ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Other Sources  (221)
  • Nonmetallic Materials  (221)
  • 1995-1999  (221)
  • 1980-1984
  • 1950-1954
  • 1998  (147)
  • 1995  (74)
  • 1
    Publication Date: 2004-12-03
    Description: During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(R) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(R) FEP sample evaluation and additional testing of pristine Teflon(R) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(R) FEP.
    Keywords: Nonmetallic Materials
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 173-186; NASA/CR-1998-208598-Preprint
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Materials that pyrolyze at elevated temperature have been commonly used as thermal protection materials in hypersonic flight, and advanced pyrolyzing materials for this purpose continue to be developed. Because of the large temperature gradients that can arise in thermal protection materials, significant thermal stresses can develop. Advanced applications of pyrolytic materials are calling for more complex heatshield configurations, making accurate thermal stress analysis more important, and more challenging. For non-pyrolyzing materials, many finite element codes are available and capable of performing coupled thermal-mechanical analyses. These codes do not, however, have a built-in capability to perform analyses that include pyrolysis effects. When a pyrolyzing material is heated, one or more components of the original virgin material pyrolyze and create a gas. This gas flows away from the pyrolysis zone to the surface, resulting in a reduction in surface heating. A porous residue, referred to as char, remains in place of the virgin material. While the processes involved can be complex, it has been found that a simple physical model in which virgin material reacts to form char and pyrolysis gas, will yield satisfactory analytical results. Specifically, the effects that must be modeled include: (1) Variation of thermal properties (density, specific heat, thermal conductivity) as the material composition changes; (2) Energy released or absorbed by the pyrolysis reactions; (3) Energy convected by the flow of pyrolysis gas from the interior to the surface; (4) The reduction in surface heating due to surface blowing; and (5) Chemical and mass diffusion effects at the surface between the pyrolysis gas and edge gas Computational tools for the one-dimensional thermal analysis these materials exist and have proven to be reliable design tools. The objective of the present work is to extend the analysis capabilities of pyrolyzing materials to axisymmetric configurations, and to couple thermal and mechanical analyses so that thermal stresses may be efficiently and accurately calculated.
    Keywords: Nonmetallic Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.
    Keywords: Nonmetallic Materials
    Type: 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: NASA is seeking to develop thermal insulation material systems suitable for withstanding both extremely high temperatures encountered during atmospheric re-entry heating and aero- braking maneuvers, as well as extremely low temperatures existing in liquid fuel storage tanks. Currently, materials used for the high temperature insulation or Thermal Protection System (TPS) are different from the low temperature, or cryogenic insulation. Dual purpose materials are necessary to the development of reusable launch vehicles (RLV). The present Space Shuttle (or Space Transportation System, STS) employs TPS materials on the orbiter and cryo-insulation materials on the large fuel tank slung under the orbiter. The expensive fuel tank is jettisoned just before orbit is achieved and it burns up while re-entering over the Indian Ocean. A truly completely reusable launch vehicle must store aR cryogenic fuel internally. The fuel tanks will be located close to the outer surface. In fact the outer skin of the craft will probably also serve as the fuel tank enclosure, as in jet airliners. During a normal launch the combined TPS/cryo-insulation system will serve only as a low temperature insulator, since aerodynamic heating is relatively minimal during ascent to orbit. During re-entry, the combined TPS/cryo-insulation system will serve only as a high temperature insulator, since all the cryogenic fuel will have been expended in orbit. However, in the event of an.aborted launch or a forced/emergency early re-entry, the tanks will still contain fuel, and the TPS/cryo-insulation will have to serve as both low and high temperature insulation. Also, on long duration missions, such as to Mars, very effective cryo-insulation materials are needed to reduce bod off of liquid propellants, thereby reducing necessary tankage volume, weight, and cost. The conventional approach to obtaining both low and high temperature insulation, such as is employed for the X-33 and X-34 spacecraft, is to use separate TPS and cryo-insulation materials, which are connected by means of adhesives or stand-offs (spacers). Three concepts are being considered: (1) the TPS is bonded directly to the cryo-insulation which, in turn, is bonded to the exterior of the tank, (2) stand-offs are used to make a gap between the TPS and the cryo-insulation, which is bonded externally to the tank, (3) TPS is applied directly or with stand-offs to the exterior so the tank, and cryo-insulation is applied directly to the interior of the tank. Many potential problems are inherent in these approaches. For example, mismatch between coefficients of thermal expansion of the TPS and cryo-insulation, as well as aerodynamic loads, could lead to failure of the bond. Internal cryo-insulation must be prevent from entering the sump of the fuel turbo-pump. The mechanical integrity of the stand-off structure (if used) must withstand multiple missions. During ground hold (i.e., prior to launch) moisture condensation must be minimized in the gap between the cryo-insulation and the TPS. The longer term solution requires the development of a single material to act as cryo- insulation during ground hold and as TPS during re-entry. Such a material minimizes complexity and weight while improving reliability and reducing cost.
    Keywords: Nonmetallic Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: This paper details a comparison analysis of the zinc-oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 yr in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent Sun hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.
    Keywords: Nonmetallic Materials
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 161-172; NASA/CR-1998-208598-Preprint
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.
    Keywords: Nonmetallic Materials
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 201-209; NASA/CR-1998-208598-Preprint
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: As a reinforcement for structural composites, single crystal alumina fibers offer low density, high modulus, and high creep resistance. In this study, the laser heated float zone approach was employed to grow c-axis Al2O3 continuous fibers of high purity and high strength. A new melt modulation technique, laser scanning, avoids the formation of surface induced ripples and allows the growth of 50 micro-m diameter sapphire fibers with strengths (approx. 7 GPa) significantly greater than either commercially available fibers grown by the edge-defined film growth process (approx. 2-3 GPa) or laboratory fibers grown by stationary laser heating (approx. 5 GPa). The present work suggests that surface striations are the predominant defects controlling the tensile strength of laser-scanned fibers at room temperature. Several possible mechanisms for inducing surface striations are systematically discussed for several oxide fiber compositions.
