ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (39)
  • Signal Transduction
  • 1995-1999  (39)
  • 1990-1994
  • 1995  (39)
Collection
  • Articles  (39)
Years
  • 1995-1999  (39)
  • 1990-1994
Year
  • 1
    Publication Date: 1995-07-07
    Description: Human T cell lymphotropic virus I (HTLV-I) is the etiological agent for adult T cell leukemia and tropical spastic paraparesis (also termed HTLV-I-associated myelopathy). HTLV-I-infected peripheral blood T cells exhibit an initial phase of interleukin-2 (IL-2)-dependent growth; over time, by an unknown mechanism, the cells become IL-2-independent. Whereas the Jak kinases Jak1 and Jak3 and the signal transducer and activator of transcription proteins Stat3 and Stat5 are activated in normal T cells in response to IL-2, this signaling pathway was constitutively activated in HTLV-I-transformed cells. In HTLV-I-infected cord blood lymphocytes, the transition from IL-2-dependent to IL-2-independent growth correlated with the acquisition of a constitutively activated Jak-STAT pathway, which suggests that this pathway participates in HTLV-I-mediated T cell transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Migone, T S -- Lin, J X -- Cereseto, A -- Mulloy, J C -- O'Shea, J J -- Franchini, G -- Leonard, W J -- New York, N.Y. -- Science. 1995 Jul 7;269(5220):79-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7604283" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line, Transformed ; *Cell Transformation, Viral ; Cells, Cultured ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Fetal Blood/cytology ; Human T-lymphotropic virus 1/*physiology ; Humans ; Interleukin-2/pharmacology ; Janus Kinase 1 ; Janus Kinase 3 ; *Milk Proteins ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Interleukin-2/metabolism ; STAT3 Transcription Factor ; STAT5 Transcription Factor ; Signal Transduction ; T-Lymphocytes/metabolism/*virology ; Trans-Activators/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-03-31
    Description: Members of the interleukin-6 family of cytokines bind to and activate receptors that contain a common subunit, gp130. This leads to the activation of Stat3 and Stat1, two cytoplasmic signal transducers and activators of transcription (STATs), by tyrosine phosphorylation. Serine phosphorylation of Stat3 was constitutive and was enhanced by signaling through gp130. In cells of lymphoid and neuronal origins, inhibition of serine phosphorylation prevented the formation of complexes of DNA with Stat3-Stat3 but not with Stat3-Stat1 or Stat1-Stat1 dimers. In vitro serine dephosphorylation of Stat3 also inhibited DNA binding of Stat3-Stat3. The requirement of serine phosphorylation for Stat3-Stat3.DNA complex formation was inversely correlated with the affinity of Stat3-Stat3 for the binding site. Thus, serine phosphorylation appears to enhance or to be required for the formation of stable Stat3-Stat3.DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, X -- Blenis, J -- Li, H C -- Schindler, C -- Chen-Kiang, S -- CA46595/CA/NCI NIH HHS/ -- HL 21006/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 31;267(5206):1990-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701321" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Ciliary Neurotrophic Factor ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Interleukin-6/metabolism/*pharmacology ; Isoquinolines/pharmacology ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Piperazines/pharmacology ; *Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Serine/*metabolism ; Signal Transduction ; Threonine/metabolism ; Trans-Activators/*metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-11-17
    Description: In the yeast Saccharomyces cerevisiae, Ras regulates adenylate cyclase, which is essential for progression through the G1 phase of the cell cycle. However, even when the adenosine 3',5'-monophosphate (cAMP) pathway was bypassed, the double disruption of RAS1 and RAS2 resulted in defects in growth at both low and high temperatures. Furthermore, the simultaneous disruption of RAS1, RAS2, and the RAS-related gene RSR1 was lethal at any temperature. The triple-disrupted cells were arrested late in the mitotic (M) phase, which was accompanied by an accumulation of cells with divided chromosomes and sustained histone H1 kinase activity. The lethality of the triple disruption was suppressed by the multicopies of CDC5, CDC15, DBF2, SPO12, and TEM1, all of which function in the completion of the M phase. Mammalian ras also suppressed the lethality, which suggests that a similar signaling pathway exists in higher eukaryotes. These results demonstrate that S. cerevisiae Ras functions in the completion of the M phase in a manner independent of the Ras-cAMP pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morishita, T -- Mitsuzawa, H -- Nakafuku, M -- Nakamura, S -- Hattori, S -- Anraku, Y -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1213-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502049" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/metabolism ; Fungal Proteins/*genetics/physiology ; GTP Phosphohydrolases/genetics/physiology ; Genes, Fungal ; Genes, Suppressor ; *Genes, ras ; *Mitosis ; Mutation ; Phenotype ; Saccharomyces cerevisiae/*cytology/genetics/growth & development ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Temperature ; *rab GTP-Binding Proteins ; ras Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roush, W -- New York, N.Y. -- Science. 1995 Aug 11;269(5225):753.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*genetics ; Cloning, Molecular ; *Drosophila Proteins ; Drosophila melanogaster/cytology/embryology/*genetics ; *Genes, Insect ; Peptides/genetics ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, J -- New York, N.Y. -- Science. 1995 Jul 14;269(5221):161.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7618076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Interferon-gamma/*physiology ; Mice ; Receptors, Interferon/analysis ; Signal Transduction ; Th1 Cells/*immunology ; Th2 Cells/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-04-21
