription factor(s) is the first immediate early step in the induction of immediate-early Egr-1 gene by IL-1 β and TNF-α. Results also suggest that Egr-1 is an important mediator of IL-1 β and TNF-α action in normal human osteoblastic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: human osteoblasts ; human bone marrow stromal cells ; alkaline phosphatase ; osteopontin ; bone sialoprotein ; osteonectin ; decorin ; biglycan ; type I collagen ; osteocalcin ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the effects of BMP-2 on the expression of bone matrix proteins in both human bone marrow stromal cells (HBMSC) and human osteoblasts (HOB) and their proliferation and mineralization. Both HBMSC and HOB express BMP-2/-4 type I and type II receptors. Treatment of these two cell types with BMP-2 for 4 weeks in the presence of β-glycerophosphate and ascorbic acid results in mineralization of their matrix. BMP-2 increases the mRNA level and activities of alkaline phosphatase and elevates the mRNA levels and protein synthesis of osteopontin, bone sialoprotein, osteocalcin, and α1(I) collagen in both cell types. Whereas the mRNA level of decorin is increased, the mRNA concentration of biglycan is not altered by BMP-2. No effect on osteonectin is observed. The effect of BMP-2 on bone matrix protein expression is dose dependent from 25 to 100 ng/ml and is evident after 1-7 days treatment. In the presence of BMP-2, proliferation of HBMSC and HOB is decreased under either serum-free condition or in the presence of serum. Thus, BMP-2 has profound effects on the proliferation, expression of most of the bone matrix proteins and the mineralization of both relatively immature human bone marrow stromal preosteoblasts and mature human osteoblasts. J. Cell. Biochem. 67:386-398, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: dexamethasone ; stromal cells ; IGF I ; IGF II ; IGFBPs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1-4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449-458, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 182-193 
    ISSN: 0730-2312
    Keywords: glucocorticoid ; alkaline phosphatase ; osteopontin ; osteocalcin ; bone sialoprotein ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glucocorticoids have been shown to induce the differentiation of bone marrow stromal osteoprogenitor cells into osteoblasts and the mineralization of the matrix. Since the expression of bone matrix proteins is closely related to the differentiation status of osteoblasts and because matrix proteins may play important roles in the mineralization process, we investigated the effects of dexamethasone (Dex) on the expression of bone matrix proteins in cultured normal human bone marrow stromal cells (HBMSC). Treatment of HBMSC with Dex for 23 days resulted in a significant increase in alkaline phosphatase activity with maximum values attained on day 20 at which time the cell matrix was mineralized. Northern blot analysis revealed an increase in the steady-state mRNA level of alkaline phosphatase over 4 weeks of Dex exposure period. The observed increase in the alkaline phosphatase mRNA was effective at a Dex concentration as low as 10-10 M with maximum values achieved at 10-8 M. In contrast, Dex decreased the steady-state mRNA levels of both bone sialoprotein (BSP) and osteopontin (OPN) over a 4 week observation period when compared to the corresponding control values. The relative BSP and OPN mRNA levels among the Dex treated cultures, however, showed a steady increase after more than 1 week exposure. The expression of osteocalcin mRNA which was decreased after 1 day Dex exposure was undetectable 4 days later. Neither control nor Dex-treated HBMSC secreted osteocalcin into the conditioned media in the absence of 1,25(OH)2D3 during a 25-day observation period. The accumulated data indicate that Dex has profound and varied effects on the expression of matrix proteins produced by human bone marrow stromal cells. With the induced increment in alkaline phosphatase correlating with the mineralization effects of Dex, the observed concomitant decrease in osteopontin and bone sialoprotein mRNA levels and the associated decline of osteocalcin are consistent with the hypothesis that the regulation of the expression of these highly negatively charged proteins is essential in order to maximize the Dex-induced mineralization process conditioned by normal human bone marrow stromal osteoprogenitor cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-03-01
    Print ISSN: 0300-8177
    Electronic ISSN: 1573-4919
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1982-05-11
    Print ISSN: 0006-2960
    Electronic ISSN: 1520-4995
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...