    Keywords: Nonmetallic Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Ceramic thermal barrier coatings have attracted increased attention for diesel engine applications. The advantages of using the ceramic coatings include a potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-based ceramics are the most important coating materials for such applications because of their low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties. However, durability of thick thermal barrier coatings (TBCS) under severe temperature cycling encountered in engine conditions, remains a major question. The thermal transients associated with the start/stop and no-load/full-load engine cycle, and with the in-cylinder combustion process, generate thermal low cycle fatigue (LCF) and thermal high cycle fatigue (HCF) in the coating system. Therefore, the failure mechanisms of thick TBCs are expected to be quite different from those of thin TBCs under these temperature transients. The coating failure is related not only to thermal expansion mismatch and oxidation of the bond coats and substrates, but also to the steep thermal stress gradients induced in the coating systems. Although it has been reported that stresses generated by thermal transients can initiate surface and interface cracks in a coating system, the mechanisms of the crack propagation and of coating failure under the complex LCF and HCF conditions are still not understood. In this paper, the thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated LCF and HCF engine conditions is investigated. The effects of LCF and HCF on surface crack initiation and propagation are also discussed.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop, 1997; 139-150; NASA/CP-1998-207429
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop, 1997; 53-71; NASA/CP-1998-207429
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 169-188; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: This paper summarizes prior and on-going machine evaluations of TBC coatings for power generation applications. Rainbow testing of TBC's on turbine nozzles, shrouds, and buckets are described along with a test on combustor liners. GEPG has conducted over 15 machine tests with TBC coated turbine nozzles of various coatings. TBC performance has been quite good and additional testing, including TBC's on shrouds and buckets, is continuing. Included is a brief comparison of TBC requirements for power generation and aircraft turbines.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 91-102; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 79-90; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined in this paper. The discussion focuses on those advances that led first to their use for component life extension, and more recently as an integral part of airfoil design. Development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlX TBC's are emphasized, as are observations fundamentally related to the their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA are also noted.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 17-34; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: This technical paper addresses the challenges for maximizing the benefit of thermal barrier coatings for turbine engine applications. The perspective is from a customer's viewpoint, a turbine airfoil designer, who is continuously challenged to increase the turbine inlet temperature capability for new products while maintaining cooling flow levels or even reducing them. This is a fundamental requirement to achieve increased engine thrust levels. Developing advanced material systems for the turbine flowpath airfoils is one approach to solve this challenge; such as high temperature nickel based superalloys or thermal barrier coatings to insulate the metal airfoils from the hot flowpath environment. The second approach is to increase the cooling performance of the turbine airfoil, which enables increased flowpath temperatures and reduced cooling flow levels. Thermal barrier coatings have been employed in jet engine applications for almost 30 years. The initial application was on augmentor liners to provide thermal protection during afterburner operation. However, the production use of thermal barrier coating in the turbine section has only occurred in the past 15 years. The application was limited to stationary parts, and only recently incorporated on the rotating turbine blades. This lack of endorsement of thermal barrier coatings resulted from the poor initial durability of these coatings in high heat flux environments. Significant improvements have been made to enhance spallation resistance and erosion resistance which has resulted in increased reliability of these coatings in turbine applications.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 1-16; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: The purpose of this project was to develop low color, atomic oxygen resistant polyimides for potential applications on spacecraft in low earth orbit. The material is needed in order to protect satellites and spacecraft from the gases and radiation found at those altitudes. Phosphorous containing polyimides have been shown to be especially resistant to corrosion and weight loss under oxygen plasma. Unfortunately the color of these phosphorous containing polyimides is still too high for them to be good heat insulators. While they are not as effective as teflon, the current material of choice. polyimides are much less dense than teflon and would be especially valuable if they could be made with low color. The approach taken was to synthesize a monomer which would contain the elements needed for giving the final polyimide its desired properties. In particular the monomer should incorporate phosphine or phosphine oxides and have bulky side groups to block any color forming charge transfer structures. The target molecule, 3,5-di-(trifluoromethylphenyl)-bis(3-aminophenyl) phosphine oxide, (containing both a phosphine oxide group and a bulky ditrifluoromethylphenyl group) was synthesized via three reactions in overall yield of 21 percent. In addition, a model compound, bis(3-phenylamine) phenyl phosphine oxide, was synthesized two different ways in order to establish the conditions for the nitration of phosphine oxides and their reduction to the amine. Finally, a trisubstituted phosphine oxide was synthesized. In all, seven phosphorus containing organic compounds were synthesized, purified and characterized. The model compound was reacted with oxydiphthalic anhydride to form a polyamic acid with inherent viscosity of 0.34. This material was cast into a film and heated, forming a normally colored fairly strong polyimide with a Tg of 240 C. The target compound was reacted with 6-fluorodiphthalic anhydride to give a polyamic acid with inherent viscosity of 0.19 and cast to give a heavily cracked colored film with a Tg of 230 C.
    Keywords: Nonmetallic Materials
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 92; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: This paper summarizes work completed for a NASA Phase 1 SBIR program which demonstrated the feasibility of developing a software tool to aid in the design of thermal barrier coating (TBC) systems. Toward this goal, three tasks were undertaken and completed. Task 1 involved the development of a database containing the pertinent thermal and mechanical property data for the top coat, bond coat and substrate materials that comprise a TBC system. Task 2 involved the development of an automated set-up program for generating two dimensional (2D) finite element models of TBC systems. Most importantly, task 3 involved the generation of a rule base to aid in the design of a TBC system. These rules were based on a factorial design of experiments involving FEM results and were generated using a Yates analysis. A previous study had indicated the suitability and benefit of applying finite element analysis to perform computer based experiments to decrease but not eliminate physical experiments on TBC's. This program proved feasibility by expanding on these findings by developing a larger knowledgebase and developing a procedure to extract rules to aid in TBC design.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 251-264; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: This paper provides a pro tem review of the hot corrosion of zirconia-based thermal barrier coatings for engine applications. Emphasis is placed on trying to understand the chemical reactions, and such other mechanisms as can be identified, that cause corrosive degradation of the thermal barrier coating. The various approaches taken in attempts to improve the hot corrosion resistance of thermal barrier coatings are also briefly described and critiqued.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 217-234; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: Experimental results are shown which demonstrate that the properties of plasma sprayed fully stabilized zirconia are strongly influenced by the process parameters. Properties of the coatings in the as-sprayed condition are shown to be additionally influenced by environmental exposure. This behavior is dependent on raw material considerations and processing conditions as well as exposure time and temperature. Process control methodology is described which can take into consideration these complex interactions and help to produce thermal barrier coatings in a cost effective way while meeting coating technical requirements.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 153-166; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 103-112; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Application of thermal barrier coatings deposited by thermal spray, physical vapor and possibly other methods is expected to be extended from aircraft gas turbines to industrial and utility gas turbines as well as diesel engines. This increased usage implies the participation of greater numbers of processors and users, making the availability of standards for process control and property measurement more important. Available standards for processing and evaluation of thermal barrier coatings are identified as well as those needed in the future but currently unavailable.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 49-60; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: The Department of Energy's Advanced Turbine Systems (ATS) program is aimed at fostering the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS machines will emphasize different criteria in the selection of materials for the critical components. In particular, thermal barrier coatings (TBC's) will be an essential feature of the hot gas path components in these machines. In fact, the goals of the ATS will require significant improvements in TBC technology, since these turbines will be totally reliant on TBC's, which will be required to function on critical components such as the first stage vanes and blades for times considerably in excess of those experienced in current applications. Issues that assume increased importance are the mechanical and chemical stability of the ceramic layer and of the metallic bond coat; the thermal expansion characteristics and compliance of the ceramic layer; and the thermal conductivity across the thickness of the ceramic layer. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology. A significant TBC development effort is planned in the ATS program which will address these key issues.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 35-48; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems, improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper, we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the Fourth International Conference and Exhibition: World Congress on Superconductivity; Volume 2; 611-620; NASA-CP-3290-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: metal oxidation at the ceramic-metal interface, ceramic-metal interface stress singularities at edges and corners, ceramic-metal interface stresses caused by radius of curvature and interface roughness, material properties and mechanical behavior, temperature gradients, component design features and object impact damage. TBC spalling life analytical models are proposed based on observations of TBC spalling and plausible failure theories. TBC spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 265-281; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: A polyimide is a hard and sturdy thermoplastic made from the combination of tetracarboxylic dianhydrides and diamines in a polar aprotic solvent. A series of polyimide blends comprising of a tough moldable, wholly aromatic polyimide and a highly crystalline rigid polyimide were prepared. The flexible polyimide was based on LaRC-SI with a 2% offset, and the rigid polyimide as based on para-phenylenediamine and biphenyltetracarboxylic dinnhydride encapped with pthalic anhydride. The polyimide blends were cast as films and cured at 100, 200, and 300 C in air. These films were characterized by finding their glass-transition temperature, melting temperature, coefficient of thermal expansion, tensile modulus, tensile strength, and percent elongation. These characterizations found out which polyimide blend had exceptional mechanical and thermal properties. Experimental results showed the following: (1) A blend with increasing amounts of flexible polyimide produced a better film; (2) A blend with increasing amounts of rigid polyimide produced a brittle film; (3) LaRC-SI (2% offset) tended to phase separate during film casting; (4) Most of the films produced were brittle; and (5) There was an inability to obtain mechanical and thermal properties due to having brittle film. These conclusions demonstrate the difficulty in producing a polyimide blend comprising two physically distinct polyimides. Combining a polysmide with a poly(amic acid) thermosett could be the next phase of research in polyimide synthesis.