    Description: Fibroblast growth factors (FGFs) require a polysaccharide cofactor, heparin or heparan sulfate (HS), for receptor binding and activation. To probe the molecular mechanism by which heparin or HS (heparin/HS) activates FGF, small nonsulfated oligosaccharides found within heparin/HS were assayed for activity. These synthetic and isomerically pure compounds can activate the FGF signaling pathway. The crystal structures of complexes between FGF and these heparin/HS oligosaccharides reveal several binding sites on FGF and constrain possible mechanisms by which heparin/HS can activate the FGF receptor. These studies establish a framework for the molecular design of compounds capable of modulating FGF activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ornitz, D M -- Herr, A B -- Nilsson, M -- Westman, J -- Svahn, C M -- Waksman, G -- CA60673/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7536345" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carbohydrate Sequence ; Cell Line ; Crystallization ; Fibroblast Growth Factor 1/chemistry/*metabolism ; Fibroblast Growth Factor 2/*metabolism ; Heparin/metabolism/*pharmacology ; Heparitin Sulfate/chemistry/*pharmacology ; Mitogens/pharmacology ; Molecular Sequence Data ; Oligosaccharides/chemistry/metabolism/*pharmacology ; Receptors, Fibroblast Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parton, R G -- Simons, K -- New York, N.Y. -- Science. 1995 Sep 8;269(5229):1398-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7660120" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*chemistry/physiology ; Caveolin 1 ; *Caveolins ; Cell Membrane/chemistry/*ultrastructure ; Glycosphingolipids/*chemistry/physiology ; Glycosylphosphatidylinositols/chemistry/physiology ; Lymphocytes/ultrastructure ; Membrane Lipids/*chemistry/physiology ; Membrane Proteins/*chemistry/physiology ; Signal Transduction ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-08-04
    Description: Genetic networks with tens to hundreds of genes are difficult to analyze with currently available techniques. Because of the many parallels in the function of these biochemically based genetic circuits and electrical circuits, a hybrid modeling approach is proposed that integrates conventional biochemical kinetic modeling within the framework of a circuit simulation. The circuit diagram of the bacteriophage lambda lysislysogeny decision circuit represents connectivity in signal paths of the biochemical components. A key feature of the lambda genetic circuit is that operons function as active integrated logic components and introduce signal time delays essential for the in vivo behavior of phage lambda.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McAdams, H H -- Shapiro, L -- New York, N.Y. -- Science. 1995 Aug 4;269(5224):650-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7624793" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriolysis ; Bacteriophage lambda/*genetics/physiology ; *Computer Simulation ; DNA Nucleotidyltransferases/genetics/metabolism ; *DNA-Binding Proteins ; Feedback ; *Gene Expression Regulation, Viral ; Integrases ; Lysogeny/*genetics ; Mathematics ; *Models, Genetic ; *Operon ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Signal Transduction ; Software ; Terminator Regions, Genetic ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Viral Proteins/genetics/metabolism ; Viral Regulatory and Accessory Proteins ; Virus Activation ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-07-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Z W -- New York, N.Y. -- Science. 1995 Jul 21;269(5222):362-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7618101" target="_blank"〉PubMed〈/a〉
    Keywords: Agrin/physiology ; Amino Acid Sequence ; Animals ; Basement Membrane/metabolism ; Laminin/*physiology ; Molecular Sequence Data ; Motor Neurons/*physiology ; Nerve Regeneration ; Neurites/physiology ; Neuromuscular Junction/*physiology ; Oligopeptides/physiology ; Receptors, Cholinergic/metabolism ; Signal Transduction ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-01-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1995 Jan 27;267(5197):459-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7824945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; Autoimmune Diseases/immunology ; Graft Rejection ; Humans ; Ligands ; Lymphocyte Activation ; Membrane Proteins/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/chemistry/*immunology/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1995-09-22
    Description: The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornau, H C -- Schenker, L T -- Kennedy, M B -- Seeburg, P H -- NS-28710/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 22;269(5231):1737-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology (ZMBH), University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569905" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Cytoplasm/chemistry ; Genes, Reporter ; Hippocampus/*metabolism ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neuronal Plasticity ; Neurons/*metabolism ; RNA Splicing ; Rats ; Receptors, N-Methyl-D-Aspartate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1995-08-25
    Description: Vulval induction during Caenorhabditis elegans development is mediated by LET-23, a homolog of the mammalian epidermal growth factor receptor tyrosine kinase. The sli-1 gene is a negative regulator of LET-23 and is shown here to encode a protein similar to c-Cbl, a mammalian proto-oncoprotein. SLI-1 and c-Cbl share approximately 55 percent amino acid identity over a stretch of 390 residues, which includes a C3HC4 zinc-binding motif known as the RING finger, and multiple consensus binding sites for Src homology 3 (SH3) domains. SLI-1 and c-Cbl may define a new class of proteins that modify receptor tyrosine kinase-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, C H -- Lee, J -- Jongeward, G D -- Sternberg, P W -- New York, N.Y. -- Science. 1995 Aug 25;269(5227):1102-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652556" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; *Caenorhabditis elegans Proteins ; Conserved Sequence ; DNA, Complementary/genetics ; Female ; *Genes, Helminth ; *Genes, Regulator ; Helminth Proteins/chemistry/*genetics/metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Proto-Oncogene Proteins/chemistry/*genetics ; Proto-Oncogene Proteins c-cbl ; Receptor, Epidermal Growth Factor/metabolism ; Sequence Alignment ; Signal Transduction ; *Ubiquitin-Protein Ligases ; Vulva/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1995-02-10