    Keywords: Nonmetallic Materials
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 80; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: Thermal barrier coatings are important, and in some instances a necessity, for high temperature applications such as combustor liners, and turbine vanes and rotating blades for current and advanced turbine engines. Some of the insulating materials used for coatings, such as zirconia that currently has widespread use, are partially transparent to thermal radiation. A translucent coating permits energy to be transported internally by radiation, thereby increasing the total energy transfer and acting like an increase in thermal conductivity. This degrades the insulating ability of the coating. Because of the strong dependence of radiant emission on temperature, internal radiative transfer effects are increased as temperatures are raised. Hence evaluating the significance of internal radiation is of importance as temperatures are increased to obtain higher efficiencies in advanced engines.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop, 1997; 17-26; NASA/CP-1998-207429
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: Four research areas at the NASA Lewis Research Center involving the tribology of space mechanisms are highlighted. These areas include: soluble boundary lubrication additives for perfluoropolyether liquid lubricants, a Pennzane dewetting phenomenon, the effect of ODC-free bearing cleaning processes on bearing lifetimes, and the development of a new class of liquid lubricants based on silahydrocarbons.
    Keywords: Nonmetallic Materials
    Type: Fortieth Anniversary: Pioneering the Future; 299-310; NASA/CP-1998-207191
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2005-04-14
    Description: It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.
    Keywords: Nonmetallic Materials
    Type: Space Photovoltaic Research and Technology 1995; 142-149; NASA-CP-10180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-23
    Description: Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF-HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damage at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, was observed especially for the combined LCF-HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.
    Keywords: Nonmetallic Materials
    Type: Materials Science and Engineering (ISSN 0921-5093); Volume A245; 212-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-23
    Description: A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (〈50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (〈50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.
    Keywords: Nonmetallic Materials
    Type: Journal of Materials Science (ISSN 0022-2461); Volume 33; 5781-5787
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-23
    Description: As an ongoing effort to develop structural adhesives for high-performance aerospace applications, recent work has focused on phenylethynyl terminated imide (PETI) oligomers. The work reported herein involves the synthesis and characterization of a series of phenylethynyl containing oligomers designated LARC(TM) MPEI (modified phenylethynyl imide). These oligomers presumably contain mixtures of linear, branched and star-shaped molecules. The fully imidized polymers exhibited minimum melt viscosities as low as 600 poise at 335 C, significantly lower than equivalent molecular weight linear materials. Ti/Ti lap shear specimens processed at 288 C under 15 psi showed tensile shear strengths as high as approx. 6000 psi and 5200 psi at ambient temperature and 177 C respectively. The chemistry and properties of these new MPEIs are presented and compared with an optimized linear PETI, LARC(TM)PETI-5.
    Keywords: Nonmetallic Materials
    Type: High Performance Polymers (ISSN 0954-0083); Volume 10; 175-180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-23
    Description: As part of a program to develop high-performance/high-temperature structural resins for aeronautical applications, imide oligomers containing pendent and terminal phenylethynyl groups were prepared, characterized and the cured resins evaluated as composite matrices. The oligomers were prepared at a calculated number-average molecular weight of 5000 g/mol and contained 15-20 mol% pendent phenylethynyl groups. In previous work, an oligomer containing pendent and terminal phenylethynyl groups exhibited a high glass transition temperature (approximately 313 C), and laminates therefrom exhibited high compressive properties, but processability, fracture toughness, microcrack resistance and damage tolerance were less than desired. In an attempt to improve these deficiencies, modifications in the oligomeric backbone involving the incorporation of 1,3-bis(3-aminophenoxy)benzene were investigated as a means of improving processability and toughness without detracting from the high glass transition temperature and high compressive properties. The amide acid oligomeric solutions were prepared in N-methyl-2-pyrrolidinone and were subsequently processed into imide powder, thin films, adhesive tape and carbon fiber prepreg. Neat resin plaques were fabricated from imide powder by compression moulding. The maximum processing pressure was 1.4 MPa and the cure temperature ranged from 350 to 371 C for 1 h for the mouldings, adhesives, films and composites. The properties of the 1,3-bis(3-aniinophenoxy)benzene modified cured imide oligomers containing pendent and terminal phenylethynyl groups are compared with those of previously prepared oligomers containing pendent and terminal phenylethynyl groups of similar composition and molecular weight.
    Keywords: Nonmetallic Materials
    Type: High Performance Polymers (ISSN 0954-0083); Volume 10; 273-283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-06-07
    Description: Composite IM7-K3B was subjected to a simulated high speed aircraft thermal environment to determine the effects of microcracking on the change in CTE. IM7-K3B is a graphite fiber reinforced polyimide laminate, manufactured by Dupont. The lay-up for the material was (0.90((Sub 3)(Sub s))). The specimens were placed in a laser-interferometric dilatometer to obtain thermal expansion measurements and were then repeatedly cycled between -65 F and 350 F up to 1000 cycles. After cycling they were scanned for microcracks at a magnification of 400x. The material was expected not to crack and to have a near zero CTE. Some microcracking did occur in all specimens and extensive microcracking occurred in one specimen. Further testing is required to determine how closely the CTE and microcracking are related.
    Keywords: Nonmetallic Materials
    Type: Langley Aerospace Research Summer Scholars; Part 2; 707-715; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: This report is about experimenting and developing uses for the new thermal plastic developed by Dr. Robert Bryant called the 'Langley Research Center - Soluble Imide' (LaRC-SI). The three developments are: the use of the LaRC-SI as a dielectric for thin film sensors, as an adhesive to place diamonds on surfaces to increase thermal conductivity, and as an intermediate layer to allow the placement of metal on aluminum nitride. The LaRC-SI was developed by Dr. Robert G. Bryant, a chemical engineer at NASA Langley Research Center. The unique properties of this material is that it is an amorphous thermoplastic. This means that it can be reformed at elevated temperature and pressures. It can be applied in the form of a spray, spin, dip coating, paint, or spread with a doctors blade. The LaRC-SI has excellent adhesive and dielectric properties. It can also be recycled. Potential applications for this material are resin for mechanical parts such as gears, bearings and valves, advanced composites like carbon fiber, high strength adhesives, thin film circuits, and as a dielectric film for placing electrical components on conductive materials.
    Keywords: Nonmetallic Materials
    Type: Langley Aerospace Research Summer Scholars; Part 2; 685-694; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-06-07
    Description: Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.
    Keywords: Nonmetallic Materials
    Type: Langley Aerospace Research Summer Scholars; Part 2; 643-654; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-07
    Description: This paper investigates the relationship between open hole tensile strength and distance between a hole and a stitch in a textile composite material. Tension tests were completed on various specimens with widths of 1 in., 2 in., 3 in. and a constant width to hole diameter ratio of 4. The composites tested were warp knits with AS4 fibers and 3501-6 resin. Test results show a small percent change of net strength with stitch location. However, due to the large scatter in data, the small 6% change in net strength is considered negligible.
    Keywords: Nonmetallic Materials
    Type: Langley Aerospace Research Summer Scholars; Part 2; 599-607; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-07
    Description: Several poly(arylene ether benzimidazole) oligomers were prepared by the nucleophilic aromatic substitution reaction of a bisphenol benzimidazole and various alkyl-substituted aromatic bisphenols with an activated aromatic dihalide in N, N-dimethylacetarnide. Moderate to high molecular weight terpolymers were obtained in all cases, as shown by their inherent viscosities, which ranged from 0.50 to 0.87 dL g(sup -1). Glass transition temperatures (T(sub g)s) of polymer powders ranged from 267-280 C. Air-dried unoriented thin film T(sub g)s were markedly lower than those of the powders, whereas T(sub g)s of films dried in a nitrogen atmosphere were identical to those of the corresponding powders. In addition, air-dried films were dark amber and brittle, whereas nitrogen-dried films were yellow and creasable. Nitrogen-dried films showed slightly higher thin-film tensile properties than the air-dried films, as well.
    Keywords: Nonmetallic Materials
    Type: Technical Reports: Langley Aerospace Research Summer Scholars; Part 1; 407-415; NASA-CR-202463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.
    Keywords: Nonmetallic Materials
    Type: Technical Reports: Langley Aerospace Research Summer Scholars; Part 1; 185-194; NASA-CR-202463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-06-07
    Description: Piezoelectric materials exhibit an electrical response, such as voltage or charge, in reaction to a mechanical stimuli. The mechanical stimuli can be force, pressure, light, or heat. Therefore, these materials are excellent sensors for various properties. The major disadvantage of state of the art piezoelectric polymers is their lack of utility at elevated temperatures. The objective of this research is to study the feasibility of inducing piezoelectricity in high performance polymer systems. The three aspects of the research include experimental poling, characterization of the capacitance, and demonstration of the use of a piezoelectric polymer as a speaker.
    Keywords: Nonmetallic Materials
    Type: Technical Reports: Langley Aerospace Research Summer Scholars; Part 1; 45-56; NASA-CR-202463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-29
    Description: A series of polyimides derived from a newly synthesized diamine, namely, 4,4-bis(4-aminophenoxy)-2,2-dimethylbiphenyl (BAPD), were developed and characterized. Their physical and thermal properties were compared to polyimides based on'commercially available 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP).
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-31
    Description: VDF/TrFe pyroelectric sensors have now definitely reached the level of a product. Based on a bidimensional staring array, it can be considered as a whole system with a monolithic technology processed on a silicon substrate provided with the integrated read out circuit. The paper will describe the main procedure dealing with the elaboration of a 32 x 32 focal plane array developed, in the context of the PROMETHEUS PROCHIP European Program (EUREKA), as a passive infrared obstacle detection applied to automotive. Additional experimental data suggest that this microsystem could operate in space environment.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-08-01
    Description: Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of a luminescent paint is described followed by applications in low speed, transonic, supersonic and cryogenic wind tunnels and in rotating machinery.
    Keywords: Nonmetallic Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: LARC(Trademark) MPEI-1 (Langley Research Center(Trademark) modified phenylethynyl imide-1) phenylethynyl containing aromatic polymide, is based on the reaction of biphenyl dianhydride (BPDA), 3,4'-oxydianiline (3,4'-ODA), 1,3-bis(3-aminophenoxy)benzene (APB), 2,4,6-triaminopyrimidine (TAP) and 4-phenylethynyl phthalic anhydride (PEPA), presumably resulting in a mixture of linear, branched and star shaped phenylethynyl containing imides which was evaluated as a matrix for high-performance composites. The poly(amid acid) solution of MPEI-1 in N-methypyrrolidinone was synthesized at 35% and 42% solids. Unidirectional prepreg was fabricated from these solutions and Hercules IM7 carbon fiber utilizing NASA- Langley's multipurpose prepreg machine. The temperature-dependent volatile depletion rates, thermal crystallization behavior and resin theology were characterized. Based on this information, a composite molding cycle was developed which yielded well consolidated, void-free laminates. Composite mechanical properties such as short beam shear strength, longitudinal and transverse flexural strength and flexural modulus, longitudinal tensile strength and notched and unnotched compression strengths were measured at room temperature (RT) and elevated temperatures. These mechanical properties are compared with those of IM7/LARC(Trademark) PETI-5 composites.
    Keywords: Nonmetallic Materials
    Type: High Performance Polymers (ISSN 0954-0083); Volume 10; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-23
    Description: Polyimides are finding increased applications in microelectronics due to their high thermal stability, good chemical resistance, good adhesion, low moisture absorption, good mechanical properties, and low coefficient of thermal expansion (CTE). Four series of random copolyimides were synthesized and characterized for potential application as encapsulants, stress-relief layers, and interlevel dielectrics. Several candidates exhibited good combinations of physical and mechanical properties with inherent viscosities from 1.21 to 1.42 dL/g, T(sub g)'s ranging from 251 to 277 C, 10% weight loss temperatures between 503 and 527 C, and CTEs ranging from 33 to 39 ppm/deg C. Mechanical properties at room temperature for the best candidates included tensile strengths of 17.8-21.3 ksi, moduli between 388 and 506 ksi, and elongations of 11-43%. Moisture absorption for these copolyimides ranged between 0.85 and 1.38 wt %.
    Keywords: Nonmetallic Materials
    Type: Journal of Applied Polymer Science (ISSN 0021-8995); Volume 69; 2383-2393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: A Space Act Agreement between Kennedy Space Center and Surtreat Southeast, Inc., resulted in a new treatment that keeps buildings from corroding away over time. Structural corrosion is a multi-billion dollar problem in the United States. The agreement merged Kennedy Space Center's research into electrical treatments of structural corrosion with chemical processes developed by Surtreat. Combining NASA and Surtreat technologies has resulted in a unique process with broad corrosion-control applications.
    Keywords: Nonmetallic Materials
    Type: Spinoff 1998; 76; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Imi-Tech Corporation, in cooperation with Johnson Space Center, introduced the Solimide AC-500 series of polyimide foam products designed to meet the needs of the aircraft/aerospace industry. These foams accomodate the requirements of state-of-the-art insulation systems. Solimide polyimide foams are currently used in defense, industrial and commercial applications.
    Keywords: Nonmetallic Materials
    Type: Spinoff 1998; 57; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: SRS Technologies is currently the only company licensed by Langley Research Center to produce colorless polyimides. They currently produce two polyimides, the LaRC-CP1 and LaRC-CP2 developed by Langley Research Center. These polyimides offer many advantages over other commercially available materials including excellent thermal stability, radiation resistance, solubility, and transparency. The SRS polyimides can be used in laminates, films, molded parts, and stock shapes. The polyimide technology has also helped the company further their development of solar arrays.
    Keywords: Nonmetallic Materials
    Type: Spinoff 1998; 98; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Advanced Ceramics Research (ACR) of Tucson, Arizona, researches transforming scientific concepts into technological achievement. Through the SBIR (Small Business Innovative Research) program, ACR developed a high pressure and temperature fused deposition system, a prototyping system that is known as extrusion freeform fabrication. This system is useful in manufacturing prosthetics. ACR also developed a three-dimensional rapid prototyping process in which physical models are quickly created directly from computer generated models. Marshall Space Flight Center also contracted ACR to fabricate a set of ceramic engines to be appraised for a solar thermal rocket engine test program.
    Keywords: Nonmetallic Materials
    Type: Spinoff 1998; 102; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Under a NASA SBIR (Small Business Innovative Research) contract with Johnson Space Center, Aspen Systems developed aerogel-based superinsulation. This super-insulation is an innovative, flexible cryogenic insulation with extremely low thermal conductivity. Potential commercial uses include cryogenic applications in the transportation, storage and transfer of cryogens; near room-temperature applications such as refrigerator insulation; and elevated temperature applications such as insulations for high- temperature industrial processes and furnaces.
    Keywords: Nonmetallic Materials
    Type: Spinoff 1998; 97; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.