    Description: Integrin receptors mediate cell adhesion, signal transduction, and cytoskeletal organization. How a single transmembrane receptor can fulfill multiple functions was clarified by comparing roles of receptor occupancy and aggregation. Integrin occupancy by monovalent ligand induced receptor redistribution, but minimal tyrosine phosphorylation signaling or cytoskeletal protein redistribution. Aggregation of integrins by noninhibitory monoclonal antibodies on beads induced intracellular accumulations of pp125FAK and tensin, as well as phosphorylation, but no accumulation of other cytoskeletal proteins such as talin. Combining antibody-mediated clustering with monovalent ligand occupancy induced accumulation of seven cytoskeletal proteins, including alpha-actinin, talin, and F-actin, thereby mimicking multivalent interactions with fibronectin or polyvalent peptides. Integrins therefore mediate a complex repertoire of functions through the distinct effects of receptor aggregation, receptor occupancy, or both together.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, S -- Akiyama, S K -- Yamada, K M -- New York, N.Y. -- Science. 1995 Feb 10;267(5199):883-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7846531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Cell Adhesion Molecules/metabolism ; Cell Membrane/*metabolism ; Cells, Cultured ; Cytoskeletal Proteins/*metabolism ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Humans ; Integrins/*physiology ; Ligands ; Microfilament Proteins/metabolism ; Molecular Sequence Data ; Oligopeptides/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1995-10-20
    Description: The Saccharomyces cerevisiae AXL1 gene product Axl1p shares homology with the insulin-degrading enzyme family of endoproteases. Yeast axl1 mutants showed a defect in a-factor pheromone secretion, and a probable site of processing by Axl1p was identified within the a-factor precursor. In addition, Axl1p appears to function as a morphogenetic determinant for axial bud site selection. Amino acid substitutions within the presumptive active site of Axl1p caused defects in propheromone processing but failed to perturb bud site selection. Thus, Axl1p has been shown to participate in the dual regulation of distinct signaling pathways, and a member of the insulinase family has been implicated in propeptide processing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adames, N -- Blundell, K -- Ashby, M N -- Boone, C -- New York, N.Y. -- Science. 1995 Oct 20;270(5235):464-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Fungal Proteins/chemistry/genetics/metabolism/*physiology ; Genes, Fungal ; Insulysin/chemistry/genetics/*physiology ; Lipoproteins/genetics/*metabolism ; Metalloendopeptidases ; Molecular Sequence Data ; Morphogenesis ; Mutagenesis, Site-Directed ; Phenotype ; Pheromones/genetics/*metabolism ; Protein Precursors/genetics/*metabolism ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-21
    Description: Fas is a cell surface receptor that controls a poorly understood signal transduction pathway that leads to cell death by means of apoptosis. A protein tyrosine phosphatase, FAP-1, capable of interacting with the cytosolic domain of Fas, was identified. The carboxyl terminal 15 amino acids of Fas are necessary and sufficient for interaction with FAP-1. FAP-1 expression is highest in tissues and cell lines that are relatively resistant to Fas-mediated cytotoxicity. Gene transfer-mediated elevations in FAP-1 partially abolished Fas-induced apoptosis in a T cell line. These findings are consistent with an inhibitory effect of FAP-1 on Fas signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, T -- Irie, S -- Kitada, S -- Reed, J C -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):411-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉La Jolla Cancer Research Foundation, Oncogene and Tumor Suppressor Gene Program, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7536343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD95 ; Antigens, Surface/genetics/*metabolism ; Apoptosis ; Base Sequence ; Cell Line ; Cloning, Molecular ; DNA, Complementary/genetics ; Humans ; Mice ; Molecular Sequence Data ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1995-09-22
    Description: Fertilization is initiated by the species-specific binding of sperm to the extracellular coat of the egg. One sperm receptor for the mouse egg is beta-1,4-galactosyltransferase (GalTase), which binds O-linked oligosaccharides on the egg coat glycoprotein ZP3. ZP3 binding induces acrosomal exocytosis through the activation of a pertussis toxin-sensitive heterotrimeric guanine nucleotide-binding protein (G protein). The cytoplasmic domain of sperm surface GalTase bound to and activated a heterotrimeric G protein complex that contained the Gi alpha subunit. Aggregation of GalTase by multivalent ligands elicited G protein activation. Sperm from transgenic mice that overexpressed GalTase had higher rates of G protein activation than did wild-type sperm, which rendered transgenic sperm hypersensitive to their ZP3 ligand. Thus, the cytoplasmic domain of cell surface GalTase appears to enable it to function as a signal-transducing receptor for extracellular oligosaccharide ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, X -- Dubois, D H -- Miller, D J -- Shur, B D -- R01 HD22590/HD/NICHD NIH HHS/ -- R01 HD23479/HD/NICHD NIH HHS/ -- T32 HD07324/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Sep 22;269(5231):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569899" target="_blank"〉PubMed〈/a〉