    Keywords: Nonmetallic Materials
    Type: NASA-CASE-LAR-15387-1 , NAS 1.71:LAR-15387-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-05
    Description: High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-05
    Description: Major goals of NASA and the Integrated High Performance Turbine Engine Technology (IHPTET) initiative include improvements in the affordability of propulsion systems, significant increases in the thrust/weight ratio, and increases in the temperature capability of components of gas turbine engines. Members of NASA Lewis Research Center's HITEMP project worked cooperatively with Allison Advanced Development Corporation to develop a manufacturing method to produce low-cost components for gas turbine engines. Affordability for these polymer composites is defined by the savings in acquisition and life-cycle costs associated with engine weight reduction. To lower engine component costs, the Lewis/Allison team focused on chopped graphite fiber/polyimide resin composites. The high-temperature polyimide resin chosen, PMR-II-50, was developed at NASA Lewis.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-05
    Description: Composite parts of nonuniform thickness can be fabricated by in-situ automated tape placement (ATP) if the tape can be started and stopped at interior points of the part instead of always at its edges. This technique is termed start/stop-on-the-part, or, alternatively, tape-add/tape-drop. The resulting thermal transients need to be managed in order to achieve net shape and maintain uniform interlaminar weld strength and crystallinity. Starting-on-the-part has been treated previously. This paper continues the study with a thermal analysis of stopping-on-the-part. The thermal source is switched off when the trailing end of the tape enters the nip region of the laydown/consolidation head. The thermal transient is determined by a Fourier-Laplace transform solution of the two-dimensional, time-dependent thermal transport equation. This solution requires that the Peclet number Pe (the dimensionless ratio of inertial to diffusive heat transport) be independent of time and much greater than 1. Plotted isotherms show that the trailing tape-end cools more rapidly than the downstream portions of tape. This cooling can weaken the bond near the tape end; however the length of the affected region is found to be less than 2 mm. To achieve net shape, the consolidation head must continue to move after cut-off until the temperature on the weld interface decreases to the glass transition temperature. The time and elapsed distance for this condition to occur are computed for the Langley ATP robot applying PEEK/carbon fiber composite tape and for two upgrades in robot performance. The elapsed distance after cut-off ranges from about 1 mm for the present robot to about 1 cm for the second upgrade.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-106793 , E-9256 , NAS 1.15:106793
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-111682 , NAS 1.15:111682
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: Ceramic thermal barrier coatings represent an attractive method of increasing the high temperature limits for systems such as diesel engines, gas turbines and aircraft engines. However, the dissimilarities between ceramics and metal, as well as the severe temperature gradients applied in such systems cause thermal stresses which can lead to cracking and ultimately spalling of the coating. This paper reviews the research which considers initiation of surface cracks, interfacial edge cracks and the effect of a transient thermal load on interface cracks. The results of controlled experiments together with analytical models are presented. The implications of these findings to the differences between diesel engines and gas turbines are discussed. The importance of such work for determining the proper design criteria for thermal barrier coatings is underlined.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 235-250; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 203-216; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.
    Keywords: Nonmetallic Materials
    Type: Thermal Barrier Coating Workshop; 113-126; NASA-CP-3312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: An unexpected and significant physico-chemical degradation of Coflon PVDF specimens was observed at the end of 1994 during routine scheduled exposure exercises on strained material. The intent was to age various samples, including some strained in a 4-point bend configuration, in methanol at 140 C and subsequently submit the aged samples to various tests including dynamic fatigue and fracture toughness. However, the samples deteriorated to such an extent that such testing was not possible: only when conditions were made less severe was it found possible to perform such testing. The purpose of the current report is to describe the nature of the PVDF deterioration observed during a number of tests performed to examine this phenomenon. This report also records, as Appendix 1, some SEM/X-ray microanalysis data on Coflon samples exposed to a methanol/amine mixture, and to other amine or H2S-aged samples.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-95-207623 , NAS 1.26:207623 , CAPP/M.6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-113163 , NAS 1.15:113163 , E-10753
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: Due to the strict regulations on the usage of heavy metals as the additives in the coating industries, the search for effective organic corrosion inhibitors in replace of those metal additives has become essential. Electrically conducting polymers have been shown to be effective for corrosion prevention but the poor solubility of these intractable polymers has been a problem. We have explored a polyaniline/4-dodecylphenol complex (PANi/DDPh) to improve the dissolution and it has been shown to be an effective organic corrosion inhibitor. With the surfactant, DDPh, PANi could be diluted into the coatings and the properties of the coatings were affected. Emeraldine base (EB) form of PANi was also found to be oxidized by the hardener. The oxidized form of polyaniline provides improved corrosion protection of metals than that of emeraldine base since the value of the standard electrode potential for the oxidized form of PANi is higher than that of EB. Additionally, the surfactant improves the wet adhesion property between the coating and the metal surface.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-97-207459 , NAS 1.26:207459
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-95-206419 , NAS 1.26:206419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: The overall objective of this study was the description of the behavior of mesogen substituted acetylene monomers and polymers in monolayer films at the air/water interface and as multilayer films including the formation of such films. Fundamental knowledge to be gained would include the effect of balancing hydrophilic and hydrophobic tendencies in a molecule more complex than the classical fatty acids or lipids. The effect of molecular shape on the packing and thus the ultimate stability of monolayers formed from these new molecules was explored. The work takes on the challenge of preorienting monomers in well-ordered arrays prior to attempting polymerization with the hope that order would be preserved in any resulting polymer. New knowledge gained with regard to the acetylenic monomers includes processing of the acetylene monomer into multi-layer films, followed by the design and synthesis of a second generation of improved monomer structure for superior LBK film transfer properties. A third generation of acetylenic monomer was synthesized which approaches more closely the goal of solid state polymerization of these materials. A parallel study took a different approach. The materials are pre-formed poly(phenylene-acetylene) polymers so questions about reactivity are mute. The materials are a variation on the well-known hairy-rod polymers with regard to their Langmuir film-forming properties. Overall, the goal was to demonstrate that these polymers could be processed into NLO materials with novel polar order.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-97-206144 , NAS 1.26:206144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-111692 , NAS 1.15:111692 , E-9674
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.
    Keywords: Nonmetallic Materials
    Type: NAS 1.71:LAR-15279-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: Pin-on-disk tribology experiments were conducted on a perfluoroalkylelher (PFPE) liquid lubricant with and without a new PFPE lubricant antiwear additive material, a silane. It was found that the silane provided moderate improvement in the antiwear performance of the PFPE lubricant when applied to the metallic surface as a surface coating or when added to the PFPE as a dispersion (emulsion). Slightly better results were obtained by using the combination of a surface coating and an emulsion of the silane. The silane emulsions or coatings did not affect the friction properties of the lubricant. Micro-Fourier transformation infrared (muFTIR) spectroscopy analysis was performed to study silane transfer films and the degradation of the PFPE. The silane was found to mitigate degradation of the PFPE which may have been the major reason for the improved antiwear performance observed.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-107038 , E-9859 , NAS 1.15:107038
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: Polydiacetylenes are a very promising class of polymers for both photonic and electronic applications because of their highly conjugated structures. For these applications, high-quality thin polydiacetylene films are required. We have discovered a novel technique for obtaining such films of a polydiacetylene derivative of 2-methyl-4-nitroaniline using photodeposition from monomer solutions onto UV transparent substrates. This heretofore unreported process yields amorphous polydiacetylene films with thicknesses on the order of I micron that have optical quality superior to that of films grown by standard crystal growth techniques. Furthermore, these films exhibit good third-order nonlinear optical susceptibilities; degenerate four-wave mixing experiments give x(3) values on the order of 10(exp -8) - 10(exp -7) esu. We have conducted masking experiments which demonstrate that photodeposition occurs only where the substrate is directly irradiated, clearly indicating that the reaction occurs at the surface. Additionally, we have also been able to carry out photodeposition using lasers to form thin polymer circuits. In this work, we discuss the photodeposition of polydiacetylene thin films from solution, perform chemical characterization of these films, investigate the role of the substrate, speculate on the mechanism of the reaction, and make a preliminary determination of the third-order optical nonlinearity of the films. This simple, straightforward technique may ultimately make feasible the production of polydiacetylene thin films for technological applications.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-111277 , NAS 1.15:111277
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: A phenylethynyl terminated imide oligomer formed from the reaction of benzophenone tetracarboxylic acid dianhydride, an 75:25 molar ratio of 4,4'-oxydianiline and meta-phenylenediamine and 4-phenylethynylphthalic anhydride as the endcapper at a theoretical number average molecular weight (Mn) of approximately 3,700 g/mol was evaluated as a composite resin matrix. A glass transition temperature (Tg) of 315 deg C was reached after 250 deg C/1 hr annealing of the matrix resin. Unidirectional prepreg was made by coating an N-methylpyrrolidinone solution of the amide acid oligomer onto unsized IM7 graphite fibers. The thermal and rheological properties and the solvent/volatile depletion rates of the amide acid/NMP system were determined. This information was used to successfully design a molding cycle for composite fabrication. Composites molded under 800 Psi at 371 C consistently yielded good consolidation as measured by C-scan and optical photomicrography. The composite's short beam shear strength (SBS), longitudinal and transverse flexural strengths and moduli were measured at various temperatures. These composites exhibited excellent room temperature (RT) longitudinal flexural strength and modulus and RT SBS strength retention at 177 C.
    Keywords: Nonmetallic Materials
    Type: NASA-CR-198254 , NAS 1.26:198254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.
    Keywords: Nonmetallic Materials
    Type: NASA-CR-200105 , NAS 1.26:200105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-208100 , NAS 1.15:208100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-1998-207760 , NAS 1.26:207760
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-05
    Description: Many spacecraft thermal control coatings in low Earth orbit (LEO) can be affected by solar ultraviolet radiation and atomic oxygen. Ultraviolet radiation can darken some polymers and oxides commonly used in thermal control materials. Atomic oxygen can erode polymer materials, but it may reverse the ultraviolet-darkening effect on oxides. Maintaining the desired solar absorptance for thermal control coatings is important to assure the proper operating temperature of the spacecraft. Thermal control coatings to be used on the International Space Station (ISS) were evaluated for their performance after exposure in the NASA Lewis Research Center's Atomic Oxygen-Vacuum Ultraviolet Exposure (AO-VUV) facility. This facility simulated the LEO environments of solar vacuum ultraviolet (VUV) radiation (wavelength range, 115 to 200 nanometers (nm)) and VUV combined with atomic oxygen. Solar absorptance was measured in vacuo to eliminate the "bleaching" effects of ambient oxygen on VUV-induced degradation. The objective of these experiments was to determine solar absorptance increases of various thermal control materials due to exposure to simulated LEO conditions similar to those expected for ISS. Work was done in support of ISS efforts at the requests of Boeing Space and Defense Systems and Lockheed Martin Vought Systems.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-05
    Description: Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: Members of NASA Lewis Research Center's Tribology and Surface Science Branch are applying high-level computational chemistry techniques to the development of new lubrication systems for space applications and for future advanced aircraft engines. The next generation of gas turbine engines will require a liquid lubricant to function at temperatures in excess of 350 C in oxidizing environments. Conventional hydrocarbon-based lubricants are incapable of operating in these extreme environments, but a class of compounds known as the perfluoropolyether (PFAE) liquids (see the preceding illustration) shows promise for such applications. These commercially available products are already being used as lubricants in conditions where low vapor pressure and chemical stability are crucial, such as in satellite bearings and composite disk platters. At higher temperatures, however, these compounds undergo a decomposition process that is assisted (catalyzed) by metal and metal oxide bearing surfaces. This decomposition process severely limits the applicability of PFAE's at higher temperatures. A great deal of laboratory experimentation has revealed that the extent of fluid degradation depends on the chemical properties of the bearing surface materials. Lubrication engineers would like to understand the chemical breakdown mechanism to design a less vulnerable PFAE or to develop a chemical additive to block this degradation.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: Boron nitride (BN) is a prime candidate for fiber coatings in silicon carbide (SiC) fiber-reinforced SiC matrix composites. The properties of BN allow the fiber to impart beneficial composite properties to the matrix, even at elevated temperatures. The problem with BN is that it is readily attacked by oxygen. Although BN is an internal component of the composite, a matrix crack or pore can create a path for hot oxygen to attack the BN. This type of attack is not well understood. A variety of phenomena have been observed. These include borosilicate glass formation, volatilization of the BN, and under some conditions, preservation of the BN. In this study at the NASA Lewis Research Center, a series of BN materials and BN-containing model composites were methodically examined to understand the various issues dealing with the oxidation of BN in composites. Initial studies were done with a series of monolithic BN materials prepared by hot pressing and chemical vapor deposition (CVD). From these studies, we found that BN showed a strong orientation effect in oxidation and was extremely sensitive to the presence of water vapor in the environment. In addition, CVD material deposited at a high temperature showed much better oxidation behavior than CVD material deposited at a lower temperature.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: In this presentation, a plan to develop methods for applying pressure-sensitive paint to rotorcraft will be described. These methods are needed because flows over rotor blades are typically very complex and poorly understood and because conventional methods for measuring unsteady pressures on rotor blades (using unsteady pressure transducers provide grossly inadequate spatial resolution. Since PSP is a surface, rather than a point, measurement technique, it has the potential to significantly increase the spatial resolution )f pressure measurements on rotor blades. PSP techniques currently in use at Ames were developed for measuring steady pressures on rigid, complex airplane configurations in large, production wind tunnels. Applying PSP to rotorcraft requires a significant departure from these techniques. First and most importantly new, fast-responding and self-referencing pressure paints are required. The paints must be fast (98% response in 1-5 msec) to resolve flow unsteadiness; they must be self-referencing (or "binary") to account for changes in incident light intensity due to deflection of flexible rotors. Self-referencing paints have been used at Ames for some time; however, these paints have response times that are far too long for unsteady applications. Flash illumination is required to resolve flow unsteadiness and to minimize image blurring due to relative motion between the model and the camera. Current practice at Ames is to use continuous illumination Finally, "in situ" paint calibration versus measurements by pressure transducers, which is current Ames practice, is not practical because of the difficulty and expense of installing transducers in rotor blades. Instead, the paint must be calibrated "a priori" in a calibration chamber. A sequence of five experiments that systematically isolates and addresses the problems involved in making PSP measurements on rotor blades has been planned. These are: (1) measurements on a rigid rotor in hover; (2) measurements on a flexible rotor in hover; measurements of paint response time in a calibration apparatus; (4) measurements on a rigid, two-dimensional oscillating airfoil; and (5) measurements on a flexible rotor in forward flight. Experiments were recently conducted at Ames where PSP measurements were made on a rigid oscillating airfoil (experiment type 4) and on a flexible rotor in hover (experiment type 2). Preliminary results from these experiments will be discussed.
    Keywords: Nonmetallic Materials
    Type: 6th Annual Pressure Sensitive Paint Workshop; Oct 06, 1998 - Oct 08, 1998; Renton, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.
    Keywords: Nonmetallic Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-18
    Description: The brightness signal from a pressure-sensitive paint varies inversely with absolute pressure. Consequently high signal-to-noise ratios are required to resolve aerodynamic pressure fields at low speeds, where the pressure variation around an object might only be a few percent of the mean pressure. This requirement is unavoidable, and implies that care must be taken to minimize noise sources present in the measurement. This paper discusses and compares the main noise sources in low speed PSP testing using the "classical" intensity-based single-luminophore technique. These are: temperature variation, model deformation, and lamp drift/paint degradation. Minimization of these error sources from the point of view of operation in production wind tunnels is discussed, with some examples from recent tests in NASA Ames facilities.
    Keywords: Nonmetallic Materials
    Type: 6th Annual Pressure Sensitive Paint Workshop; Oct 06, 1998 - Oct 10, 1998; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.
    Keywords: Nonmetallic Materials
    Type: Fluorinated Surfaces, Coatings and Films Symposium; Aug 23, 1998 - Aug 28, 1998; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-18
    Description: Fairings composed of Rigid Fibrous Insulations (RSI) were fabricated, instrumented, and coated using techniques that were recently developed at NASA Ames Research Center. These RSI components are part of a specific assembly of materials which were built onto a wing of a Pegasus flight vehicle. The assembly was designed to collect aerothermal data during a designated mission to deliver a satellite to earth orbit. The objective of the flight experiment is to validate the theory of boundary layer transition at flight speeds in excess of Mach 3. The actual flight experiment is scheduled to occur during the summer of 1998. Fabrication and installation methodologies will be discussed with a brief description of the wing glove assembly.