    Keywords: Acrosome/physiology ; Adenosine Diphosphate Ribose/metabolism ; Amino Acid Sequence ; Animals ; Cell Membrane/enzymology/metabolism ; Egg Proteins/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Ligands ; Male ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; N-Acetyllactosamine Synthase/*metabolism ; Peptide Fragments/metabolism ; Pertussis Toxin ; *Receptors, Cell Surface ; Signal Transduction ; Spermatozoa/enzymology/*metabolism ; Virulence Factors, Bordetella/pharmacology ; Zona Pellucida/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1995-07-14
    Description: CD22 is a membrane immunoglobulin (mIg)-associated protein of B cells. CD22 is tyrosine-phosphorylated when mIg is ligated. Tyrosine-phosphorylated CD22 binds and activates SHP, a protein tyrosine phosphatase known to negatively regulate signaling through mIg. Ligation of CD22 to prevent its coaggregation with mIg lowers the threshold at which mIg activates the B cell by a factor of 100. In secondary lymphoid organs, CD22 may be sequestered away from mIg through interactions with counterreceptors on T cells. Thus, CD22 is a molecular switch for SHP that may bias mIg signaling to anatomic sites rich in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doody, G M -- Justement, L B -- Delibrias, C C -- Matthews, R J -- Lin, J -- Thomas, M L -- Fearon, D T -- GM-46524/GM/NIGMS NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1995 Jul 14;269(5221):242-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, School of Clinical Medicine, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7618087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/*immunology/metabolism ; Antigens, Differentiation, B-Lymphocyte/*immunology/metabolism ; B-Lymphocytes/*immunology ; *Cell Adhesion Molecules ; Cells, Cultured ; Humans ; Immunoglobulin M/immunology ; Intracellular Signaling Peptides and Proteins ; *Lectins ; *Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/*metabolism ; Recombinant Proteins/metabolism ; Sialic Acid Binding Ig-like Lectin 2 ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-11-17
    Description: To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, M -- Lagnado, L -- Baylor, D A -- EY01543/EY/NEI NIH HHS/ -- EY05750/EY/NEI NIH HHS/ -- EY10020/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502047" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; In Vitro Techniques ; Microelectrodes ; Photic Stimulation ; Retinal Ganglion Cells/*physiology ; Signal Transduction ; Urodela ; Vision, Ocular/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theologis, A -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Gene Expression Center, Albany, CA 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525365" target="_blank"〉PubMed〈/a〉
    Keywords: Ethylenes/*metabolism ; Plant Proteins/metabolism ; Plants/*metabolism ; Protein Kinases/metabolism ; Receptors, Cell Surface/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉ole-MoiYoi, O K -- New York, N.Y. -- Science. 1995 Feb 10;267(5199):834-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Livestock Research Institute (ILRI), Nairobi, Kenya.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7846527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Casein Kinase II ; Cattle ; Cell Division ; Cell Transformation, Neoplastic ; Lymphocyte Activation ; Lymphoma/etiology ; Mice ; Mice, Transgenic ; Protein-Serine-Threonine Kinases/*metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/*parasitology/physiology ; Theileria parva/enzymology/*physiology ; Theileriasis/*enzymology/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1995-01-06
    Description: A biosensor system based on the response of living cells was demonstrated that can detect specific components of a complex mixture fractionated by a microcolumn separation technique. This system uses ligand-receptor binding and signal-transduction pathways to biochemically amplify the presence of an analyte after electrophoretic separation. The transduced signal was measured by means of two approaches: (i) fluorescence determination of intracellular calcium concentrations in one or more rat PC-12 cells and (ii) measurement of transmembrane current in a Xenopus laevis oocyte microinjected with messenger RNA that encodes a specific receptor. This analysis system has the potential to identify biologically active ligands present in a complex mixture with exceptional sensitivity and selectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shear, J B -- Fishman, H A -- Allbritton, N L -- Garigan, D -- Zare, R N -- Scheller, R H -- MH45324-05/MH/NIMH NIH HHS/ -- MH45423-03/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1995 Jan 6;267(5194):74-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7809609" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/analysis/isolation & purification ; Adenosine Triphosphate/analysis/isolation & purification ; Animals ; *Biosensing Techniques ; Bradykinin/analysis/isolation & purification ; Calcium/analysis ; Chemistry Techniques, Analytical/*methods ; Electrophoresis ; Ligands ; Microscopy, Fluorescence ; Oocytes ; PC12 Cells ; Patch-Clamp Techniques ; Rats ; Reproducibility of Results ; Sensitivity and Specificity ; Serotonin/analysis/isolation & purification ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1995-03-31
    Description: The crystal structure of the extracellular portion of the beta chain of a murine T cell antigen receptor (TCR), determined at a resolution of 1.7 angstroms, shows structural homology to immunoglobulins. The structure of the first and second hypervariable loops suggested that, in general, they adopt more restricted sets of conformations in TCR beta chains than those found in immunoglobulins; the third hypervariable loop had certain structural characteristics in common with those of immunoglobulin heavy chain variable domains. The variable and constant domains were in close contact, presumably restricting the flexibility of the beta chain. This may facilitate signal transduction from the TCR to the associated CD3 molecules in the TCR-CD3 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bentley, G A -- Boulot, G -- Karjalainen, K -- Mariuzza, R A -- New York, N.Y. -- Science. 1995 Mar 31;267(5206):1984-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite d'Immunologie Structurale (CNRS URA 359), Institut Pasteur, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701320" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Computer Graphics ; Crystallography, X-Ray ; Immunoglobulin Variable Region/chemistry ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor-CD3 Complex, Antigen, T-Cell/chemistry ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1995-06-09