    Keywords: Nonmetallic Materials
    Type: American Ceramic Society''s 100th Annual Meeting and Exposition; May 03, 1998 - May 06, 1998; Cincinnati, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Fullerenes possess remarkable properties and many investigators have examined the mechanical, electronic and other characteristics of carbon SP2 systems in some detail. In addition, C-60 can be functionalized with many classes of molecular fragments and we may expect the caps of carbon nanotubes to have a similar chemistry. Finally, carbon nanotubes have been attached to t he end of scanning probe microscope (Spill) tips. Spills can be manipulated with sub-angstrom accuracy. Together, these investigations suggest that complex molecular machines made of fullerenes may someday be created and manipulated with very high accuracy. We have studied some such systems computationally (primarily functionalized carbon nanotube gears and computer components). If such machines can be combined appropriately, a class of materials may be created that can sense their environment, calculate a response, and act. The implications of such hypothetical materials are substantial.
    Keywords: Nonmetallic Materials
    Type: 193rd Meeting of the Electrochemical Society; May 03, 1998 - May 08, 1998; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-18
    Description: The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.
    Keywords: Nonmetallic Materials
    Type: 47th Pacific Coast Regional Meeting of the American Ceramic Society; Nov 01, 1995 - Nov 03, 1995; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).
    Keywords: Nonmetallic Materials
    Type: Third International Symposium on Functional Dyes; Jul 16, 1995 - Jul 21, 1995; Santa Cruz, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Transverse matrix cracking in cross-ply gr/ep laminates was studied with advanced acoustic emission (AE) techniques. The primary goal of this research was to measure the load required to initiate the first transverse matrix crack in cross-ply laminates of different thicknesses. Other methods had been previously used for these measurements including penetrant enhanced radiography, optical microscopy, and audible acoustic microphone measurements. The former methods required that the mechanical test be paused for measurements at load intervals. This slowed the test procedure and did not provide the required resolution in load. With acoustic microphones, acoustic signals from cracks could not be clearly differentiated from other noise sources such as grip damage, specimen slippage, or test machine noise. A second goal for this work was to use the high resolution source location accuracy of the advanced acoustic emission techniques to determine whether the crack initiation site was at the specimen edge or in the interior of the specimen.In this research, advanced AE techniques using broad band sensors, high capture rate digital waveform acquisition, and plate wave propagation based analysis were applied to cross-ply composite coupons with different numbers of 0 and 90 degree plies. Noise signals, believed to be caused by grip damage or specimen slipping, were eliminated based on their plate wave characteristics. Such signals were always located outside the sensor gage length in the gripped region of the specimen. Cracks were confirmed post-test by microscopic analysis of a polished specimen edge, backscatter ultrasonic scans, and in limited cases, by penetrant enhanced radiography. For specimens with three or more 90 degree plies together, there was an exact 1-1 correlation between AE crack signals and observed cracks. The ultrasonic scans and some destructive sectioning analysis showed that the cracks extended across the full width of the specimen. Furthermore, the locations of the cracks from the AE data were in excellent agreement with the locations measured with the microscope. The high resolution source location capability of this technique, combined with an array of sensors, was able to determine that the cracks initiated at the specimen edges, rather than in the interior. For specimens with only one or two 90 degree plies, the crack-like signals were significantly smaller in amplitude and there was not a 1-1 correlation to observed cracks. This was similar to previous results. In this case, however, ultrasonic and destructive sectioning analysis revealed that the cracks did not extend across the specimen. They initiated at the edge, but did not propagate any appreciable distance into the specimen. This explains the much smaller AE signal amplitudes and the difficulty in correlating these signals to actual cracks in this, as well as in the previous study.
    Keywords: Nonmetallic Materials
    Type: 1995 ASNT Spring Conference and Fourth Annual Research Symposium; Mar 20, 1995 - Mar 24, 1995; Las Vegas, NV; United States|1995 ASNT Spring Conference and Fourth Annual Research Symposium; 213-215
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Z-Scan measurements were performed on Au/SiO2 composite films produced by a co-sputtering technique and compared with effective medium theories which consider the full complex nature of chi(3).
    Keywords: Nonmetallic Materials
    Type: Nonlinear Optics; Aug 10, 1998 - Aug 14, 1998; Princeville, Kauai, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.
    Keywords: Nonmetallic Materials
    Type: Space Technology and Applications International Forum; Jan 25, 1998 - Jan 29, 1998; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: High temperature thermoplastic polyimide polymers are incorporated in engineering structures in the form of matrix materials in advanced fiber composites and adhesives in bonded joints. Developing analytical tools to predict long term performance and screen for final materials selection for polymers is the impetus for intensive studies at NASA and major industry based airframe developers. These fiber-reinforced polymeric composites (FRPCs) combine high strength with lightweight. In addition, they offer corrosion and fatigue resistance, a reduction in parts count, and new possibilities for control through aeroelastic tailoring and "smart" structures containing fully-integrated sensors and actuators. However, large-scale acceptance and use of polymer composites has historically been extremely slow. Reasons for this include a lack of familiarity of designers with the materials; the need for new tooling and new inspection and repair infrastructures; and high raw materials and fabrication costs.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The purpose of the work is to demonstrate that the flat test panel substrate temperatures are consistent with analysis predictions for MCC-1 applied to a aluminum substrate. The testing was performed in an aerothermal facility on samples of three different thicknesses of MCC-1 on an aluminum substrate. The results of the test were compared with a Transient Thermal model. The key assumptions of the Transient Thermal model were: (1) a one-dimensional heat transfer; (2) a constant ablation recession rate (determined from pre and post-test measurements); (3) ablation temperature of 540 degrees F; (4) Char left behind the ablation front; and (5) temperature jump correction for incident heat transfer coefficient. Two methods were used to model the heating of bare MCC-1: (1) Directly input surface temperature as a function of time; and (2) Aerothermal heating using calibration plate data and subtracting the radiation losses to tunnel walls. The results are presented as graphs. This article is presented in Viewgraph format.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-1998-208101 , NAS 1.26:208101 , Apr 21, 1998 - Apr 23, 1998; Cromwell, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The friction and wear behavior of seven space lubricants was investigated under boundary lubrication conditions using a vacuum four-ball tribometer. Three of the lubricants were perfluoropolyethers (143AC, S-200, and Z-25). Three were synthetic hydrocarbons (a multiply alkylated cyclopentane, 2001a), and a formulated version with an antiwear and an antioxidant additive (2001). The third hydrocarbon was an unformulated polyalphaolefin (PAO-100). An unformulated silahydrocarbon (SiHC) was also evaluated. Test conditions included: a pressure less than 6.7 x 10(exp 4) Pa, a 200 N load, a sliding velocity of 28.8 mm/sec (100 RPM), and room temperature (approx. 23 C). The wear rate for each lubricant was determined from the slope of wear volume as a function of sliding distance. The lowest wear rate (0.033 x 10(exp-9) cu mm/mm) was obtained with the silahydrocarbon. The formulated synthetic hydrocarbon had a wear rate off O.037 x 10(exp -9)cu mm/mm, which was a 36% reduction compared to the unformulated fluid. The polyalphaolefin had the highest wear rate of the non-PFPE fluids. Of the perfluoropolyethers (PFPEs), wear rates decreased by about 50% from Z-25 (1.7 x 10(exp -9)cu mm/mm) to S-200 (0.70 x 10(exp -9)cu mm/mm) to 143AC (0.21 x 10(exp -9)cu mm/mm).
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-208654 , NAS 1.15:208654 , E-11374 , International Tribology Conference and Exposition; Oct 25, 1998 - Oct 28, 1998; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Surfaces of the aluminized Teflon FEP multi-layer thermal insulation on the Hubble Space Telescope (HST) were found to be cracked and curled in some areas at the time of the second servicing, mission in February 1997, 6.8 years after HST was deployed in low Earth orbit (LEO). As part of a test program to assess environmental conditions which would produce embrittlement sufficient to cause cracking of Teflon on HST, samples of Teflon FEP with a backside layer of vapor deposited aluminum were exposed to vacuum ultraviolet (VUV) and soft x-ray radiation of various energies using facilities at the National Synchrotron Light Source. Brookhaven National Laboratory. Samples were exposed to synchrotron radiation of narrow energy bands centered on energies between 69 eV and 1900 eV. Samples were analyzed for ultimate tensile strength and elongation. Results will be compared to those of aluminized Teflon FEP retrieved from HST after 3.6 years and 6.8 years on orbit and will he referenced to estimated HST mission doses of VUV and soft x-ray radiation.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-208828 , NAS 1.15:208828 , E-11439 , May 31, 1998 - Jun 04, 1998; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon' FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon FEP.
    Keywords: Nonmetallic Materials
    Type: Space Simulations; Oct 26, 1998 - Oct 29, 1998; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The formation of volatile Si-O-H species from silica occurs in water-vapor containing environments such as combustion environments. In this paper the pressure and temperature dependence of known Si-O-H species are surveyed. Trends based on the number of water molecules incorporated in the Si-O-H species are identified. Larger molecules (more OH groups) tend to have a higher pressure dependence and lower temperature dependence. These trends are then used to identify possible unknown species observed in high pressure fuel-rich combustion environments.
    Keywords: Nonmetallic Materials
    Type: May 03, 1998 - May 08, 1998; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vol% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 mm layer of boron nitride (BN) followed by a 0.2 mm layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties w en compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-208657 , NAS 1.15:208657 , ARL-TR-1791 , E-11379 , CIMTEC ''98: Modern Materials and Technologies; Jun 14, 1998 - Jun 19, 1998; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Highly transparent coatings with a maximum sheet resistivity between 10(exp 8) and 10(exp 9) ohms/square are desired to prevent charging of solar arrays for low Earth polar orbit and geosynchronous orbit missions. Indium tin oxide (ITO) and magnesium fluoride (MgF2) were ion beam sputter co-deposited onto fused silica substrates and were evaluated for transmittance, sheet resistivity and the effects of simulated space environments including atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. Optical properties and sheet resistivity as a function of MgF2 content in the films will be presented. Films containing 8.4 wt.% MgF2 were found to be highly transparent and provided sheet resistivity in the required range. These films maintained a high transmittance upon exposure to AO and to VUV radiation, although exposure to AO in the presence of charged species and intense electromagnetic radiation caused significant degradation in film transmittance. Sheet resistivity of the as-fabricated films increased with time in ambient conditions. Vacuum beat treatment following film deposition caused a reduction in sheet resistivity. However, following vacuum heat treatment, sheet resistivity values remained stable during storage in ambient conditions.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-208499 , NAS 1.15:208499 , E-11297 , Metallurgical Coatings and Thin Films; Apr 24, 1996 - Apr 26, 1996; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Samples of International Space Station (ISS) thermal control coatings were exposed to simulated low Earth orbit (LEO) environmental conditions to determine effects on optical properties. In one test, samples of the white paint coating Z-93P were coated with outgassed products from Tefzel(R) (ethylene tetrafluoroethylene copolymer) power cable insulation as-may occur on ISS. These samples were then exposed, along with an uncontaminated Z-93P witness sample, to vacuum ultraviolet (VUV) radiation to determine solar absorptance degradation. The Z-93P samples coated with Tefzel(R) outgassing products experienced greater increases in solar absorptance than witness samples not coated with Tefzel(R) outgassing products. In another test, samples of second surface silvered Teflon(R) FEP (fluorinated ethylene propylene), SiO. (where x=2)-coated silvered Teflon(R) FEP, and Z-93P witness samples were exposed to the combined environments of atomic oxygen and VLTV radiation to determine optical properties changes due to these simulated ISS environmental effects. This test verified the durability of these materials in the absence of contaminants.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-208500 , NAS 1.15:208500 , E-11298 , Protection of Materials in a Space Environment; Apr 23, 1998 - Apr 23, 1998; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Ceramic joining is recognized as one of the enabling technologies for the application of silicon carbide-based materials in a number of high temperature applications. An affordable, robust technique for the joining of silicon carbide-based ceramics has been developed. This technique is capable of producing joints with tailorable thickness and composition. Microstructure and mechanical properties of reaction formed joints in a reaction bonded silicon carbide have been reported. These joints maintain their mechanical strengths at high temperatures (up to 1350 C) in air. This technique is capable of joining large and complex shaped ceramic components.
    Keywords: Nonmetallic Materials
    Type: Jun 14, 1998 - Jun 19, 1998; Florence, Italy; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-1998-207914/REV1 , E-11186/REV1 , NAS 1.15:207914/REV1 , May 31, 1998 - Jun 04, 1998; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Silicon oxynitride films were deposited by plasma-enhanced chemical-vapor deposition. The elemental composition was varied between silicon nitride and silicon dioxide: SiO(0.3)N(1.0), SiO(0.7)N(1.6), SiO(0.7)N(1.1), and SiO(1.7)N(0.%). These films were annealed in air, at temperatures of 40-240 C above the deposition temperature (260 C), to determine the stability and behavior or each composition. the biaxial modulus, biaxial intrinsic stress, and elemental composition were measured at discrete intervals within the annealing cycle. Films deposited from primarily ammonia possessed considerable hydrogen (up to 38 at.%) and lost nitrogen and hydrogen at anneal temperatures (260-300 C) only marginally higher than the deposition temperature. As the initial oxygen content increased a different mechanism controlled the behavior or the film: The temperature threshold for change rose to approximately equal to 350 C and the loss of nitrogen was compensated by an equivalent rise in the oxygen content. The transformation from silicon oxynitride to silica was completed after 50 h at 400 C. The initial biaxial modulus of all compositions was 21-3- GPa and the intrinsic stress was -30 to 85 MPa. Increasing the oxygen content raised the temperature threshold where cracking first occurred; the two film compositions with the highest initial oxygen content did not crack, even at the highest temperature (450 C) investigated. At 450 C the biaxial modulus increased to approximately equal to 100 GPa and the intrinsic stress was approximately equal to 200 MPa. These increases could be correlated with the observed change in the film's composition. When nitrogen was replaced by oxygen, the induced stress remained lower than the biaxial strength of the material, but, when nitrogen and hydrogen were lost, stress-relieving microcracking occurred.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-111235 , NAS 1.15:111235 , (ISSN 0021-7978)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The pressure-sensitive paint method was used in the test of a high-sweep oblique wing model, conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel. Surface pressure data was acquired from both the luminescent paint and conventional pressure taps at Mach numbers between M = 1.6 and 2.0. In addition, schlieren photographs of the outer flow were used to determine the location of shock waves impinging on the model. The results show that the luminescent pressure-sensitive paint can capture both global and fine features of the static surface pressure field. Comparison with conventional pressure tap data shows good agreement between the two techniques, and that the luminescent paint data can be used to make quantitative measurements of the pressure changes over the model surface. The experiment also demonstrates the practical considerations and limitations that arise in the application of this technique under supersonic flow conditions in large-scale facilities, as well as the directions in which future research is necessary in order to make this technique a more practical wind-tunnel testing tool.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-111270 , AIAA Paper 92-2686 , NAS 1.15:111270 , AIAA 10th Applied Aerodynamics Conference; Jun 22, 1992 - Jun 24, 1992; Palo Alto, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...