    Description: A molecule isolated from the cerebrospinal fluid of sleep-deprived cats has been chemically characterized and identified as cis-9,10-octadecenoamide. Other fatty acid primary amides in addition to cis-9,10-octadecenoamide were identified as natural constituents of the cerebrospinal fluid of cat, rat, and human, indicating that these compounds compose a distinct family of brain lipids. Synthetic cis-9,10-octadecenoamide induced physiological sleep when injected into rats. Together, these results suggest that fatty acid primary amides may represent a previously unrecognized class of biological signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cravatt, B F -- Prospero-Garcia, O -- Siuzdak, G -- Gilula, N B -- Henriksen, S J -- Boger, D L -- Lerner, R A -- 1 S10 RR07273-01/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 9;268(5216):1506-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, CA 92307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7770779" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cats ; Cerebrosides/*cerebrospinal fluid/chemistry/pharmacology ; Humans ; Lipids/*cerebrospinal fluid/chemistry/pharmacology ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Weight ; Oleic Acids/*cerebrospinal fluid/chemistry/pharmacology ; Rats ; Signal Transduction ; *Sleep/drug effects ; Spectrometry, Mass, Fast Atom Bombardment ; Spectrophotometry, Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeFranco, A L -- Law, D A -- New York, N.Y. -- Science. 1995 Apr 14;268(5208):263-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California at San Francisco 94143-0552, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7716518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Formation ; *Antigens, CD ; B-Lymphocytes/*immunology/metabolism ; Intracellular Signaling Peptides and Proteins ; Lymphocyte Activation ; Mice ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/*metabolism ; Receptors, Antigen, B-Cell/metabolism ; Receptors, IgG/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1995-03-03
    Description: In response to specific ligands, various STAT proteins (signal transducers and activators of transcription) are phosphorylated on tyrosine by Jak protein kinases and translocated to the nucleus to direct gene transcription. Selection of a STAT at the interferon gamma receptor as well as specific STAT dimer formation depended on the presence of particular SH2 groups (phosphotyrosine-binding domains), whereas the amino acid sequence surrounding the phosphorylated tyrosine on the STAT could vary. Thus, SH2 groups in STAT proteins may play crucial roles in specificity at the receptor kinase complex and in subsequent dimerization, whereas the kinases are relatively nonspecific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heim, M H -- Kerr, I M -- Stark, G R -- Darnell, J E Jr -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 3;267(5202):1347-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7871432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Interferon-alpha/*pharmacology ; Interferon-gamma/*pharmacology ; Janus Kinase 1 ; Janus Kinase 2 ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; Receptors, Interferon/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Signal Transduction ; Trans-Activators/chemistry/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-05-05
    Description: Plant breeders have used disease resistance genes (R genes) to control plant disease since the turn of the century. Molecular cloning of R genes that enable plants to resist a diverse range of pathogens has revealed that the proteins encoded by these genes have several features in common. These findings suggest that plants may have evolved common signal transduction mechanisms for the expression of resistance to a wide range of unrelated pathogens. Characterization of the molecular signals involved in pathogen recognition and of the molecular events that specify the expression of resistance may lead to novel strategies for plant disease control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Staskawicz, B J -- Ausubel, F M -- Baker, B J -- Ellis, J G -- Jones, J D -- New York, N.Y. -- Science. 1995 May 5;268(5211):661-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7732374" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Genes, Plant ; Genetic Engineering ; Immunity, Innate/genetics ; Molecular Sequence Data ; Plant Diseases/*genetics/microbiology ; Signal Transduction ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1995-06-09
    Description: In mice lacking the interleukin-2 receptor beta chain (IL-2R beta), T cells were shown to be spontaneously activated, resulting in exhaustive differentiation of B cells into plasma cells and the appearance of high serum concentrations of immunoglobulins G1 and E as well as autoantibodies that cause hemolytic anemia. Marked infiltrative granulocytopoiesis was also apparent, and the animals died after about 12 weeks. Depletion of CD4+ T cells in mutant mice rescued B cells without reversion of granulocyte abnormalities. T cells did not proliferate in response to polyclonal activators, nor could antigen-specific immune responses be elicited. Thus, IL-2R beta is required to keep the activation programs of T cells under control, to maintain homeostasis, and to prevent autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, H -- Kundig, T M -- Furlonger, C -- Wakeham, A -- Timms, E -- Matsuyama, T -- Schmits, R -- Simard, J J -- Ohashi, P S -- Griesser, H -- New York, N.Y. -- Science. 1995 Jun 9;268(5216):1472-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7770771" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoantibodies/blood ; *Autoimmunity ; B-Lymphocytes/immunology ; CD4-Positive T-Lymphocytes/immunology ; Female ; Heterozygote ; Homozygote ; Lymph Nodes/immunology ; *Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mutagenesis, Insertional ; Myeloproliferative Disorders/immunology ; Receptors, Interleukin-2/genetics/*physiology ; Signal Transduction ; T-Lymphocytes/*immunology ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1995-11-03
    Description: Males with X-linked severe combined immunodeficiency (XSCID) have defects in the common cytokine receptor gamma chain (gamma c) gene that encodes a shared, essential component of the receptors of interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15. The Janus family tyrosine kinase Jak3 is the only signaling molecule known to be associated with gamma c, so it was hypothesized that defects in Jak3 might cause an XSCID-like phenotype. A girl with immunological features indistinguishable from those of XSCID was therefore selected for analysis. An Epstein-Barr virus (EBV)-transformed cell line derived from her lymphocytes had normal gamma c expression but lacked Jak3 protein and had greatly diminished Jak3 messenger RNA. Sequencing revealed a different mutation on each allele: a single nucleotide insertion resulting in a frame shift and premature termination in the Jak3 JH4 domain and a nonsense mutation in the Jak3 JH2 domain. The lack of Jak3 expression correlated with impaired B cell signaling, as demonstrated by the inability of IL-4 to activate Stat6 in the EBV-transformed cell line from the patient. These observations indicate that the functions of gamma c are dependent on Jak3 and that Jak3 is essential for lymphoid development and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Tayebi, N -- Nakajima, H -- Riedy, M C -- Roberts, J L -- Aman, M J -- Migone, T S -- Noguchi, M -- Markert, M L -- Buckley, R H -- O'Shea, J J -- Leonard, W J -- M01-RR30/RR/NCRR NIH HHS/ -- R37AI18613-13/AI/NIAID NIH HHS/ -- T32 CA09058/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):797-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481768" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line, Transformed ; Female ; Frameshift Mutation ; Genetic Linkage ; Humans ; Infant ; Interleukin-4/pharmacology ; Janus Kinase 3 ; Molecular Sequence Data ; Phenotype ; Point Mutation ; Protein-Tyrosine Kinases/deficiency/genetics/*physiology ; RNA, Messenger/genetics/metabolism ; Receptors, Interleukin/physiology ; STAT6 Transcription Factor ; Severe Combined Immunodeficiency/*enzymology/genetics/immunology ; Signal Transduction ; T-Lymphocytes/*immunology ; Trans-Activators/metabolism ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1995-06-23
    Description: A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savitsky, K -- Bar-Shira, A -- Gilad, S -- Rotman, G -- Ziv, Y -- Vanagaite, L -- Tagle, D A -- Smith, S -- Uziel, T -- Sfez, S -- Ashkenazi, M -- Pecker, I -- Frydman, M -- Harnik, R -- Patanjali, S R -- Simmons, A -- Clines, G A -- Sartiel, A -- Gatti, R A -- Chessa, L -- Sanal, O -- Lavin, M F -- Jaspers, N G -- Taylor, A M -- Arlett, C F -- Miki, T -- Weissman, S M -- Lovett, M -- Collins, F S -- Shiloh, Y -- HG00882/HG/NHGRI NIH HHS/ -- NS31763/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1749-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792600" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/*genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins ; Chromosome Mapping ; Chromosomes, Artificial, Yeast ; *Chromosomes, Human, Pair 11 ; Cloning, Molecular ; DNA, Complementary/genetics ; DNA-Binding Proteins ; Female ; Genetic Complementation Test ; Genetic Predisposition to Disease ; Heterozygote ; Humans ; Male ; Meiosis ; Molecular Sequence Data ; Neoplasms/genetics ; Nucleic Acid Hybridization ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/chemistry/*genetics/physiology ; *Protein-Serine-Threonine Kinases ; Proteins/chemistry/*genetics/physiology ; Radiation Tolerance ; Sequence Deletion ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1995-11-03
    Description: The Janus tyrosine kinases (Jaks) play a central role in signaling through cytokine receptors. Although Jak1, Jak2, and Tyk2 are widely expressed, Jak3 is predominantly expressed in hematopoietic cells and is known to associate only with the common gamma (gamma c) chain of the interleukin (IL)-2, IL-4, IL-7, IL-9, and IL-15 receptors. Homozygous mutant mice in which the Jak3 gene had been disrupted were generated by gene targeting. Jak3-deficient mice had profound reductions in thymocytes and severe B cell and T cell lymphopenia similar to severe combined immunodeficiency disease (SCID), and the residual T cells and B cells were functionally deficient. Thus, Jak3 plays a critical role in gamma c signaling and lymphoid development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nosaka, T -- van Deursen, J M -- Tripp, R A -- Thierfelder, W E -- Witthuhn, B A -- McMickle, A P -- Doherty, P C -- Grosveld, G C -- Ihle, J N -- P01 HL53749/HL/NHLBI NIH HHS/ -- P30 CA21765/CA/NCI NIH HHS/ -- R01 DK/HL42932/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):800-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481769" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Animals ; Antigens, CD/metabolism ; B-Lymphocytes/*immunology ; Chimera ; Female ; Gene Targeting ; Interleukin-7/metabolism/pharmacology ; Janus Kinase 3 ; Lymphocyte Activation ; Lymphocyte Count ; Lymphocyte Subsets/immunology ; Lymphoid Tissue/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Phenotype ; Protein-Tyrosine Kinases/genetics/*physiology ; Receptors, Interleukin/metabolism ; Receptors, Interleukin-7 ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1995-09-08
    Description: In situ coating of the surface of endothelial cells in rat lung with cationic colloidal silica particles was used to separate caveolae from detergent-insoluble membranes rich in glycosyl phosphatidylinositol (GPI)-anchored proteins but devoid of caveolin. Immunogold electron microscopy showed that ganglioside GM1-enriched caveolae associated with an annular plasmalemmal domain enriched in GPI-anchored proteins. The purified caveolae contained molecular components required for regulated transport, including various lipid-anchored signaling molecules. Such specialized distinct microdomains may exist separately or together in the plasma membrane to organize signaling molecules and to process surface-bound ligands differentially.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnitzer, J E -- McIntosh, D P -- Dvorak, A M -- Liu, J -- Oh, P -- AI33372/AI/NIAID NIH HHS/ -- HL43278/HL/NHLBI NIH HHS/ -- HL52766/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 8;269(5229):1435-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Beth Israel Hospital, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7660128" target="_blank"〉PubMed〈/a〉
    Keywords: 5'-Nucleotidase/analysis ; Animals ; Caveolin 1 ; *Caveolins ; Cell Fractionation ; Cell Membrane/*chemistry/*ultrastructure ; Colloids ; Detergents ; Endothelium, Vascular/ultrastructure ; Glycosylphosphatidylinositols/*analysis ; Membrane Proteins/*analysis ; Microscopy, Immunoelectron ; Rats ; Receptors, Cell Surface/analysis ; Receptors, Urokinase Plasminogen Activator ; Signal Transduction ; Silicon Dioxide ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1995-04-28
    Description: The Son of sevenless (Sos) protein functions as a guanine nucleotide transfer factor for Ras and interacts with the receptor tyrosine kinase Sevenless through the protein Drk, a homolog of mammalian Grb2. In vivo structure-function analysis revealed that the amino terminus of Sos was essential for its function in flies. A molecule lacking the amino terminus was a potent dominant negative. In contrast, a Sos fragment lacking the Drk binding sites was functional and its activity was dependent on the presence of the Sevenless receptor. Furthermore, membrane localization of Sos was independent of Drk. A possible role for Drk as an activator of Sos is discussed and a Drk-independent interaction between Sos and Sevenless is proposed that is likely mediated by the pleckstrin homology domain within the amino terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlovich, C A -- Bonfini, L -- McCollam, L -- Rogge, R D -- Daga, A -- Czech, M P -- Banerjee, U -- GM-07104/GM/NIGMS NIH HHS/ -- GM-08375/GM/NIGMS NIH HHS/ -- R01EY08152-06/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):576-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Molecular Biology Institute, University of California, Los Angeles 90024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725106" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Drosophila ; *Drosophila Proteins ; Eye Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Insect Hormones/physiology ; Membrane Glycoproteins/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Photoreceptor Cells, Invertebrate/cytology/metabolism ; Proteins/*metabolism ; Receptor Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Son of Sevenless Proteins ; ras Guanine Nucleotide Exchange Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-06-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowak, R -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1700-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792589" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia/*genetics ; Ataxia Telangiectasia Mutated Proteins ; Breast Neoplasms/*genetics ; Cell Cycle Proteins ; Cell Division ; Cloning, Molecular ; DNA Damage ; DNA Repair ; DNA-Binding Proteins ; Female ; Genetic Predisposition to Disease ; Genetic Testing ; Heterozygote ; Humans ; Mutation ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/*genetics ; Radiation Tolerance ; Signal Transduction ; Tumor Suppressor Proteins ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1995-01-27
    Description: Small changes in the peptide-major histocompatibility complex (MHC) molecule ligands recognized by antigen-specific T cell receptors (TCRs) can convert fully activating complexes into partially activating or even inhibitory ones. This study examined early TCR-dependent signals induced by such partial agonists or antagonists. In contrast to typical agonist ligands, both an antagonist and several partial agonists stimulated a distinct pattern of zeta chain phosphorylation and failed to activate associated ZAP-70 kinase. These results identify a specific step in the early tyrosine phosphorylation cascade that is altered after TCR engagement with modified peptide-MHC molecule complexes. This finding may explain the different biological responses to TCR occupancy by these variant ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madrenas, J -- Wange, R L -- Wang, J L -- Isakov, N -- Samelson, L E -- Germain, R N -- New York, N.Y. -- Science. 1995 Jan 27;267(5197):515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7824949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Clone Cells ; Cytochrome c Group/pharmacology ; Enzyme Activation ; Histocompatibility Antigens Class II/genetics/immunology/*pharmacology ; Interleukin-2/biosynthesis ; L Cells (Cell Line) ; Ligands ; Lymphocyte Activation ; Membrane Proteins/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Peptide Fragments/pharmacology ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/agonists/antagonists & inhibitors/*metabolism ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/*immunology ; Tyrosine/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-07-28
    Description: The role of mitogen-activated protein (MAP) kinase cascades in integrating distinct upstream signals was studied in yeast. Mutants that were not able to activate PBS2 MAP kinase kinase (MAPKK; Pbs2p) at high osmolarity were characterized. Pbs2p was activated by two independent signals that emanated from distinct cell-surface osmosensors. Pbs2p was activated by MAP kinase kinase kinases (MAPKKKs) Ssk2p and Ssk22p that are under the control of the SLN1-SSK1 two-component osmosensor. Alternatively, Pbs2p was activated by a mechanism that involves the binding of its amino terminal proline-rich motif to the Src homology 3 (SH3) domain of a putative transmembrane osmosensor Sho1p.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, T -- Takekawa, M -- Saito, H -- New York, N.Y. -- Science. 1995 Jul 28;269(5223):554-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7624781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cloning, Molecular ; Enzyme Activation ; Fungal Proteins/metabolism ; Genes, Fungal ; Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase Kinases ; Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; *Saccharomyces cerevisiae Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1995-04-21
    Description: Lymphocytes express multicomponent receptor complexes that mediate diverse antigen-dependent and antigen-independent responses. Despite the central role of antigen-independent events in B cell development, little is known about the mechanisms by which they are initiated. The association between the membrane immunoglobulin (Ig) M heavy chair (micron) and the Ig alpha-Ig beta heterodimer is now shown to be essential in inducing both the transition from progenitor to precursor B cells and subsequent allelic exclusion in transgenic mice. The cytoplasmic domain of Ig beta is sufficient to induce these early antigen-independent events by a mechanism that requires conserved tyrosine residues in this protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papavasiliou, F -- Misulovin, Z -- Suh, H -- Nussenzweig, M C -- AI33890/AI/NIAID NIH HHS/ -- AI37526/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7716544" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Antigens, CD ; Antigens, CD79 ; B-Lymphocytes/cytology/*immunology ; Genes, Immunoglobulin ; Humans ; Immunoglobulin mu-Chains/metabolism ; Immunoglobulins/*metabolism ; Lymphocyte Activation ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Transgenic ; Receptors, Antigen, B-Cell/*metabolism ; Recombination, Genetic ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1995-03-10
    Description: I kappa B-alpha inhibits transcription factor NF-kappa B by retaining it in the cytoplasm. Various stimuli, typically those associated with stress or pathogens, rapidly inactivate I kappa B-alpha. This liberates NF-kappa B to translocate to the nucleus and initiate transcription of genes important for the defense of the organism. Activation of NF-kappa B correlates with phosphorylation of I kappa B-alpha and requires the proteolysis of this inhibitor. When either serine-32 or serine-36 of I kappa B-alpha was mutated, the protein did not undergo signal-induced phosphorylation or degradation, and NF-kappa B could not be activated. These results suggest that phosphorylation at one or both of these residues is critical for activation of NF-kappa B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, K -- Gerstberger, S -- Carlson, L -- Franzoso, G -- Siebenlist, U -- New York, N.Y. -- Science. 1995 Mar 10;267(5203):1485-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1876.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7878466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Humans ; *I-kappa B Proteins ; Ionomycin/pharmacology ; Mice ; Molecular Sequence Data ; Mutation ; NF-kappa B/*antagonists & inhibitors/metabolism ; Phosphorylation ; Point Mutation ; Signal Transduction ; T-Lymphocytes ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1995-09-15
    Description: Integrins regulate cell growth, differentiation, and behavior in many systems. Integrin beta 1C (beta 1S) is an alternatively spliced variant of integrin beta 1 with a specific cytoplasmic domain and is expressed in several human tissues. Human beta 1c transiently expressed in mouse 10T1/2 fibroblasts showed a diffuse pattern of cell surface staining, whereas beta1 localized to focal adhesions. Moderate concentrations of beta 1C had no effect on actin stress fibers or focal adhesions, but markedly inhibited DNA synthesis. Inhibition by beta 1C mapped to the late G1 phase of the cell cycle, near the G1-S boundary. Thus, alternative splicing of beta1 results in transmission of distinct signals that may regulate growth in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meredith, J Jr -- Takada, Y -- Fornaro, M -- Languino, L R -- Schwartz, M A -- P01 HL48728/HL/NHLBI NIH HHS/ -- R01 GM47214/GM/NIGMS NIH HHS/ -- R01GM47157/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Sep 15;269(5230):1570-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vascular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7545312" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Antigens, CD29 ; Cell Adhesion ; Cell Division ; Cell Line ; Cell Size ; DNA/biosynthesis ; *G1 Phase ; Humans ; Integrins/chemistry/genetics/*physiology ; Ligands ; Mice ; Molecular Sequence Data ; Sequence Deletion ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-03-10
    Description: Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders. Apoptosis occurs through the activation of a cell-intrinsic suicide program. The basic machinery to carry out apoptosis appears to be present in essentially all mammalian cells at all times, but the activation of the suicide program is regulated by many different signals that originate from both the intracellular and the extracellular milieu. Genetic studies in the nematode Caenorhabditis elegans and in the fruit fly Drosophila melanogaster have led to the isolation of genes that are specifically required for the induction of programmed cell death. At least some components of the apoptotic program have been conserved among worms, insects, and vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steller, H -- New York, N.Y. -- Science. 1995 Mar 10;267(5203):1445-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7878463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/genetics/physiology ; Caenorhabditis elegans/cytology/genetics ; Cysteine Endopeptidases/genetics/metabolism ; Drosophila/cytology/genetics ; *Drosophila Proteins ; Gene Expression Regulation ; *Genes, Helminth ; *Genes, Insect ; Peptides/genetics/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...